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Abstract

This paper is about the estimation of the maximum expected
value of an infinite set of random variables. This estimation
problem is relevant in many fields, like the Reinforcement
Learning (RL) one. In RL it is well known that, in some
stochastic environments, a bias in the estimation error can in-
crease step-by-step the approximation error leading to large
overestimates of the true action values. Recently, some ap-
proaches have been proposed to reduce such bias in order
to get better action-value estimates, but are limited to finite
problems. In this paper, we leverage on the recently proposed
weighted estimator and on Gaussian process regression to de-
rive a new method that is able to natively handle infinitely
many random variables. We show how these techniques can
be used to face both continuous state and continuous actions
RL problems. To evaluate the effectiveness of the proposed
approach we perform empirical comparisons with related ap-
proaches.

Introduction

The computation of the maximum expected value is fun-
damental in several applications. For example, almost any
process of acting involves the optimization of an expected
utility function. While sometimes only the ordering of these
alternatives matters, many applications require an explicit
computation of the maximal utility. This value is often re-
quired to calibrate other variables. For examples, in a finan-
cial trading system we are not only interested in detecting
which is the best strategy, but we may also be interested in
how much such strategy is profitable in order to evaluate
the risk of a market operation or to define a proper busi-
ness plan. Another example is the medical treatment strat-
egy where it is important to compute the expected efficacy
of the best therapy in order to provide accurate prognosis or
to manage the hospitalization.

The most widespread approach to this estimation prob-
lem is the Maximum Estimator (ME) that simply takes the
maximum estimated utility. As proved in (Smith and Win-
kler 2006), this estimate is positively biased and, if used
in iterative algorithms, can increase the approximation er-
ror step-by-step (Van Hasselt 2010). More effective estima-
tors have been proposed in the recent years. The Double
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Estimator (DE) (Van Hasselt 2013) approximates the max-
imum by splitting the sample set into two disjoint sample
sets. One of this set is used to pick the element with the
maximum approximate value and its value is picked from
the other set. This has to be done the opposite way switch-
ing the role of the two sets. Eventually, the average (or a
convex combination) of the two values is considered. This
approach has been proven to have negative bias (Van Has-
selt 2013) which, in some applications, allows to overcome
the problem of ME. Finally, the recently proposed Weighted
Estimator (WE) (D’Eramo, Restelli, and Nuara 2016) ap-
proximates the maximum value by a sum of different values
weighted by their probability of being the maximum. WE
can have both negative and positive bias, but its bias always
stays in the range between the ME and DE biases.

All the mentioned approaches are limited to finite random
variables and, as far as we know, the continuous case is un-
explored in literature. In this paper, we leverage on the WE
formalism to provide the first approach for the estimation of
the maximum expected value with infinitely many random
variables. WE needs to estimate the probability distribution
of each random variable. By exploiting the central limit the-
orem, such distribution are approximated as normal distribu-
tions whose means and variance are estimated from sample
observations. When moving to an infinite number of ran-
dom variables, we cannot observe samples for each random
variable, but we need to generalize the information collected
from samples to similar variables using regression tech-
niques. Differently from ME and DE, WE requires to mea-
sure the uncertainty of the mean estimate. Despite many re-
gression techniques have such capability, the natural choice
is to use Gaussian Process (GP) regression (Rasmussen and
Williams 2005). Using GPs the distribution of each random
variable is modeled as a normal distribution whose mean and
variance are computed from training samples by leveraging
on the spatial correlation. Finally, we leverage on the prod-
uct integral (Grossman and Katz 1972) to compute the joint
probability of an infinite set of events (it is required for the
weights in WE).

As mentioned above, a standard applicative domain of
these techniques is represented by sequential decision prob-
lems. Reinforcement Learning (RL) approaches have made
wide use of these techniques. RL leverages on Markov De-
cision Processes (MDPs) to provide a mathematical frame-
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work for modeling sequential decision making in environ-
ments with stochastic dynamics (Puterman 1994). In MDPs,
an optimal policy is the one that applies in each state the ac-
tion that attains the maximum expected cumulative reward.
The objective is thus to compute the maximum expected cu-
mulative reward for each state-action pair (named optimal
action-value function Q∗(s, a)). When the reward function
and the state transition model are known it can be done by
means of the Bellman optimality equation (Bellman 1957).
However, in RL these two elements are unknown and the op-
timal action-value function must be computed in an iterative
way that involves the computation of the maximum value of
a partial estimate of Q∗. For instance, the update rule of the
Q-Learning algorithm (Watkins 1989) is:

Qt+1(st, at) = Qt(st, at) + αt(st, at) (1)

·
(
rt + γmax

a
Qt(st+1, a)−Qt(st, at)

)
,

where αt(st, at) is a learning rate, γ is a discount factor
and rt is the immediate reward obtained by taking action
at in state st. Under mild assumptions, it can be shown
that the above update rule converges to Q∗ in the limit.
Nonetheless, at the beginning of the learning process, the
estimates of the action values have usually a very low ac-
curacy. As a consequence, the ME may introduce a large
positive bias (Smith and Winkler 2006) that, given the re-
cursive nature of the update, propagates to the other state-
action pairs resulting in very bad results (Van Hasselt 2010).
This issue is shared by all the off-policy value-based ap-
proaches like Q-learning and its variants (e.g., Delayed Q-
Learning (Strehl et al. 2006), Phased Q-Learning (Kearns
and Singh 1999), Fitted Q-Iteration (Ernst, Geurts, and We-
henkel 2005)) that need to estimate the maximum action val-
ues for different states.

Recently both DE and WE have found application in RL.
DE has been exploited within Double Q-Learning (Van Has-
selt 2010) and Double DQN (Van Hasselt, Guez, and Silver
2015), where they both achieve better results than, respec-
tively, Q-Learning and DQN, in particular when the reward
is noisy. WE has been applied in the Weighted Q-Learning
algorithm (D’Eramo, Restelli, and Nuara 2016) attaining
good performance in different problems where either Q-
Learning or Double Q-Learning performed poorly, showing
superior robustness. Other ad-hoc techniques (hardly gen-
eralizable to non RL domains) have been designed to over-
come such estimation issue. Under the assumption of Gaus-
sian rewards, in (Lee, Defourny, and Powell 2013) the au-
thors propose a Q-learning variant that corrects the positive
bias of ME by subtracting a term that depends on the num-
ber of actions and the variance of the rewards. Since the pos-
itive bias of the maximum operator increases when there are
multiple actions with an expected value that is close to the
maximum one, a modified Bellman operator that reduces the
bias by increasing the action gap (that is the difference be-
tween the best action value and the second best) was pro-
posed in (Bellemare et al. 2016).

The primary contribute of this paper is a generic approach
to the estimate of the maximum expected value with in-
finitely many random variables. Although this contribute

can be exploited in several applications, we focus on the
reinforcement learning scenario where we provide two ad-
ditional developments. The RL contribute is twofold: I) we
extend WE (designed for finite domains) in order to handle
continuous state space; II) we provide a novel value-based
method that is able to natively handle continuous actions in
the approximation of the optimal action-value function.

The rest of the paper is organized as follows. In the next
section we provide an overview of the main approaches to
estimate the maximum expected value of a set of finite ran-
dom variable. Then we introduce the first contribute of the
paper: how to face the case of an infinite number of ran-
dom variables. The second contribute is the application of
the newly defined estimator to RL algorithms with both a fi-
nite or infinite set of action variables (but continuous states).
Finally, we evaluate the proposed approaches through em-
pirical comparison with other estimators.

Estimating the Maximum Expected Value

Statistics has widely focused on the analysis of the max-
imum expected value of a set of i.i.d. random variables
obtaining several results (Shaked 1975; Chow and Teugels
1978). A more complicated and less studied scenario is
the one where the random variables are not identically dis-
tributed. Formally, given a set of M ≥ 2 independent ran-
dom variables X = {X1, . . . , XM}, where each variable Xi

has unknown mean μi and variance σ2
i , we are interested in

finding the maximum expected value defined as

μ∗(X) = max
i

μi = max
i

∫ ∞

−∞
xfi(x) dx, (2)

where fi : R→ R is the probability density function (PDF)
of variable Xi. In most of the cases fi is unknown and μ∗
cannot be found analytically. The maximum expected value
can be approximated with μ̂∗(S) ≈ μ∗(X) using a set of
noisy samples S = {S1, . . . , SM} retrieved from the un-
known distribution of each Xi. The means μ̂1, . . . , μ̂M of
these samples are unbiased estimators of the true means
μi. The sample means are used by some methods to ap-
proximate the true maximum expected value that, unfortu-
nately, does not have an unbiased estimator as shown by (D.,
Shabma, and Krishnamoorthy 1985).

Maximum Estimator. The Maximum Estimator (ME)
method approximates the maximum expected value with the
maximum of the sample means:

μ̂ME
∗ (S) = max

i
μ̂i(S) ≈ μ∗(X). (3)

This estimator has a positive bias (Smith and Winkler 2006)
that can be explained as follows. Since μ̂i(S) is an unbiased
estimate of μi, it follows that maxi μ̂i(S) is an unbiased es-
timate for maxi μi. Then, considering the cumulative den-
sity function (CDF) Fμ̂∗(x) that represents the probability
that the ME is less than or equal to x and, also, the prob-
ability that all μ̂i are less than or equal to x: Fμ̂∗(x) =∏M

i=1 P (μ̂i ≤ x) =
∏M

i=1 Fμ̂i
(x) and considering the PDF

fμ̂∗ , the expected value of the ME is:
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E

[
μ̂ME
∗ (S)

]
= E

[
max

i
μ̂i

]
=

∫ ∞

−∞
xfμ̂∗(x)dx (4)

=

∫ ∞

−∞
x

d

dx

M∏
j=1

Fμ̂j (x)dx =
M∑
i=1

∫ ∞

−∞
xfμ̂i(x)

M∏
j �=i

Fμ̂j (x)dx,

where, everywhere, the expectation is taken w.r.t. all the pos-
sible sample sets S. This formula shows that the expected
value of the ME is not the maximum expected value in equa-
tion (2) and the positive bias can be explained by the pres-
ence of the x in the integral which correlates with the mono-
tonically increasing product

∏M
j �=i Fμ̂j (x).

Double Estimator. To overcome the issues due to the pos-
itive bias introduced by ME, the Double Estimator (DE)
was proposed in (Van Hasselt 2010; 2013). DE is a cross-
validation approach that splits the set of samples S into
two disjoint subsets SA = {SA

1 , . . . , S
A
M} and SB =

{SB
1 , . . . , SB

M} and uses the sample means μ̂A
i and μ̂B

i

(computed over SA
i and SB

i respectively) that are unbi-
ased estimates of the true means if the sets are split in a
proper way (e.g., randomly). Then, the best action a∗ ac-
cording to the samples means computed using SA (μ̂A

a∗ =
maxi μ̂

A
i ) is used to pick the sample mean μ̂B

a∗ that estimates
maxi E

[
μ̂B
i

] ≈ maxi μi. This has to be done the opposite
way considering the estimator b∗ over the sample SB and
picking the sample mean μ̂A

b∗ . The DE finally uses the av-
erage (or a convex combination) of the two picked sample
means. The expected value of DE is a weighted sum of the
expected values of the sample means in one set weighted by
the probability of each sample mean to be the maximum in
the other set:

M∑
i=1

E
[
μ̂B
i

]
P (i = a∗) =

M∑
i=1

E
[
μ̂B
i

] ∫ ∞

−∞
fA
μ̂i

(x)

M∏
i �=j

FA
μ̂j

(x)dx.

As a consequence, the DE has some negative bias since
it may give some weight also to variables whose expected
value is less than the maximum.

Weighted Estimator. The Weighted Estimator
(WE) (D’Eramo, Restelli, and Nuara 2016) estimates
the maximum expected value with a weighted mean of the
sample averages:

μ̂WE
∗ (S) =

M∑
i=1

μ̂i(S)w
S
i , (5)

where wS
i represents the probability of μ̂i(S) being the max-

imum among all the means. The distributions of the sample
means μ̂i(S) are approximated considering that, as stated
by the central limit theorem (CLT), the distribution fS

μ̂i
ap-

proaches the normal distributionN
(
μi,

σ2
i

|Si|
)

as the sample
number |Si| increases. Thus, the weights in (5) are computed

replacing the distribution of the sample means fS
μ̂i

with a

normal distribution f̃S
μ̂i

= N
(
μ̂i(S),

σ̂2
i

|Si|
)

resulting in:

μ̂WE
∗ (S) =

M∑
i=1

μ̂i(S)

∫ ∞

−∞
f̃S
μ̂i
(x)

∏
j �=i

F̃S
μ̂j
(x)dx. (6)

As shown in (D’Eramo, Restelli, and Nuara 2016) the bias
of WE can be either positive or negative and is always within
the range of biases of ME and DE.

The Weighted Estimator with Infinitely many

Random Variables

As far as we know, previous literature has focused only on
the finite case and no approaches that natively handle contin-
uous sets of random variables (e.g., without discretization)
are available. Let us consider a continuous space of random
variablesZ equipped with some metric (e.g., a Polish space)
and assume that variables in Z have some spatial correla-
tion. Here, we consider Z to be a closed interval in R and
that each variable z ∈ Z has unknown mean μz and variance
σ2
z . Given a set of samples S we assume to have an estimate

μ̂z(S) of the expected value μz for any variable z ∈ Z (in
the next section we will discuss the spatial assumption and
we will explain how to obtain this estimate). As a result, the
weighted sum of equation (5) generalizes to an integral over
the space Z:

μ̂WE
∗ (S) =

∫
Z
μ̂z(S) f

∗
z(S)dz, (7)

where f∗z(S) is the probability density for z of being the vari-
able with the largest mean, that plays the same role of the
weights used in (5). Given the distribution fS

μ̂z
of μ̂z(S), the

computation of such density is similar to what is done in (6)
for the computation of the weights wS

i , with the major differ-
ence that in the continuous case we have to (ideally) consider
a product of an infinite number of cumulative distributions.
Let us provide a tractable formulation of such density func-
tion:

f∗z(S) = f

(
μ̂z(S) = sup

y∈Z
μ̂y(S)

)

=

∫ ∞

−∞
f(μ̂z(S) = x) P

(
μ̂y(S) ≤ x, ∀y ∈ Z \ {z}

)
dx

=

∫ ∞

−∞
fS
μ̂z

(x) P

⎛
⎝ ∧

y∈Z\{z}
μ̂y(S) ≤ x

⎞
⎠dx (8)

=

∫ ∞

−∞
fS
μ̂z

(x)
P
(∧

y∈Z μ̂y(S) ≤ x
)

P (μ̂z(S) ≤ x)
dx (9)

=

∫ ∞

−∞
fS
μ̂z

(x) �Z
FS
μ̂y

(x)dy

FS
μ̂z

(x)
dx

where (8)-(9) follow from the independence assumption.
The term �Z FS

μ̂y
(x)dy = P

(∧
y∈Z μ̂y(S) ≤ x

)
is the
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product integral defined in the geometric calculus (that
is the generalization of the product operator to contin-
uous supports) and can be related to the classical cal-
culus through the following relation: �Z FS

μ̂y
(x)dy =

exp
(∫
Z lnFS

μ̂y
(x)dy

)
(Grossman and Katz 1972, Sec. 2.6).

Spatially Correlated Variables

The issues that remain to be addressed are I) the computa-
tion of the empirical mean μ̂z(S) and II) the computation of
the density function fS

μ̂z
(for each random variable z ∈ Z).

In order to face the former issue we have assumed the ran-
dom variables to be spatially correlated. In this way we can
use any regression technique to approximate the empirical
means and generalize over poorly or unobserved regions.

In order to face the second issue, we need to restrict
the regression class to methods for which it is possible
to evaluate the uncertainty of the outcome. Let g be a
generic regressor whose predictions are the mean of a vari-
able z and the confidence (variance) of the predicted mean(

i.e., μ̂z, σ̂
2
μ̂z
← g(z)

)
. As done in the discrete case, we ex-

ploit the CLT to approximate the distribution of the sample
mean fS

μ̂z
with a normal distribution f̃S

μ̂z
= N

(
μ̂z, σ̂

2
μ̂z

)
.

As a result, the weighted estimator for the continuous case
can be computed as follows:

μ̂WE
∗ (S) =

∫
Z

∫ ∞

−∞

μ̂z(S)f̃
S
μ̂z
(x)

F̃S
μ̂z
(x)

e
∫
Z ln F̃S

μ̂y
(x)dy

dxdz.

(10)

Since in the general case no closed-form solution exists for
the above integrals, as in the finite case, the WE can be com-
puted through numerical integration (e.g., trapezoidal rule or
Romberg integration).

Gaussian Process Regression. While several regression
techniques can be exploited (e.g., linear regression), the nat-
ural choice in this case is the Gaussian Process (GP) regres-
sion since it provides both an estimate of the process mean
and variance. Consider to have a GP trained on a dataset
of N samples D = {zi, qi}Ni=1, where qi is a sample drawn
from the distribution of zi. Our objective is to predict the tar-
get q∗ of an input variable z∗ such that q∗ = f(z∗)+ε where
ε ∼ N (0, σ2

n). Given a kernel function k used to measure
the covariance between two points (zi, zj) and an estimate
of the noise variance σ2

n, the GP approximation for a certain
variable z∗ is q∗ ∼ N

(
μ̂z∗ , σ̂2

μ̂z∗
+ σ2

n I
)

where:

μ̂z∗ = kT
∗
(
K + σ2

nI
)−1

q, (11)

σ̂2
μ̂z∗

= Cov (μz∗) = k(z∗, z∗)− kT∗
(
K + σ2

nI
)−1

k∗,

and k∗ is the column vector of covariances between z∗
and all the input points in D (k(i)

∗ = K(zi, z∗)), K is
the covariance matrix computed over the training inputs
(K(ij) = k(zi, zj)), and q is the vector of training targets.
Given the mean estimate in (11), the application of ME and

DE is straightforward, while using WE requires to estimate
also the variance of the mean estimates. The variance of
the GP target q∗ is composed by the variance of the mean
(σ̂2

μ̂z∗
) and the variance of the noise (σ2

n) (Rasmussen and
Williams 2005). As a result, by only considering the mean
contribute, we approximate the distribution of the sample
mean by f̃S

μ̂z
= N

(
μ̂z, σ̂

2
μ̂z

)
as defined in equations (11).

The Reinforcement Learning Scenario

In this section, we first introduce the basic notions about
Markov Decision Processes (MDPs) and how they can be
solved with the model-free value-based approaches. Since
the presented methods require to estimate the maximum
action-value function, in the second part of the section we
extend an approach with the new techniques to face contin-
uous state problem with both a finite and infinite number of
actions.

Markov Decision Processes. A continuous MDP is de-
fined as a 5-tuple < S,A,P,R, γ > where S is the state
space of the process, A is the action space, P is a Marko-
vian transition model with P(s′|s, a) being the probability
density of reaching state s′ when taking action a in state
s, R : S × A × S → R is the reward function and
γ ∈ [0, 1] is the discount factor of future rewards. A pol-
icy π defines, in each state, a distribution on the action space
(π : S × A → [0, 1]). Following a policy π, the value of
an action a in a state s is the expected discounted cumula-
tive reward that is obtained performing action a in state s
and following the policy π thereafter. It can be computed as
Qπ(s, a) = E

[∑∞
k=0 γ

krt+k+1|st = s, at = a, π
]
, where

rt+1 is the reward received after the t-th transition. An op-
timal policy π∗ is the one that maximizes the expected dis-
counted cumulative reward. Optimal policies can be found
computing the optimal action-values that are the values of
actions when following the optimal policy. These values sat-
isfy the Bellman optimality equation (Bellman 1957):

Q∗(s, a) =
∫
S
P (s′|s, a)

[
R(s, a, s′) + γmax

a′ Q∗
(
s′, a′

)]
ds′.

Among value-based methods, Q-learning (Watkins 1989)
and Fitted Q-Iteration (FQI) (Ernst, Geurts, and Wehenkel
2005) are iterative online and offline algorithms that approx-
imates the optimal action-values without the need of a model
of the environment. The idea of FQI is to reformulate the
RL problem as a sequence of supervised learning problems.
Given a set of samples D = {〈si, ai, s′i, ri〉}1≤i≤N previ-
ously collected by the agent according to a given sampling
strategy, at each iteration t, FQI builds an approximation of
the optimal value-function by fitting a regression model on
a bootstrapped sample set:

Dt =
{
〈(si, ai), ri + γmax

a′
Qt−1 (s

′
i, a

′)〉
}
1≤i≤N

. (12)

The FQI update, similarly to the Q-Learning update (see
equation (1)), requires the computation of the maximum ex-
pected value of an approximation of the optimal action-value
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Algorithm 1 Double FQI

Inputs: dataset D = {si, ai, ri, s
′
i}Ki=1, M GPs Q̂am , horizon

T ∈ N, discrete action space A = {a1, . . . , aM}
TA0 ← {si, ai, ri, s

′
i}

K
2
i=1

TB0 ← {si, ai, ri, s
′
i}Ki=K

2
+1

Train Q̂ā
A0

on T ā
A0

= {〈sAi , rAi 〉 s.t. aA
i = ā} (∀ā ∈ A)

Train Q̂ā
B0

on T ā
B0

= {〈sBi , rBi 〉 s.t. aB
i = ā} (∀ā ∈ A)

for t=1 to T do
for i=1 to K

2
do

for m=1 to M do
μ̂A
m ← Q̂am

At−1
(s′i

A
) (evaluate GP)

μ̂B
m ← Q̂am

Bt−1
(s′i

B
) (evaluate GP)

end for
a∗ ← arg maxm μ̂A

m

b∗ ← arg maxm μ̂B
m

TAt ← TAt ∪ {〈(sAi , aA
i ), q

A
i ← rAi + γμ̂B

a∗〉}
TBt ← TBt ∪ {〈(sBi , aB

i ), q
B
i ← rBi + γμ̂A

b∗〉}
end for
Train Q̂ā

At
on T ā

At
= {〈sAi , qAi 〉 s.t. aA

i = ā} (∀ā ∈ A)
Train Q̂ā

Bt
on T ā

Bt
= {〈sBi , qBi 〉 s.t. aB

i = ā} (∀ā ∈ A)
end for

function. As mentioned above, a well-known problem of
such approaches is the positive bias introduced by the maxi-
mum operator. Secondly, the maximum on a continuous ac-
tion space is usually solved using a problem dependent dis-
cretization of such space.

Algorithm Extensions. RL literature has focused on solv-
ing the bias issue in the finite scenario by exploiting DE and
WE. In this paper we focus on the second issue by defining
algorithms that are able to handle continuous state problems
with both a finite or infinite number of actions. For simplic-
ity we will only focus on the extension of the FQI algorithm
although it is simple to apply the proposed approach to sev-
eral value-based approaches (e.g., Q-Learning).

The extension of FQI with DE, that we call Double FQI,
consists in splitting the dataset into two halves and training
a regressor for each action on one half and another regressor
for each action on the other half (refer to Algorithm 1).

The Weighted FQI for continuous states and discrete ac-
tions is reported in Algorithm 2. For each discrete action, a
GP is trained on the samples in order to obtain an estimate of
the action-value function. Such GPs are used to compute the
weights required for the estimation of the maximum value
in (5). This process is repeated for each sample in order to
obtain the bootstrapped dataset.

In the case of continuous state and action spaces, a sin-
gle regressor is defined over the joint space and is used to
approximate the distributions involved in equation (10). The
structure of the algorithm is reported in Algorithm 3. Note
that the integral associated to vi can be solved using any nu-
merical integration method.

Algorithm 2 Weighted FQI (finite actions)

Inputs: dataset D = {si, ai, ri, s
′
i}Ki=1, M GPs Q̂am , horizon

T ∈ N, discrete action space A = {a1, . . . , aM}
Train Q̂ā

0 on T0 = {〈si, ri〉 s.t. ai = ā} (∀ā ∈ A)
for t=1 to T do

for j=1 to K do
for m=1 to M do

μ̂m, σ̂2
μ̂m

← Q̂am
t−1(s

′
j) (evaluate GP)

f̃μ̂m ← N (μ̂m, σ̂2
μ̂m

) (F̃μ̂m is the associated CDF)
wam ←

∫ +∞
−∞ f̃μ̂m(x)

∏
k �=m F̃μ̂m(x)dx

end for
Tt ← Tt ∪ {〈(sj , aj), qj ← rj + γ

∑
am∈A wamμam〉}

end for
Train Q̂ā

t on T ā
t = {〈si, qi〉 s.t. ai = ā} (∀ā ∈ A)

end for

Algorithm 3 Weighted FQI∞ (continuous actions)

Inputs: dataset D = {si, ai, ri, s
′
i}Ki=1, GP regressor Q̂, hori-

zon T ∈ N, continuous action space A
Train Q̂0 on T0 = {〈(si, ai), ri〉}
for t=1 to T do

for i=1 to K do
μ̂z, σ̂

2
μ̂z

:= Q̂t−1(s
′
i, z) ∀z ∈ A (evaluate GP)

f̃μ̂z := N (μ̂z, σ̂
2
μ̂z

) ∀z ∈ A (F̃μ̂z is the associated CDF)

vi ←
∫∞
−∞ exp

(∫
A ln F̃μ̂y (x)dy

) ∫
A

μ̂z f̃μ̂z (x)

F̃μ̂z (x)
dzdx

Tt ← Tt ∪ {〈(si, ai), ri + γvi〉}
end for
Train Q̂t on Tt

end for

Experiments

In this section we evaluate the performance of ME, DE
and WE on three sequential decision-making problems: one
Multi-Armed Bandit (MAB) problem and an MDP with both
finite and continuous actions.

Pricing Problem In the MAB problem we validate the
proposed weighted estimator with an infinite set of random
variables (WE∞) and we compare its performance against
ME and DE whose support (actions) has been discretized.
The problem consists in estimating the maximum expected
value of the gross profit in a pricing problem. An accurate
estimation of this value can be crucial in order to evaluate,
for example, an investment decision or to analyze products
profitability. The support (action) space is bounded but con-
tinuous, and represents the price p to be shown to the user
(p ∈ [0, 10]). The reserve price τ , which is the highest price
that a buyer is willing to pay, is modeled as a mixture of 3
Gaussian distributions with mean μ = {2, 4, 8}, covariances
σ2 = {0.01, 0.01, 0.09} and weights w = {0.6, 0.1, 0.3}.
The revenue function rτ (p) is p when τ ≥ p and 0 other-
wise. The maximum revenue is about 2.17.

In each test the algorithms are fed with a set of samples
D = {〈pi, ri〉}ns

i=1. Each sample is obtained by sampling a
reserve price τi from the Gaussian mixture, a price pi from
a uniform distribution over the price range, and by evaluat-
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Figure 1: Mean bias obtained by ME, DE and WE∞ with
different sample sizes and bins (only for ME and DE).

ing the revenue function (ri = rτi(pi)). Clearly, the reserve
price is unknown to the algorithm. Results are averaged on
50 runs in order to show confidence intervals at 95%. WE
exploits a Gaussian process with squared exponential ker-
nel to generalize over the continuous price (GP parameters
are learned from D), while ME and DE discretize the price
space into nb uniformly spaced bins. As shown in Figure 1,
the number nb of optimal bins varies with the number ns of
available samples. This means that, once the samples have
been collected, ME and DE need an optimization phase for
selecting the appropriate number of bins (not required by
WE). WE is able to achieve the lowest or a comparable level
of bias with every batch dimension even through it exploits
a sensibly wider action space (infinite). In fact, as shown by
the experiments, the performance of ME and DE may de-
grade as the number of bins increases, i.e., the action space
increases. This means that, if you want to be accurate, you
cannot increase the number of bins arbitrarily (it is some-
how counterintuitive). Additionally, Figure 2 shows that the
higher complexity of WE has practically no impact on the
variance of the estimate. The variance is always comparable
to the one of the best configuration of WE and DE.

Finally, several applications do not consider positive and
negative bias to be the same, in particular, in iterative appli-
cation positive bias can lead to large overestimates that have
proven to be critical (e.g., in RL). This is not the case be-
cause this pricing problem is not iterated. From Figure 1 we
can see that ME is prone to provide positive bias, while WE
bias is almost always the smaller or stays between ME and
DE. The reason for which the ME bias is not always positive,
as stated by its theoretical property (for finite case), is due
to the use of binning for the discretization of the continuous
MAB. This discrete approximation introduces an additional
(here negative) term to the bias.

Swing-up Pendulum A more complex scenario is repre-
sented by the continuous control problem analyzed in this
section: the swing-up pendulum with limited torque (Doya
2000). The aim of these experiments is to compare the newly
proposed extensions of FQI (Double FQI and Weighted FQI)
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Figure 2: Variance of the bias obtained by ME, DE and
WE∞ with different sample sizes and bins.

in a continuous state domain with both discrete and contin-
uous actions. The peculiarity of this domain resides in the
fact that the control with a limited torque (u ∈ [−5, 5])
makes the policy learning non-trivial. The continuous state
space is x = (θ, ω), where θ is the angle and ω is the an-
gular velocity. An episode starts with x0 = (θ0, 0) where
θ0 ∼ U(−π, π), evolves according to the the dynamic sys-
tem θ̇ = ω and ml2ω̇ = −μω + mgl sin(θ) + u, and ter-
minates after 100 steps. The physical parameters are mass
m = 1, length l = 1, g = 9.8, step time τ0 = 0.01. The re-
ward depends on the height of the pendulum: r(x) = cos(θ).
The problem is discounted with γ = 0.9. The GP uses a
squared exponential kernel with independent length scale
for each input dimension (ARD SE). The hyperparameters
are fitted on the samples and the input values are normal-
ized between [−1, 1]. We collected training sets of different
sizes using a random policy. The FQI horizon is 10 itera-
tions. The final performance of the algorithm is the average
reward, calculated starting from 36 different initial angles
θ0 = { 2πk36 |k = {0, 1, . . . , 35}}.

In the first experiment we compare Double FQI, Weighted
FQI (Algorithm 2) and FQI on a continuous state problem
with discrete actions using a different GP for each action.
The actions are the 11 integer torque values in [−5, 5]. Re-
sults show that Weighted FQI and FQI are robust with re-
spect to the number of episodes and Weighted FQI reaches
the highest average reward in each case (with statistical con-
fidence obtained over 100 runs and level 95%). Double FQI
performance is reasonably poor with few examples since it
uses a half of the training set to train each regressor.

The second experiment is designed to show the behavior
of the algorithms in a continuous action MDP. The only al-
gorithm that is able to directly handle continuous space is the
Weighted FQI defined in Algorithm 3. The other algorithms
use a linear discretization of the infinite action space picking
100 actions. As shown in Table 1, the behavior observed in
the finite domain is preserved. The limited number of repeti-
tions (20) allows to derive results with statistical significance
only for DE, that is the algorithm that suffers the most these
settings.
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Figure 3: Average reward of the policies found by the three
algorithms on different dataset sizes.

Table 1: Average reward in continuous action MDP.
Episodes FQI Double FQI Weighted FQI∞

5 0.412± 0.131 0.120± 0.086 0.426± 0.119
10 0.650± 0.121 0.465± 0.138 0.695± 0.097
15 0.713± 0.095 0.587± 0.144 0.762± 0.062
20 0.793± 0.044 0.767± 0.091 0.823± 0.034

Conclusion

We have proposed an extension of WE that is able to esti-
mate the expected maximum with infinitely many random
variables. We have successfully tested such approach on a
pricing problem with continuous price support. Despite ME
and DE which employ a discretization of the continuous
space, our WE estimator is able to directly deal with an
infinite number of variables. We also discussed how ME,
DE and classical WE can be used in continuous MDPs. We
leveraged on GPs in order to generalize over the continuous
state space. Empirical results confirm the expected behav-
ior showing that WE estimation of the maximum is more
robust. Finally, we have presented an off-line value-based
algorithm able to natively handle continuous action space
in the computation of max operator involved in the optimal
Bellman equation. Although the continuous WE estimator
has proved to be effective in the experiments, we think that
a theoretical analysis is worth in order to formally explain
the experienced behavior.
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