
Using Modelica for advanced Multi-Body modelling
in 3D graphical robotic simulators

Gianluca Bardaro1 Luca Bascetta1 Francesco Casella1 Matteo Matteucci1

1Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy,
{luca.bascetta,gianluca.bardaro,francesco.casella,matteo.matteucci}@polimi.it

Abstract
This paper describes a framework to extend the 3D robotic
simulation environment Gazebo, and similar ones, with
enhanced, tailor-made, multi-body dynamics specified in
the Modelica language. The body-to-body interaction
models are written in Modelica, but they use the sophis-
ticated collision detection capabilities of the Gazebo en-
gine. This contribution is a first step toward the simulation
of complex robotics systems integrating detailed physics
modelling and realistic sensors such as lidar and cameras.
A proof-of-concept implementation is described in the pa-
per integrating Gazebo collider and the Modelica Multi-
Body library, and the results obtained when simulating
the interaction of an elastic sphere with a rigid plane are
shown.
Keywords: Multi-Body Dynamics, 3D Robotic Simulators,
Autonomous Robotics, Autonomous Vehicles.

1 Introduction
The popularity of research on autonomous mobile robots,
including autonomous vehicles and mobile manipulators,
has been recently increasing due to the huge number of
potential applications, ranging from self-driving cars and
robots for logistics, to planetary explorations, search and
rescue missions, surveillance, humanitarian de-mining, as
well as precision agriculture activities such as pruning
vines and fruit trees (Paden et al., 2016; Roa et al., 2015;
Ko et al., 2015; Chitta et al., 2012).
The design and development of such systems, whose main
functionalities are perception, planning, and control, is a
multidisciplinary and complex work that has to be sup-
ported by virtual prototypes, allowing for a preliminary
design and testing of the corresponding algorithms in safe
operating conditions. However, due to the huge differ-
ences among the three mentioned skills a mobile robot
should own, the virtual prototype has to satisfy various re-
quirements. Considering, for example, the development of
perception algorithms, the most important characteristics
of the virtual prototype are a realistic description, mainly
from a geometrical and graphical point of view, of the
scene, and the availability of realistic models for the most
common commercial sensors, i.e., laser range finders and
cameras. On the other hand, testing a control algorithm,
e.g., an Advanced Driver Assistance System in a critical

situation, requires an accurate physical modelling of the
vehicle, including all (and sometimes even only) the phe-
nomena the designer knows to be relevant in the specific
application, e.g., cornering stiffness for lateral dynamics
control.

Nowadays there are many different, open source and
commercial, modelling and simulation environments that
are suitable to model vehicles and mobile robots.
A first family is represented by 3D robot simulators, like
for example Gazebo1, V-Rep2, Webots3, Morse4, that are
widespread in the robotics community. These simulators
allow for an easy development of complex natural/artifi-
cial simulation environments, they are already equipped
with models of perception devices, and they can be eas-
ily integrated with standard robot control middlewares like
ROS5. For these reasons, they are particularly suitable for
the development and testing of planning and perception al-
gorithms, and for the validation of the whole control soft-
ware before moving to field tests (Bardaro et al., 2014).
The physical simulation implemented in these tools is tar-
geted at real-time execution and ease of virtual prototype
set-up; this is obtained by providing the 3D kinematic
models for rotational and translational joints to assem-
ble robots and vehicles, and collision detection primitives
with simplified translational and rotational friction mod-
els. These building blocks are implemented with low level
C++ libraries, such as ODE (Drumwright et al., 2010) or
MuJoCo (Erez et al., 2015), and the experimenter is ex-
pected to use them in a black box fashion with little, if
any, way to alter their physical behaviour. Indeed, the dif-
ferential equations characterizing the physical behaviour
of each building block are hidden in the code, often un-
documented, and with no direct tool for altering their be-
haviour. This makes current 3D robotics physical simula-
tion fidelity and accuracy somehow limited, and requires
the coding of external plug-ins, e.g., using C++ custom
code, every time the phenomenon we are interested in
replicating is more complex that the one which can be ob-
tained assembling the available building blocks.
On the other side of the spectrum, a second family of sim-

1http://gazebosim.org
2http://www.coppeliarobotics.com
3http://www.cyberbotics.com
4http://www.openrobots.org/wiki/morse
5http://www.ros.org

DOI
10.3384/ecp17132887

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

887

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/154336031?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ulators is represented by multi-body and/or multi-physics
simulators, like for example Modelica tools 6 such as Sim-
ulationX7, whose aim is to accurately represent the dy-
namic behaviour of the system, and that are thus particu-
larly suitable for accurate dynamic analysis, control sys-
tem development, and validation in repeatable and safe
operating conditions (D’Amelio et al., 2015). These sim-
ulators allow a general mechanism for physical systems
modelling, based on an high-level language for the defi-
nition of the differential equations describing the relevant
aspects of the simulation, but little, if any, support is avail-
able for geometrical and graphical simulation of the envi-
ronment and thus for the simulation of robot sensors such
as lidar and cameras.

In this paper we present an approach, inspired by the
idea already introduced in (Bardaro et al., 2016), to ex-
tend the multi-body modelling in the 3D Gazebo simula-
tor using Modelica and the MultiBody library (Otter et al.,
2003). This allows to introduce ad-hoc physical models
which are tailored to the specific needs of a particular
application in a convenient, declarative, equation-based
framework, leveraging on the basic infrastructure already
provided by the MultiBody library. On the other hand, we
are able to extend the level of simulation provided by the
Modelica framework by the 3D simulation capabilities of
the Gazebo simulator. In particular, this paper focuses on
adding customized body-to-body interaction models to the
standard components of the MultiBody library, combining
the advanced capabilities of collision detection provided
by the Gazebo framework with the flexibility provided by
the Modelica environment to define sophisticated, tailor-
made, equation-based physical models. It must be em-
phasised, however, that this topic is not important per se,
instead it represents a proof-of-concept of the possibility
of integrating the two simulation environments in order to
set up a new one that is able to better address graphical
and physical aspects as well. As a consequence, the con-
tribution of this paper is not related to an innovative or
improved interaction model, but to the framework that al-
lows to extend Modelica modelling capabilities by the 3D
Gazebo simulation.

The paper is structured as follows. Section 2 describes
the design of the modelling framework. In the follow-
ing Section 3, a proof-of-concept implementation is de-
scribed, and the results obtained with a simple sphere-to-
plane interaction simulation are presented. Section 4 con-
cludes the paper with an outlook to further developments.

2 Design of the modelling framework
The rationale behind the design is to let Gazebo and the
Modelica tool each perform the tasks at which they ex-
cel, for which they already have good built-in support,
and which are more conveniently programmed by the end-
user.

6http://www.modelica.org
7http://www.simulationx.com

Modelica will then be used for the accurate and tailor-
made dynamic modelling of the multi-body objects for
which the standard modelling approach of the physical en-
gine embedded in Gazebo is not adequate. Modelica could
also be used to represent low-level sensing, actuation and
control, such as electric motors and drives, pneumatic ac-
tuation, low-pass signal filtering, etc., which are not cov-
ered by Gazebo, when their accurate modelling is essen-
tial to assess the success or failure of higher-level control
functions.
All other tasks, such as building and managing the scenes,
simulating other objects for which ad-hoc dynamic mod-
elling is not required, simulating vision-based sensing,
and providing geometrical information about object col-
lisions, will be managed by Gazebo.

The present paper focuses on the integration between
Gazebo and Modelica to provide accurate ad-hoc physi-
cal modelling where needed. How the resulting physical
model can then be integrated in the Gazebo environment,
together with all the other objects and functions simulated
by Gazebo, goes beyond the scope of this paper and will
be addressed in future works.

The basic framework for the modelling of multi-body
objects is provided by the Modelica MultiBody library,
which allows to build modular models of multi-body sys-
tems by the connection of link and joint models. Since the
Gazebo engine also uses corresponding primitives, auto-
matically generating the Modelica code of the model cor-
responding to any Gazebo multi-body object is a straight-
forward task. The availability of flexible link models com-
patible with the MultiBody library, e.g., those described
in (Ferretti et al., 2014), allows to easily take into account
flexibility in all those cases where this is crucial to repli-
cate the system dynamic behaviour. This is a feature that
could be very useful in the case of soft or flexible robots
and which is still not present in Gazebo.

A key ingredient of any multi-body model of robots or
autonomous vehicles is the modelling of the interaction
between different bodies, in particular the tyre-road inter-
action in vehicles and the interaction between hands or
grippers and objects to be manipulated for robots. For
this purpose, Gazebo provides so-called collider objects,
which take as input the position of the reference frames
of any two objects, possibly having a complex shape, and
returns information about the presence or absence of con-
tact points, their location, the depth of penetration, and the
normal vectors to the object surface at the contact point.
Gazebo can also compute the resulting interaction forces
and torques, according to some standard embedded model;
the idea in the context of this paper is to ignore this in-
formation and use Modelica instead to compute them, ac-
cording to a tailor-made equation-based physical model
that is appropriate for the specific simulation scenario.

The Modelica code of the base model for two-body in-
teraction, PhysicalInteraction, is listed in the ap-
pendix. The model extends the PartialTwoFrames
model of the MultiBody library. It gets the position and

Using Modelica for advanced Multi-Body modelling in 3D graphical robotic simulators

888 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132887



orientation of the two potentially interacting objects from
the two frame connectors and passes them to the col-
lisionDetectionModelica function. This in turn
converts the rotation objects into quaternions and calls the
external function collisionDetection, that passes
the two object ID strings and their position and orientation
to the Gazebo server. The collider in Gazebo responds re-
turning the number of contact points, the arrays of contact
points on both bodies, as well as the penetration depths
and the normals to the surface for each contact point.

This data is then passed to the replaceable function
computeInteraction, which uses the kinematic in-
formation to compute the forces and torques exerted on
body a by body b. As Modelica functions cannot gen-
erate events, a conditional equation is then written in
the PhysicalInteraction model, which applies the
forces and torques computed by the external function to
the connector if the penetration depth is positive, zero oth-
erwise. This allows to precisely compute the contact event
instant and handle the discontinuity properly, if the Mod-
elica solver provides proper event handling. Finally, the
corresponding forces and torques applied on body b by
body a are computed by Newton’s 3rd law.

In this context, the Gazebo tool only acts as a server,
providing the service of computing the kinematic infor-
mation regarding the collisions between any two objects
of interest. The physical simulation is carried out by the
code generated by the Modelica tool, which is the simula-
tion master. This means that the sequence of calls to the
Gazebo server does not correspond to a physical sequence
of points in time, but rather to the individual function calls
required by the Modelica solver, which might go back-
ward and forward in time to compute a solution, e.g., when
locating event instants or when a time step is rejected by
an adaptive step-size solver. As the Gazebo tool is not
the master of the simulation in this context, this is not a
problem. In fact, time is not even part of the data which
is communicated to the Gazebo server from the Modelica
side.

Specific physical interaction models can then be ob-
tained by extending the PhysicalInteraction class
and by redeclaring the computeInteraction func-
tion with the specific algorithm that computes the inter-
action forces and torques, based on the model of interest
for the end user. All the infrastructure provided by the
Modelica MultiBody library can be used to carry out this
task with ease, in particular the functions to resolve vec-
tors in different reference frames and all the functions im-
plementing vector algebra operations.

3 Proof of concept
In this section, a proof-of-concept implementation that
demonstrates the proposed approach is presented.

3.1 Implementation details
In order to avoid all the problems related to memory man-
agement, in this implementation the external C function

computeInteraction uses Unix IPC sockets to com-
municate with the Gazebo server. In the future, this mech-
anism will be substituted by some more efficient, shared-
memory based communication, e.g., by embedding the
Modelica model into an FMI and using external objects
to set up the communication framework.

A simple exemplary test case has been selected for the
demonstration, namely the interaction between an elastic
ball and a fixed, rigid plane. When the two bodies collide,
the force Fa applied on the sphere at the point of contact is
the sum of three components:

Fa = Fe +Fd +Ff .

The elastic force Fe is directed as the normal vector (which
points to the sphere’s centre) and its magnitude is com-
puted according to (Nassauer and Kuna, 2013)

Fe = ke
√

V d,

where ke is an elastic constant, d is the penetration depth,
and V is the volume of the spherical cap of height d

V = πd2
(

r− d
3

)
.

The damping force Fd is proportional to the normal com-
ponent vn of the relative velocity between the two bodies
at the point of contact and opposed to it, thus providing
dissipation each time the sphere hits the plane.

The friction force Ff depends on the tangential compo-
nent of the relative velocity vt at the point of contact, has
the opposite direction and a magnitude

−µFe
vt√

v2
t + v2

ε

;

where µ is the dry friction coefficient, vε is a small ve-
locity threshold, and the fraction is approximately equal
to one for vt � vε and approaches zero as vt → 0. This
model is not accurate at low relative velocities, since it
leads to a slow sliding at velocities around vε instead of
proper stiction. On the other hand, it has the nice prop-
erty of not becoming singular at zero relative velocity and
is perfectly adequate for the purposes of this demonstra-
tion. Other more sophisticated models that include stic-
tion, such as the one described in (Deur et al., 2004) could
be employed if needed.

As to the torques, only the friction force exerts a net
torque on the sphere’s frame connector, located at the cen-
tre of the sphere; the torque vector is simply τ = r×Ft .
For simplicity, the torsional torque due to rolling friction
has been neglected in this demonstrator.

3.2 Test cases and simulation results
The results of three sphere-to-plane interaction simula-
tions are here presented. The sphere represents a big in-
flated balloon, modelled as a hollow sphere of mass m = 1

Session 11C: Mechanical Systems, Robotics & VR

DOI
10.3384/ecp17132887

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

889



Figure 1. Simulation 1 – Ball height over time.

kg, radius r = 0.5 m, moments of inertia J = 2
3 mr2, elastic

constant ke = 103 N/m2 and with a relatively low friction
coefficient µ = 0.1. Air friction is neglected. All the sim-
ulations start with the center of the sphere at a height of
1 m above the horizontal xy-plane, the z-axis pointing up-
wards.

The Modelica code was compiled into executable sim-
ulation code with the OpenModelica compiler8 version
1.12.0-dev, using a Runge-Kutta fixed time step integra-
tion algorithm with a time step of 1 ms, which is short
enough to correctly handle the elastic impacts, whose typ-
ical duration is about 10 ms.

The simulation were first tested by emulating the re-
sponse of the Gazebo server by a Modelica function. This
required to extend the Sphere2Plane physical inter-
action model, which uses the external function calling
Gazebo, and to redeclare the collisionDetection-
Modelica function so that it directly computes the con-
tact point locations, depths of penetration and normal vec-
tors, rather than calling the external function and getting
them from Gazebo. This function is implemented easily
in Modelica, as the geometry of the sphere-to-plane inter-
action is extremely simple. Eventually, the same simula-
tion results were obtained when using the Gazebo server,
thus validating the entire proof-of-concept implementa-
tion. Also, the qualitative behaviour of the system in the
three simulations corresponds to what one would expect
from physical intuition.

Many different simulations were run, in order to val-
idate each component (elastic, damping, friction) of the
interaction forces and torques separately. In this paper,
the results of three simulation experiments with realistic
choices of the interaction model parameters are reported.

In the first simulation, the plane is horizontal and the
sphere has zero initial velocity and angular velocity. As
expected, the ball falls onto the plane and bounces a few
times before getting to rest, due to the dissipative effect
of Fd . Figure 1 shows the vertical position of the sphere
centre over time.

The second simulation scenario is similar, save that the
plane is tilted by 45◦ along the y-axis. When the ball
hits the plane, it bounces off horizontally. Due to fric-

8https://openmodelica.org

(a) Trajectory of the sphere centre in the xz-plane

(b) Angular velocity of the sphere in the y-axis direction

Figure 2. Simulation 2 – Ball bouncing on a tilted plane.

tion, it also gets some angular momentum on the y-axis
during the bounce, and thus starts spinning slowly. It then
bounces a few more times on the tilted plane until dissipa-
tion causes it to remain in contact with the tilted plane and
to accelerate while rolling downwards. Figure 2(a) shows
the trajectory of the sphere’s centre in the vertical plane,
while Figure 2(b) shows the angular momentum over time,
which increases abruptly at each bounce and finally in-
creases with a constant slope once the sphere stops bounc-
ing and rolls down on the plane surface always remaining
in contact.

The last simulation considers again a horizontal plane;
in this case the sphere starts with a non-zero horizontal ve-
locity in the negative x-axis direction, spinning fast back-
ward around the y-axis. Every time the ball bounces on
the plane, the friction force slows down the spinning a bit,
and accelerates the sphere in the positive x-axis direction,
so that eventually the ball changes its horizontal direction
and rolls back to a point on the plane below the initial posi-
tion. Figure 3(a) shows the position of the sphere’s center
in the vertical xz-plane, while Figure 3(b) shows the angu-
lar momentum along the y-axis over time9.

4 Conclusions
In this paper, a proof-of-concept for the integration be-
tween the Gazebo 3D robotic simulation tool and Mod-
elica has been presented. The proposed framework al-

9The 3D videos generated by Gazebo of the three simulations are
available online at this URL: https://home.deib.polimi.
it/casella/gazebo/videos.html.

Using Modelica for advanced Multi-Body modelling in 3D graphical robotic simulators

890 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132887



(a) Trajectory of the sphere centre in the xz-plane

(b) Angular velocity of the sphere in the y-axis direction

Figure 3. Simulation 3 – Ball starting with a non-zero horizontal
velocity in the positive x-axis direction and spinning backward
around the y-axis.

lows to extend the basic 3D multi-body engine embedded
in Gazebo, by providing equation-based customized 3D
multi-body dynamics. The extension is very convenient
and easy to implement, as it leverages on the existing so-
phisticated collision detection functionality of Gazebo, on
the Modelica MultiBody library, and on the possibility of
describing an ad-hoc physical behaviour in a high level,
equation-based modelling environment. It also makes it
possible to perform equation-based multi-domain physi-
cal modelling, e.g., by adding Modelica models of physi-
cal sensors, actuators and low-level controllers to the me-
chanical model, and in general by modelling any kind of
physical behaviour beyond that of multi-body systems.

The framework has been demonstrated with a proof-
of-concept implementation, using IPC sockets to enable
the communication between the Gazebo tool and Model-
ica automatically generated simulation code. In particu-
lar, the results of the simulations of a simple system with
an elastic ball bouncing on a rigid plane with low fric-
tion have been presented. The obtained results are very
encouraging and suggest that it might indeed be possible
to propose these Modelica extensions, implemented with
the open-source OpenModelica compiler, as the preferred
way to extend the native Gazebo simulation engine.

To reach our final aim, further developments are un-
der investigation. First of all, we would like to validate
the concept with scenarios involving multiple object inter-
actions; currently we already generate Modelica simula-
tion code in the presence of multiple object, what has to

be validated is the collision between multiple objects han-
dled by Modelica. To improve on performance and ease
of deployment, we are currently encapsulating the Model-
ica model in an FMU to handle the communication with
Gazebo via shared memory and external object interface.
Once the FMU will be integrated with the Gazebo plug-in
mechanism, it will be possible to integrate the FMU-based
simulation into the master simulation loop of the Gazebo
tool in a seamless way and transparently to the designer of
the simulation.

Finally, we would like to experiment with hybrid sim-
ulations with some physical behaviour simulated by the
Gazebo physics engine and some physical behaviour with
special modelling requirements simulated by the Model-
ica/FMU code. This set-up could be necessary to han-
dle demanding simulation scenarios with many objects,
since we expect the Modelica-based simulation code to be
slower than the native and somewhat simplified Gazebo
simulation engine, so that using Modelica only where
needed could end up in much faster simulations.

References
G. Bardaro, D.A. Cucci, L. Bascetta, and M. Matteucci. A

simulation based architecture for the development of an au-
tonomous All Terrain Vehicle. In SIMPAR, pages 74–85,
2014.

G. Bardaro, L. Bascetta, F. Casella, and M. Matteucci. Advance-
ment in multi-body physics modeling for 3d graphical robot
simulators. In Workshop on Modelling and Simulation for
Autonomous Systems, pages 189–195, 2016.

S. Chitta, E.G. Jones, M. Ciocarlie, and K. Hsiao. Mobile ma-
nipulation in unstructured environments: Perception, plan-
ning, and execution. IEEE Robotics & Automation Magazine,
19(2):58–71, 2012.

E.L. D’Amelio, L. Bascetta, D.A. Cucci, M. Matteucci, and
G. Bardaro. A modelica simulator to support the development
of the control system of an autonomous all-terrain mobile
robot. In International Conference on Mathematical Mod-
elling, pages 274–279, 2015.

Joško Deur, Jahan Asgari, and Davor Hrovat. A 3D brush-type
dynamic tire friction model. Vehicle System Dynamics, 42(3):
133–173, 2004. doi:10.1080/00423110412331282887.

Evan Drumwright, John Hsu, Nathan Koenig, and Dylan Shell.
Extending Open Dynamics Engine for robotics simulation. In
Proceedings of the Second International Conference on Simu-
lation, Modeling, and Programming for Autonomous Robots,
SIMPAR’10, pages 38–50. Springer-Verlag, 2010.

Tom Erez, Yuval Tassa, and Emanuel Todorov. Simulation tools
for model-based robotics: Comparison of bullet, havok, mu-
joco, ode and physx. In Proceedings of IEEE International
Conference on Robotics and Automation (ICRA), 2015.

Gianni Ferretti, Alberto Leva, and Bruno Scaglioni.
Object-oriented modelling of general flexible multi-
body systems. Mathematical and Computer Mod-
elling of Dynamical Systems, 20(1):1–22, 2014.
doi:10.1080/13873954.2013.807433.

Session 11C: Mechanical Systems, Robotics & VR

DOI
10.3384/ecp17132887

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

891



M. Ko, B.-S. Ryuh, K.C. Kim, A. Suprem, and N.P. Maha-
lik. Autonomous greenhouse mobile robot driving strate-
gies from system integration perspective: Review and appli-
cation. IEEE/ASME Transactions on Mechatronics, 20(4):
1705–1716, 2015.

Benjamin Nassauer and Meinhard Kuna. Contact forces of poly-
hedral particles in discrete element method. Granular Matter,
15(3):349–355, 2013. doi:10.1007/s10035-013-0417-9.

M. Otter, H. Elmqvist, and S. E. Mattsson. The new Modelica
MultiBody library. In Proceedings 3rd International Mod-
elica Conference, pages 311–330, Linköping, Sweden, Nov.
3–4 2003.

B. Paden, M. Cap, S. Zheng Yong, D. Yershov, and E. Fraz-
zoli. A survey of motion planning and control techniques for
self-driving urban vehicles. IEEE Transactions on Intelligent
Vehicles, 1(1):33–55, 2016.

M.A. Roa, D. Berenson, and W. Huang. Mobile manipulation:
Toward smart manufacturing. IEEE Robotics & Automation
Magazine, 22(4):14–15, 2015.

Using Modelica for advanced Multi-Body modelling in 3D graphical robotic simulators

892 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132887



A Listing of the PhysicalInteraction model

model PhysicalInteraction "Base class for all physical interaction models"
extends Modelica.Mechanics.MultiBody.Interfaces.PartialTwoFrames;
import Modelica.Mechanics.MultiBody.Frames;
parameter Integer maxContacts = 10 "Number of max contact points";
parameter String id_a = "" "Id of interacting object a";
parameter String id_b = "" "Id of interacting object b";
Real numberOfContactPoints "Number of actual contact points";
Real cp_a[maxContacts, 3] "Array of contact points on body a, resolved in frame_a";
Real cp_b[maxContacts, 3] "Array of contact points on body b, resolved in frame_b";
Real depth_a[maxContacts] "Array of penetration depths in body a";
Real depth_b[maxContacts] "Array of penetration depths in body a";
Real normals_a[maxContacts, 3] "Array of normals on body a, resolved in world frame";
Real normals_b[maxContacts, 3] "Array of normals on body b, resolved in world frame";
Real r[3] "Vector from frame_a to frame_b resolved in frame_a";
SI.Force f_a[3] "Interaction force applied on body a, resolved in frame_a";
SI.Torque t_a[3] "Interaction torque applied on body b, resolved in frame_b";

replaceable function collisionDetectionModelica
input Integer maxContacts "Maximum number of contact points";
input Real r_a[3] "Position vector of interaction frame of object a, resolved in world frame";
input Frames.Orientation R_a "Orientation of interaction frame of object a";
input String id_a "unique id for object a";
input Real r_b[3] "Position vector of interaction fram of object b, resolved in world frame";
input Frames.Orientation R_b "Orientation of interaction frame of object b";
input String id_b "unique id for object b";
output Real numberOfContactPoints "Number of actual contact points";
output Real cp_a[maxContacts, 3] "Array of contact points on body a, resolved in frame_a";
output Real cp_b[maxContacts, 3] "Array of contact points on body b, resolved in frame_b";
output Real depth_a[maxContacts] "Array of penetration depths in body a";
output Real depth_b[maxContacts] "Array of penetration depths in body a";
output Real normals_a[maxContacts, 3] "Array of normals on body a, resolved in frame_a";
output Real normals_b[maxContacts, 3] "Array of normals on body b, resolved in frame_b";

algorithm
(numberOfContactPoints, cp_a, cp_b, depth_a, depth_b, normals_a, normals_b) :=
collisionDetection(maxContacts, r_a, Frames.to_Q(R_a), id_a, r_b, Frames.to_Q(R_b), id_b);

end collisionDetectionModelica;

function collisionDetection
input Integer maxContacts "Maximum number of contact points";
input Real r_a[3] "Position vector of interaction frame of object a, resolved in world frame";
input Frames.Quaternions.Orientation Q_a "Quaternion of the orientation of interaction frame of object

a";
input String id_a "unique id for object a";
input Real r_b[3] "Position vector of interaction fram of object b, resolved in world frame";
input Frames.Quaternions.Orientation Q_b "Orientation of interaction frame of object b";
input String id_b "unique id for object b";
output Real numberOfContactPoints "Number of actual contact points";
output Real cp_a[maxContacts, 3] "Array of contact points on body a, resolved in frame_a";
output Real cp_b[maxContacts, 3] "Array of contact points on body b, resolved in frame_b";
output Real depth_a[maxContacts] "Array of penetration depths in body a";
output Real depth_b[maxContacts] "Array of penetration depths in body a";
output Real normals_a[maxContacts, 3] "Array of normals on body a, resolved in frame_a";
output Real normals_b[maxContacts, 3] "Array of normals on body b, resolved in frame_b";

external "C"
end collisionDetection;

Session 11C: Mechanical Systems, Robotics & VR

DOI
10.3384/ecp17132887

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

893



replaceable partial function computeInteraction "Compute interaction torques and forces on frame_a,
resolved in frame_a"

input Real numberOfContactPoints "Number of actual contact points";
input Integer maxContacts "Maximum number of contact points";
input Real r_a[3] "Position of frame_a resolved in world frame";
input Real r_b[3] "Position of frame_b resolved in world frame";
input Real v_a[3] "Velocity of frame_a resolved in world frame";
input Real v_b[3] "Velocity of frame_b resolved in world frame";
input Frames.Orientation R_a "Orientation of frame_a";
input Frames.Orientation R_b "Orientation of frame_b";
input Real cp_a[maxContacts, 3] "Array of contact points on body a, resolved in frame_a";
input Real cp_b[maxContacts, 3] "Array of contact points on body b, resolved in frame_b";
input Real depth_a[maxContacts] "Array of penetration depths in body a";
input Real depth_b[maxContacts] "Array of penetration depths in body a";
input Real normals_a[maxContacts, 3] "Array of normals on body a, resolved in frame_a";
input Real normals_b[maxContacts, 3] "Array of normals on body a, resolved in frame_a";
output SI.Force[3] f_a "Equivalent force applied to frame_a, resolved in frame_a";
output SI.Torque[3] t_a "Equivalent torque applied to frame_a, resolved in frame_a";

end computeInteraction;

equation
(numberOfContactPoints, cp_a, cp_b, depth_a, depth_b, normals_a, normals_b) =
collisionDetectionModelica(maxContacts, frame_a.r_0, frame_a.R, id_a, frame_b.r_0, frame_b.R, id_b);

assert(numberOfContactPoints <= maxContacts, "Too many contact points");
(f_a, t_a) = computeInteraction(numberOfContactPoints, maxContacts,
frame_a.r_0, frame_b.r_0, der(frame_a.r_0), der(frame_b.r_0), frame_a.R, frame_b.R,
cp_a, cp_b, depth_a, depth_b, normals_a, normals_b);

if sum(depth_a + depth_b) > 0 then
frame_a.f = f_a;
frame_a.t = t_a;

else
frame_a.f = {0, 0, 0};
frame_a.t = {0, 0, 0};

end if;
r = Frames.resolve2(frame_a.R, frame_b.r_0 - frame_a.r_0);
zeros(3) = frame_a.f + Frames.resolveRelative(frame_b.f, frame_b.R, frame_a.R);
zeros(3) = frame_a.t + Frames.resolveRelative(frame_b.t, frame_b.R, frame_a.R) - cross(r, frame_a.f);

end PhysicalInteraction;

Using Modelica for advanced Multi-Body modelling in 3D graphical robotic simulators

894 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132887


