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Abstract

Computational fluid dynamics represents a useful tool to

support the design and development of Heavy Duty En-

gines, making possible to test the effects of injection strate-

gies and combustion chamber design for a wide range of

operating conditions. Predictive models are required to en-

sure accurate estimations of heat release and the main pol-

lutant emissions within a limited amount of time. For this

reason, both detailed chemistry and turbulence chemistry

interaction need to be included. In this work, the authors in-

tend to apply combustion models based on tabulated kinet-

ics for the prediction of Diesel combustion in Heavy Duty

Engines. Four different approaches were considered: well-

mixed model, presumed PDF, representative interactive

flamelets and flamelet progress variable. Tabulated kinetics

was also used for the estimation of NOx emissions. The

proposed numerical methodology was implemented into

the Lib-ICE code, based on the OpenFOAM R©technology,

and validated against experimental data from a light-duty

FPT engine. Ten points were considered at different loads

and speeds where the engine operates under both conven-

tional Diesel combustion and PCCI mode. A detailed com-

parison between computed and experimental data was per-

formed in terms of in-cylinder pressure and NOx emis-

sions.

Introduction

Detailed and predictive models are necessary to support the

development of new combustion systems of Diesel engines

where a contemporary reduction of fuel consumption and

pollutant emissions is required for a wide range of operat-

ing conditions in order to fulfill future emissions standards

[1, 2]. To identify the most promising solutions, effects of

combustion chamber design, injection strategy, EGR and

compression ratio must be studied simultaneously and for

this reason robust, accurate and fast approaches are re-

quired. In the last decade, most of the efforts were focused

on incorporating detailed kinetics in Diesel spray combus-

tion simulations with or without turbulence-chemistry in-

teraction to predict ignition delay, flame structure (lift-off

and PAH) and the main pollutant emissions [3, 4, 5, 6].

However, to accurately describe the oxidation of complex

fuels including the formation of soot precursors, a large

number of species and reactions is necessary with a con-

sequent increase of computational time, since ODE stiff

solvers are employed to compute the chemical reaction

rates and as many transport equations as the number of in-

volved species have to be solved. Such aspects limit the

mechanism size to be used in practical simulations to ap-

proximately 100 species, despite the use of complex fuel

formulations or advanced combustion modes require more

species to accurately predict experimental values of lam-

inar flame speed and ignition delay. Within this context,

a possible alternative for the reduction of CPU time can

be represented by tabulated kinetics: chemical species re-

action rates are stored in a table according to a specified

mechanism and flame structure; then they are retrieved as

function of the state of the system. The most widely used

approaches consider a progress variable to characterize the

advancement of the fuel oxidation reactions, by solving a

transport equation with a source term which depends on

local thermodynamic conditions, the progress variable it-

self and parameters characterizing the assumed flame struc-

ture, like the mixture fraction variance or the scalar dissi-

pation rate [7, 8, 9, 10, 11]. In a previous work [12], the

authors have implemented different models for Diesel com-

bustion into the Lib-ICE code based on tabulated kinetics,

demonstrating its consistency with the approaches based

on direct-integration following extensive validation against

the spray-A experimental data-sets from the Engine Com-

bustion Network.

Purpose of this work is the extension of the previously pro-

posed approach for tabulated kinetics to include an addi-

tional combustion model as well as the possibility to predict

NOx emissions. The model presented here, called TFPV



(tabulated flamelet progress variable) was proposed in past

works [10, 11, 13] and is based on the tabulation of lami-

nar diffusion flamelets for different scalar dissipation rate

levels. Compared to the multiple representative interactive

flamelet model, TFPV is expected to perform better since it

takes into account the local flow conditions and also trans-

port of progress variable allow a more realistic descrip-

tion of the combustion process originated by multiple in-

jections. Concerning the nitrogen oxide emissions: a trans-

port equation is solved for a NOx progress variable whose

reaction rate is taken from auto-ignition calculations in a

homogeneous reactor and this makes possible to account

for both prompt and thermal formation mechanisms. The

choice of using homogeneous reactors for the calculation of

NOx is justified by the fact that their formation rate is much

lower compared to the other chemical species involved in

the combustion process and for this reason such strong as-

sumption can be retained.

To validate the proposed models based on tabulated ki-

netics, the FPT F1C Euro 6 engine was simulated under

different operating conditions: eight points represent con-

ventional Diesel combustion, while the capability to pre-

dict PCCI mode was also evaluated in a different version

of the considered engine with reduced compression ra-

tio. Calculations were carried out with the Lib-ICE code,

based on the OpenFOAM R©technology, using four differ-

ent combustion models based on tabulated kinetics: well-

mixed (TWM), presumed PDF (TPPDF), tabulated repre-

sentative interactive flamelet (TRIF) and flamelet progress

variable (FPV). Validation was carried out by comparing

computed and experimental data of in-cylinder pressure,

apparent heat release rate and nitrogen oxide emissions.

Combustion Models

Tabulated kinetics is incorporated into four different

combustion models: well-mixed (TWM), presumed PDF

(TPPDF), representative interactive flamelets (TRIF) and

flamelet progress variable (TFPV). TWM, TPPDF and

TRIF are extensively described and validated under

constant-volume combustion conditions in [12].

Chemistry table generation

Fig. 1 reports the way chemistry is tabulated in the pro-

posed approach. The user specifies a chemical mecha-

nisms and a range of initial conditions for homogeneous,

constant-pressure reactor calculations in terms of mixture

fraction Z, ambient pressure p, initial reactor tempera-

ture Tu and residual gas fraction. Initial reactor compo-

sition is computed from this information and simulations

of constant-pressure, auto-ignition process are performed

to generate the chemistry table. In spray combustion prob-

lems, the user well knows the values of the oxidizer tem-

perature T (Z = 0), the one of the liquid fuel T (Z = 1)

and the fuel heat of evaporation, hence it is more conve-

nient to express the initial reactor temperature as function

of such quantities for a better description of the expected

states of the system:

h(Z) = (1−Z)·h(TZ=0)+Z·h(TZ=1)−Z·hl(TZ=1) (1)

Tu(Z) = T (h(Z)) (2)

Figure 1: Generation of the chemistry table based on the homoge-

neous reactor assumption.

Homogeneous reactor, auto-ignition calculations at con-

stant pressure are performed by solving chemical species

equation:
dYi

dt
= ω̇i (T, p, Y1, ..., Yn) (3)

with reactor temperature T computed directly from the ini-

tial enthalpy value. After every time-step, the progress vari-

able C is evaluated and the equivalent reactor chemical

composition is computed by means of the virtual species

approach [14, 12]. Progress variable is defined as in [13],

with C being equal to the heat released by combustion,

computed as the difference between the current and the ini-

tial value of the reactor formation enthalpy, also known as

h298:

C =

Ns∑

i=1

h298,i · Yi (t)−

Ns∑

i=1

h298,i · Yi (0) (4)

where Ns is the total number of chemical species used

by the specified mechanism. The adopted definition for C
uniquely characterizes each point in the thermochemical

state space and is appropriate for a transport equation. At

the end of each reactor calculation, progress variable reac-

tion rates and chemical composition are stored as function

of the discrete values of the normalized progress variable

c, specified by the user:

c =
C − Cmin

Cmax − Cmin

(5)
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where Cmin and Cmax are minimum and maximum values

of the progress variable which are found at initial and af-

ter auto-ignition conditions. Cmin and Cmax are stored in

the table as function of Z,Tu,p. From the values of times

at which the specified ci values were found, the progress

variable reaction rate is computed with the forward differ-

encing scheme as follows:

ċi =
ci+1 − ci
ti+1 − ti

(6)

ċ is then multiplied by the term Cmax − Cmin in order

to have the proper source term Ċ in the progress variable

transport equation. For any tabulated value of the progress

variable c, the chemical composition is also stored. To

avoid the storage of the entire set of species and keep an

acceptable size of the table, only seven ones named virtual

species are tabulated and their mass fractions are computed

in order to preserve the main thermochemical properties of

the full set used in the detailed mechanism. Virtual species

used in this work are N2, O2, fuel, CO2, CO, H2O, H2

and their composition is computed for any c in order to

conserve the main properties of the full set of species:

1. total number of C, H , N and O atoms

2. mixture enthalpy and specific heat

3. mixture molecular mass

Constant-volume and constant pressure reactor calcula-

tions performed in a wide range of conditions made pos-

sible to verify that cumulative heat release, reactor temper-

ature and pressure evolutions are consistent with the cases

where the full set of species is used. The table also includes

the mass fractions of chemical species which are of interest

for the user (Yo in Fig. 1), either for post-processing reason

or because they are relevant for the formation of the main

pollutants and have to be used by the related sub-models.

Governing equations

In the CFD domain, transport equations for mixture frac-

tion, enthalpy, unburned gas temperature and progress vari-

able are solved and then the table is accessed with the local

cell values to compute the progress variable reaction rate

and the chemical composition. Interpolation of table val-

ues at cell conditions is performed by means of an inverse,

distance weighted technique. The progress variable source

term used in the C transport equation depends on which

combustion model is used:

∂ρ̄C̃

∂t
+∇(ρ̄ŨC̃)−∇

(
µ̃t

Sct
∇C̃

)
= ρĊ (7)

To consistently access the table data, it is necessary to solve

an additional equation for the unburned gas enthalpy which

is then used to estimate the unburned gas temperature Tu

which is one of the independent variables of the table:

∂ρ̄h̃u

∂t
+∇(ρ̄Ũh̃u)−∇

(
α̃t∇h̃u

)
= Q̇s +

ρ̄

ρ̄u
·
Dp̄

Dt
(8)

where αt is the turbulent thermal diffusivity and ρu is the

density of unburned gases which is computed from cell

pressure, chemical composition at C = 0 and Tu. Q̇s is

the term related to spray evaporation which assumes differ-

ent values in case the mixing line is assumed or not in the

table generation process.

Tabulated well mixed model (TWM)

Tabulated well-mixed model does not include any interac-

tion between turbulence and chemistry and for this reason,

the progress variable source term to be used in Eq. 7 is di-

rectly taken from Eq. 6:

Ċ = (Cmax − Cmin) · ċ (9)

The operation of the tabulated well-mixed model is re-

ported in Fig. 2 and the user is referred to [12] for further

details. To ensure a consistency between TWM and the cor-

responding approach based on direct integration, avoiding

anticipated ignition due to progress variable diffusion from

rich to lean side after the cool flame, reaction rates are set

to zero in regions where dual-stage ignition does not hap-

pen, corresponding approximately to an equivalence ratio

value φ = 3.

Figure 2: Operation of the tabulated well-mixed combustion

model (TWM).

Tabulated presumed PDF combustion model

(TPPDF)

This approach includes turbulence/chemistry interaction

and it was applied in [15, 16] to simulation of compression-

ignition engines. Progress variable source term is computed

assuming a δ-PDF distribution for the progress variable and

a β-PDF function was used for the mixture fraction:

Ċ =

∫ 1

0

∫ 1

0

Ċ (p, Tu, Z, c)β
(
Z, Z̃ ′′2

)
δ (c) dc dZ (10)
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Computation of β
(
Z, Z̃ ′′2

)
requires to additionally solve

the mixture fraction variance Z̃ ′′2 equation:

∂ρ̄Z̃ ′′2

∂t
+∇(ρ̄ŨZ̃ ′′2)−∇

(
µ̃t∇Z̃ ′′2

)
= 2

µ̃t

Sc

∣∣∣∇Z̃
∣∣∣
2

− ρ̄χ̃

(11)

The sink term appearing in Eq. 11 is the average scalar dis-

sipation rate, which is function of the turbulent time scale

and mixture fraction variance:

χ̃ = Cχ

ε̃

k̃
Z̃ ′′2 (12)

The TPPDF table is generated by processing the homo-

geneous reactor table to include the effects of turbulence

chemistry interaction, as shown in Fig. 3. In particular, the

user specifies a range of mixture fraction segregation fac-

tors SZ , defined as the ratio between Z̃ ′′2 and the maxi-

mum variance values:

SZ =
Z̃ ′′2

Z(1− Z)
(13)

for any value of Z and SZ it is possible to compute

variances and the coefficients for the probability density

function distributions. On the basis of them, integration

is performed for all the tabulated quantities fHR follow-

ing Eq. 10 and a new table including the effects of mix-

ture fraction fluctuations is available for the presumed PDF

combustion model. Turbulence/chemistry interaction in the

TPPDF model considers only the effects of local fluctua-

tions of Z, but it does not consider any sub-grid diffusion

in the mixture fraction space, as it is commonly done in

transported PDF or laminar flamelet models [17, 18]. Ta-

ble processing in order to perform the β-PDF integration in

the mixture fraction space requires approximately an addi-

tional 20% of the time which is needed for the generation

of the homogeneous reactor table.

Figure 3: Generation of the chemistry table used for the presumed

PDF combustion model (TPPDF).

Tabulated representative interactive flamelet

model (TRIF)

This model is based on the laminar flamelet concept, as-

suming that there exists a locally undisturbed sheet where

reactions occur [5]. This sheet can be treated as an en-

semble of stretched counter-flow diffusion flames, called

flamelets. In this way, all reacting scalars only depend on

the mixture fraction variable, Z, which is related to the lo-

cal fuel-to-air ratio for non-premixed combustion. Hence,

local chemical composition can be estimated from the Z
field in the CFD domain, assuming that its sub-grid distri-

bution can be represented by a β-PDF. To account for local

flow and turbulence effects on the flame structure and pre-

dict flame stabilization, a multiple number of flamelets can

be used. Each one is representative of a certain portion of

the injected fuel mass, and chemical composition in each

cell is computed from mixture fraction and flamelet marker

distribution as follows:

Ỹi (~x) =

Nf∑

j=1

Mj

∫ 1

0

Yj,i

(
Z̃
)
P
(
Z̃, Z̃ ′′2

)
dZ (14)

For each flamelet marker Mj , a transport equation is solved

including spray evaporation source term only for a speci-

fied interval of the injection duration [3]. The local flame

structure is defined by the flamelet equations that are solved

for the progress variable C and enthalpy assuming unity

Lewis number [5] in the mixture fraction space:

ρ
∂C

∂t
= ρ

χz

2

∂2C

∂Z2
+ Ċ (15)

ρ
∂h

∂t
= ρ

χz

2

∂2h

∂Z2
+

dp

dt
(16)

The chemical composition in the mixture fraction space is

retrieved from the chemistry table in the same way as done

for the TWM model in the CFD domain. Effects of mix-

ing related to turbulence and flow-field are grouped into

the scalar dissipation rate term χz which is function of

the scalar dissipation rate at stoichiometric mixture frac-

tion conditions χ̂st,j which is computed for each flamelet.

Figure 4: Operation of the tabulated representative interactive

flamelet combustion model (TRIF).

The Fig. 4 summarizes the operation of the TRIF com-

bustion model, illustrating the mutual interactions between
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the CFD, flamelets domains and chemistry table. Further

details about the RIF model implementation in Lib-ICE

can be found in [3, 19, 20]. Despite using tabulated re-

action rates, TRIF simulations will have higher computa-

tional costs compared to TWM or TPPDF due to the need

to perform on-line the integration of Eq. 14 in any compu-

tational cell for any flamelet [3].

Tabulated flamelet progress variable (TFPV)

Purpose of the TFPV model is to provide a realistic descrip-

tion of the turbulent diffusion flame, taking into account

turbulence/chemistry interaction, sub-grid mixing and pre-

mixed flame propagation. This requires to solve a trans-

port equation for the progress variable in the CFD domain

where the source term depends on local thermodynamic

conditions (T , p), mixture fraction Z, mixture fraction vari-

ance Z̃ ′′2 and stoichiometric scalar dissipation rate χst. In

this way, the model is expected to give correct predictions

of:

• extinction in the near nozzle region where the scalar

dissipation rate is very high;

• re-ignition due to the progress variable convection and

diffusion;

• flame stabilization process including effects of both

premixed and diffusive flame propagation.

The TFPV library is based on unsteady diffusion flame cal-

culations performed with the TRIF model, in a similar way

as done in [13, 10, 11] with the so-called approximated

diffusion flames approach. Generation of the TFPV library

is shown in Fig. 5: the user specifies a range of tempera-

ture, pressure, and scalar dissipation values for which un-

steady, diffusion flame calculations are performed using the

TRIF model. At any time step, for the prescribed values of

Z it is possible to estimate the chemical composition in

terms of virtual species (Yi,v (Z, t)) and the progress vari-

able C (Z, t). TRIF data are then processed at each time

step to account for mixture fraction variance. For the spec-

ified values of the mixture fraction segregation SZ , the cor-

responding variance value is computed, progress variable

and chemical composition are estimated as follows:

Yi

(
Z, Z̃ ′′2

)
=

∫ 1

0

YTRIF (Z)β
(
Z, Z̃ ′′2

)
dZ (17)

C
(
Z, Z̃ ′′2

)
=

∫ 1

0

CTRIF (Z)β
(
Z, Z̃ ′′2

)
dZ (18)

At the end of any diffusion flame calculation, for any value

of Z ad Z̃ ′′2 the progress variable is normalized and its re-

action rate is estimated following the approach described

in Eqns. 5-6. Computed data are then interpolated for the

specified progress variable values and then the table is gen-

erated.

Figure 5: Generation of the Tabulated Flamelet Progress Variable

(TFPV) table using the TRIF model.

To generate the TFPV table, it is necessary to run unsteady

flamelet calculations for all the specified range of pressure,

temperature and specified stoichiometric scalar dissipation

rate values. Despite only two flamelet equations are solved

within the TRIF model, the use of fixed time step (which

has to be small in order to correctly account for combined

effects of mixing and reaction) and need to account for dif-

ferent scalar dissipation rate values increases the compu-

tational time of a 5-10 factor compared to the one needed

to generate the homogeneous reactor table. In the TFPV

model, effects of table discretization are expected to influ-

ence the computed results in two ways:

• Chosen intervals of pressure, temperature, mixture

fraction and progress variable influence results of any

TRIF simulation and, in particular, the computed ig-

nition delay;

• CFD simulation results will also depend on the scalar

dissipation rate values which will be used to generate

the TFPV table.

In particular, the selected range of scalar dissipation rates

should be large enough to include extinction, allowing a

correct description of the diffusion flame stabilization pro-

cess.

NOx emissions

A tabulated approach for the prediction of NOx emissions

was also developed to estimate their concentration as result

of both prompt and thermal formation mechanisms. Suit-

able reactions describing the NOx kinetics should be in-

cluded. Homogeneous reactor calculations are performed

until the NOx specie, defined as:

YNOx
= YNO + YNO2

+ YN2O + YN2O2
(19)
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reaches the equilibrium value. This happens much later

than the ignition, since the time-scales of NOx formation

are higher than the ones governing the fuel oxidation: this

aspect is shown, in terms of normalized values, in Fig. 6.

Hence, formation rate of NOx cannot be expressed only

as function of the main thermodynamic conditions and

progress variable as it is done for the composition and the

progress variable reaction rate.

Figure 6: Evolution of normalized progress variable and normal-

ized NOx as function of time for an auto-ignition event in a

constant-pressure reactor.

A transport equation is solved for the YNOx
as follows:

∂ρ̄ỸNOx

∂t
+∇·

(
ρ̄ŨỸNOx

)
−∇·

(
µ̃t

Sct
∇ỸNOx

)
= ω̇NOx

(20)

ω̇NOx
should account for both NOx formation during the

ignition process (prompt) and afterwards (thermal). This is

done by processing homogeneous reactor calculations. At

any time-step, the current value of YNOx
is evaluated ac-

cording to Eq. 19 and, at the end of any reactor calculation,

the maximum NOx value Yeq,NOx
is evaluated and stored

in the table as function of the initial thermodynamic condi-

tions (p, Tu, Z, EGR). From user-specified values of the

NOx progress variable cNOx
, defined as:

cNOx
=

YNOx

Yeq,NOx

(21)

the normalized reaction rate ċNOx
is evaluated as function:

1. of the normalized combustion progress variable c:

ċNOx,1 =
cNOx

(ci+1)− cNOx
(ci)

t (ci+1)− t (ci)
(22)

where cNOx,i is the value of the NOx progress vari-

able corresponding to the normalized progress vari-

able ci found at time ti;

2. of the normalized NOx progress variable cNOx
:

ċNOx,2 =
cNOx,i+1 − cNOx,i

t (cNOx,i+1)− t (cNOx,i)
(23)

The source term of Eq. 20, ω̇NOx
, is then computed as:

ω̇NOx
= ρYeq,NOx

ċNOx,1 if c < c̄ (24)

ω̇NOx
= ρYeq,NOx

ċNOx,2 if c ≥ c̄ (25)

where c̄ is a threshold value which is set to 0.99. The sensi-

tivity of the computed NOx values from c̄ is low, provided

that a sufficiently high value is selected (c̄ > 0.5). The pro-

posed approach makes possible to consistently distinguish

between prompt and thermal NOx formation.

Spray and turbulence modeling

The Eulerian-Lagrangian approach is used to model the

spray evolution where the spray is described by a dis-

crete number of computational parcels, each one represent-

ing droplets with the same properties. The spray parcels

evolve into the computational domain according to the

mass, momentum and energy exchange with the continu-

ous gas phase which is treated in an Eulerian way. Spe-

cific sub-models are necessary to describe fuel atomization,

breakup, heat transfer, evaporation, collision and wall im-

pingement. In this work, parcels are introduced in the CFD

domain with the same nozzle diameter, their initial veloc-

ity depends on injected mass flow rate profile and the spray

angle is function of nozzle geometry and liquid to gas den-

sity ratio [21]. Jet and droplet breakup are computed by the

KHRT model, which accounts for both Kelvin-Helmholtz

(KH) and Rayleigh-Taylor (RT) instabilities [22]. To avoid

unphysical formation of too small droplets in the vicinity

of the nozzle, RT breakup is possible only at a certain dis-

tance from it. Such distance is known as breakup length

and is function of nozzle diameter and liquid to gas density

ratio. Concerning other sub-models used, droplet evapora-

tion is computed on the basis of the D2 law and the Spald-

ing mass number while the Ranz-Marshall correlation was

used to model heat transfer between liquid and gas phases.

Collision is neglected since it plays a minor role in evapo-

rating sprays [23].

The standard k − ε model was used for turbulence with

the C1 constant modified to 1.5 as it is commonly done

to predict penetration and diffusion of jets. Validation of

the proposed methodology for spray modeling at non re-

acting conditions is illustrated in [24, 20] where a detailed

comparison between computed and experimental data is re-

ported for spray penetration and radial distribution of mix-

ture fraction.

Mesh management

ECN Spray A simulations were carried out in a 2D axy-

symmetric graded mesh, with an average cell size of 0.5

mm and progressively refined close to the nozzle, where the

minimum size is approximately 2 mm. For the simulation

of compression, combustion and the expansion phases in a
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Diesel engine, the mesh handling technique developed by

the authors over the years makes possible to emply only a

single grid whose topology is changed during the motion of

the piston [25, 26]. During the mesh generation stage, the

user identifies a inner set of cell faces where layers of cells

are added or removed, given the corresponding minimum

and maximum cell thicknesses. As points move, cell layers

in front of the interface change and layer addition or re-

moval is triggered with no user action. The proposed tech-

nique supports hexahedral cells and there are no limitations

on the flatness of the oriented base surface. This improves

the flexibility of the approach mainly in case of Diesel en-

gine simulations, making possible to keep the mesh ori-

entation to the spray in the injector region during piston

motion as shown in Fig. 7.

Spray-oriented 

mesh region 

Base surface for 

dynamic mesh 

layering 

Figure 7: Operation of dynamic mesh layering in a spray-oriented

grid. Line in red: base oriented set of faces (user defined); yellow

line: injection direction. (a) Mesh at TDC; (b) Mesh at 20 CAD

after TDC.

Experimental Validation

Experiments carried out in a constant-volume vessel with

n-dodecane (Spray A) and a light-duty Diesel engine were

used to assess and validate the proposed combustion mod-

els based on tabulated kinetics. Diesel fuel was assumed to

be n − C12H26 and in this work its oxidation was mod-

eled using the mechanism proposed by Frassoldati et al.

[27]. It has 96 species and 993 reactions and it was exten-

sively validated with experimental data in a wide range of

conditions including flow and stirred reactor experiments,

auto-ignition delay times, laminar flame speeds, and auto-

ignition of isolated fuel droplets in micro-gravity condi-

tions.

Validation of the TFPV Model

A preliminary assessment and validation of the TFPV

model was performed in a similar way as done for the other

approaches in [12]. In particular, the well-known constant-

volume spray-A experiment from ECN [28, 29, 30] was

simulated at different ambient conditions including varia-

tions of ambient temperature and ambient oxygen concen-

tration. The setup used for the table is reported in Tab. 1.

The chosen values of the stoichiometic scalar dissipation

rate follows a log-law. Discretization of the TFPV table

chosen in this work was mainly a compromise between ac-

curacy, required computational time to generate one table

and memory needed to store the data.

Table 1: Chemistry table discretization used for the simulation of

the spray-A experiment.

Temperature [K] 700-1000 (step 20 K)

1000-1100 (step 25 K)

1100-1200 (step 50 K)

Equivalence ratio 0, 0.2, 0.4, 0.5, 0.6,

0.7-1.4 (step 0.05),

1.5-2 (step 0.1),

2-3 (step 0.2)

Pressure [bar] 40, 45, 50, 55

60, 70, 80

Mixture fraction segregation 0, 0.005, 0.01,

0.05, 0.1, 1

Scalar dissipation rate χst [1/s] 0, 1, 3, 7, 20, 55
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Figure 8: Comparison between experimental data and computed

ones from TWM, TPPDF, TRIF and TFPV models as function of

ambient temperature: (a) Ignition delay; (b) Flame-lift off.

Figs. 8 and 9 reports comparison between computed and

experimental values of ignition delay and flame lift-off. For

the TRIF model, lift-off length is not reported since only

one flamelet was used [12] and in such case the flame is

anchored to the nozzle. In a future work, simulations will

be carried out with TRIF and multiple flamelets in order

to properly estimate the flame lift-off when such model is

used. As expected, TFPV and TRIF have a similar agree-
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ment in terms of ignition delay except for the slight over-

estimation at 1100 K ambient temperature. Dependency on

the ambient oxygen concentration is correctly captured ei-

ther for both ignition delay and flame lift-off. All the mod-

els overpredict ignition delay when oxygen concentration

is low and this aspect is mainly related to the used kinetic

mechanism, as illustrated in detail in [27].
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Figure 9: Comparison between experimental data and computed

ones from TWM, TPPDF, TRIF and TFPV models as function of

ambient oxygen concentration: (a) Ignition delay; (b) Flame-lift

off.

To understand how sub-grid mixing affects heat release rate

(HRR), a comparison between experimental and computed

vessel pressure rates is illustrated in Fig. 10 for the baseline

conditions with 900 K ambient temperature, 22.8 kg/m3

ambient density, 15% of ambient oxygen concentration

and 1500 bar of injection pressure. The TPPDF, TRIF and

TFPV combustion models were chosen for this comparison

since all of them account for turbulence chemistry interac-

tion despite in different ways. The models have different

behaviors mainly before the ignition delay time: in TRIF

and TFPV, ignition is a two-stage process and the time in-

terval between the two events, known as thermal runaway,

can be clearly distinguished. That period is characterized

by a substantial balancing between reaction and diffusion

[5]. The TPPDF predicts a single-stage ignition process in-

stead. This is mainly related to the way the progress vari-

able source term is computed: Eq. 10 accounts for mixture

fraction fluctuations, but performs the integration assuming

the same progress variable value in the whole Z-domain.

This assumption is in contrast with what is normally hap-

pening in diffusion flame auto-ignition, where the progress

of combustion is not uniform in the mixture fraction space

and is governed by diffusion and chemistry simultaneously

[31].

Finally, in Fig. 11 a comparison between computed tem-

perature distributions by TPPDF and TFPV models is also

reported for the baseline condition together with the iso-

contour of stoichiometric mixture fraction and the exper-

imental location of the lift-off length. Two stage ignition

and effects of scalar dissipation rate are the reason why

in TFPV model the flame stabilizes at a longer distance

from the nozzle with a better agreement with experimental

data. TPPDF and TFPV have very similar maximum tem-

perature values and temperature distributions far from the

lift-off length, and this is the main reason of similar HRR

predictions.
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Figure 10: Comparison between experimental vessel pressure rise

rate the ones computed by TPPDF, TRIF and TFPV combustion

models.

Figure 11: Computed temperature distribution for the TWM and

TPPDF models. Temperature range: 900 (black) - 2300 (yellow).

In [12], the authors have illustrated the consistency be-

tween direct integration and tabulated kinetics for both the

TRIF and TWM models. Such comparison cannot be easily

done for the TFPV model, since there is not a correspond-

ing model where chemistry can be directly integrated. A

possible candidate could be a multi-RIF model where in-

teraction between different flamelets is taken into account

to mimick the diffusion of the progress variable in absence

of mixture fraction gradient. This comparison will be mat-

ter of investigation in a future work.

FPT F1C Engine

The FPT F1C light-duty Diesel engine was simulated un-

der different operating conditions to validate the proposed

combustion models. Details of the piston bowl geometry

are provided in Fig. 13(b) together with the main engine
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data reported in Tab. 2. Conventional Diesel combustion

was first considered and simulations were carried out for

eight different operating which are of interest for the en-

gine operation shown in Fig. 12. Details of the simulated

conditions are illustrated in Tab. 3, where it is possible to

see that conditions with different injections, loads and level

of EGR were investigated.

Table 2: Main geometry data of the FPT F1C engine simulated in

this work.
Bore 96 mm

Stroke 104 mm

Compression ratio 18

IVC -145 deg

EVO 110 deg

Swirl ratio 1.3

Number of injector holes 8

Nozzle hole diameter 140 µm

Figure 12: Operating map of the F1C engine and simulated oper-

ating points.

Table 3: Simulated operating points for the F1C engine under con-

ventional Diesel Combustion mode.
speed

Name [rpm] load λ EGR #inj

1 HEGR 1400 12% 2.7 40% 3

2 1400x50 1400 50% 1.4 15% 3

3 A25 2000 25% 2.1 20% 3

4 A75 2000 75% 1.3 15% 3

5 B50 2750 50% 1.4 15% 3

6 B100 2750 100% 1.3 5% 2

7 C40 3500 40% 2.3 10% 3

8 C100 3500 100% 1.5 0% 1

Calculations were run with eight different chemistry ta-

bles, one for each operating point, with the oxidizer chem-

ical composition estimated by an extensively validated 1D

model of the whole engine system. The table discretization

used for all the Diesel engine combustion simulations is

reported in Tab. 4 and was determined after a preliminary

sensitivity analysis using the tabulated well-mixed model

for what concerns the selected temperature, pressure and

mixture fraction intervals. Any further refinement of such

quantities does not improve the predicted ignition delays

and heat release rate profiles. The selected temperature and

pressure ranges take into account all the expected thermo-

dynamic states of the system encountered during the en-

gine simulations. The time required to generate the homo-

geneous reactor chemistry table is about one hour on eight

cores and six hours were needed to generate the TFPV ta-

ble. Any engine simulation from IVC to EVO is completed

in approximately 18 hours on the same number of cores

(each node is dual-core, eight processor Intel Xeon E5-

2630 v3 2.40GHz).

Table 4: Chemistry table discretization used for the simulation of

the FPT F1C engine

Temperature [K] 600, 650, 700, 750,

800, 850, 900, 950,

1000 1100 1200 1300

Pressure [bar] 30 70 110 150 200

Equivalence ratio 0, 0.4, 0.5, 0.6, 0.7,

0.75, 0.8, 0.85, 0.9,

0.95, 1, 1.05, 1.1,

1.15, 1.2, 1.25, 1.3,

1.35, 1.4, 1.5, 1.6,

1.7, 1.8, 1.9, 2, 3

Mixture fraction segregation 0.0 0.001 0.0025

0.01, 0.025 0.1 1.0

Scalar dissipation rate χst [1/s] 0, 1, 3, 7, 20, 55

Figure 13: Computational mesh of the F1C engine: (a) Top view;

(b) side view.

The spray-oriented grid of the F1C engine was automati-

cally generated using the algorithms presented in [32] and

mesh details are provided in Fig. 13. Simulations start at

IVC imposing a wheel-flow velocity profile whose inten-

sity is proportional to the swirl number which was mea-

sured at the flow bench under steady-state flow conditions.

The mesh has 250000 cells at IVC which are reduced to
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40000 at TDC because during mesh motion the dynamic

layering technique was employed [32]. The mesh resolu-

tion in the tangential direction is continuously increased

to keep an optimum mesh size which is necessary to pre-

dict fuel-air mixing and temperature distribution during the

combustion process.

For a detailed validation analysis, four different points were

considered, with different speeds and loads: C100, B50,

A25 and HEGR. Fig. 14 compares experimental data of in-

cylinder pressure and apparent rate of heat release (AHRR)

for the C100 condition, representing full load operation

at the highest considered speed. At this operating condi-

tion, the performance of the three tested models in terms

of cylinder pressure and heat release rate is rather similar.

TRIF has the highest pressure peak, mainly because it ig-

nites earlier than TPPDF and TFPV. All models underpre-

dict significantly the AHRR trace 10 degrees after the Top

Dead Center (TDC) and possible reasons for such behavior

could be found in the used mesh structure and size, tur-

bulence model and the uncertainties related to the injected

mass flow rate profile used under such condition.
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Figure 14: Comparison between computed and experimental data

of in-cylinder pressure and apparent heat release rate for the op-

erating point C100.

When reducing the load and speed and introducing pilot

injections, the effects of the combustion model become

more relevant. Fig. 15 reports the results for the B50 case:

the AHRR profile clearly shows the presence of three dif-

ferent peaks corresponding to the three separated injec-

tion events. All the three models predicts correctly the in-

cylinder pressure evolution with TRIF and TFPV profiles

being very similar and smoother than TPPDF in the ramp

of the AHRR which follows the main injection. To better

understand the differences between the involved combus-

tion models, Fig. 16 reports the AHRR profiles resulting

from the two injection events more in detail. The TRIF

model employs three different flamelets in this case (one

for any injection) and is characterized by two intense peaks

of heat release following the two pilot injections: the rea-

son for such behavior can be related to two aspects: first, the

use of a single value of the scalar dissipation rate to char-

acterize the whole amount of mixture fraction originating

from a single injection event. Furthermore, since there is

no interaction between the different flamelets, ignition de-

lay from the second pilot and the main injection events are

slightly overestimated. The TFPV model accounts for local

distribution of the scalar dissipation, and this is probably

the reason for a smoothed AHRR peak after the first igni-

tion. Convection and diffusion of progress variable makes

the predicted ignition delay of the second pilot injection

closer to the experimental one. Lack of sub-grid mixing in

the TPPDF model is responsible for lower AHRR peaks.
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Figure 15: Comparison between computed and experimental data

of in-cylinder pressure and apparent heat release rate for the op-

erating point B50.
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Figure 16: Comparison between computed and experimental data

of in-cylinder pressure and apparent heat release rate for the op-

erating point B50 during the pilot injection events.

Further reduction of load and speed with increase of EGR

in A25 (Fig. 17) and HEGR (Fig. 18) conditions gives even

more importance to the effects of pilot injections on the

combustion process. For both these conditions, results are

in rather good agreement with experimental data for the
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three models, with the TFPV model having the best agree-

ment in terms of AHHR but a slight underestimation of

cylinder pressure compared to the other two models. TRIF

has the best agreement in terms of AHRR for the combus-

tion of the main injection.
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Figure 17: Comparison between computed and experimental data

of in-cylinder pressure and apparent heat release rate for the op-

erating point A25.
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Figure 18: Comparison between computed and experimental data

of in-cylinder pressure and apparent heat release rate for the op-

erating point HEGR.

To complete the analysis on the combustion process, Figs.

19 and 20 provide an overview of the model capability

to predict combustion phasing on all the tested operat-

ing points. In particular, in Fig. 19 for any combustion

model the x-axis reports the experimental value of maxi-

mum cylinder pressure and the y-axis the computed one.

In the case of perfect matching, points would lie on the

dashed black line. For all the tested operating conditions,

the maximum error in terms of predicted cylinder pressure

is less than 3% which can be considered rather satisfactory.

In terms of peak-pressure location, Fig. 20 illustrates that

all the models predicts it with a maximum error of 1 CAD

which is acceptable.
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Figure 19: Experimental vs predicted maximum cylinder pressure

by the TFPV, TPDF and TRIF models for any tested operating

condition.
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Figure 20: Experimental vs predicted maximum cylinder pressure

location by the TFPV, TPDF and TRIF models for any tested op-

erating condition.

Concerning the NOx emissions, Fig. 21 reports the evolu-

tion of in-cylinder average NOx concentration during the

combustion and expansion phases of the four points which

were used for the combustion process analysis (C100, B50,

A25, HEGR). Data were normalized with respect to the

maximum value of the experimental NOx emissions. Re-

sults of the NOx model are available only with TFPV and

TPPDF, since it is not incorporated in the TRIF solver. Evo-

lution of NOx follows the expected trends: it grows during

the combustion process and stabilizes at its maximum value

when in-cylinder temperatures become low enough to pro-

mote any further nitrogen oxide formation. Since the NOx

model does not account for turbulence-chemistry interac-

tion and sub-grid mixing and in-cylinder thermodynamic

conditions are rather similar for TFPV and TPPDF, it is

correct that these two models produce very similar results.

Results are slightly overpredicted for the C100 condition at

the highest load, while a rather good agreement was found

for the other load points with lower speed.
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Figure 21: Computed evolution of in-cylinder average normalized

NOx concentration during the combustion and expansion process.
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Figure 22: Experimental vs predicted wet NOx emissions for the

TFPV and TPPDF models for any tested operating condition.

Results in terms of NOx emissions are summarized for all

the tested operating conditions in Fig. 22: an overall sat-

isfactory agreement was achieved, with a percentage er-

ror with respect to experimental data falling the ±20%

range. Incorporation of turbulence/chemistry interaction in

the NOx model will be probably matter of a future work to

see if this can further improve the agreement with experi-

mental data.

Under conventional Diesel combustion conditions, the per-

formances of the proposed combustion models can be con-

sidered generally satisfactory in terms of both combustion

process and formation of NOx. However, for a full valida-

tion, the model capabilities to predict the combustion pro-

cess under advanced modes was also considered. A modi-

fied version of the F1C engine was considered, with a re-

duced compression ratio (∼ 14) and a slightly different de-

sign of the piston bowl (see Fig. 23). Two operating points

at constant speed and different loads were simulated whose

details are listed in Tab. 5.

Figure 23: Computational mesh of PCCI piston bowl.

Table 5: Simulated operating points for the F1C engine under

PCCI combustion mode.
speed bmep

Name [rpm] [bar] λ EGR

1 PCCI1 2000 5 1.2 40%

2 PCCI2 2000 7.5 1.2 40%

Fuel is delivered by a single injection with the SOI at

approximately 25 CAD BTDC. The TWM model was

used in PCCI combustion, since it is expected that effects

of turbulence-chemistry interaction under such operating

mode can be at first approximation neglected [33, 34].

However, in order to better capture the combined pres-

sure/temperature effects on the ignition process, a higher

temperature and pressure discretization for the chemistry

table was used, whose details are reported in Tab. 6. In this

case, no results sensitivity analysis to table discretization

was performed and this aspect will be matter of investi-

gation in a future work. Two different fuels were consid-

ered in the investigation: n-dodecane and the IDEA surro-

gate, whose chemical and physical properties are more sim-

ilar to the commercial Diesel fuel [35]. IDEA is a mixture

of 70% n-decane and 30% methylnaphthalene and the re-

duced chemical mechanism employed for table generation

considers 127 species and more than 1000 reactions. Vali-

dation of such mechanism and details about the reduction

algorithm can be found in [36, 37]. Four hours are neces-

sary to generate the chemistry table for the PCCI combus-

tion simulation.

Table 6: Temperature and pressure discretization used for the

chemistry table employed in the simulation of the PCCI combus-

tion process in the FPT F1C engine

Temperature [K] 600-800 (step 25 K)

800 - 1000 (step 12.5 K)

1000 - 1100 (step 25 K)

1100 - 1200 (step 50 K)

Pressure [bar] 20-200 (step 20 bar)

Results for the PCCI1 combustion condition are reported

in Figs. 24-25 in terms of cylinder pressure (a) and AHRR

(b), respectively. As expected, experiments report a very

fast combustion process with a high premixed peak. More-

over, a cool flame is clearly present in both the tested con-

ditions. In the simulations, the effect of the kinetic mech-

anism is quite important: n-dodecane combustion is char-

acterized by a very short cool flame period and generally

underpredicts the experimental ignition delay. When us-
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ing the IDEA fuel, cool flame ignition delay is rather well

predicted but heat release rate during the main combus-

tion process is slower than in the experimental data. Re-

sults can be considered acceptable in both the cases since

qualitative aspects of PCCI combustion are reproduced in

terms of heat release rate profile and also in both the cases

maximum cylinder pressure values similar to experimen-

tal data are achieved. IDEA better estimates the ignition

delay, while predicted combustion duration when using n-

dodecane is in better agreement with experimental data.
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Figure 24: Comparison between computed and experimental data

of in-cylinder pressure (a) and apparent heat release rate (b) for

the operating point PCCI1.
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Figure 25: Comparison between computed and experimental data

of in-cylinder pressure (a) and apparent heat release rate (b) for

the operating point PCCI2.

Despite all the uncertainties related to spray modeling, grid

dependency and validity of the tested kinetic mechanisms,

further investigations are necessary to fully assess the pro-

posed approach under advanced combustion modes, to bet-

ter clarify:

• The influence of sub-grid mixing and for this reason

simulations with the TFPV and TRIF model will be

carried out;

• The effects of mixing-chemistry interaction: the pos-

sibility to generate TFPV tables using detailed chem-

istry and not tabulated reaction rates will be explored

since it will make in principle possible to remove the

progress variable limitation for rich equivalence ratio

and this is expected to better reproduce the ignition

process under a wide range of mixture fraction condi-

tions.

Conclusions

This work was focused on the simulation of Diesel com-

bustion using tabulated kinetics. The chemistry table is

based on homogeneous constant pressure reactor calcu-

lations and tabulated reaction rate values were used as

source terms in progress variable transport equation by

the proposed approaches which are based on four differ-

ent flame structures: well-mixed (TWM), presumed PDF

(TPPDF), representative interactive flamelets (TRIF) and

flamelet progress variable (TFPV) with this last model

specifically developed within this work. Tabulated chem-

istry was also employed for the estimation of NOx emis-

sions. Under constant-volume combustion conditions and

considering variations of ambient temperature and oxygen

concentration, the TFPV model agrees rather well with ex-

perimental data of ignition delay, flame lift-off and heat re-

lease rate. Models including turbulence-chemistry interac-

tion (TRIF, TPPDF and TFPV) have the best agreement

with engine experimental data under conventional Diesel

combustion where most of the heat is released under the

mixing controlled-mode and ignition delay is small. In the

different tested conditions, including multiple injections,

different EGR rates, speeds and loads, TFPV has the bet-

ter capability to predict combustion in presence of multiple

injections, since it accounts for both sub-grid mixing and

diffusion of progress variable in the computational domain.

However, the computational time required to generate the

TFPV table is significantly higher than the time needed

for the other ones but it could be acceptable for the opti-

misation of the combustion chamber geometry since IVC

conditions remain identical. In terms of NOx, TFPV and

TPPDF models provide acceptable predictions. Incorpora-

tion of tabulated NOx in TRIF will probably make possi-

ble to have a very fast solution in terms of required time

for chemistry table generation and proper estimation of

combustion process and NOx and for this reason authors

will surely consider this approach in future works. Simu-

lation of advanced combustion modes require probably a
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better description of the mixing-chemistry interaction to

properly predict auto-ignition: under such conditions, ap-

proaches based on progress variable reaction rate based on

constant-pressure homogeneous reaction calculation show

their limitations. For this reason, detailed chemistry will be

directly employed in future works for the generation of the

TFPV tables and also other tabulated approaches, like re-

action diffusion manifolds (REDIM) will be also evaluated

together with different kinetic schemes to better describe

the oxidation process of the real fuels employed in IC en-

gines.
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