
Programming Support for Time-sensitive Adaptation in
Cyberphysical Systems

Mikhail Afanasov
Politecnico di Milano, Italy

mikhail.afanasov@polimi.it

Aleksandr Iavorskii
John Wiley & Sons Inc.,

Russia
yavalvas@gmail.com

Luca Mottola
Politecnico di Milano, Italy and

SICS Swedish ICT
luca.mottola@polimi.it

ABSTRACT
Cyberphysical systems (CPS) integrate embedded sensors,
actuators, and computing elements for controlling physi-
cal processes. Due to the intimate interactions with the
surrounding environment, CPS software must continuously
adapt to changing conditions. Enacting adaptation decisions
is often subject to strict time requirements to ensure control
stability, while CPS software must operate within the tight
resource constraints that characterize CPS platforms. De-
velopers are typically left without dedicated programming
support to cope with these aspects. This results in either to
neglect functional or timing issues that may potentially arise
or to invest significant efforts to implement hand-crafted so-
lutions. We provide programming constructs that allow de-
velopers to simplify the specification of adaptive processing
and to rely on well-defined time semantics. Our evaluation
shows that using these constructs simplifies implementations
while reducing developers’ effort, at the price of a modest
memory and processing overhead.

1. INTRODUCTION
Cyberphysical systems (CPS) enable the tight integration

of embedded sensors, actuators, and computing elements
into feedback loops for controlling physical processes. Ex-
ample applications include factory automation, automotive
systems, and robotics [25]. CPS operate at the fringe be-
tween the cyber domain and the real world [11]. Both the
execution of the control logic and the platforms it runs on
are thus inherently affected by environmental dynamics [25].
This requires CPS software to continuously adapt to these
dynamics. To enact the needed adaptations, developers may
employ various approaches, including dynamically changing
the control logic.

Control loops are most often time-sensitive [24]; the con-
trol logic must be executed at a given frequency to ensure the
stability of processes. Adaptation is an integral part of the
control loop, and thus subject to the same time constraints.
Thus, the timing aspects of taking and enforcing adapta-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

c© 2016 Copyright held by the owner/author(s).

.

tion decisions become crucial. Such complex time-sensitive
adaptive processing must withstand the strict resource con-
straints of CPS platforms; the most advanced CPS devices
feature 32-bit micro-controller units (MCUs) with tens of
KBytes of RAM, while being battery-operated.

As we illustrate in Sec. 2, developers are often left with-
out dedicated support to implement adaptive time-sensitive
CPS software. This leads to easily overlooking the potential
issues related to the timing aspect of run-time adaptation,
affecting the stability of the controlled processes. Fritsch et
al. [7] show, for example, that timing aspects are often ne-
glected in developing adaptive automotive software. Similar
observations also apply to robot controllers [2, 18]. When-
ever developers do recognize these issues, they tend to imple-
ment complex hand-crafted solutions, mostly due to the lack
of time semantics in mainstream programming abstractions.

To address these issues, we design and implement a cus-
tom realization of context-oriented programming [10,22] that
is: i) conceived for resource-constrained embedded devices,
and ii) embeds well-specified notions of adaptation modality
and time. As described in Sec. 3, these notions allow devel-
opers to distinguish different ways to schedule an adaptation
decision and to place an upper-bound on the time taken to
apply such decisions. The former is useful, for example, to
avoid functional conflicts when switching from one control
logic to another. The latter provides a specified time seman-
tics when adaptation decisions need to abide to real-time
deadlines. We render these notions in a dedicated extension
of the C++ language we call COP-C++, supported by a
corresponding tool-chain we develop.

Navigation

Hovering

LeakLocalization

Landing

emergency

em
er

ge
nc

y

arrived

gas concentration is 
above threshold

or alert beacon is received

emergency

end

end

start

Figure 1: Software controller
for gas leak localization.

As reported in Sec. 4,
we assess our work
by quantitatively com-
paring the complexity
of representative im-
plementations of CPS
software using tradi-
tional programming con-
structs against those
we design. Our results
indicate that the de-
velopers’ effort is re-
duced using COP-C++. The cost to gain this benefit is
a modest increase in resource consumption, especially in
processing time and memory occupation. For example, the
worst-case processing overhead we measure through real-
world experiments on modern 32-bit MCUs amounts to only
20µs, negligible given the time scales of the considered con-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/154336955?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 static int8_t current_controller = NONE;
22 static void step (){// is called at 100+ Hz
3 switch (current_controller) {
4 case NAVIGATE: navigate_step (); break;
5 case HOVERING: hovering_step (); break;
6 case LEAK_LOC: leak_loc_step (); break;
7 case LANDING: landing_step (); break ;}}
88 static bool set_controller(uint8_t controller) {
9 if(controller == current_controller ){ return true;}

10 bool success = false;
11 switch(controller) {
12 case HOVERING: success=hovering_init (); break;
13 case LEAK_LOC: success=leak_loc_init (); break;
14 case NAVIGATE: success=navigate_init (); break;
15 case LANDING: success = landing_init (); break;
16 default: success = false; break;}
17 if (success) {// update controller

1818 exit_mode(current_controller , controller );

1919 current_controller = controller;
20 } else {// log error
21 Log_Write_Error(controller );}
22 return success ;}

Figure 2: Example implementation of adaptive controller.
trol loops. We end the paper by discussing related efforts in
Sec. 5 and with brief remarks in Sec. 6.

2. PROBLEM
Consider the need to localize a gas leak in an indoor envi-

ronment. Tiny aerial drones are envisioned to perform this
task efficiently and with minimal cost [4]. Their behavior,
as dictated by a given control logic, depends on surrounding
conditions, application state, and sensed data [4].

Fig. 1 depicts a possible design for such an application.
Initially, every drone moves to a predefined location using a
Navigation controller. Upon arriving, a drone uses a Hov-

ering controller to sample the gas concentration. Whenever
it detects a value above a threshold, a drone switches to a
LeakLocalization controller that broadcasts alert beacons
via a low-range radio. Nearby drones that receive the beacon
also switch to the LeakLocalization controller, and come
closer to the drone that initially detected the leak to obtain
finer-grained measurements. In case of emergencies, such as
a hardware failure, the Landing controller is activated.

Fig. 2 depicts an example implementation of the required
adaptive behavior. The structure of the code reflects real
implementations in the considered systems; for example, in
the Ardupilot [2] autopilot for drones. Control is triggered
in function step() in line 2 , which is called at 100Hz. De-
pending on the global variable current_controller, differ-
ent concrete controllers are executed. Controller adaptation
is implemented in function set_controller() in line 8 .
Depending on what controller is to be activated, an indi-
vidual controller is first initialized, the clean-up routine of
the previous controller is executed in line 18 , and the global
variable indicating the active controller is updated in line 19 .

Despite being simplified, the code in Fig. 2 already shows
several issues, some not even entirely evident:

I1) The processing is strictly coupled with the different
controllers. For example, adding a new controller,
or removing an existing one would require changing
the code in several places. On the other hand, re-
source constraints prevent using high-level languages
that ameliorate these issues. As a result, implementa-
tions are typically entangled and thus difficult to debug
and to maintain.

I2) In Ardupilot, control runs at 100 Hz: every 10 ms a
controller must perform the necessary actuation. How-

ever, current implementations enforce no time limit on
adaptation. This may become an issue when executing
set_controller: should a controller’s initialization or
clean-up take too long, the controller will not be exe-
cuted in time, which may affect the system’s stability.

I3) When switching controller, the previous and new con-
trollers may conflict with each other. For example, the
LeakLocalization controller includes a periodic task
to transmit alert beacons that may still operate when
the Landing mode is possibly initialized. This would
mean the drone keeps beaconing also when it lands,
which may affect the system’s correctness. Asynchronous
operations, such as interrupt handlers firing while switch-
ing controller, may create similar issues.

As we argued earlier, these problems are often overlooked
by CPS developers. Issue I1 impacts the quality of imple-
mentations, whereas issue I2 and I3 potentially affect de-
pendability. Addressing these issues, however, is also not
trivial without proper programming support. For example,
issue I3 often emerges as developers intentionally overlap
initialization and clean-up operations to increase parallelism
when performing I/O operations. Solving issue I1 by sim-
ply switching the ordering of clean-up and initialization de-
creases parallelism, possibly prolonging the time required
for switching controllers and thus exacerbating issue I2. To
remedy this, developers implement hand-crafted solutions to
regulate the time for switching controllers, further impacting
the quality of implementations, making issue I1 even worse.

3. COP-C++

Context-oriented programming (COP) [10] is a paradigm
to simplify the implementation of adaptive software. It is
based on two key notions: i) the different situations where
the software needs to operate are mapped to different con-
texts, and ii) the context-dependent behaviors are encapsu-
lated in layered functions, that is, functions whose behavior
changes—transparently to the caller—depending on the ac-
tive context.

COP proved effective in creating adaptive software in main-
stream applications, such as user interfaces [13] and text edi-
tors [12]. To that end, COP extensions of popular high-level
languages, such as Java and Erlang, emerged [12, 22]. Em-
bedding COP extensions within an existing language, how-
ever, often relies on features such as reflection and dynamic
binary loading, which are difficult to implement on resource-
constrained platforms, such as those employed in CPS.

3.1 Context-oriented C++
To address issue I1 in Sec. 2, we embed the key COP ab-

stractions within C++, as it arguably represents a large frac-
tion of the existing codebase in CPS. The resulting language,
called COP-C++, retains the original C++ semantics with
the addition of custom semantics and keywords. We focus
on the local adaptation, while any distributed functional-
ity is orthogonal to our efforts. Indeed, our approach can
be used with any middleware for adaptation in distributed
systems; for example, iLand [8].

For simplicity, we illustrate the language through exam-
ples here. The full grammar is publicly available together
with the corresponding tool-chain.1

1https://bitbucket.org/neslabpolimi/cop cpp translator



11 context group FlightControlGroup {
22 context Hovering;context Navigate;context LeakLoc;
33 context Landing;
4 public:
55 layered void step() = 0;};

Figure 3: Example definition of context group.

11 context LeakLoc : private FlightControlGroup {
2 public:
3 LeakLoc (): _t(new Ticker ()) {};
4 virtual ~LeakLoc ();
5 private:
66 layered void step (){// controller functionality}
77 bool initialize (){_t->attach (&broadcast ,0.3);}
88 void cleanup () {_t->detach ();}
9 void broadcast (){// broadcast routine}

1010 Ticker∗ _t;};

Figure 4: Example implementation of individual context.

Context groups and individual contexts. Similar to
previous work [1], we group together contexts sharing com-
mon characteristics, such as the functionality provided or the
environment dimension that drives the transition between
contexts. In the example of Sec. 2, individual contexts map
to the individual controllers in Fig. 1. These contexts would
be grouped together as they all provide control functionality.

Fig. 3 shows the specification of a context group in the
application of Sec. 2 using COP-C++, which extends the
notion and syntax of C++ classes. Context groups are de-
clared with the keyword context group, as shown in line 1 .
Inside a context group, programmers declare the list of con-
texts that belong to the group, as in lines 2 to 3 . In
addition, they specify the layered functions that the group
offers to other classes. These are indicated using the lay-

ered keyword, as in line 5 , and implemented differently by
the individual contexts.

Only one context is active inside a group at every point
in time; the active context is in charge of executing the
corresponding layered functions. As a result, the context
group acts as a container that hides the individual contexts
from the users of a specific functionality. This helps devel-
opers decouple context-dependent functionality from their
use. Further, it makes it possible to statically generate the
code to dispatch layered function calls to the corresponding
implementation in the active context, ameliorating the need
for advanced language features hardly feasible on resource-
constrained platforms.

In COP-C++, individual contexts also extend the no-
tion and syntax of C++ classes. Fig. 4 shows an example
based on the application of Sec. 2. The context keyword in
line 1 specifies that this class is an individual context, part
of the FlightControlGroup it inherits from. In line 6 , the
programmer implements the context-dependent behavior for
the layered function step defined in the corresponding con-
text group. In every individual context, programmers may
add initialization and clean-up routines with the predefined
initialize() and cleanup() methods, as in lines 7 and 8 .
These are useful when starting a new controller or stopping
the currently executing one.

Adaptation. Using COP-C++, enacting an adaptation
decision that prompts to easily switch between the con-
trollers. For example, the command activate FlightCon-

trolGroup::Hovering fast within 5ms performs the change
of the currently-executing controller including initialization
and clean-up. The specific scheduling of these operations de-
pends on the qualifiers lazy and fast[within] in the same
lines, whose semantics we explain next. The call to function

FlightControlGroup::step() is then transparently dispatched
to the currently active context.

Compared to plain C/C++, as shown in Fig. 2, the code
is much simplified. No global variables are necessary to
keep track of the current controller. No cumbersome switch

statements are required, either. Only a single call to the
step function appears in the code, which is automatically
dispatched to the active context. The interleaving of con-
trollers’ initialization and clean-up while switching, as well
as the corresponding time semantics, are completely encap-
sulated in the aforementioned qualifiers, as explained next.
3.2 Qualifiers

As described in Sec. 2, functionality meant to operate in
different situations may conflict with each other during the
switch—as per issue I2. In addition, potential issues may
emerge as current implementations enforce no time limit on
the execution of adaptation decisions, as per I3. To help
programmers cope with these issues, the qualifiers lazy and
fast[within] indicate different modes to enact adaptation
decisions and possibly specify time constraints.

Landing

Leak Loc.

Landing 
initialize

Leak Loc. 
clean-up

Leak Loc.

Landing 
initialize

Leak Loc. 
clean-up

TimeLazy Fast

Le
ak

 L
oc

.
La

nd
in

g
U

nc
er

ta
in

ty

Adaptation starts
New context is operational

Le
ak

 L
oc

.
La

nd
in

g

Landing

Figure 5: Lazy and fast activa-
tion of a new context.

Modes. Fig. 5 il-
lustrates the differ-
ence in performing a
context switch using
lazy or fast. Us-
ing lazy, the clean-
up of the previous con-
text needs to com-
plete before initializ-
ing the new context.
As a result, no func-
tional conflicts may
ever arise. However,
during the switch, the
system rests in an uncertainty state where no context is ac-
tive. A call to a layered function within this time results in
no operation. In addition, as no parallel execution occurs,
the latency grows as the sum of the time to clean-up from
the previous context and the time to initialize the new one.

In contrast, as shown in Fig. 5, using fast the system first
initializes the new context; then performs the clean-up of the
previous one. If some operations inside initialize are non-
blocking and may be asynchronously executed, such as those
involving I/O operations, fast allows the system to increase
parallelism. As a result, the time to apply an adaptation
decision reduces, yet programmers must take additional care
to avoid functional conflicts between contexts during the
switch. There is indeed a time where both contexts might
be possibly simultaneously executing.

Deadlines and rapid context switches. To control the
time invested in switching between contexts, programmers
may define an optional activation deadline. Say, for example,
that in the scenario of Sec. 2 the context switch needs to
complete within T ms to let the new controller perform the
actuation within the next (10−T ) ms. The optional qualifier
within allows programmers to specify the upper-bound T on
the time to switch contexts, as shown in Sec. 3.1. Should the
upper bound be violated, the initialization is interrupted and
the programmer is notified through a callback, which can be
used to implement application-specific countermeasures.

All the activate commands are placed in a queue that is
asynchronously checked by the system. The latter pulls out
the first activate command and executes it. In an emer-



gency situation, such as a collision threat, programmers may
want to switch the context immediately. To this end, an in-
struction activate FlightControlGroup::Landing immedi-

ately cancels all pending activate commands and imme-
diately switches to the Landing context.

The qualifiers we discuss here also naturally apply across
multiple context groups, defined as explained in Sec. 3.1, in
applications with parallel adaptive controllers.
3.3 Translator

We implement the translator as an extension to the CDT
plug-in for Eclipse. It allows programmers to translate from
COP-C++ to pure C++ and to rely on standard toolchains
to generate executable binaries. First, the translator ensures
the consistency of the context-oriented design. For example,
a context may not implement any layered functions or not
belong to any context group. In this case the translation
stops and the developer is informed. Second, the gener-
ated source code remains human readable; programmers can
modify it to further optimize it and tune.

4. EVALUATION
We assess the effectiveness of COP-C++ along several

dimensions. Sec. 4.1 quantitatively demonstrates the ben-
efits of COP-C++ in complexity of the implementations
and required programming effort. Such benefits come at a
price of processing and memory overhead, which we report
in Sec. 4.2. We compare the performance of different combi-
nations of qualifiers for context switch in Sec. 4.3, whereas
Sec. 4.4 shows the programming effort required to manually
cope with functional conflicts when using fast switching.

Our evaluation targets modern 32-bit ARM Cortex M
MCUs that are often employed in CPS. We employ STM
Nucleo prototyping boards equipped with Cortex M3 MCUs
running at 32 MHz and 80 KBytes of RAM. The architecture
of these is similar, if not the same, to devices employed in
real-world CPS applications, while the board also offers con-
venient testing facilities that enable the kind of fine-grained
measurements we discuss next.

As input to our evaluation, we implement the gas leak lo-
calization application described in Sec. 2 using COP-C++.
We use two functionally-equivalent implementations as base-
lines. The first one uses pure C++ by following the struc-
ture of an original ArduPilot-like implementation, discussed
in Sec. 2. We call this implementation pureC++. The
second baseline is similar to pureC++, with the addition
of manually-implemented functionality to control the time
for switching controllers, that is, the same functionality the
within qualifiers provides declaratively. Such a baseline is
instrumental to examine the difference between the man-
ual implementation and the automatic generation of this
functionality. We call this implementation timeC++. We
implement all three versions of the application using the
mBed [15] libraries provided by STM. We use the standard
ARM gcc tool-chain for compiling.
4.1 Complexity and Effort

We compare the complexity and efforts for the implemen-
tations using Halstead metrics [9]. These are intended to
investigate the properties of source code independently of
the programming language. Halstead et al. use four ba-
sic metrics: the total number of operands (OP), the total
number of operators (OD), the number of unique operands
(UOP), and the number of unique operators (UOD). An op-
erator is a language-specific keyword, whereas variables and

Table 1: Definition of Halstead metrics.
Name/Definition Description

Length (LTH)
OP + OD

Shows how long is a program in terms of
“words”, where a “word” is an operator or an
operand.

Vocabulary (VOC)
UOP + UOD

Indicates the number of unique “words” in a
program.

Difficulty (DIF)
UOP/2 × OD/UOD

Indicates how difficult it is to understand the
program.

Volume (VOL)
LTH ∗ log2 V OC

Refers to how much information does a reader
have to absorb to understand the program se-
mantics.

Effort (EFF)
DIF ∗ V OL

Reflects the effort required to recreate, or to
initially write the program.

Table 2: Halstead metrics applied to the COP-C++ imple-
mentation of the application in Sec. 2 against baselines.

Metric pureC++ timeC++ COP-C++

Operators count (OP) 981 1068 750

Unique operators (UOP) 32 33 36

Operands count (OD) 439 478 383

Distinct operands (UOD) 121 124 101

Program length (LTH) 1420 1546 1133

Program vocabulary (VOC) 153 157 137

Difficulty (DIF) 58 61 68

Volume (VOL) 10305.49 11227.48 8042.07

Effort (EFF) 597718.46 687926.5 546860.78

constants are operands. For example, in Fig. 4, layered is
an operator, whereas _t is an operand. Based on the four
basic metrics, other metrics are derived as in Tab. 1.

Results. Tab. 2 reports the values of the Halstead metrics
for the aforementioned implementations. The Difficulty in
a COP-C++ implementation is slightly higher than for the
baselines. This is due to the additional keywords we add to
define context groups and individual contexts, as well as the
use of qualifiers.

On the other hand, COP-C++ reduces the Volume of the
program; therefore, maintenance and debugging should be
simpler as programmers need to absorb less information to
understand a program. Programmers spend less Effort to
realize the program in the first place. The benefits of COP-
C++ in these regards become even more evident when con-
sidering timeC++. In this case, both the Volume and Effort
further increase, amplifying the benefits of COP-C++.

4.2 Processing and Memory Overhead
The benefits above incur a run-time cost in processing

time and memory occupation. To assess these, we sepa-
rately compare a COP-C++ implementation that only uses
the fast qualifier against pureC++, and a COP-C++ im-
plementation that also employs the within qualifier against
timeC++. The original Ardupilot implementation only
uses a kind of controller switch similar to the semantics of
the fast qualifier, so we do not study here the run-time
overhead for the lazy one. We investigate this in Sec. 4.3.

According to Fig. 1, different environmental events may
trigger the adaptation. We emulate them on the Nucleo
board as external interrupts through GPIO pins. We use
a Tektronix TBS 1072B-EDU oscilloscope attached to the
board to measure the controller switching time. Memory
usage statistics are obtained from the mBed [15] on-line IDE.

Results. Fig. 6 shows the processing time to switch con-
troller depending on the external event. Adaptation in COP-
C++ takes slightly more time—approximately 11µSec—
compared to pureC++. The absolute values vary due to
different initialization routines; for example, periodic bea-
coning is only initialized when LeakLocalization is acti-



 0

 20

 40

arriv
ed   

alert b
eacon   

low gas   

concetra
tion

high gas   

concentra
tion

emergency   

(leak loc.)

emergency   

(hovering)

emergency   

(navigation)

µS
ec

Events

COP-C++ PURE C++ COP-C++ (within) TIME C++

Figure 6: Processing time for switching controller depending
on the external event.
vated by alert beacon or high gas concentration. With the
within qualifier, the processing overhead compared to timeC++
reaches 20µSec. Such a penalty is still almost unnoticeable,
as the typical control loop runs at hundreds of Hz.

COP-C++ shows a mere 200B RAM overhead, which is
negligible compared to both baselines that consume 2,1kB
of RAM. RAM consumption is often an issue when devel-
oping CPS software; therefore, minimizing the impact on
this figure is key. On the other hand, the program mem-
ory usage using COP-C++ appears 14,6kB higher than in
the baselines that use 20kB. This is mainly due to the sim-
plified implementation of the control loops we employ for
this study, where only basic functionality are included and
platform-specific libraries are replaced with empty stubs.
Functionally-complete implementations are much larger; for
example, the full ArduPilot [2] requires 792 KB of program
memory. A major fraction of these are not processed by
our translator; therefore, we expect the relative overhead in
program memory to amortize.

4.3 Qualifiers
As the example application in Sec. 2 only uses the fast

qualifier, we quantitatively study here the trade-offs be-
tween the adaptation qualifiers in COP-C++, described in
Sec. 3.2. The memory overhead is the same independent of
the specific combination of qualifiers that appear in the code,
and corresponds to the values shown in Sec. 4.2. Therefore,
here we focus on the latency to perform the context switch
depending on the combination of qualifiers. The experimen-
tal setup is the same as in Sec. 4.2.

Results. Our investigations show that the lazy qualifier
requires 33, 6µSec to complete the context switch. This
latency is the price programmers pay to ensure that no
functional conflicts arise during the switch. To reduce this
time, programmers can use the fast activation type that
requires only 21, 4µSec without optional qualifier within.
This choice, however, requires programmers to handle po-
tential functional conflicts by hand, increasing the program-
ming effort. We investigate this aspect in Sec. 4.4.

Using the optional within or immediately qualifier only
marginally increases the latency in switching context. As for
the former, the latency grows by 10µSec because of the addi-
tional processing required to initialize a dedicated timer that
fires if the switch takes too much time. In the latter case,
the additional processing time amounts to only ≈1µSec, re-
quired to purge the queue of pending context switches. In
both cases, the absolute values are very limited, and they
should not impact the timings of control loops that typically
run with periods that are orders of magnitude larger.

4.4 Development Trade-offs
Using the fast qualifier may result in functional conflicts

because the initialization and clean-up routines of different
contexts overlap in time. Programmers need to handle these
conflicts by hand. To assess the additional programming ef-

 0
 4
 8

 12
 16

Ticker Timeout InterruptIn

µS
ec

standard
wrapper

Figure 7: Time to handle asynchronous events, either using
standard handlers or wrappers.

Table 3: Halstead metrics for the application of Sec. 2 us-
ing COP-C++ with and without manually-implemented
wrappers to cope with functional conflicts during a context
switch.

Parameter COP-C++ COP-C++ with wrappers

Operators count 750 1237

Distinct operators 36 52

Operands count 383 646

Distinct operands 101 160

Program length 1133 1883

Program vocabulary 137 212

Difficulty 68 104

Volume 8042.07 14551.67

Effort 546860.78 1513374.12

fort required, we implement a new version of the applica-
tion in Sec. 2 with the addition of simple wrappers around
any of the classes where asynchronous events may fire dur-
ing a fast context switch. These include timers and classes
that signal hardware interrupts. The wrappers intercept any
such asynchronous event and forward it further only after
checking that the active context corresponds to the one the
event is addressed to. Cleaner, yet more complex solutions
are also possible. Considering simple wrappers provides a
lower-bound in terms of the additional programming effort.

We assess the added programming effort by re-calculating
the Halstead metrics of Sec. 4.1 on the new implementation.
Further, the wrappers obviously add latency to the context
switch. We measure this with the same setup of Sec. 4.2.

Result. As shown in Fig. 7, the wrappers add a mere ≈2µSec
in latency during a context switch. Thus, their performance
impact is negligible. However, the complexity of the im-
plementation increases considerably, as reported in Tab. 3.
Programmers need to invest significant efforts not only in
implementing the wrappers, but also to nail down all the
classes that could possibly lead to functional conflicts, and
provide a wrapper for each of these. Tab. 3 reports a consid-
erable increase in all the complexity metrics when wrappers
are used. For example, the Volume of the source code in-
creases by 80%, the source code is 53% more Difficult, and
requires almost 3 times the Effort to be written.

5. RELATED WORK
Time-sensitive software adaptation in CPS is a multi-

facted problem. Albeit comprehensive programming sup-
port largely lacks, works exist that tackle individual aspects.

Parameter and component configurations. Adjusting
the software operating parameters is one way to adapt. For
example, Garcia-Valls et al. [8] focus on the nodes’ recon-
figuration in distributed soft real-time system that meets
stated performance goals. In the area of adaptive controllers,
Mokhtari et al. [17] and Frew et al. [6] tune the operation
of unmanned aerial vehicles (UAVs) based on sensor inputs.
These approaches focus on adapting a specific fraction of the
system’s functionality, for example, motors’ parameters or
nodes’ configuration, and cannot be applied where the whole
control logic must be changed on a single node. Our work
does not focus on the mechanism to adapt a specific func-



tionality, but provides generic programming support for im-
plementing adaptive CPS software under time constraints.

In component-based systems, software reconfiguration of-
ten occurs by plugging components in/out or by changing
component wirings [21]. Dedicated component models ex-
ist that allow developers to verify—using formal techniques
such as model-checking—the correctness of new component
configurations [20]. Some of these works focus on specific ap-
plication domains such as automotive [26] and autonomous
underwater vehicles [16]. Unlike our work, these approaches
offer no programming support to deal with enacting time-
sensitive adaptation decisions.

Programming support for adaptation. Software adap-
tation for traditional platforms is extensively studied. Some
of the works explicitly focus on programming support. For
example, COP [10] itself was implemented in a number of
high-level languages [3, 12, 22, 23]. The techniques normally
used to embed COP abstractions into a host language tend
to be impractical in CPS because of resource constraints.
Similar observations apply to Meta- and Aspect-oriented
programming (AOP) [22]. The corresponding abstractions
often require self-modification of the deployed binaries [14],
which is hard to implement on resource-constrained plat-
forms. Our work renders COP concepts amenable for imple-
mentation on typical CPS devices, while adding semantics
useful when enacting time-constrained adaptation decisions.

The need to provision programming support for time-
sensitive adaptation was also recognized in the area or real-
time operating systems (RTOSes). Dedicated programming
abstractions based on reflection were added to existing RT-
OSes [19] or specific services were made available that per-
form the needed reconfiguration in a safe manner [5]. These
attempts utilize language- or operating system-specific fea-
tures that are often not available in typical CPS platforms,
because of resource-constraints. Target platforms of these
approaches are either the mainstream computing machines [8,
21] or FPGAs [5], which greatly surpass CPS platforms in
terms of available resources and energy consumption. Our
solution, instead, is designed for resource-constrained de-
vices, does not require any language-specific features such
as reflection, and remains decoupled from the the underly-
ing operating system.

6. CONCLUSION
We presented COP-C++, an extension to C++ we ex-

pressly conceived to simplify the implementation of time-
sensitive CPS software. To that end, we borrowed concepts
from COP and realized them in a way that is feasible on
resource-constrained devices, while adding semantics to gov-
ern the time aspects during the adaptation process. We im-
plemented a dedicated translator from COP-C++ to pure
C++. Our quantitative evaluation shows that COP-C++
simplifies implementations of paradigmatic CPS function-
ality while reducing programmers’ effort, at the price of a
modest run-time processing and memory overhead. For ex-
ample, processing overhead in our experiments is limited to
tens of µSec, while RAM overhead is negligible. Program
memory overhead, on the other hand, should be amortized
with the increasing size of implementations.

7. REFERENCES
[1] M. Afanasov et al. Context-oriented programming for

adaptive wireless sensor network software. In Proc. of
DCOSS, 2014.

[2] ArduPilot. www.ardupilot.com.

[3] J. E. Bardram. The Java context awareness framework
(JCAF) – A service infrastructure and programming
framework for context-aware applications. In Proc. of
PERVASIVE, 2005.

[4] T. R. Bretschneider and K. Shetti. Uav-based gas
pipeline leak detection. In Proc. of ARCS, 2015.

[5] Y. Eustache and J. P. Diguet. Reconfiguration
management in the context of rtos-based HW/SW
embedded systems. J. Emb. Sys., 2008.

[6] E. W. Frew et al. Adaptive receding horizon control
for vision-based navigation of small unmanned
aircraft. In Proc. of ACC, 2006.

[7] S. Fritsch et al. Time-bounded adaptation for
automotive system software. In Proc. of ICSE, 2008.

[8] M. Garcia Valls et al. iland: An enhanced middleware
for real-time reconfiguration of service oriented
distributed real-time systems. IEEE Transactions on
Industrial Informatics, 9(1):228–236, 2013.

[9] M. H. Halstead. Elements of Software Science
(Operating and Programming Systems Series). 1977.

[10] R. Hirschfeld et al. Context-oriented programming.
Journal of Object Technology, 2008.

[11] M. Jackson. The world and the machine. In Proc. of
ICSE, 1995.

[12] T. Kamina et al. EventCJ: A context-oriented
programming language with declarative event-based
context transition. In Proc. of AOSD, 2011.

[13] R. Keays et al. Context-oriented programming. In
Proc. of MobiDe, 2003.

[14] G. Kiczales et al. Aspect-oriented programming. In
Proc. of ECOOP, 1997.

[15] mBed on-line IDE. developer.mbed.org.
[16] C. McGann et al. Adaptive control for autonomous

underwater vehicles. In Proc. of the AAAI, 2008.
[17] A. Mokhtari and A. Benallegue. Dynamic feedback

controller of euler angles and wind parameters
estimation for a quadrotor unmanned aerial vehicle. In
Proc. of ICRA, 2004.

[18] OpenROV. www.openrov.com.
[19] A. Patil and N. Audsley. An application adaptive

generic module-based reflective framework for
real-time operating systems. In Proc. of RTSS, 2004.

[20] F. J. Rammig et al. Designing self-adaptive embedded
real-time software – towards system engineering of
self-adaptation. In Proc. of SBESC, 2014.

[21] J. C. Romero and M. Garcia-Valls. Scheduling
component replacement for timely execution in
dynamic systems. Software: Practice and Experience,
44(8):889–910, 2014.

[22] G. Salvaneschi et al. Context-oriented programming:
A software engineering perspective. J. Syst. Softw.,
2012.

[23] S. Sehic et al. COPAL-ML: A macro language for
rapid development of context-aware applications in
wireless sensor networks. In Proc. of SESENA, 2011.

[24] J. A. Stankovic et al. Real-time communication and
coordination in embedded sensor networks.
Proceedings of the IEEE, 91(7), 2003.

[25] J. A. Stankovic et al. Opportunities and obligations
for physical computing systems. IEEE Computer,
38(11), 2005.

[26] M. Trapp et al. Runtime adaptation in safety-critical
automotive systems. In Proc. of SE, 2007.


