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Stroke-related locomotor impairments are often associated with abnormal timing and

intensity of recruitment of the affected and non-affected lower limb muscles. Restoring

the proper lower limbs muscles activation is a key factor to facilitate recovery of gait

capacity and performance, and to reduce maladaptive plasticity. Ekso is a wearable

powered exoskeleton robot able to support over-ground gait training. The user controls

the exoskeleton by triggering each single step during the gait cycle. The fine-tuning of

the exoskeleton control system is crucial—it is set according to the residual functional

abilities of the patient, and it needs to ensure lower limbs powered gait to be the most

physiological as possible. This work focuses on the definition of an automatic calibration

procedure able to detect the best Ekso setting for each patient. EMG activity has been

recorded from Tibialis Anterior, Soleus, Rectus Femoris, and Semitendinosus muscles

in a group of 7 healthy controls and 13 neurological patients. EMG signals have been

processed so to obtain muscles activation patterns. The mean muscular activation

pattern derived from the controls cohort has been set as reference. The developed

automatic calibration procedure requires the patient to perform overground walking

trials supported by the exoskeleton while changing parameters setting. The Gait Metric

index is calculated for each trial, where the closer the performance is to the normative

muscular activation pattern, in terms of both relative amplitude and timing, the higher

the Gait Metric index is. The trial with the best Gait Metric index corresponds to the best

parameters set. It has to be noted that the automatic computational calibration procedure

is based on the same number of overground walking trials, and the same experimental

set-up as in the current manual calibration procedure. The proposed approach allows

supporting the rehabilitation team in the setting procedure. It has been demonstrated to

be robust, and to be in agreement with the current gold standard (i.e., manual calibration

performed by an expert engineer). The use of a graphical user interface is a promising

tool for the effective use of an automatic procedure in a clinical context.

Keywords: lower-limb exoskeleton, electromyography, automatic calibration, neurorehabilitation, therapy

personalization
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INTRODUCTION

Stroke is the leading cause of long-term disability in adults
despite the advances achieved in the management of its
acute phase (Heiss and Kidwell, 2014; Tacchino et al., 2017).
Independent walking in particular has been associated to an
increase in patients’ ability to perform daily life activities and
self-esteem. Although more than half of patients achieve an
independent walking, this achievement may not be functional
to carry out activities of daily living. Locomotion is defined as
a cyclical lower limbs activity that results from intricate dynamic
interactions between a central program (at brain and spinal cord
level) and feedback mechanisms from muscles, tendons, and
skin afferences, as well as vision, audition, and vestibular senses
(Rossignol et al., 2006). The lower limb neuromuscular pattern
should compensate body weight support, provide forward
and lateral stability, and forward progression to ensure intra
and inter-limb multi-joints coordination (Perry and Burnfield,
2010). Common stroke-related locomotor impairments (e.g.,
imbalance, gait asymmetry, poor inter-limb coordination)
are often associated with abnormal timing and intensity of
recruitment of the affected and non-affected lower limb muscles.

Timing and intensity of muscles recruitment influence
kinematic and kinetic pattern of lower limbs and intra and
inter-limb coordination (Mulroy et al., 2003; Den Otter et al.,
2007). Restoring the coordination in muscles activation of lower
limbs is a key factor to facilitate recovery of gait capacity and
performance, and to reduce maladaptive plasticity in stroke
patients. Evidence within the last 20 years has shown that an
injured central nervous system has the ability to reorganize after
damage (Nudo, 2013; Gandolla et al., 2016). The reorganization
is dependent on motor activity executed during rehabilitative
training, and is followed by functional improvements (Edgerton
et al., 2004; Maier and Schwab, 2006; Gandolla et al., 2014,
2016). In order to achieve better outcomes in stroke survivors,
gait rehabilitation should target impairments in coordination
and allow to augment the number of repetitions during walking
practice (Eng and Tang, 2007).

Nowadays, wearable lower limbs powered exoskeletons may
be a valuable adjunctive rehabilitation therapy aiming at
augmenting training dose with repeatable, task-oriented, and
controlled movements, as suggested by the principles of motor
learning (Dietz and Harkema, 2004). In fact, as a common
approach implemented in lower limbs exoskeleton commercial
devices, the devices include actuators that support patient’s legs
through the gait cycle in the sagittal plane (e.g., Lokomat,
Hocoma; ReWalk, ReWalk Robotics). The robotic device guides
the legs through pre-programmed physiological gait patterns—
this kind of therapeutic intervention is fairly new for stroke
patients, however preliminary findings suggest that exoskeletal
gait training is equivalent to traditional therapy for chronic
stroke patients, while sub-acute patients may experience added
benefit from exoskeletal gait training (Louie and Eng, 2016).
Ekso is a wearable powered exoskeleton robot able to support
stroke patients during over-ground gait training. The kinematic
chain of the exoskeleton reproduces the human lower limbs
walking pattern. In addition, Ekso actuators control patient’s legs

through the gait cycle in the sagittal plane. Ekso can be used as
a therapeutic device in patients who must re-learn walking with
a proper step pattern and functional weight shift by moving the
patient’s legs through a customizable predefined patient-tailored
kinematic pattern. Ekso allows different setting for each patient
in terms of swing velocity, step length, lateral shift. In this way, it
is possible to control the walking pattern in terms of gait cycle
timing (i.e., stance vs. swing phase duration), inter-limb and
inter-joint coordination, lateral shift, trunk-lower limb angle, and
timing to achieve appropriate limb loading.

The fine-tuning of the exoskeleton control system is crucial,
and it is set according to the residual functional abilities of the
patient. The interaction between exoskeleton and the patient
can be seen under two different aspects: physical Human–Robot
Interaction and cognitive Human–Robot Interaction (Pons,
2010; Lee et al., 2012). Physical Human–Robot Interaction
includes the generation of supplementary forces to overcome
human physical limits. In the case of the present study, the patient
triggers each step, which however follows a predefined fully
supported physiological trajectory. The interaction is therefore
devoted to the generation of a proper gait cycle. Cognitive
Human–Robot Interaction highlights the possibility to maintain
the control of the robot from the human. In this study, the
patient has the direct control on the trigger of each step though
body lateral shift. Given the use of a commercial device, both
aspects of Human-Robot Interaction depends on robotic device
proper setting—the fine-tuning procedure is necessary to ensure
the best power transfer between subject and robot. Surface
ElectroMyoGraphy (sEMG) of the keymuscles controllingmulti-
joints coordination of lower limbs is an effective way to non-
invasively define motor control during spontaneous over-ground
gait.

This work focuses on the definition of an automatic
calibration procedure able to detect the best Ekso setting for each
patient. Ekso setting has been defined using the neuromuscular
pattern of the lower limbs collected with the superficial EMG
in hemiparetic stroke patients. The proposed approach for an
automatic calibration procedure is based on the hypothesis that
the best Ekso setting yields to be best muscular activation as
detected from superficial EMG electrodes, and that muscular
activation is as better as closer to healthy controls muscular
activation patter, particularly in terms of muscular activation
timing.

MATERIALS AND METHODS

Experimental Set-Up
Patient’s overground locomotion has been supported by Ekso
(Ekso Bionics, Richmond, CA, USA). Ekso is a wearable bionic
suit: it enables individuals with lower limb disabilities and
minimal forearm strength to stand, sit and walk over a flat
hard surface with a full weight-bearing reciprocal gait under the
supervision of a physical therapist. Ekso is intended for non-
ambulatory and ambulatory post-stroke patients, spinal cord
complete, and incomplete injury patients with different etiology,
and traumatic brain injury patients. It weighs 23 kg and can be
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used by individuals who weigh up to 100 kg and range in height
from 160 to 190 cm. Patients must have a standing hip width at
maximum of 43 cm. Ekso is equipped with four battery-powered
motors at the hips and knees: these support or replace deficient
neuromuscular function. There are four types of actuation for
each patient step: (i) FirstStep, by which a physical therapist
actuates steps with a button push; (ii) ActiveStep, by which
the patient takes control of actuating steps via buttons on the
crutches or walker; (iii) ProStep, by which the patient achieves the
next step by moving body weight laterally and then forward; and
(iv) ProStep Plus, by which steps are triggered by the user’s lateral
weight shift. The amount of power contribution to one or both
legs during walking can be tuned with three types of assistance for
each single step: (i) Bilateral Max Assist, in which Ekso provides
full power to both legs and no strength is required from the
patient; (ii) Adaptive Assist, in which patients with any amount of
lower extremity strength contribute to their walking efforts and
Ekso dynamically adjusts to produce a smooth, consistent gait;
and (iii) Fixed Assist, where Ekso legs provide a fixed amount of
pre-specified power to help patients to complete steps in a pre-
defined amount of time. Within the present study, Ekso has been
set with Prostep Plus, and Bilateral Max Assist. Ekso needs to be
adjusted to fit patients’ anthropometric data for a correct use of
the device. In particular, it is necessary to collect hip width, length
of right and left upper legs, and length of right and left lower legs.

The muscle activity has been recorded bilaterally with
the FREEEMG wireless electromyograph (BTS Bioengineering,
Garbagnate Milanese, Milano, Italy). Muscle groups considered
for the analysis and placement of the electrodes has been
selected accordingly to SENIAM guidelines (Hermens, 1999):
tibialis anterior muscle (TA), soleus muscle (SOL), rectus femoris
(RF), and semitendinosus muscle (SM). Lower limbs principal
muscles have been selected for recording, and in particular,
two couples of agonist/antagonist muscles in the proximal and
distal compartment respectively, since they are more directly
responsible for a correct walking-induced muscles activation
profile, and EMG electrodes can be easily positioned without
interfering with Ekso.

Participants
Patients were recruited from the outpatient and inpatient services
at the Villa Beretta Rehabilitation Centre (Costa Masnaga, LC,
Italy). All patients had suffered from first-ever stroke, resulting
in weakness of at least TA [to <4 on the Medical Research
Council (MRC) scale Medical Research Council/Guarantors of
Brain, 1986] and with a level of spasticity <2 as detected by
Modified Ashworth Scale (Ansari et al., 2008) at hip, knee and
ankle. Thirteen post-stroke patients were recruited [range: 29–
74 years, mean (standard deviation): 52 (14)], comprising 10
male and 3 female subjects. Patient’s characteristics along with
the degree of functional recovery at the time of recruitment are
listed in Table 1. The control group was composed of healthy
volunteers with no neurological or orthopedic impairment. The
healthy control group was aged between 21 and 49 years [mean
(standard deviation): 36 (10) years], comprising four male and
three female subjects. Experiments were conducted with approval
from the Villa Beretta Rehabilitation Centre Ethics Committee

and all subjects gave informedwritten consent in accordance with
the Declaration of Helsinki.

Current Procedure for Manual Setting of
Ekso
Current gold standard for Ekso parameters setting in clinical
environment (i.e., manual calibration) consists on the patient
performing a series of overground walking trials with the values
of tunable parameters changed by the rehabilitation team so to
identify the best setting for the current patient and condition.
These parameters are set on the basis of EMG signal derived from
analyzed muscles, and by looking at patient gait. EMG signals
are not processed in this case, and they are displayed on a laptop
screen. The information drawn from raw EMG signals is muscles
activation timing. The best activation timing for both healthy
and paretic muscles is defined according to typical activity of
major muscle groups during the gait cycle. In particular, the
standard procedure includes the setting of the three main setting
parameters, i.e., (i) lateral shift (displacement of body weight
under the patient’s foot); (ii) swing time; and (iii) step length.
Manual calibration starts with the first parameter to be set (i.e.,
lateral shift). A series of overground gait trials are performed,
while setting the parameter to different values. The gait trials are
minimum three, where the default value, and higher and lower
settings are tested. By means of observation of the gait quality,
and EMG signals acquired during walking, the expert Ekso user
along with the rehabilitation team selects the best parameter
setting. The first parameter is then fixed, and the next parameters
are considered in a recursive procedure until Ekso is properly set
(Figure 1).

Computational Calibration Procedure
The proposed approach for automatic computational calibration
procedure is based on the same number of overground
walking trials, and the same experimental set-up as in the
current manual calibration procedure, where the observation
of the gait quality, and EMG signals by the expert Ekso
user is substituted by EMG signal computational analysis
(Figure 1). EMG signal computational analysis is based on
the hypothesis that muscular activation profile is as better
as closer to healthy control population pattern. This is the
reason why data from a representative group of control
subjects were also collected. The computational calibration
procedure is applied to healthy controls, and the non-
paretic side of neurological patients. In fact, it is known
that the more natural is the step of the unimpaired side,
the more physiological is the gait, and the more it is
possible to state that the global ambulation is close to
normative.

Step Identification Procedure

Since it is currently impossible to autonomously extract data
directly from Ekso sensors, it is not possible to synchronize
Ekso with external systems (i.e., EMG). This limitation has
been overcome by using a step identification procedure directly
on the EMG signals. In particular, EMG signals coming from
all muscular channels are pre-processed following a standard
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TABLE 1 | Patients characteristics.

Patient ID Age [years] Sex [M/F] Paretic side [R/L] Stroke type [H/I] FAC Time from acute event [days]

PT01 70 M L H 0 113

PT02 68 M R I 3 45

PT03 37 F R H 3 2,257

PT04 63 M L H 2 760

PT05 36 M L I 1 32

PT06 60 M R I 3 583

PT07 74 M L H 1 195

PT08 29 M L H 2 236

PT09 52 M R I 1 16

PT10 46 F L H 2 45

PT11 47 F L I 1 47

PT12 45 M R I 1 94

PT13 53 M L I 2 86

M, male; F, female; L, left; R, right; H, hemorrhagic stroke; I, ischemic stroke; FAC, functional ambulatory category (Mehrholz et al., 2007).

FIGURE 1 | (A) Flow chart of the current Ekso manual calibration procedure. (B) Flow chart of the automatic Ekso calibration procedure.

approach that includes high-pass filtering with a 6th order
Butterworth filter at 20Hz, rectification, and low-pass filtering
with a 6th order Butterworth filter at 4Hz (Solnik et al., 2008).
Given that the computational calibration procedure should not
include any additional workload to the rehabilitation team or to
the patient, there are no footswitches or similar sensor available
to give information about single steps. The proposed method is
based on the hypothesis that the number of steps is proportional
to the number of muscle activations. In order to satisfy this
hypothesis, a mono-phasic muscle has been considered, so that
only a single activation is expected throughout the step cycle. The
Soleus muscle has been selected since is monophasic during the

step (Pasinetti et al., 2013), i.e., it reaches only once the activation
peak, characteristic which is preserved, as far as we observed, in
our patients cohort. To this aim, Soleus EMG signal is further
preprocessed to limit the bandwidth to frequencies where step
cadence is located, i.e., 0–2Hz (Pachi and Ji, 2005). Soleus de-
activation is then identified through an algorithm based on a
20 samples sliding window and adaptive threshold derived from
the integration of signal-to-noise ratio based adaptive threshold
algorithm proposed by Sedghamiz, and Di Fabio and colleagues
algorithm (Di Fabio, 1987; Sedghamiz, 2014). In particular, the
algorithm is applied on the mean corrected EMG preprocessed
signal, and the four variables—signal level, noise level, threshold,
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and activation (binary on/off variable used to describe muscle
activation/deactivation)—are null at the beginning. Variables
levels are dynamically calculated sample by sample as detailed
in Figure 2, considering the EMG portion included within the
20 samples sliding window. The signal portion included between
two Soleus muscle deactivation corresponds to a step cycle,
starting from the end of the push-off phase. EMG signal of all
considered muscles is segmented accordingly.

Muscular Activation Pattern Definition

Muscular activation pattern for each muscle, both for control
and for patients, is obtained by re-scaling each step to a 0–
100% scale in terms of step duration, and afterwards by averaging
all steps, and by normalizing the muscular step template in
terms of amplitude with respect to the peak value for each
trial. To obtain a healthy controls muscular pattern, all averaged
muscular patterns resulted from five different trials performed
per participant have been averaged. The accuracy of the signal
segmentation technique has been evaluated through qualitative
inspection of the morphology of the muscle activation profiles
and through a quantitative analysis of the inter-step variability
(i.e., coefficient of variation) to verify consistency with the
muscular dynamics reported in literature (Winter and Yack,
1987). Finally, using the same onset/offset detection algorithm
described to detect Soleus muscle deactivation (Figure 2), for
each muscle an activation/deactivation profile is determined,
where the information “the muscle is active or inactive” can
be derived with respect to the percentage of the gait cycle (i.e.,
0–100%).

Performance Index Extraction

So to define the best parameters setting, the Gait Metric index
(GM) has been extracted from the healthy controls, and the
non-paretic side of neurological patients. GM is an analytical
combination of amplitude and activation timing (Ricamato and
Hidler, 2005), and quantifies the deviation of the muscular
activation pattern from normal ranges defined within the healthy
control group.

In particular, GM is composed by the arithmetic mean
between an amplitude, and a phase component determined
through the comparison of each muscle activation pattern,
and the correspondent healthy controls activation pattern. The
amplitude component (AC) is obtained by summing the EMG
values where both the patient and the healthy controls patterns
are over or under threshold. In other words, for each given
sample (i.e., 0–100% of the gait cycle), AC is increased if
patient muscle is active when also healthy controls muscle is,
or is inactive when also healthy controls muscle is inactive
(Equation 1).

AC =

100
∑

p= 1

(HCAP
(

p
)

)(EMG
(

p
)

− threshold) (1)

Where p is the index representing gait cycle progression (i.e., 0–
100%); HCAP is the Healthy Controls Activation Profile which
is 1 for the healthy controls pattern active portions, and −1

for the inactive portions; EMG(p) is the patient EMG profile
sample value; and threshold is the activation threshold defined as
described in section Graphical User Interface (GUI) For Clinical
Use.

AC is then normalized to obtain a value between 0 and 1
(ACnorm) as follows (Equations 2–4).

ACmax =
((

1− threshold
)

∗ #Active
)

+
(

threshold ∗ #Inactive
)

(2)

ACmin = −1 ∗ (100− ACmax) (3)

ACnorm =
AC − ACmin

ACmax − ACmin
(4)

Where #Active is the number of active samples in the healthy
controls activation pattern; and #Inactive is the number of
inactive samples in the healthy controls activation pattern.

The Phase Component (PC) is determined for each given
sample (i.e., 0–100% of the gait cycle) by summing 1 if patient
muscle is active when also healthy controls muscle is, or is
inactive when also healthy controls muscle is, and 0 otherwise.
PC is then normalized dividing the obtained value by 100.

Once the GM has been obtained for each considered muscle,
a Weighted GM (WGM) is obtained by weighting each GM with
the standard deviation of the correspondent muscle obtained in
the healthy control group as follows (Equations 5, 6).

Normalized St. Dev. =
(

[1 1 1 1]−
St. Dev. Healthy Sub.

∑n
i= 1

(

St.Dev. Healthy Sub.
)

i

)

∗
1

n− 1
. (5)

WGM =

n
∑

i= i

GM∗

i

(

Normalized St. Dev.
)

i
. (6)

Where n represents the considered muscles, St.Dev.HealthySub.
is the vector containing GM standard deviation obtained in
the healthy controls group; NormalizedSt.Dev. is the normalized
vector of standard deviations considered for GM weighting (i.e.,
sum equals 1).

The higher the WGM, the closer the performance is to the
normative muscular activation pattern, in terms of both relative
amplitude, and timing. The trial with the best WGM would
correspond to the best parameter set.

Computational Calibration Procedure
Validation
Repeatability of the automatic calibration procedure has been
tested by running twice the algorithm for each participant
(i.e., each neurological patient). The output parameters setting
in the two runs have been compared through the Cohen’s
kappa for agreement between to evaluators (Cohen, 1960).
The test of repeatability was important since the EMG signal
portion selected to run the analysis is of free choice of
the user, and therefore it cannot be taken for granted that
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FIGURE 2 | Flow chart of EMG signal activation/deactivation identification. The four variables in the algorithm, i.e., signal level, noise level, threshold, and activation,

are updated following the equations indicated in figure for each sample t. WL, number of samples in the window; EMG, EMG signal; abs, absolute value.

the same steps are considered for the analysis. Indeed the
computational procedure should be robust with respect to steps
selection.

Manual calibration is performed by means of observation
of the gait quality, and EMG signals acquired during walking.
However, EMG signal analysis is only performed by sight on
a non-processed signal, and it is therefore not reliable. To test
this hypothesis, three different raters selected Ekso parameters
setting only by inspecting non-processed EMG signal, without
seeing the patients. The agreement between the different raters
has been evaluated through Fleiss’ Kappa (Landis and Koch,
1977).

In addition, the agreement between computational calibration
procedure parameters setting, and the gold standard procedure
(i.e., parameters set by the expert clinical engineer and
rehabilitation team during the effective calibration session) has
been evaluated by Cohen’s kappa (Cohen, 1960; Gandolla et al.,
2015).

Graphical User Interface (GUI) for Clinical
Use
The computational calibration procedure has been implemented
in a custom-made and guided software developed in MATLAB
environment (Figure 3) to support the use of the proposed
approach in clinical practice. The interface has three sections:
the “Healthy Subjects” section dedicated to the analysis
of healthy controls and the calculation of the normative
muscular activation pattern; the “Patients” section for
patient data analysis and searching for the best Ekso GT
configuration; the “Common Tools” section where the user can
perform an additional analysis of patients or healthy controls
data.

RESULTS

Muscular Activation Pattern
The healthy controls muscular pattern is shown in Figure 4. The
qualitative inspection of the morphology of the muscle activation
profiles reflects what has been found in literature evidences
(Winter and Yack, 1987; Tao et al., 2012), and in particular:

• Tibialis anterior (TA) muscle is active to prevent contact of
the toes with the ground during the initial and intermediate
swing phase (0–30%); an activation peak happens during the
terminal and load acceptance phases (30–45%GC). TA activity
is reduced during the stance phase.

• Soleus muscle (SOL) activity starts in the load acceptance
phase (35–45% GC), increases in intermediate support phase
(45–65% GC), and then reaches its peak during pre-oscillation
phase (75–85% GC). When the push-off phase is complete, the
soleus muscle remains inactive throughout the swing phase.

• Rectus femoris (RF) muscle has moderate activity in the early
oscillation phases (0–10%), so it reaches an activation peak in
the acceptance phase and intermediate support phase acting
as a stabilizer (30–65% GC). There is a final activation in the
propulsion and lifting phase of the limb (75–100% GC).

• Semitendinosus muscle (ST) has moderate activity in the
early swing phase (0–10% GC), then achieves a peak in the
terminal oscillation and acceptance phases aiming at stopping
the movement of the limb (30–45%). Its activity is slowly
reduced during the intermediate support phase.

The mean value of the coefficient of variation across all subjects
for the considered muscles are 0.230 (TA), 0.167 (SOL), 0.369
(RF), and 0.365 (ST), respectively.

Neurological patients muscular activation pattern is quite
different among subjects, as expected (an example is shown
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FIGURE 3 | Graphical User Interface for clinical use. The “Healthy Subjects” section is dedicated to the analysis of healthy subjects and the calculation of the

normative muscular activation pattern; the “Patients” section is dedicated to patient data analysis and searching for the best Ekso configuration; in the “Common

Tools” section the user can perform an additional analysis of patients or healthy subject’s data.

FIGURE 4 | Healthy controls muscular pattern. Red line, mean; gray shaded area, standard deviation; blue line, activation profile (active/non-active muscle window).
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in Figure 5). For all patients, steps segmentation has been
successfully performed on the non-paretic EMG signal during
robotic-assisted gait trials, and the gait metric index has been
calculated for all trials, and all patients.

Gait Metric Behavior
GM has been calculated for each trial of the healthy controls
cohort, and results are reported in Table 2, and are in accord
with values reported in literature for a walking speed obtained
during spontaneous walking, i.e., 1.3–1.6 m/s (Ricamato and
Hidler, 2005). To check for WGM variability, WGM has been
calculated for each control participant for the five walking trials
obtaining standard deviations equal to 0.007, 0.014, 0.023, 0.031,
0.027, 0.005, and 0.026 respectively. Table 3 shows the detailed
WGM scores obtained by patients in the seven walking trials
with different Ekso parameters settings. As it can be observed,
in some cases, WGM differences between alternative parameters
settings are not crucial (i.e., difference lower that healthy controls
cohort mean WGM standard deviation−0.019). In these cases,
Ekso parameters setting is therefore not crucial in terms of EMG
activations obtained. WGM variability is higher within the first
three trials, correspondent to the selection of first parameter, i.e.,
lateral shift, while decreases in the other trials. As a representative
muscle, Tibialis Anterior EMG mean profile for each trial and
each patient is represented in Figure 6. As it can be observed,
some of the patients present quite substantial differences in
terms of muscles activity, which can be easily detected by sight
(e.g., PT01 or PT13). Other patients (e.g., PT07) shows muscles
activity profiles almost superimposable among trials. Again, Ekso
parameters setting is particularly crucial for patients who present
substantially different muscles activation profiles.

Reproducibility and Validity of
Computational Calibration
The computational calibration procedure is robust with respect
to steps selection, as shown by Cohen’s kappa equals to 0.883,
i.e., strong agreement (Sim andWright, 2005). On the other side,
the agreement between the three different raters who selected
Ekso parameters setting only by inspecting non-processed EMG

TABLE 2 | Gait Metric index values obtained by the healthy subjects cohort.

Subject TA SOL RF ST

S01 0.591 0.799 0.634 0.704

S02 0.772 0.819 0.709 0.717

S03 0.797 0.847 0.738 0.786

S04 0.612 0.784 0.641 0.744

S05 0.747 0.847 0.624 0.763

S06 0.848 0.843 0.741 0.812

S07 0.716 0.843 0.533 0.654

Mean 0.726 0.826 0.660 0.740

Std dev 0.095 0.026 0.075 0.054

TA, tibialis anterior muscle; SOL, soleus muscle; RF, rectus femoris; SM, semitendinosus

muscle; Std dev, standard deviation.

signal is equal to 0.296, i.e., mediocre agreement. Agreement
between computational calibration procedure, and gold standard
(i.e., expert engineer setting) shows substantial agreement, with
Cohen’s kappa equals to 0.648, while agreement between the three
different raters who selected Ekso parameters setting only by
inspecting non-processed EMG signal and gold standard is very
weak with Cohen’s kappa equal, respectively to 0.095, 0.058, and
0.045 (Sim and Wright, 2005). In particular, for the three Ekso
parameters Cohen’s kappa for the agreement between automatic
procedure and gold standard selection are 0.614, 0.591, and 0.780,
respectively.

DISCUSSION

Gait recovery in post-stroke patients is one of the main goals
of post-stroke rehabilitation (Molteni et al., 2017). Literature
evidences demonstrated that central nervous system can
reorganize after injury and that reorganization depends onmotor
activity performed during rehabilitative training (Edgerton et al.,
2004; Maier and Schwab, 2006). Wearable robotic exoskeleton
may be intended like an external environment acting with
the patient—an extension of the body of the patient. Robotic
devices induce patients’ lower limbs to complete a pre-defined
motor pattern according to a pre-programmed kinematic profile
allowing subjects with gait dysfunctions to perform an over-
ground gait training based on the principle of motor relearning.

There is a paucity of published data on powered robotic
exoskeletons for gait rehabilitation in post-stroke patients. In
a recent review (Louie and Eng, 2016) on the use of wearable
powered exoskeletons in stroke patients, authors describe studies
in which different robotic devices were used on a small number
of stroke patients without general consensus on the results.
Molteni et al. (2017) performed a pre-post study to analyse
the effects of a wearable powered exoskeleton on 23 sub-acute
and chronic stroke patients. Authors claimed that it is possible
to modify clinical outcome measures in sub-acute and chronic
post-stroke patients after 12 sessions of gait training with a

TABLE 3 | Weighted Gait Metric index values obtained by the patients cohort.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7

PT01 0.5353 0.5435 0.5184 0.5689 0.5807 0.5989 –

PT02 0.6402 0.6263 0.6144 0.6305 0.6774 0.6744 –

PT03 0.5738 0.5796 0.5848 0.5772 0.5868 0.5890 –

PT04 0.5410 0.5565 0.5804 0.5229 0.5275 0.5443 0.5319

PT05 0.5842 0.5854 0.5379 0.5972 0.5372 0.5359 0.5815

PT06 0.5241 0.4980 0.5007 0.5555 0.5044 0.5485 –

PT07 0.5862 0.5927 0.6119 0.6097 0.5658 0.5960 –

PT08 0.4960 0.4983 0.5160 0.5555 0.5013 0.5452 0.5099

PT09 0.4784 0.5048 0.5100 0.5694 0.5241 0.5278 –

PT10 0.5235 0.5187 0.5079 0.4960 0.5007 0.4808 0.5471

PT11 0.5860 0.5538 0.5857 0.5626 0.6214 0.5978 0.6414

PT12 0.5915 0.5984 0.6017 0.6271 0.6268 0.6257 0.6175

PT13 0.6347 0.7117 0.6926 0.6268 0.6523 0.6598 0.6930
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FIGURE 5 | Example of neurological patient muscular pattern (PT11). Red line, mean; gray shaded area, standard deviation; blue line, activation profile

(active/non-active muscle window).

powered wearable robotic exoskeleton after fine-tuning of the
kinematic gait cycle parameters. The fine-tuning of wearable
robotic device parameters is therefore essential to produce the
best neuromuscular pattern of the lower limbs enhancing short-
term neuromodulation. This may be a way to induce long-term
potentiation of the mechanism controlling the gait pattern of
non-affected and affected side (Kwakkel et al., 1999).

For this reason, the use of an automatic calibration procedure
to identify the best settings for each patient is very important.
This approach, which is repeatable, robust, and based on
quantitative measures, may underline aspects hardly detectable
only through direct observation, and may provide a valuable
support to the rehabilitation team.

In this work, an automatic calibration procedure has been
proposed for Ekso. The proposed approach is based on the
hypothesis that the best Ekso setting yields to a muscular
activation as close as possible to healthy controls muscular
activation pattern, given that restoring a correct activation
pattern is a key aspect of the rehabilitation program of
neurological patients (Zhang et al., 2017). Although the sample
size of healthy subjects is limited, the derived muscular activation
patterns for all muscles agree with those reported in literature
(Ricamato and Hidler, 2005). Coefficients of variations show
the same relationship among muscles as described in literature
(Winter and Yack, 1987). Distal muscles (i.e., TA and SOL
muscles) present lower coefficients of variations with respect to
proximal lower limbs muscles (i.e., RF and SM muscles). This is
in line with the role of proximal muscles during gait, which is of
support and equilibrium control. Given in fact the complexity of
their functions, proximal muscles activation profile results to be
more variable among successive steps (Winter and Yack, 1987).
As a clinical recommendation for the computational calibration
procedure everyday use, the authors suggest if possible to acquire

the EMG signal from all four principal leg muscles or, as a
possible alternative, to register distal muscles activity. In fact,
as previously introduced, the function of proximal muscles
during gait might be identified in the maintenance of balance,
which is a complex motor task in post-stroke patient and
the disability due to the paretic limb introduces compensatory
mechanisms that affect its performance. Typically, if excessive co-
contraction of distal muscles occurs, compensation is performed
at the proximal level (Higginson et al., 2006). An analysis only
based on the activity of the semitendinosus and rectus femoris
muscles cannot guarantee the optimum performance of the
motor task because a physiological activation of the proximal
muscles may correspond to an abnormal activation of the distal
muscles. Conversely, an analysis of both the soleus and Tibialis
Anterior muscle seems to be more effective in defining the
Ekso settings because a proper distal activation pattern more
likely corresponds to a non-compensatory activation of proximal
muscles.

The goal of the proposed approach is to equip the clinician
with an instrument that could help clinician to identify the
best Ekso setting, singularly for each patient. As far as we
know, there are any quantitative data published in literature
or indications provided by the fabricant so to evaluate the
correctness of the setting. The gold standard procedure is manual
regulation by expert operators, and, as it can be observed by
the poor agreement revealed by Cohen’s kappa between different
operators in selecting best Ekso parameters, it lays on subjective
evaluation, and it is not repeatable. The automatic procedure
selection has been compared to the setting selection of an expert
operator in the Villa Beretta Rehabilitation Center, as suggested
by Ekso Company itself, and obtained substantial agreement,
being at the same time robust for different steps selections. In
this case, we are not claiming we are obtaining better results
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FIGURE 6 | Tibialis Anterior muscle EMG profiles for all patients and all performed trials. Dashed line: healthy controls activation window.

with respect to manual calibration in terms of best setting, but
we are claiming that the automatic procedure is robust and
repeatable with respect to a gold standard, and can be used by any
operator.

The proposed approach allows supporting the rehabilitation
team in the setting procedure, and it has been demonstrated
to be robust, and to be in agreement with the current gold
standard. The use of a graphical user interface is a promising
tool for the effective use of an automatic procedure in a clinical
context. Indeed, the automatic calibration procedure does not
imply any additional workload for the patient or the therapist
with respect to the manual calibration procedure. The automatic
calibration procedure has been validated with respect to the

current gold standard, which is the selection of the expert Ekso
user. However, the use of the automatic calibration procedure
may allow a correct parameters setting from the very beginning
of Ekso use, also when the rehabilitation team is still not
well trained. The identification of an automatic procedure able
to detect in an objective way the best devices setting, allows
to plan a completely new individual tailored rehabilitation
strategy.
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