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Featured Application: The parameter identification of solar cell and photovoltaic module are 

used for evaluation, control and optimization of photovoltaic systems. 

Abstract: In this paper, a Firefly algorithm is proposed for identification and comparative study of 

five, seven and eight parameters of a single and double diode solar cell and photovoltaic module 

under different solar irradiation and temperature. Further, a metaheuristic algorithm is proposed 

in order to predict the electrical parameters of three different solar cell technologies. The first is a 

commercial RTC mono-crystalline silicon solar cell with single and double diodes at 33 °C and 1000 

W/m2. The second, is a flexible hydrogenated amorphous silicon a-Si:H solar cell single diode. The 

third is a commercial photovoltaic module (Photowatt-PWP 201) in which 36 polycrystalline silicon 

cells are connected in series, single diode, at 25 °C and 1000 W/m2 from experimental current-

voltage. The proposed constrained objective function is adapted to minimize the absolute errors 

between experimental and predicted values of voltage and current in two zones. Finally, for 

performance validation, the parameters obtained through the Firefly algorithm are compared with 

recent research papers reporting metaheuristic optimization algorithms and analytical methods. 

The presented results confirm the validity and reliability of the Firefly algorithm in extracting the 

optimal parameters of the photovoltaic solar cell. 

Keywords: solar cell; metaheuristic algorithm; electrical parameters; analytical methods; firefly 

algorithm; statistical errors 

 

1. Introduction 

The use of renewable energy sources is rapidly developing, and the application of solar energy 

focusing on photovoltaic systems is becoming increasingly popular [1,2]. The major challenge in 

photovoltaics system is posed by the instability, nonlinearity and complexity of the current-voltage 

and power-voltage characteristics equation. The relation between photovoltaic current and voltage 

is both implicit and nonlinear [3–6] and it depends on several factors such as module temperature, 

solar radiation and its distribution, spectrum, cable losses, dust accumulation, shading and soiling 

[7,8]. Therefore, it is vital to produce a more accurate mathematical model that can better reveal the 

actual behavior and represent the relationship between current and voltage. In this context, many 
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mathematical models have been developed in the literature to describe the electric, dynamic and 

thermal behavior of photovoltaic cell/module with a different level of complexity. In particular, the 

solar cell can be modelled as a static model for DC/DC (direct current), or as a dynamic model for 

DC/AC (alternating current) with capacitance and parallel dynamic resistance, with diode and 

photocurrent as proposed in [9–11]. They can be classified globally into two categories: implicit and 

explicit models [12,13]. The former [5,14–16] need iterative numerical methods to solve the nonlinear 

current-voltage equation. On the other hand, the latter models are based on simple analytical 

expressions [4,17–22]. Different physical models were compared on photovoltaic power output 

prediction in [23] and available models of solar cell are presented in [24]. A different photovoltaic 

model used for 24-hour-ahead forecasting using neural network is presented in [25], while a 

comparison between physical and hybrid methods is given in [26] and artificial neural network 

models are employed in [27]. These models differ mainly by the number of diodes, the presence or 

absence of a shunt resistor, and by the numerical methods used to determine the unknown 

parameters. Further, the two diodes model is known as the most accurate model for representing the 

equivalent electrical circuit. While the single diode model is the most commonly used of the two 

types; in the simplified four-parameter model neglecting shunt resistance by assuming it as infinite 

value, and in five-parameter models by maintaining the effect of the shunt resistance. The five and 

seven parameters models evaluate the photocurrent, the saturation current, the series and shunt 

resistors and the quality factor of the diode. The eight parameters model adds build-in voltage, 

thickness, average mobility-lifetime. 

The exponential non-linearity of current-voltage equations causes many difficulties in prediction 

and extraction of the electric, dynamic or thermal parameters [28] while, the implicit models are not 

capable of determining the behavior of the photovoltaic cell/module under many effects. 

Furthermore, solar cell models have multi-modal objective functions and model parameters vary 

with operational conditions such as temperature and irradiance. The main problem is to identify the 

optimal parameter values such as photo-generated current, diode saturation current, series 

resistance, and diode quality factor. Over the years, various papers have been presented and 

developed different techniques to identify the optimal values of the electric parameters to describe 

the behavior of the characteristics. These can be categorized into analytical methods, numerical 

methods and metaheuristic methods. There are several analytical and numerical (generally gradient-

based) methods, as described in Table 1. 

Table 1. A list of analytical and numerical methods employed in the literature. 

Optimization Method Reference 

Least squares and Newton-Raphson method  [29] 

Iterative curve fitting  [30] 

Lambert W-functions  [20,31–35] 

Integral-based linear least square identification method  [36,37] 

Linear interpolation/extrapolation  [38] 

Chebyshev polynomials [39] 

Taylor’s series expansion  [40] 

Padé approximants  [41] 

Symbolic function  [42] 

Analytical mathematical method  [43–45] 

Simple methods based on measured points  [46] 

Metaheuristic methods are powerful in local searches, but they tend to get trapped in locally 

optimal values and depend on the photovoltaic module’s manufacturer’s data such as open circuit, 

short circuit, and maximum power points. Since the photovoltaic cell has triple non-linearity in 

current-voltage, power-voltage and in intrinsic parameters, deterministic methods cannot extract 

parameters accurately based on current, voltage and current derivatives with respect to the voltage 

at short circuit current, maximum power and open circuit voltage. The derivation imposes several 
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model restrictions such as convexity, continuity and differentiability conditions; moreover, the 

approximations also reduce accuracy. Due to their great potential in modern global optimization 

resolution for nonlinear and complex systems, the use of metaheuristic bioinspired optimization 

algorithms to carry out minimizing procedures has received considerable attention. Metaheuristic 

methods are stochastic methods inspired by various natural phenomenon, as listed in Table 2. They 

have been proven to be a promising alternative to deterministic methods applied to the parameter 

identification of solar/photovoltaic models.  

Table 2. A list of metaheuristic methods employed in the literature. 

Metaheuristic Methods Reference 

Levenberg-Marquardt algorithm combined with Simulated Annealing  [47] 

Artificial Bee Swarm  [48] 

Artificial Bee Colony  [49] 

Hybrid Nelder-Mead and Modified Particle Swarm  [50] 

Firefly Algorithm  [51–53] 

Self-Organizing Migrating Algorithm  [54] 

Pattern Search  [55] 

Genetic Algorithm  [56,57] 

Simulated Annealing algorithm  [58] 

Repaired Adaptive Differential Evolution  [59] 

Particle Swarm Optimization  [60] 

Bird Mating Optimization approach  [61] 

However, the cited algorithms are usually trapped at local optima and they have large error 

values [62]. In fact, the performance of these algorithms highly depends on the settings of specific 

parameters, such as, for instance, the mutation probability, crossover probability, and the selection 

operator in the genetic algorithm, as well as the inertia weight, and social and cognitive parameters 

in particle swarm optimization. Therefore, researchers are still searching for powerful algorithms 

capable of predicting the optimal parameters of different technology under various conditions with 

less errors. 

Metaheuristic bioinspired algorithms have been suggested for parameter extraction and have 

become an important part of modern optimization. Most metaheuristic algorithms are based on 

natural or artificial swarm intelligence. Particle swarm optimization is a good example, it mimics the 

swarming behavior of bees and birds [62]. Recently, a new metaheuristic search algorithm called the 

firefly algorithm (FA) has been proposed and developed by X. Yang [63]. The FA is a nature-inspired 

stochastic optimization algorithm based on the flashing patterns and behavior of swarming fireflies 

[64]. The FA has become an increasingly valuable tool of swarm intelligence that has been applied in 

almost all areas of optimization, as well as in engineering practice [65]. It uses a kind of randomization 

by searching for set solutions, inspired by the flashing lights of fireflies in nature. This algorithm 

differs from many swarm intelligence techniques [65] for these two features:  

• the first is the so-called local attraction, since the light intensity decreases with distance (the 

attractions of fireflies can be local or global and depend on the absorbing coefficient);  

• the second is related to the subdivision of fireflies and their regrouping into subgroups because 

a neighboring attraction is stronger than a long-distance attraction, and each subgroup will 

swarm around a local mode, making the firefly algorithm suitable for multimodal global 

optimization problems [66].  

In [67] the authors provide a detailed background and analysis of the firefly algorithm and test 

it in a wide range of problems to solve multi-objective dispatch problems. 

In this paper, the authors propose a comparison among bioinspired algorithms for the prediction 

of solar cell and photovoltaic module parameters. The goal is to minimize the multi-objective 

functions adapted to minimize the absolute errors between experimental and calculated current-
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voltage data under inequality constraint functions. Three different cases are examined as follows: 

single and double diode models of a commercial mono-crystalline silicon solar cell (R.T.C France 

company) at 33 °C, based on current-voltage experimental data recorded in [29]; (ii) flexible dual 

junction amorphous hydrogenated silicon a-Si:H solar cell under standard sunlight, based on data 

obtained in a light intensity of 1000 W/m2 and at a temperature of 300 K [54]; (iii) a Photowatt-PWP 

201 photovoltaic module which 36 polycrystalline silicon cells are connected in series and the data is 

measured at an irradiance of 1000 W/m2, and a temperature of 25 °C [29]. To verify the performance 

of the proposed approach and the quality of the obtained results, statistical analyses are carried out 

to measure the accuracy of the calculated parameters and model suitability. The results obtained are 

compared with recent techniques such as the Biogeography-Based Optimization algorithm with 

Mutation strategies (BBO-M) [68], Levenberg-Marquardt algorithm combined with Simulated 

Annealing (LMSA) [47], Artificial Bee Swarm Optimization algorithm [48], Artificial Bee Colony 

optimization (ABC) [49], hybrid Nelder-Mead and Modified Particle Swarm Optimization (NM-

MPSO) [50], Repaired Adaptive Differential Evolution (RADE) [59], Chaotic Asexual Reproduction 

Optimization (CARO) [69] for solar cell single and double diodes. For organic flexible hydrogenated 

amorphous silicon, a-Si:H solar cell will be compared with the Quasi-Newton (Q-N) method and Self-

Organizing Migrating Algorithm (SOMA) [54]. The optimal parameters of Photowatt-PWP 201 are 

compared with the Newton-Raphson [29] Pattern Search (PS) [55], Genetic algorithm (GA) [56] and 

Simulated Annealing algorithm (SA) [58]. The obtained results are in accordance with experimental 

data, there is good agreement for most of the extracted parameters and the proposed algorithm 

outperformed the compared techniques. 

2. Presentation and Modelling of the Solar Cell 

The electrical behavior of the solar cell is modelled by its outputs current versus voltage 

characteristic. Further, a solar cell is mathematically modelled in two common methods [24,70], single 

diode (SDM) and double diode (DDM), with consider parasitic phenomena by series and shunt 

resistances. Moreover, the flexible hydrogenated amorphous silicon a-Si:H solar cell with loss current 

recI  is paralleled with the original photo-generated current source and the current sink representing the 

recombination current in the i-layer of a P-I-N solar cell [71–75]. The two models are given in Figure 1. 

 
(a) 

 
(b) 

Figure 1. Equivalent circuit solar cell model: (a) single and double diode, (b) flexible hydrogenated 

amorphous silicon a-Si:H. 

The current-voltage behavior of a solar cell is described according to the electrical intrinsic 

parameters and nonlinear implicit equation, for a given illumination and temperature. 
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where, Iph is the photocurrent, ISD1 and ISD2 are the saturation currents, 𝑎1 and 𝑎2 are the diffusion and 

recombination diode quality factors; Rs and Rp are the resistances in series and parallel, respectively, 
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The current-voltage characteristic of a flexible solar cell is: 

   

 2

1 exp 1
V

si s
ph s

T Pbi seff

V IRd V IR
I I I

a RV V IR
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                   

 (3) 

where, the voltage biV  represents the built-in field voltage over the i-layer, in single junction 

amorphous silicon solar cells, and in [76] it has been determined to be in the range 0.9 V; di represents 

the thickness of the i-layer, the effective µτ-product (µτ)eff represents average mobility-lifetime 

product for election and hole, and quantifies the quality of the active layer in terms of recombination 

of photo-generated carriers. The thermal voltage is /TV KT q where K is Boltzmann’s constant, T is 

the cell absolute temperature in Kelvin and q is the electronic charge, a is the diode quality factor. 

The photocurrent 
phI  describes the irradiation dependent recombination in i-layer and reduced 

by the recombination current, as follows: 

  
1

2rec ph bi s

i

I I V V IR
d




  
    

   

 (4) 

where, Irec is the current sink and it represents the recombination current in the i-layer of a P-I-N; the 

current through the diode represents the diffusion process of charge carriers and the last term 

represents the shunt leakage current 𝐼𝑝 and is modelled as a space charge limited current [77,78].  

In Equations (1) and (3), the five, seven and eight parameters which define the current versus 

voltage relation of solar cell and photovoltaic module, vary in accordance with solar irradiance, cell 

temperature and depend on reference values reported on datasheet. 

3. Problem formulation 

The solar cell can be modelled by using the single diode model, double diode or multi-diode 

models. The objective function is defined from Equations (1) and (3), several research papers use 

different functions, for example, [48–50,59,68,69] use the root mean square error (RMSE), [47] use the 

sum of squared error (SSE). In [55,58] the individual absolute error (IAE) is used and [79] use the 

mean absolute errors (MAE). However, the objective function was used to minimize the vertical 

distance between the experimental points and the theoretical curve. In this paper, we use separate 

fitting for different regions in the current-voltage characteristics (Figure 2), because the current error 

is more important for small voltages due to the strongly varying slope of the curve, while the voltage 

error is more important for large voltages approaching an open circuit. 

During the optimization process, each 𝑖 -th solution is defined by a vector 𝑋𝑖 , where 𝑋  is a 

candidate set of parameters defined as follows: 

• for a single diode: 𝑋 = 1 ph SD S Px I I a R R    ; 

• for a double diode: 𝑋 = 2 1 2 1 2ph SD SD S Px I I I a a R R    ; 

• for a flexible solar cell: 𝑋 = 3 0ph i bi s shx I d V R I aR    .  

The objective functions must be minimized with respect to the limits of parameters x1, x2 and x3. 

The Equations (1) and (3) is rewritten in the following homogeneous equations. 

For a single and double diode: 

 1/2 1 2

1 2

, exp 1 . exp 1s s s
ph SD SD

T T P

V IR V IR V IR
F V I I I I S I

aV a V R

        
            

         

 (5) 

For flexible hydrogenated amorphous silicon, a-Si:H: 

 
   

 2

3, , 1 exp 1
V

si s
ph s

T Pbi seff

V IRd V IR
G V I x I I I

a RV V IR
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           

 (6) 
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Figure 2. The characteristic current-voltage division in two zones. 

The cost function of current error 𝜀1 near the short circuit (zone 1) is: 
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The cost function of voltage error 𝜀2 is the horizontal distance between the experimental point 

and calculated curve; it is defined near the open circuit (zone 2) as: 
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Where m is the number of experimental data, iV  and iI  are the i-th simulated and experimental 

current and voltage value, respectively. The overall objective function, i.e., the global error 𝜀 in the 

two zones, is the sum of current and voltage errors and is defined as: 

𝑓(𝑋) = 1 2     (9) 

The objective function constraints for each model are presented in the following equations. For 

a single and double diode: 
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While, for flexible hydrogenated amorphous silicon, a-Si:H: 
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4. Firefly Optimization Algorithm 

The Firefly algorithm is a swarm intelligence algorithm for optimization problems. It was 

introduced in 2009 at Cambridge University by Yang [64], and it is inspired by the flashing patterns 

and behavior of tropical fireflies at night, and it is flexible and easy to implement. The Firefly 

algorithm is a bio-inspired metaheuristic algorithm and a random optimization, which is capable of 

converging to a global solution of an optimization problem. It uses the following three idealized rules 

[63–67]: 

1. No sex distinctions, i.e., fireflies are attracted to other fireflies regardless of their sex.  

2. The degree of the attractiveness of a firefly is proportional to its brightness, thus for any two 

flashing fireflies, the less bright one will move towards the brighter one; the more brightness, 

the less the distance between two fireflies. If there is no brighter firefly, it will move randomly. 

3. The brightness of a firefly is determined by the value of the objective function. 

The basic rules of this algorithm were designed to primarily solve continuous problems. To design 

the Firefly algorithm properly, two critical issues need to be defined: the attractiveness and the 

variation of the light intensity. 

4.1. Attractiveness 

In the Firefly algorithm, the variation of the light intensity and the formulation of the 

attractiveness play a vital role. The intensity of light or brightness  ijI r  is inversely proportional to 

the square of the distance ijr  [64,66] and the relative brightness of each firefly is expressed in the 

following Gaussian form: 

 
2

0
ijr

ijI r I e


  (10) 

where,  ijI r  is the light intensity at a distance ijr , 0I  is the maximum brightness (the absolute 

brightness at the source point 0ijr  ) which is related to the objective function value. The higher value 

of the objective function is the higher 0I  is and λ is the light absorption coefficient, which is set to 

reflect that brightness increases gradually with the increase in distance and the absorption of the 

medium ijr  is the Euclidean distance between firefly i and firefly j. The attractiveness of each firefly 

[56] is expressed in the form 

 
2

0
ijr

ijr e


 


  (11) 

where, 0  is the maximum attractiveness (the attractiveness at 0ijr  , the largest value of the firefly 

to attract another, is typically set to 1). However, computationally, computing  21/ 1 ijr  is easier 

than 
2
ijr

e


 [64] and the intensity can be written as: 
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  0

21
ij

ij

I
I r

r



 (12) 

Similarly, the attractiveness of a firefly can be approximated as follows: 

  0

21
ij

ij

r
r








 (13) 

4.2. Distance and movement 

We suppose a firefly located at  1 2, .....i i i

i kx x x x is brighter than another firefly located at 

 1 2, .....j j j

j kx x x x , the firefly located at ix will move towards jx . The distance between any two fireflies 

i and j  at ix  and jx is the Euclidean distance given by [64,66] as follows: 

 
2

, ,

d

ij i j i k j k

k

r x x x x     (14) 

where, d is the dimension, ,i kx
 is the k-th component of the spatial coordinate ix  of 𝑖-th firefly the 

movement of a firefly i is attracted to another more attractive firefly j and the update location is 

determined by 

 
2

1 0

1

2

ijr

i i j ix x e x x rand


 




 
     

 
 (15) 

The first term is the current position of a firefly [66], the second term is used for considering a 

firefly’s attractiveness to light intensity seen by adjacent fireflies and the third term is used for the 

random movement of a firefly in case there are not any brighter ones. The coefficient α is a 

randomization parameter determined by the problem of interest, while rand is a random-number 

drawn from a Gaussian distribution or uniform distribution at time t, if 𝛽0 = 0, it becomes a simple 

random walk. In the implementation of the algorithm we will use 𝛽0 = 0 , 𝛼 = 0.25  and the 

attractiveness or absorption coefficient λ = 1 which guarantees a quick convergence of the algorithm 

to the optimal solution. The concept of the firefly-based algorithm is presented in Figure 3. Moreover, 

Figure 4 shows the here considered implementation of FA for the specific problem and cost function 

given in Equation (9), as defined in Section 3. 

 

Figure 3. A conceptual view of the firefly algorithm relationships, including locations 𝑥, distance 𝑟, 

brightness 𝐼(𝑟), and attractiveness 𝛽(𝑟). 
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Figure 4. A pseudocode for the considered firefly algorithm implementation. 

5. Results, Discussions and Comparison 

In order to evaluate the efficiency of the Firefly algorithm in the estimation of the solar cell, the 

photovoltaic module and the array parameter extraction, the results are compared with analytical 

methods, numerical methods and metaheuristic algorithm to validate the effectiveness of the 

algorithm. In order, to compare it with other algorithms, a benchmark commercial solar cell and 

benchmark photovoltaic module are selected in single diode, double diode and photovoltaic module 

models are considered. The study test cases are designated as follows: 

• Test scenario 1: Apply to commercial solar cell for both single diode and double model under 

standard irradiance level with relevant example comparisons to other methods. 

• Test scenario 2: Apply to a flexible hydrogenated amorphous silicon a-Si:H photovoltaic cell 

using single diode module. 

• Test scenario 3: Apply to a commercial photovoltaic array using the single diode model, with 36 

solar cells connected in series. 

The current-voltage measurements are collected from [29,54] and have been widely used by 

different papers to test electric circuit models, modelling or translate the current versus voltage and 

technique for parameter extraction. Furthermore, statistical analyses are carried out to measure the 

accuracy of the estimated parameters and model suitability. 

5.1. Case 1: Single and Double Diode Model (RTC France Company) 

The proposed algorithm is applied first to extract the electrical intrinsic parameters values for 

single and double diode models of a 57-mm-diameter commercial (RTC France) silicon solar cell 

under 1000 W/m2 at 33 °C. The extracted parameters are compared with those found by: 

Biogeography-Based Optimization algorithm with Mutation strategies (BBO-M) [68], Levenberg-

Marquardt algorithm combined with Simulated Annealing (LMSA) [47], Artificial Bee Swarm 

Optimization algorithm [48], Artificial Bee Colony optimization (ABC) [49], hybrid Nelder-Mead and 

Modified Particle Swarm Optimization (NM-MPSO) [50], Repaired Adaptive Differential Evolution 

(RADE) [59], Chaotic Asexual Reproduction Optimization (CARO) [69], and the results for each 

model are reported in Tables 3 and 4. 



Appl. Sci. 2018, 8, 339 10 of 22 

Table 3. Comparison of various parameter identification techniques for single diode model (RTC 

France Company). FA: Firefly Algorithm; BBO-M: Biogeography-Based Optimization with Mutation 

strategies; RADE: Repaired Adaptive Differential Evolution; LMSA: Levenberg-Marquardt algorithm 

combined with Simulated Annealing; CARO: Chaotic Asexual Reproduction Optimization; ABC: 

Artificial Bee Colony optimization; NM-MPSO: hybrid Nelder-Mead and Modified Particle Swarm 

Optimization. 

Approaches 
Parameter 

𝑰𝒑𝒉 (𝐀)  𝑰𝟎 (𝛍𝐀)  a   sR    pR   

FA 0.76069712 0.4324411 1.45245666 0.03341059 53.40180803 

BBO-M  0.76078 0.31874 1.47984 0.03642 53.36227 

RADE 0.760776 0.323021 1.481184 0.036377 53.718526 

LMSA 0.76078 0.31849 1.47976 0.03643 53.32644 

CARO 0.76079 0.31724 1.48168 0.03644 53.0893 

ABC 0.7608 0.3251 1.4817 0.0364 53.6433 

NM-MPSO 0.76078 0.32306 1.48120 0.03638 53.7222 

Table 4. Comparison of various parameter identification techniques for a double diode model (RTC 

France Company). 

Approaches 
Parameter 

𝑰𝒑𝒉 (𝐀)  𝑰𝟎𝟏 (𝛍𝐀)  𝑰𝟎𝟐 (𝛍𝐀) 1a  2a   sR    pR   

FA 0.760820 0.591126 0.245384 1.0246 1.3644 0.036639 55.049 

RADE 0.760781 0.225974 0.749347 1.451017 2.0000 0.036740 55.485443 

CARO 0.76075 0.29315 0.09098 1.47338 1.77321 0.03641 54.3967 

ABSO 0.76078 0.26713 0.38191 1.46512 1.98152 0.03657 54.6219 

ABC 0.7608 0.0407 0.2874 1.4495 1.4885 0.0364 53.7804 

NM-MPSO 0.76078 0.22476 0.75524 1.45054 1.99998 0.03675 55.5296 

To confirm the accuracy of the extracted optimal values found by the Firefly algorithm, the 

calculated currents for the single and double diode model by optimized parameters are summarized 

in Tables 5 and 6 compared with individual absolute error (IAE). 

measured estimatedIAE I I   (16) 

Table 5. Calculated current and compared IAE for single diode (RTC France Company). 

Item 𝑽𝑬𝒙𝒑 (𝐕)  𝑰𝑬𝒙𝒑 (𝐀) 𝑰𝐂𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐞𝐝 (𝐀) FA (A) 
Individual Absolute Error (IAE) 

RADE  BBO-M  NM-MPSO  

1 −0.2057 0.7640 0.76407143 7.1420 × 10−5 9.5590 × 10−5 6.0000 × 10−6 8.7000 × 10−5 

2 −0.1291 0.7620 0.76263790 6.3789 × 10−4 6.6611 × 10−4 6.0400 × 10−4 6.6200 × 10−4 

3 −0.0588 0.7605 0.76132213 8.2213 × 10−4 8.5473 × 10−4 8.1700 × 10−4 8.5400 × 10−4 

4 0.0057 0.7605 0.76015347 3.4652 × 10−4 3.5034 × 10−4 3.6400 × 10−4 3.4600 × 10−4 

5 0.0646 0.7600 0.75905434 9.4565 × 10−4 9.4298 × 10−4 9.4600 × 10−4 9.4500 × 10−4 

6 0.1185 0.7590 0.75804099 9.5900 × 10−4 9.5528 × 10−4 9.4300 × 10−4 9.5700 × 10−4 

7 0.1678 0.7570 0.75702642 2.6419 × 10−5 9.5100 × 10−5 1.2000 × 10−4 9.1000 × 10−5 

8 0.2132 0.7570 0.75614154 8.5846 × 10−4 8.4950 × 10−4 8.1700 × 10−4 8.5800 × 10−4 

9 0.2545 0.7555 0.75509107 4.0892 × 10−4 4.1823 × 10−4 3.6100 × 10−4 4.1300 × 10−4 

10 0.2924 0.7540 0.75367808 3.2191 × 10−4 3.2967 × 10−4 2.7600 × 10−4 3.3600 × 10−4 

11 0.3269 0.7505 0.75111180 6.1180 × 10−4 8.9542 × 10−4 9.5300 × 10−4 8.8800 × 10−4 

12 0.3585 0.7465 0.74691657 4.1656 × 10−4 8.5737 × 10−4 9.1400 × 10−4 8.4800 × 10−4 

13 0.3873 0.7385 0.73945849 9.5848 × 10−4 1.6042 × 10−3 1.6680 × 10−3 1.5960 × 10−3 

14 0.4137 0.7280 0.72757692 4.2308 × 10−4 5.9912 × 10−4 5.8300 × 10−4 6.0400 × 10−4 

15 0.4373 0.7065 0.70650197 1.9700 × 10−6 4.4631 × 10−4 4.8500 × 10−4 4.5200 × 10−4 

16 0.4590 0.6755 0.67551809 1.8089 × 10−5 1.9600 × 10−4 2.3000 × 10−4 2.0600 × 10−4 

17 0.4784 0.6320 0.63102588 9.7411 × 10−4 1.1090 × 10−3 1.2710 × 10−3 1.1170 × 10−3 
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18 0.4960 0.5730 0.57300627 6.2700 × 10−6 9.1027 × 10−4 1.1120 × 10−3 9.2000 × 10−4 

19 0.5119 0.4990 0.49898281 1.7190 × 10−5 4.9902 × 10−4 5.6300 × 10−4 4.9000 × 10−4 

20 0.5265 0.4130 0.41270839 2.9160 × 10−4 4.9030 × 10−4 6.1200 × 10−4 4.9200 × 10−4 

21 0.5398 0.3165 0.31629674 2.0325 × 10−4 7.1532 × 10−4 9.8500 × 10−4 7.1800 × 10−4 

22 0.5521 0.2120 0.21218495 1.8495 × 10−4 1.0468 × 10−4 1.4200 × 10−4 1.0200 × 10−4 

23 0.5633 0.1035 0.10350897 8.9700 × 10−6 7.8397 × 10−4 1.2540 × 10−3 7.7900 × 10−4 

24 0.5736 −0.0100 −0.01025607 2.5607 × 10−4 7.5437 × 10−4 1.2680 × 10−3 7.5100 × 10−4 

25 0.5833 −0.1230 −0.12309841 9.8410 × 10−5 1.3775 × 10−3 2.5370 × 10−3 1.3810 × 10−3 

26 0.5900 −0.2100 −0.21005316 5.3159 × 10−5 8.0320 × 10−4 1.4690 × 10−3 8.0700 × 10−4 

Table 6. Calculated current and compared IAE for double diode (RTC France Company). 

Item 𝑽𝑬𝒙𝒑 (𝐕)  𝑰𝑬𝒙𝒑 (𝐀) 𝑰𝐂𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐞𝐝 (𝐀) 
Individual Absolute Error (IAE) 

FA RADE NM-MPSO  

1 −0.2057 0.7640 0.76404800 4.7990 × 10−5 9.2680 × 10−5 2.3000 × 10−5 

2 −0.1291 0.7620 0.76265838 6.5837 × 10−4 6.5394 × 10−4 5.9800 × 10−4 

3 −0.0588 0.7605 0.76138191 8.8191 × 10−4 8.5755 × 10−4 8.3200 × 10−4 

4 0.0057 0.7605 0.76020876 2.9123 × 10−4 3.3747 × 10−4 3.3000 × 10−4 

5 0.0646 0.7600 0.75912329 8.7671 × 10−4 9.4000 × 10−4 8.9500 × 10−4 

6 0.1185 0.7590 0.75806245 9.3754 × 10−4 9.4935 × 10−4 8.8000 × 10−4 

7 0.1678 0.7570 0.75700411 4.1100 × 10−6 9.6350 × 10−5 1.8700 × 10−4 

8 0.2132 0.7570 0.75750201 5.0201 × 10−4 8.5535 × 10−4 7.5700 × 10−4 

9 0.2545 0.7555 0.75557754 7.7540 × 10−5 4.1885 × 10−4 3.2300 × 10−4 

10 0.2924 0.7540 0.75409595  9.5950 × 10−5 3.3126 × 10−4 2.7700 × 10−4 

11 0.3269 0.7505 0.75031932 1.8060 × 10−4 8.9511 × 10−4 8.9600 × 10−4 

12 0.3585 0.7465 0.74651818 1.8185 × 10−5 8.4939 × 10−4 7.9800 × 10−4 

13 0.3873 0.7385 0.73873379 2.3370 × 10−4 1.6021 × 10−3 1.4950 × 10−3 

14 0.4137 0.7280 0.72816539 1.6540 × 10−4 6.1216 × 10−4 7.2900 × 10−4 

15 0.4373 0.7065 0.70628557 2.1442 × 10−4 4.5162 × 10−4 3.4400 × 10−4 

16 0.4590 0.6755 0.67594242 4.4242 × 10−4 1.9888 × 10−4 2.5900 × 10−4 

17 0.4784 0.6320 0.63286049 8.6045 × 10−4 1.1123 × 10−3 1.0990 × 10−3 

18 0.4960 0.5730 0.57381689 8.1689 × 10−4 9.2523 × 10−4 8.4500 × 10−4 

19 0.5119 0.4990 0.49879214 2.0785 × 10−4  4.9417 × 10−4 5.8600 × 10−4 

20 0.5265 0.4130 0.41276355 2.3644 × 10−4 4.9125 × 10−4 5.7100 × 10−4 

21 0.5398 0.3165 0.31674212 2.4212 × 10−4 7.1918 × 10−4 7.5300 × 10−4 

22 0.5521 0.2120 0.21202519 2.5196 × 10−5 1.0831 × 10−4 8.8000 × 10−5 

23 0.5633 0.1035 0.10350359 3.5935 × 10−6 7.7968 × 10−4 8.2700 × 10−4 

24 0.5736 −01000 −0.01049021 4.9021 × 10−4 7.5539 × 10−4 7.1100 × 10−4 

25 0.5833 −0.1230 −0.12300588 5.8808 × 10−6 1.3767 × 10−3 1.3880 × 10−3 

26 0.5900 −0.2100 −0.21005362 5.3621 × 10−5 8.0501 × 10−4 8.6500 × 10−4 

Furthermore, to understand the quality of the curve fit between Firefly algorithm values and 

experimental data, the results are compared to other algorithms. The compared statistical analysis 

for each model is presented in Tables 7 and 8. The compared statistical criteria indicates that the 

Firefly algorithm ranks the overall lowest values for relative error (RE), median absolute error (MAE), 

residual sum of squares (SSE), and root mean square error (RMSE). The statistical errors are used to 

show the performance with the definitions as follows: 

measured estimated

measured

I I
RE

I


  (17) 

estimated measured

1

m

i

I I
MAE

m


  (18) 



Appl. Sci. 2018, 8, 339 12 of 22 

 
2

measured estimated

1

m

i

SSE I I


   (19) 

 
2

measured estimated

1

1 m

i

RMSE I I
m 

   (20) 

Table 7. Statistical result for single diode model (RTC France Company). 

Item FA BBO-M RADE   LMSA  CARO ABC NM-MPSO 

Total IAE
 

9.92230 × 10−3 21.3000 × 10−3 17.7036 × 10−3 21.5104 × 10−3 18.1550 × 10−3 20.5000 × 10−3 17.700 × 10−3 

RMSE
 

5.138165 × 10−4 9.8634 × 10−4 9.8602 × 10−4 9.8640 × 10−4 9.86650 × 10−4 9.86200 × 10−4 9.8602 × 10−4 

SSE
 

5.723673 × 10−6 2.52997 × 10−5 1.5625 × 10−5 2.5297 × 10−5 1.65385 × 10−5 25.7000 × 10−6 15.6295 × 10−6 

MAE
 

3.81630 × 10−4 8.1923 × 10−4 6.8090 × 10−4 8.2732 × 10−4 6.98260 × 10−4 7.8846 × 10−4 6.8077 × 10−4 

IAE: Individual Absolut Error, RMSE: Root Mean Square Error, SSE: Sum of Squares Error, MAE: 

Mean Absolute Error. 

Table 8. Statistical result for double diode model (RTC France Company). 

Item FA RADE  CARO ABSO ABC NM-MPSO 

Total IAE
 

8.570300 × 10−3 17.7093 × 10−3 69.330 × 10−3 17.768 × 10−3 20.3929 × 10−3 17.356 × 10−3 

RMSE
 

4.548499 × 10−6 9.82480 × 10−4 9.8260 × 10−4 9.8344 × 10−4 9.8610 × 10−4 9.8250 × 10−4 

SSE
 

5.379100 × 10−6 15.6338 × 10−6 16.9587 × 10−6 15.3457 × 10−6 25.600 × 10−6 14.9455 × 10−6 

MAE
 

3.2963 × 10−4 17.7093 × 10−3 69.330 × 10−3 17.768 × 10−3 20.3929 × 10−3 6.6754 × 10−4 

From Tables 7 and 8, we observe that the five and seven electrical parameters identified by the 

Firefly algorithm are close and more accurate than those found by all other compared algorithms. 

The performance of the proposed algorithm provides the lowest values for the statistical criteria, IAE, 

RMSE, SSE and MAE when compared to the other methods. Therefore, the Firefly algorithm is ranked 

first in achieving the lowest IAE, RMSE, SSE and MAE, while the Repaired Adaptive Differential 

Evolution algorithm and hybrid Nelder-Mead and Modified Particle Swarm Optimization (NM-

MPSO) are ranked second and third, respectively. Therefore, the optimal parameters identified by 

the proposed Firefly Algorithm are very accurate because they are close to the real parameters of the 

system. The individual absolute error (IAE) and the relative error RE for each measurement using 

optimal values founded by the Firefly algorithm are illustrated in Figures 5 and 6, respectively. The 

Firefly algorithm performs better than the reported methods. 

  

Figure 5. Individual absolute error (IAE) plots for single and double diode for Mono-crystalline silicon 

solar cell, RTC France Company. 
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Figure 6. Relative Error (RE) plots for single and double diode for Mono-crystalline silicon solar cell, 

RTC France Company. 

The current-voltage and power-voltage characteristics resulting from extracted parameters by 

the Firefly algorithm along with experimental data are compared to estimated data to investigate the 

quality of the identified parameters. This is illustrated in Figures 7 and 8. The two figures show the 

reconstructed single diode model is in good agreement with experimental data and are very close to 

each other. 

  

Figure 7. Experimental current-voltage data compared with estimated data of the ono-crystalline 

silicon solar cell single diode, RTC France Company.  

  

Figure 8. Experimental power-voltage data compared with estimated data of the mono-crystalline 

silicon solar cell single double diode, RTC France Company. 

Figure 9 shows the compared extracted current-voltage characteristics of the mono-crystalline 

for single and double diode, RTC France Company. The calculated current by extracted parameters 
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compared with the Firefly algorithm show good performance with the experimental data for single 

and double diode. 

 

 

Figure 9. Compared experimental current-voltage and power-voltage of the mono-crystalline single 

diode silicon solar cell, RTC France Company. 

5.2. Case 2: Organic Flexible Hydrogenated Amorphous Silicon a-Si:H Solar Cell 

The Firefly algorithm, based on a parameter estimation method is used to extract the eight 

optimal parameters of flexible dual junction amorphous silicon solar cell under standard sunlight, 

based on data obtained in light intensity of 1000 W/m2 and at a temperature of 300 K. The 

experimental data are used from [48]; only the open circuit voltage Voc and short circuit current Isc are 

obtained. Moreover, the optimal parameters are compared with several other techniques based on 

the same experimental data. The extracted optimal parameters by Firefly algorithm have been 

reported in Table 9, compared with the Quasi-Newton method and Self-Organizing Migrating 

Algorithm. Since it is difficult to extract the flexible amorphous silicon solar cell circuit model 

parameters and the research is still comparatively rare, the Quasi-Newton (Q-N) method and Self-

Organizing Migrating Algorithm (SOMA) [48] have been chosen for comparison because in [29,48] 

they were demonstrated to provide good results for parameter extractions. 

Table 9. Comparison among different parameter extraction of flexile silicon a-Si:H solar cell. 

Algorithm 𝑰𝒑𝒉 (𝛍𝐀) 𝒅 (𝐦) 𝝁𝝉𝒆𝒇𝒇  (
𝐜𝐦𝟐

𝐕
) 𝑽𝒃𝒊 (𝐕)  sR   𝑰𝟎 (𝐀) a   shR   

FA  0.3167 5.8065 × 10−8 3.3306 × 10−5 0.9895 0.4242 3.0691 × 10−14 2 13.4978 

Q-N 0.3043 5.8065 × 10−8 4.8812 × 10−5 0.9759 0.4242 3.0691 × 10−14 1.9998 11.9138 

SOMA  0.3181 4.9743 × 10−8 3.3277 × 10−5 0.9963 0.4706 3.0783 × 10−14 1.9931 13.9288 

To verify and validate the performance of the quality of the results, statistical analyses were 

carried out to measure the accuracy of the estimated parameters. The estimated current values are 

compared to experimental current by means of the following statistical errors: the individual absolute 

error (IAE), Standard deviation (SD), residual sum of squares (SSE), the root mean square error 

(RMSE) and the mean bias error (MBE) of the solar cell for each measurement, respectively. The 

statistical errors are used to compare term by term, the difference between estimated and 

experimental electric current. Generally, the lower these parameters, the more the efficiency of the 

model. Table 10 presents the current calculated for the Firefly algorithm and the individual absolute 

error, Table 11 summarizes the statistical errors for each measurement using the optimal values of x 
found by the Quasi-Newton method and Self-Organizing Migrating algorithm [48] compared with 

Firefly algorithm. 
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Table 10. Comparison between the calculate results of flexile silicon a-Si:H solar cell. 

Experiment Current 
FA  Q-N SOMA 

Current (A) IAE Current (A) IAE Current (A) IAE 

0 7.3656 × 10−4 7.3656 × 10−4 0.0041 0.0041 8.6804 × 10−4  8.6804 × 10−4 

0.0158  0.0152 6.0 × 10−4 0.0100  0.0058 0.0131 0.0027 

0.0302  0.0361 0.0059 0.0305 0.0003 0.0334 0.0032 

0.0619  0.0653 0.0034 0.0591  0.0028 0.0623 0.0004 

0.0868  0.0744 0.0124 0.0680  0.0188 0.0715  0.0153 

0.1142  0.1023 0.0119 0.0955  0.0187 0.1004  0.0138 

0.1604  0.1623 0.0019 0.1549  0.0055 0.1679  0.0075 

0.3044 0.3002 0.0042 0.2835  0.0209 0.3018  0.0026 

Table 11. Performance indexes of flexile silicon a-Si:H solar cell. 

Statistical Errors FA Q-N SOMA 

Standard deviation (SD) 4.925 × 10−3 8.46 × 10−3 7.86 × 10−3 

Root mean square error (RMSE) 6.1634 × 10−3 12.3924 × 10−3 7.9529 × 10−3 

Residual sum of squares (SSE) 3.6384 × 10−4 1.2286 × 10−3 5.0604 × 10−4 

Mean bias error (MBE) 6.62401 × 10−3 1.2424 × 10−2 7.4912 × 10−3 

Figure 10 presents the compared individual absolute error of each measurement used for current 

and power of optimal value x found by Firefly algorithm compared with the Quasi-Newton method 

and Self-Organizing Migrating Algorithm. From Figure 10, Tables 10 and 11 we know that the Firefly 

algorithm and Self-Organizing Migration Algorithm have the lowest SD, RMSE, SSE and MBE values 

among these three compared methods. Furthermore, the Firefly algorithm has better performance 

than the Quasi-Newton method and Self-Organizing Migration presented in [48]. 

In order to illustrate the quality of the extracted optimal values x3 found by the Firefly algorithm, 

the extracted values of phI , id ,  , biV , sR , 0I , a  and shR  are put into Equation (3), then the 

current-voltage and power-voltage characteristics of this model is reconstructed with 16 pairs of 

current-voltage. The current-voltage and power-voltage characteristics resulting from the extracted 

parameters by Firefly algorithm along with experimental data have been illustrated in Figure 11. The 

Figures show the reconstructed model is in good agreement with the experimental data. 

 
(a)  

(b) 

Figure 10. Individual absolute error compared to, (a) I-V and (b) P-V for each current measurement 

by different algorithms. 
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(a) 

 
(b) 

Figure 11. Comparison between, (a) I-V and (b) P-V characteristics resulting from the experimental 

data, Q-N, Soma and FA. 

The comparative statistical error used in this paper compare the difference between estimated 

and experimental electric parameters, term by term. The mean bias error (MBE) provides information 

on the overestimation or underestimation of the solar cell performance. Therefore, the obtained 

results are more accurate than those found by Q-N and SOMA, can better reveal the actual behavior 

of solar cells and the model is efficient. Generally, the lower these parameters are, the more the model 

is efficient. 

5.3. Case 3: Commercial Silicon Photovoltaic Module Photowatt-PWP 201 

The prototype of the Photowatt-PWP 201 photovoltaic module has six solar panels, two are 

connected in series and three photovoltaic panels are connected in parallel. The measured voltage 

and current are taken under 25 °C and 1000W/m2. In this case, 26-pair current-voltage measured 

values are the same as [29], which are derived from 36 polycrystalline silicon cells which are 

connected in series. The extracted optimal parameters values for the photovoltaic module by Firefly 

algorithm have been reported in Table 12. Moreover, the optimal parameters are compared with 

several other techniques: Newton-Raphson [29] Pattern Search (PS) [55], Genetic Algorithm (GA) [56] 

and Simulated Annealing algorithm (SA) [58] based on the same experimental data. The purpose of 

comparison is to validate the accuracy of the Firefly algorithm in the parameter extraction process 

with a short time of convergence. 

Table 12. Optimal parameter values identified by FA for Photowatt-PWP 201 polycrystalline 

photovoltaic module single diode compared with other methods. 

Item FA Newton-Raphson PS GA SA NM-MPSO 

 phI A
 1.0306 1.0318 1.0313 1.0441 1.0331 1.0305 

 0I A
 3.4802 3.2875 3.1756 3.4360 3.6642 3.6817 

a  48.6551 48.4500 48.2889 48.5862 48.8211 48.8598 

 sR 
 1.2014 1.2057 1.2053 1.1968 1.1989 1.1944 

 shR 
 971.1396 555.5556 714.2857 555.5556 833.3333 983.9970 

The quality of the results in the extracted parameters are used to calculate the theoretical current 

values and compared to experimental measurements as show in Table 13. 
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Table 13. Measured and calculated current of photovoltaic module Photowatt-PWP 201 at 25 different 

working conditions compared with SA and PS. 

Item 𝑽𝑬𝒙𝒑 (𝐕)  𝑰𝑬𝒙𝒑 (𝐀) 𝑰𝐂𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐞𝐝 (𝐀) 
Individual Absolute Error 

FA  SA PS 

1 0.1248 1.0315 1.02919209 2.30790 × 10−3 6.0000 × 10−5 2.2000 × 10−3 

2 1.8093 1.0300 1.02743525 2.56480 × 10−3 6.4000 × 10−4 3.7800 × 10−3 

3 3.3511 1.0260 1.02577555 2.24450 × 10−4 1.4100 × 10−3 2.6500 × 10−3 

4 4.7622 1.0220 1.02412139 2.12140 × 10−3 3.4900 × 10−3 1.4100 × 10−3 

5 6.0538 1.0180 1.02228609 4.28610 × 10−3 5.4100 × 10−3 2.4000 × 10−4 

6 7.2364 1.0155 1.01990640 4.40640 × 10−3 5.2900 × 10−3 1.0100 × 10−3 

7 8.3189 1.0140 1.01632679 2.32680 × 10−3 2.9600 × 10−3 3.8800 × 10−3 

8 9.3097 1.0100 1.01045436 4.54360 × 10−4 830.00 × 10−6 6.4200 × 10−3 

9 10.2163 1.0035 1.00062757 2.87240 × 10−3 2.8200 × 10−3 10.320 × 10−3 

10 11.0449 0.9880 0.98458550 3.41450 × 10−3 3.7000 × 10−3 11.260 × 10−3 

11 11.8018 0.9630 0.95960866 3.39130 × 10−3 4.0300 × 10−3 11.450 × 10−3 

12 12.4929 0.9255 0.92293341 2.56660 × 10−3 3.5000 × 10−3 10.590 × 10−3 

13 13.1231 0.8725 0.87243997 6.00000 × 10−5 1.0000 × 10−3 7.5600 × 10−3 

14 13.6983 0.8075 0.80712359 3.76410 × 10−4 1.5200 × 10−3 7.4200 × 10−3 

15 14.2221 0.7265 0.72772952 1.22950 × 10−3 4.4000 × 10−4 4.7100 × 10−3 

16 14.6995 0.6345 0.63619518 1.69520 × 10−3  1.2200 × 10−3 3.0900 × 10−3 

17 15.1346 0.5345 0.53538376 8.83760 × 10−4 3.6000 × 10−4 3.0700 × 10−3 

18 15.5311 0.4275 0.42846560 9.65600 × 10−4 8.0000 × 10−4 1.7300 × 10−3 

19 15.8929 0.3185 0.31828380 2.16190 × 10−4 7.4000 × 10−4 2.3400 × 10−3 

20 16.2229 0.2085 0.20744219 1.05780 × 10−3 1.8900 × 10−3 2.5500 × 10−3 

21 16.5241 0.1010 0.09791334 3.08670 × 10−3 5.3400 × 10−3 5.0500 × 10−3 

22 16.7987 −0.008 −0.00863233 6.32300 × 10−4 5.9000 × 10−4 6.7000 × 10−4 

23 17.0499 −0.111 −0.11145028 4.50280 × 10−4 6.0000 × 10−5 2.2800 × 10−3 

24 17.2793 −0.209 −0.20961535 6.15350 × 10−4 0000000000 3.1900 × 10−3 

25 17.4885 −0.303 −0.30253352 4.66470 × 10−4 2.6200 × 10−3 6.7500 × 10−3 

The optimal value of the following statistical errors: individual absolute error (IAE), relative 

error (RE), root means square error (RMSE) and residual sum of squares (SSE), for each measurement 

using the Firefly algorithm and other parameter extraction techniques are given in Table 14. 

Table 14. Comparison of performance indexes for photovoltaic module Photowatt-PWP 201. 

Item FA Newton-Raphson PS GA  SA  

Total IAE
 

42.6725 × 10−3 56.8800 × 10−3 115.610 × 10−3 153.479 × 10−3 50.710 × 10−3 

RMSE
 

2.1540 × 10−3 780.500 × 10−3 11.8000 × 10−3 6.9828 × 10−3 2.700 × 10−3 

SSE
 

1.1600 × 10−4 2.3249 × 10−4 8.1725 × 10−4 1.2190 × 10−3 1.7703 × 10−4 

MAE
 

1.7069 × 10−3 2.2752 × 10−3 4.6244 × 10−3 6.1392 × 10−3 2.0284 × 10−3 

Table 14 proves that the Firefly algorithm has the lowest IAE, RMSE, SSE and MAE compared 

to other parameter extraction techniques such as, Newton-Raphson, Pattern Search (PS), Genetic 

Algorithm (GA) and Simulated Annealing algorithm (SA), since the Firefly algorithm found the 

minimum value of statistical analysis in parameter extraction for the photovoltaic module.  

The comparison between Newton-Raphson, Pattern Search (PS), Genetic Algorithm (GA) and 

Simulated Annealing algorithm (SA) and the proposed algorithm, with the optimal value of IAE for 

each measurement, is illustrated in Figure 12. This Figure shows that the FA algorithm has better 

performance than the other parameter extraction algorithms. The total IAE values for each 

measurement is also calculated and listed in Table 14. The total IAE value shown in Table 14 

highlights that the FA has the lowest total IAE compared to other algorithms for the photovoltaic 
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module. Table 14 and Figure 12 indicate that FA outperforms the compared algorithms for this 

parameter extraction problem. 

 
(a) 

 
(b) 

Figure 12. Comparison between, (a) IAE and (b) RE using the extracted parameters by FA and 

Newton-Raphson, PS, GA and SA for photovoltaic module Photowatt-PWP 201. 

In order to validate the optimal values phI , 0I , a , sR  and pR  extracted by the Firefly 

algorithm, they are substituted into Equation (1) to reconstruct the current-voltage and power-

voltage of the photovoltaic module. Figure 13 illustrates the current-voltage characteristics of the 

optimal values extracted by FA along with the experimental data. From the results, it can be observed that 

the values extracted by FA for the considered photovoltaic module fit the experimental data very well. 

 
(a) 

 
(b) 

Figure 13. Comparison of (a) I-V and (b) P-V curve between experimentally recorded data for 

photovoltaic module Photowatt-PWP 201 and the estimated results by FA. 

From these two cases for the solar cell, the single diode and double diode models, the Firefly 

algorithm showed the lowest statistical criteria: IAE, RMSE, SSE and MAE values among the 

compared techniques. We observed that the proposed algorithm is able to extract the intrinsic 

electrical parameters at the entire range of irradiance and temperature and performance, as compared 

to other recent techniques. 

6. Conclusions 

The paper presents the application of the Firefly algorithm in order to provide an accurate model 

of solar cells, single and double, and photovoltaic modules. The data required for testing the 

effectiveness of the Firefly algorithm optimization technique is based on the results in previous 

literature, experimental data and the nonlinear function of solar cell/photovoltaic characteristics. 

From the results and the statistical analyses, it can be observed that the proposed Firefly algorithm 

achieves the least root mean square error (RMSE), residual sum of squares (SSE) and mean absolute 



Appl. Sci. 2018, 8, 339 19 of 22 

error (MAE) comparing the estimated and experimental data. Furthermore, the reproduction of 

current-voltage characteristics predicted using the parameters extracted by the Firefly algorithm are 

very close to those based on the experimental data. Moreover, the Firefly algorithm can extract the 

optimal parameters at all ranges of irradiance and temperature, especially at low irradiance.  
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