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Abstract

We analyze the numerical performance of a preconditioning technique recently proposed in [1] for the effi-
cient solution of parametrized linear systems arising from the finite element (FE) discretization of parameter-
dependent elliptic partial differential equations (PDEs). In order to exploit the parametric dependence of the
PDE, the proposed preconditioner takes advantage of the reduced basis (RB) method within the precondi-
tioned iterative solver employed to solve the linear system, and combines a RB solver, playing the role of coarse
component, with a traditional fine grid (such as Additive Schwarz or block Jacobi) preconditioner. A sequence
of RB spaces is required to handle the approximation of the error-residual equation at each step of the iterative
method at hand, whence the name of Multi Space Reduced Basis (MSRB) method. In this paper, a numerical
investigation of the proposed technique is carried on in the case of a Richardson iterative method, and then
extended to the flexible GMRES method, in order to solve parameterized advection-diffusion problems. Par-
ticular attention is payed to the impact of anisotropic diffusion coefficients and (possibly dominant) transport
terms on the proposed preconditioner, by carrying out detailed comparisons with the current state of the art
algebraic multigrid preconditioners.

Keywords: Finite elements, preconditioners, reduced basis, high performance
computing, parametrized advection-diffusion.
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1. Introduction.

The accurate numerical approximation of parametrized partial differential equations
(PDEs), that is, PDEs depending on parameters which describe physical and geometrical
properties of the model, is computationally challenging whenever interested to characterize
their solutions for a wide range of parameter values. By relying on high-fidelity solvers such
as the finite element (FE) method [2–4] and spectral methods [4,5], a discretized problem
is obtained through a (Petrov-)Galerkin projection onto a subspace Vh of dimension Nh,
104 ≤ Nh ≤ 1010, thus yielding a parametrized linear system

Ah(µ)uh(µ) = fh(µ),(1)

to solve for each new parameter instance. Here uh(µ), fh(µ) ∈ RNh and Ah(µ) ∈ RNh×Nh is
the stiffness matrix; µ ∈ D ⊂ Rp, p ≥ 1, is a vector of p parameters. When dealing with 3D
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MSRB preconditioners for parametrized advection-diffusion equations

problems, the linear system (1) is usually solved by preconditioned iterative methods, such as
the preconditioned conjugate gradient (PCG) or the preconditioned GMRES methods, which
provide scalable and optimal solvers if suitable preconditioners are employed, for instance do-
main decomposition (DD) or multilevel (ML) methods [6–9]. Nevertheless, solving problem
(1) for a large number of parameter instances may become a critical issue because of the
huge CPU time required by each query to the high-fidelity solver; indeed, classical precon-
ditioning methods do not generally exploit the parametric dependence of the PDE. Solving
the parametrized linear system for several values of the parameter is often required in those
many-query industrial contexts such as, e.g., sensitivity analysis, uncertainty quantification
or PDE-constrained optimization. As a matter of fact, the solution of parametrized linear
systems is a challenging research area, for which several contributions have been proposed in
the last decade. Reduced order modeling (ROM) techniques, and in particular the reduced
basis (RB) method, represent an accurate, reliable and efficient tool to deal with parametrized
problems, see e.g. [10,11]. Given µ ∈ D, the RB method seeks an approximation of the high-
fidelity solution uh(µ) in a reduced space that is spanned by a set of basis functions given by
linear combinations of high-fidelity solutions corresponding to different parameter instances.
As a matter of fact, a small RB linear system is solved in place of the large FE linear system.
The RB method has been applied to several classes of equations, including elliptic, (nonlinear)
saddle-point, parabolic problems.
More recently, alternative options have been proposed to tackle the original, high-fidelity pa-
rameterized FE system. In [12], a preconditioner based on the interpolation of the matrix
inverse which is computed as a linear combination of a pre-computed basis of matrix inverses
is proposed, and its performances are analyzed for relatively small problems. On the other
hand, in [13], the authors combine proper orthogonal decomposition (POD) ROM techniques
to truncate the augmenting Krylov subspace, allowing to retain only the high-energy modes
of the recycled Krylov subspace. This technique allows to compute efficiently very accurate
approximations to the FE solution, however it is specifically designed for symmetric problems.

The multi space reduced basis (MSRB) preconditioner, recently proposed in [1], takes
advantage of the parametric dependence of the PDE to devise a preconditioning technique
tailored for the whole class of linear systems obtained when the parameter vector varies in
the selected parameter domain. Such a technique relies on a two-level approach which com-
bines multiplicatively a fine, nonsingular preconditioner (e.g. Gauss-Seidel, Jacobi or one-level
additive Schwarz) with a coarse correction RB solver. This latter exploits the parametric de-
pendence to accelerate the convergence of the iterative method, while the former is a general-
purpose (easy-to-implement, even if not efficient) method ensuring that the resulting precon-
ditioner is nonsingular. The resulting MSRB preconditioning method relies on a sequence of
RB spaces which are iteration-dependent. In particular, the k-th space is tailored to solve the
error equation corresponding to the k-th step of the iterative method, whence the name of
multi space reduced basis method. This setting leads to an iteration-dependent preconditioner,
which has been proposed for Richardson and flexible GMRES (FGMRES) iterations [14].

In this work, we investigate the computational performances of the MSRB preconditioner
in the case of large-scale linear systems arising from the discretization of advection-diffusion
problems. We will focus on those cases where anisotropic diffusion coefficients/fields and/or
dominant advection are considered. Both the Richardson and the FGMRES method are con-
sidered as iterative solver for the resulting linear systems. We compare the results, namely the
iteration count and the wall time for solving the parametrized systems, with those obtained
by employing an algebraic multilevel preconditioner (AMG). The Krylov iterations employed
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to solve the resulting preconditioned system targets small tolerances with a very small itera-
tion count and in a very short time, then showing extremely good optimality and scalability
properties.

The proposed MSRB approach is strongly related to the classical reduced basis (RB)
method for the sake of solving problem (1); this is indeed the best option in those cases where
Ah(µ) and fh(µ) fulfill the so-called affine parametric dependence property, i.e. that they can
be expressed as

Ah(µ) =

Qa∑
q=1

Θq
a(µ)Aq

h, fh(µ) =

Qf∑
q=1

Θq
f (µ)f qh,(2)

where Θq
a : D → R, q = 1, . . . , Qa and Θq

f : D → R, q = 1, . . . , Qf are µ-dependent func-
tions, while the matrices Aq

h ∈ RNh×Nh and the vectors f qh ∈ RNh are µ-independent. Such an
assumption allows to uncouple the dependence of the matrix Ah(µ) and the right hand side
fh(µ) from the parameters, and is crucial to achieve the full independence of the assembling
the RB arrays from the size Nh of the high-fidelity problem. However, involved parameter de-
pendences (such as those occurring when dealing with PDEs on domains with variable shape)
do not provide these expressions automatically built-in when formulating the problem – that
is, problems are naturally nonaffine – thus requiring for extensive hyper-reduction algorithms
to restore, in an approximate way, such a decomposition. Such a preprocessing stage can eas-
ily become very expensive if the parametric dependence is involved and a very good accuracy
has to be fulfilled; this latter requirement is crucial to ensure the overall accuracy of the RB
approximation, and usually entails huge – often unaffordable – computational costs in the
case of very large-scale systems. The proposed MSRB preconditioner has been shown to be a
viable alternative to standard RB methods to face the complexity of nonaffine problems in a
large-scale context.

The structure of the paper is as follows. In Section 2 we briefly recall the POD-RB method
for parametrized elliptic PDEs and in Section 3 we report the motivation and the essential
ingredients for the construction of MSRB preconditioners in the Richardson and FGMRES
cases. In Section 4 we present numerical results obtained for advection-diffusion parametrized
PDEs and in Section 5 we draw some conclusions.

2. The reduced basis method for parametrized PDEs.

The reduced basis (RB) method for parametrized PDEs relies on the assumption that the
µ-dependent solution of the Nh ×Nh high-fidelity problem (1) can be well approximated by
a linear combination VuN (µ) of N � Nh global basis functions ξ1, . . . , ξN obtained from a
set of snapshots, that is, high-fidelity solutions corresponding to (suitably chosen) parameter
values. A possible strategy for the construction of the basis functions is detailed below; here
we denote by

V = [ξ1| . . . |ξN ] ∈ RNh×N

the algebraic representation of the RB functions. The degrees of freedom uN (µ) =
[u1
N (µ), . . . , uNN (µ)]T ∈ RN of the RB approximation are computed by solving the follow-

ing RB problem,

VTAh(µ)VuN (µ) = VT fh(µ),(3)
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obtained by performing a Galerkin projection of the original problem onto the RB subspace
VN ⊂ Vh.

Equivalently, we can introduce the RB arrays, obtained from the corresponding high-
fidelity arrays, as

AN (µ) = VTAh(µ)V ∈ RN×N , fN (µ) = VT fh(µ) ∈ RN .(4)

and express the RB problem under the more convenient form

AN (µ)uN (µ) = fN (µ).(5)

The corresponding high-fidelity representation of the RB solution uN (µ) can be expressed as

VuN (µ) = VA−1
N (µ)fN = VA−1

N (µ)VT fh(µ) ≈ uh(µ).(6)

Once an extensive offline stage has been performed – including the construction of the basis
and the construction of the arrays required to assemble the RB matrix and vector, thanks to
the assumption of affine parametric dependence – problem (5) can be easily solved, usually by
means of direct methods, since N � Nh. For an extensive look to the RB method see, e.g., [10];
here we limit ourselves to recall the most remarkable points of this technique, instrumental to
setting the proposed preconditioning technique. dataCoarseLsrbSolver The construction of the
RB space VN can be performed by means of a (weak) greedy algorithm or proper orthogonal
decomposition (POD). Because of its flexibility and the fact that it does not require the
evaluation of error bounds or indicators for the selection of basis functions, we rely on this
latter, see e.g. [10,11,15] for a further understanding of (weak) greedy algorithms and POD.
We start by computing ns high-fidelity solutions {uh(µi)}ns

i=1 (called snapshots) corresponding
to the parameter values {µi}ns

i=1. POD then aims at finding the best N -dimensional subspace,
with N ≤ ns, that approximates the space Vns = span{uh(µi), i = 1, . . . , ns}. In particular,
we denote by Yh ∈ RNh×Nh a symmetric positive definite matrix and define the scalar product
(x,y)Yh

= (Yhx,y)2, x,y ∈ RNh , inducing the norm ‖x‖2Yh
= (x,x)Yh

. Moreover, given
a matrix X ∈ RNh×n, we refer by Col(X) to the vector space generated by the columns
of X. Then, the construction of the RB space is pursued by performing a singular value
decomposition (SVD) of the matrix Y

1/2
h S = Y

1/2
h [uh(µ1),uh(µ2), . . . ,uh(µns)], resulting in

the factorization

Y
1/2
h S = UΣZT ,

where U ∈ RNh×Nh , Z ∈ Rns×ns and Σ ∈ RNh×ns , such that Σi,i = σi, i = 1, . . . ns, Σi,j =
0, i 6= j. Then, the first N columns of the matrix U form an Yh−orthonormal basis for the
best N -dimensional approximation subspace VN , whose matrix representation is V = U(:
, 1 : N), i.e. Col(V) = VN . Indeed, among all possible N -dimensional Yh-orthonormal bases
VN = {W ∈ RNh×N : WTYhW = IN}, the POD method seeks the subspace of dimension N
such that
ns∑
i=1

‖uh(µi)−VVTYhuh(µi)‖2Yh
= min

W∈VN

ns∑
i=1

‖uh(µi)−WWTYhuh(µi)‖2Yh
=

ns∑
i=N+1

σ2
i ,

i.e. such that the sum of the projection errors obtained when the snapshots are projected onto
W, evaluated in the Yh-norm, is minimized. In the context of second-order elliptic PDEs, the
matrix Yh is chosen to recover the H1(Ω) scalar product on the FE space Vh.
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In practice, the basis is built by solving the eigenvalue problems Cwi = σ2
iwi, i = 1, . . . , ns

where C = STYhS ∈ Rns×ns is the (symmetric positive definite) correlation matrix. The
eigenvalues σ2

i , i = 1, . . . , ns, are the squared singular values of Y1/2
h S, whose eigenvectors

ξi =
1

σi
Swi, i = 1, . . . , ns(7)

form a Yh-orthonormal basis of the snapshots subspace Col(S). The RB space VN is built
selecting the first N eigenvectors, also called high-modes, of Y1/2

h S. In the RB space VN , an
approximation of the snapshots with an accuracy of order

δRB =

√√√√ ns∑
i=N+1

σ2
i /

ns∑
i=1

σ2
i ,

can be found, see [10] for further details.

3. Multi space RB preconditioners for parametrized PDEs.

The underlying idea of the proposed approach is to exploit the RB method to build efficient
preconditioners for the iterative solution of (1) featuring uniform performance in the parameter
space. Indeed, the goal is to implement a preconditioner which (i) can easily handle PDE
problems within a prescribed class, although showing remarkable differences in the physical
regime, and that (ii) can be efficiently built for several instances of the PDE problem, relying
on common structures that can be pre-computed and stored. A more in-depth analysis, which
goes beyond the goal of this paper, is reported in [1].

3.1. MSRB preconditioners for the Richardson method.

In this section we report the construction of the MSRB preconditioner for the Richardson
method; the case of the FGMRES iterations will be addressed in Section 3.2. Given a matrix
Q(µ), consider the iterative method{

u(k)(µ) = u(k−1)(µ) + Q(µ)r(k−1)(µ), k = 1, 2, . . . ,

u(0)(µ) = u0

(8)

where u(k)(µ) ∈ RNh is the k−th iterate and

r(k)(µ) = fh(µ)−Ah(µ)u(k)(µ), k = 0, 1, . . .

denotes the residual of problem (1) at the k−th step. If Q(µ) is non singular, (8) can be re-
garded as a Richardson iteration (with acceleration constant equal to 1) for the preconditioned
system

Q(µ)Ah(µ)uh(µ) = Q(µ)fh(µ),(9)

with preconditioner Q−1(µ). Note that

Q(µ)Ah(µ)(uh(µ)− u(k−1)(µ)) = Q(µ)(fh(µ)−Ah(µ)u(k−1)(µ)),(10)
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where e(k)(µ) = uh(µ)−u(k)(µ) denotes the error at step k. Hence, the left multiplication by
Q(µ) enables to compute an approximation of the solution e(k−1)(µ) of the error equation

Ah(µ)e(k−1)(µ) = r(k−1)(µ).(11)

Depending on the construction of the matrix Q(µ), several different approximations of the
solution of problem (11) can be obtained. Because of the parametric dependence, we aim at
providing an accurate approximation of the error e(k−1)(µ) through the RB method. This is
done by setting the preconditioner as follows

Q(µ) ≡ QMSRB,k(µ) = P−1
h (µ) + QNk

(µ)
(
INh
−Ah(µ)P−1

h (µ)
)
,(12)

that is by a multiplicative combination of P−1
h (µ) and QNk

(µ), where P−1
h (µ) ∈ RNh×Nh is a

nonsingular fine grid preconditioner and QNk
(µ) is an iteration-dependent coarse component

which is a tailored for the error equation (11). When using a multiplicative combination of
two preconditioners, the Richardson iterations can be rewritten by means of two half-steps,
that is, if Q(µ) = QMSRB,k(µ), (8) is equivalent to

u(k−1/2)(µ) = u(k−1)(µ) + P−1
h (µ)r(k−1)(µ), k = 1, 2, . . . ,

u(k)(µ) = u(k−1/2)(µ) + QNk
(µ)r(k−1/2)(µ), k = 1, 2, . . . ,

u(0)(µ) = u0,

(13)

where r(k−1/2)(µ) = fh(µ) − Ah(µ)u(k−1/2)(µ) is the residual after the first half-step. In
particular, as it can be observed from the second equality of equation (13), the RB coarse
component QNk

(µ) must be constructed to approximate the solution of the following problem

Ah(µ)e(k−1/2)(µ) = r(k−1/2)(µ),(14)

or analogously

Ah(µ)e(k−1/2)(µ) =
(
INh
−Ah(µ)P−1

h (µ)
)
r(k−1)(µ),(15)

which is obtained by plugging in (14) the definitions of r(k−1/2)(µ) and u(k−1/2)(µ). We thus
introduce at each step k a new RB space VNk

that is trained on equation (15) and onto which
an accurate approximation of e(k−1/2)(µ) can be found, that is

VNk
= span

{
e(k−1/2)(µj)

}Nk

j=1
,(16)

where e(k−1/2)(µj), j = 1, . . . , Nk are the errors at the (k − 1/2)-th iteration, computed
for (properly chosen) instances of the parameters µj , j = 1, . . . , Nk. Following the standard
construction of the RB method, we can obtain the arrays

Vk = [ξk1 | . . . |ξkN ], ANk
(µ) = VT

kAh(µ)Vk,(17)

where {ξkj }
Nk
j=1 denotes an orthonormalized basis for VNk

. Finally, we define

QNk
(µ) = VkA

−1
Nk

(µ)VT
k .(18)
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Remark 3.1. Under suitable assumptions on the fine preconditioner Ph(µ) and the construc-
tion of the RB spaces VNk

, k = 1, . . . , L−1, QMSRB,k is nonsingular and we refer to its inverse
as Q−1

MSRB,k(µ) = PMSRB,k(µ). Moreover, the error e(k)(µ) can be bounded as (see [1] for the
proofs)

‖e(k)(µ)‖ ≤ Ckδ‖e(0)‖, k = 1, . . . , L, ∀µ ∈ D,(19)

with C =
∥∥∥INh

− P−1
h (µ)Ah(µ)

∥∥∥ and δ =
∏k
j=1 δj is the product of the tolerances

{
δj
}L−1

j=0

such that

‖e(k−1/2) −Vke
(k−1/2)
Nk

‖ ≤ δk‖e(k−1/2)‖ k = 1, . . . , L, ∀µ ∈ D.(20)

Hence, the relative error after L iterations will be under a certain tolerance εr provided the
RB spaces are built fulfilling

δ =
L∏
j=1

δj < εr.(21)

3.2. Extension to flexible GMRES.

In order to tackle large-scale applications, we rely on the flexible GMRES (FGMRES)
method [14], reported in Algorithm 3.1, which is a variant of GMRES method which allows
to employ an iteration-dependent operator as preconditioner, as it is the case for PMSRB,k.

Algorithm 3.1 Flexible GMRES [6]

1: procedure FGMRES(A,b,u0)
2: Compute r0 = b−Au0, β = ‖r0‖2, and v1 = r0/β
3: for k = 1, . . . ,m do
4: Compute zk = M−1

k vk and w = Azk
5: for j = 1, . . . , k do
6: hj,k = (w,vj)
7: w = w − hj,kvj
8: end for
9: Compute hk+1,k = ‖w‖ and vk+1 = w/hk+1,k

10: Define Zm = [z1, . . . , zm], H̃m = {hj,k}1≤j≤k+1; 1≤k≤m
11: end for
12: Compute ym = arg min

y∈Rm
‖βe1 − H̃my‖2 and um = u0 + Zmym

13: If satisfied Stop, else set u0 ← um and GoTo 2.
14: end procedure

In Algorithm 3.1 Mk is the preconditioner operator used at iteration k, and aims at
approximating the solution of the problem Ack = vk, where vk is the k-th Krylov Basis. In
the MSRB case we have

M−1
k (µ)vk = P−1

MSRB,k(µ)vk = P−1
h (µ)vk + QNk

(µ)
(
INh
−Ah(µ)P−1

h (µ)
)
vk, k = 0, 1, . . . .
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Consequently, the k-th RB space must be tailored to solve the following problem

Ah(µ)y(k)(µ) =
(
INh
−Ah(µ)P−1

h (µ)
)
vk, k = 0, 1, . . . ,(22)

yielding a RB space of the form

VNk
= span

{
y(k)(µi)

}Nk

i=1
, k = 0, 1, . . . ,

where y(k)(µi) is the solution of equation (22) with µ = µi. If we set as initial guess
for the FGMRES method the solution of the standard RB problem (5), u(0)(µ) =
V0A

−1
N,0(µ)VT

0 fh(µ), which yields

r0(µ) = fh(µ)−Ah(µ)u(0)(µ), β(µ) = ‖r0(µ)‖2, v1 = r0(µ)/β(µ),(23)

the solution of problem (22) can be expressed as



β(µ) = ‖fh(µ)−Ah(µ)u(0)(µ)‖2,

y(1)(µ) =
1

β(µ)

(
uh(µ)− u(0)(µ)

)
−P−1

h (µ)v1,

y(k+1)(µ) =
1

hk+1,k

[
zk(µ)−

k∑
j=1

hj,k
(
y(j)(µ) + P−1

h (µ)vj
)]
−P−1

h (µ)vk+1, k ≥ 1.

(24)

3.3. Algorithmic procedures.

The sequence of RB spaces for each step of the MSRB preconditioner is built recursively.
By taking the (standard) RB approximation u(0) = u(0)(µ) = V0A

−1
Nk

(µ)VT
0 fh(µ) as initial

guess, we set VN0 = VN . This space is obtained by choosing ns values of the parameter{
µi
}ns

i=1
, computing the corresponding snapshots

{
uh(µi)

}ns

i=1
as the high-fidelity solutions

of (1) and performing POD. Then, given the RB spaces VN0 , . . . , VNk
, we rely on POD to

build the (k+ 1)-th space, where the errors
{
e(k+1/2)(µi)

}ns

i=1
play the role of snapshots if the

Richardson method is employed. These are computed according to the following relation

e(k+1/2)(µi) = uh(µi)− u(k+1/2)(µi) = e(k)(µi)−P−1
h (µi)r

(k)(µi) ∀i = 1, . . . , ns,(25)

which is easily verified from (13). If FGMRES is instead employed, the POD is performed on
the set of snapshots {y(k+1)(µi)}ns

i=1, which can be computed thanks to (24). We highlight
that building the snapshots for the space k, employing equation (25) or (24), does not require
to solve any additional linear system. As we are using POD to build each RB space, we choose
the tolerances δRB,k, k = 0, 1, . . . , (and, consequently, of the number Nk, k = 0, 1, . . . , of basis
functions) for each level.

The computation is divided in two phases: offline and online. In the former, the construc-
tion of the successive RB spaces keeps on until condition (21) is met, therefore, if we use a
fixed tolerance δRB for all the RB spaces, we implicitly fix the number of spaces larger than
dlog(εr)/ log(δRB)e. The detailed algorithm is reported in Algorithm 3.2.

Once the spaces VNk
, k = 0, 1, . . . , L − 1 have been generated, in the online phase it is

possible to solve the high-fidelity system (1) by the chosen iterative method for any new
instance of the parameter µ, which is expected to converge in less than L iterations. Should
the number of iterations exceed the number of precomputed spaces L, we can either decide
to use the last space as coarse correction in the subsequent iterations or use only the fine
preconditioner component.
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Algorithm 3.2 MSRB Preconditioner - Offline RB spaces construction

1: procedure MSRB-preconditioner(
{
µi
}ns

i=1
, εr, δRB)

2: Compute the high-fidelity solutions
{
uh(µi)

}ns

i=1
and set S = [uh(µ1), . . . ,uh(µns)], k = 0

3: while
∏
k

δRB,k > εr do

4: Build the new basis Vk = POD(S, δRB) and δRB,k = δRB
5: Compute new snapshots e(k+1/2)(µi) = e(k)(µi)−P−1

h (µi)r
(k)(µi)

6: Set S = [e(k+1/2)(µ1), . . . , e(k+1/2)(µns)] and k = k + 1
7: end while
8: end procedure

4. Numerical experiments.

Numerical experiments are presented to illustrate the capability of the proposed MSRB-
preconditioner. We take into account several test cases governed by advection-diffusion (AD):
we first focus on heat convection in a domain showing a piecewise constant (parametrized)
thermal conductivity, to simulate the effect of different material properties in the domain.
Then, we turn our attention to a parametrized advection diffusion problem within the same
domain where also an advection term is present. These two examples, although simple from
the point of view of the mathematical model and the geometrical configuration of the domain,
feature solutions showing a wide variability because of the parameter dependence. Indeed,
both anisotropic effects in the diffusion coefficient and advection dominant cases are studied,
as typical situations challenging well-studied preconditioning techniques such as those based
on multilevel (or multigrid) preconditioners because of the physical behavior of the solution,
see e.g. [8,16].

Results for both the Richardson and the FGMRES method are presented. POD is always
performed with ns = 1000 snapshots and with respect to the scalar product induced by the
symmetric positive definite matrix Yh, which represents the H1

0 (Ω) scalar product on Vh. A
stopping criterion based on the Euclidean norm of the (finite element vector of the) residual,
rescaled with respect to the Euclidean norm of the right hand side of the system, with a
tolerance εr = 10−7 has been used for all the tests. Furthermore, we build the RB spaces
such that inequality (21) is satisfied with δ = 10−9, since POD is optimal in the sense of
minimizing the sum of the squared projection errors onto the reduced space evaluated on the
selected snapshots, and when the reduced solution for a different parameter is computed, the
corresponding error can be slightly larger. As fine preconditioner, we employ Ph(µ) = PBJ(µ),
a Block Jacobi preconditioner, where each block represents the restrictions to the degrees of
freedom of a subdomain selected by Parmetisa at the mesh level. If the number of iterations
required by the iterative solver to reach the prescribed tolerance εr exceeds the number of
spaces (which is fixed once the offline phase has been completed) the final iterations employ
just the fine preconditioner, i.e. PMSRB,k(µ) = Ph(µ) ∀k ≥ L.

The results we present are obtained with the FE library LifeVb, see [17]. The parallel
implementation relies on the Trilinos software, and in particular on the Epetra package for
the parallel management of the FE matrices and vectors and on the Ifpack package for the
construction of the Block Jacobi preconditioner PBJ(µ), where each block represents the in-

ahttp://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
bwww.lifev.org
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MSRB preconditioners for parametrized advection-diffusion equations

verse of the local stiffness matrix corresponding to one subdomain generated by Parmetis.
Concerning the solutions of the RB systems, i.e. the computation of A−1

Nk
(µ) in (18), the

very small number of RB functions allows to have RB problems of small size; consequently
the sequential LU factorization is employed. For all the simulationsc, we report the number
of spaces L and RB functions Nk, k = 0, 1, . . . produced by Algorithm 3.2, the results ob-
tained online with the MSRB preconditioner averaging on Nonl = 250 parameters and the
computational time toff required by the offline phase, which is the one needed to build the the
RB spaces of the MSRB preconditioner by Algorithm 3.2. For each new value of µ these RB
spaces are employed to build the RB coarse corrections. We compare the results with those
obtained using an algebraic multigrid (AMG) preconditioner PML(µ), that exploits an exact
coarse component and 2-sweeps Gauss-Seidel smoother obtained with default settings from
the Trilinos ML package [18], and used as preconditioner for the results obtained with both
the Richardson method (noted as RML) and the GMRES method (noted as GML).

4.1. Problem setting: advection-diffusion in a blockwise cubic domain.

Given a regular domain Ω ⊂ R3, such that ∂Ω = ΓD∪ΓN with
◦
ΓD∩

◦
ΓN = ∅ , we subdivide

it into J subregions Ωj , j = 1, . . .J s.t. Ω̄ = ∪Jj=1Ω̄j and
◦
Ωi ∩

◦
Ωj , i 6= j. Let us consider the

following parametrized PDE:
−∇ · (K(x)∇u) + b · ∇u = f in Ω

u = 0 on ΓD,

K∇u · n = 0 on ΓN ,

(26)

where we define the diffusion tensor K(x) = ν(x)Kε = ν(x)diag(1, 1, εan), with εan ={
1; 10−2

}
encoding the anisotropy magnitude, and ν(x) > 0 denoting the piecewise constant

material properties on each Ωj :

ν(x) =

{
νj if x ∈ Ωj , j = 1, . . . ,J − 1

1 if x ∈ ΩJ .
.

For the sake of simplicity, we consider homogeneous Dirichlet and Neumann boundary con-
ditions, although the whole framework can be easily adapted to the case of nonhomogeneous
boundary conditions in a straightforward way. Problem (26) is parametrized with respect
to the diffusion coefficients νj , j = 1, . . . ,J − 1, leading to the following definition of the
parameter vector:

µ = (ν1, . . . , νJ−1) ∈ D = [10−2, 1]J−1.(27)

As spatial domain, we consider Ω = (0, 1)3 and investigate the performance in several modeling
scenarios: note that the diffusion coefficients on the subregions are always parametrized, while
the transport term and the anisotropy structure are either not present or taken equal to a
prescribed value, and never considered to be parameter dependent. Nevertheless, by taking
diffusion coefficients in the range (27) we take into account scenarios featuring a dominant
advection, in particular when εan = 10−2.

cAll our experiments have been carried out using the clusters Piz-Dora/Piz-Daint provided by the Swiss
National Supercomputing Center (CSCS) on Cray XC40 machines.
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A summary of the test cases considered in this section is reported in Table 1. In the first
case, we focus on isotropic diffusion, in the second one on isotropic diffusion with a constant
advection field b = [10yz(1−y)(1−z), 0, 0]T ), whereas in the third one we model an anisotropic
diffusion (εan = 10−2, which leads to dominant advection) with a constant advection field b.
We set the number of blocks J = 4, and analyze the modeling scenarios Tk, k = 1,2,3, cf.
Tab 1.

Concerning the high-fidelity discretization, we employ both linear and quadratic piece-
wise continuous finite elements (FE) on structured tetrahedral meshes; examples of solutions
obtained in the case T3 for different values of parameters are reported in Figure 1.

Figure 1: Example of solutions for test case T3, with a Neumann condition on x = 1.

Table 1: Considered models for numerical experiments.

# Test b εan Model Parameters
T1 no 1 isotropic diffusion µ = (ν1, . . . , νJ−1)
T2 yes 1 isotropic diffusion with constant transport µ = (ν1, . . . , νJ−1)
T3 yes 10−2 anisotropic diffusion with constant transport µ = (ν1, . . . , νJ−1)

We assess the performance of the proposed preconditioner in terms of number of iterations
and computational wall time (seconds) for both the Richardson and the FGMRES method.
In particular, we carry out the following analyses:

• in Section 4.1.1 we report the results obtained with the Richardson method for the
isotropic diffusion test case T1, to show relevant features of the algorithm, namely the
number of RB functions of the spaces VNk

, k = 0, 1, . . . and the decay of the residual;
• in Section 4.1.2 we show the results obtained with the FGMRES method and iden-

tify the modeling scenarios where the preconditioner PMSRB,k(µ) provides the best
performances compared to PML(µ);
• in Section 4.1.3 we consider different high-fidelity discretizations, with computational

grids whose characteristic size is h = 0.1 · 2−l, l = 2, 3, 4, 5, yielding Nh = 46′456,
365′254, 2′887′193, 22′767′295, respectively;
• in Section 4.1.4 we perform a strong scalability test with P2 finite elements, for Ncpu =

2l, l = 6, 7, . . . 11.

4.1.1. Numerical results for the Richardson method.

We start considering the Richardson method for the test case T1. In Table 2 we report
the results for the former technique and a number of levels L = 3, 9, respectively built with
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a fixed tolerance equal to 0.001 and 0.1 respectively. All simulations have been run with an
underlying mesh with Nh = 365′254 degrees of freedom, on Ncpu = 96 processors.

The results show that generating different levels with the same tolerance yields RB spaces
whose dimensions grow with the iteration count k, see Table 2. This fact is also confirmed by
the decay of the eigenvalues of the correlation matrix Ck = STkYhSk, reported in Figure 2 for
L = 3, 9. Here Sk = [e(k−1/2)(µ1)| . . . |e(k−1/2)(µns)] denotes the snapshots matrix employed
for the construction of level k. As k grows, the decay of the eigenvalues is slower, so that
larger RB spaces are needed to reach the same tolerance. This behavior can be ascribed to
the fact that at step k the manifold Mk = {e(k−1/2)(µ), µ ∈ D} is less regular compared
toM0, . . . ,Mk−1: the higher k, then the more noisy the pattern of the error, the smaller its
magnitude and the more difficult its approximation.

Once a new instance of the parameter µ is considered, the computational time to solve
the linear system with the MSRB-preconditioned Richardson method is reported as tMSRB,
which also takes into account the construction of Ph(µ) and the coarse RB corrections
QNk

(µ), k = 0, 1, . . . defined in (18). Notice that the latter mainly involves the assembly
of ANk

(µ), since the RB spaces Vk are pre-constructed in the offline phase, whose computa-
tional time is reported as toff . The computational time employed to solve the same problem
with the AMG-preconditioned Richardson method and the AMG-preconditioned GMRES are
reported as tRML and tGML, respectively, and also account for the construction of the AMG
preconditioner. The results show that both the iteration count and the computational wall
time are lower than the ones obtained employing the ML preconditioner in the Richardson
method (RML) and the GMRES (GML) for all the numerical tests considered. We notice
that in some test cases the number of iterations needed to reach the prescribed convergence
tolerance exceeds the number of spaces L. In this circumstance, we employ only Ph(µ) for all
the remaining iterations. However, we highlight that building RB spaces with a lower local
tolerance δRB,k reduced the number of additional iterations needed by the method.

In order to assess the performance of the PMSRB,k(µ) preconditioner at each iteration, we
define the coefficient η(k)

RB = η
(k)
RB(µ), k = 0, 1, . . . , as

η
(k)
RB =

‖r(k−1/2)(µ)−Ah(µ)QNk
(µ)r(k−1/2)(µ)‖Y−1

h

‖r(k−1/2)(µ)‖Y−1
h

k = 0, . . . , L− 1,(28)

which measures the decay of the residual at step k; its evaluation is reported in Figure 2
for L = 9, 3. All the RB spaces provide an online accuracy proportional to the prescribed
tolerance δRB,k, thus yielding a constant decay of the residual.

Table 2: Richardson method with P1 FE: δRB,k = 0.1, 0.001, k = 0, . . . L− 1.

L δRB,k Nk, k = 0, . . . , L− 1 tMSRB [s] (It) tRML [s] (It) tGML [s] (It) toff [s]

T1 9 0.1 3 7 10 18 33 48 75 100 137 0.14 (18) 0.27 (31) 0.16 (12) 1093.51
T1 3 0.001 11 50 151 0.08 (6) 0.27 (31) 0.16 (12) 429.06

4.1.2. Numerical results for the FGMRES method.

We now turn to the case of the FGMRES method. Table 3 reports the results obtained with
all the modeling cases T1, T2 and T3 with an underlying mesh with Nh = 365′254 degrees of
freedom and Ncpu = 96 processors. Let us focus on the case of isotropic diffusion T1: we notice
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Figure 2: Eigenvalues of the correlation matrix Ck, k = 0, . . . , L − 1 for modeling case T1,
Nh = 365′254.
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Figure 3: Evaluation of η(k)
RB for modeling case T1, Nh = 365′254.

that the FGMRES method gives, as expected, better results than the Richardson method
at the online stage, even though it induces spaces of larger dimension: the computational
times are comparable but the iteration counts are smaller. Concerning a comparison with the
results obtained with the preconditioner ML, the total iteration count and the computational
times are lower than the ones obtained with GML for all the simulations. For the model
T1, isotropic diffusion, ML is known to perform extremely well, see e.g. [6,8], and the MSRB-
preconditioners only slightly improves the outcome. However, for the models T2 and especially
T3 the performances of ML worsen, while the ones of the MSRB preconditioner are impacted
only in the number of basis functions of the RB coarse components, which does not affect much
the performances of the iterative solver, both in terms of iteration count and computational
time.

Table 3: FGMRES with P1 FE: δRB,k = 0.1, 0.001.

L δRB,k Nk, k = 0, . . . , L− 1 tMSRB [s] (It) tGML [s] (It) toff [s]

T1 9 0.1 3 7 10 16 32 55 97 155 231 0.15 (13) 0.16 (12) 1403.98
T2 9 0.1 4 11 23 48 87 143 217 277 233 0.16 (13) 0.20 (21) 1460.79
T3 9 0.1 4 11 21 38 65 105 164 235 217 0.19 (21) 0.32 (40) 1552.77
T1 3 0.001 11 53 177 0.09 (2) 0.16 (12) 516.25
T2 3 0.001 22 112 294 0.10 (4) 0.20 (21) 524.55
T3 3 0.001 22 111 290 0.11 (6) 0.32 (40) 646.57
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4.1.3. Dependence on the grid size.

In this section we carry out an analysis with respect to four different grids whose character-
istic dimensions are h = 0.1, 0.05, 0.025, 0.0125, leading to dimensions Nh = 46′456, 365′254,
2′887′193 and 22′767′295, respectively, for the high-fidelity P1 FE approximation. These sim-
ulations have been carried out with Ncpu = 12, 96, 768, 6144 processors, respectively, in order
to maintain a constant number of degrees of freedom (about 3800) per processor.

The results reported in Table 4 confirm that the iterations and the computational times
do not rapidly grow by increasing the FE dimension, contrarily to what happens when other
preconditioners are employed. Indeed, neither the size nor the accuracy of the RB problems
are affected by the FE dimension, yielding comparable times and iterations for the different
grid size. The problem with the finest grid is solved on average in 0.26 s, making possible a real
time evaluation of the solution for new instances of the parameter. Indeed, the speed up gained
by the use of the MSRB technique compared to the ML preconditioner, shown in Figure 4,
is a monotonically increasing function of the FE dimension, leading to a speed up of 200 for
the largest FE dimension. The break-even point (BEP) of online evaluations, i.e. the number
of online parameters needed to repay the time invested in the offline phase, is reached for the
finest grid with roughly 1200 online evaluations, which is the case for applications involving
sensitivity analysis or uncertainty quantification.

4.1.4. Scalability test.

We report in this section a study on the strong scalability for P2 finite elements. We em-
ploy the grid with 365’524 nodes, leading to Nh = 2′848′000, and a number of processors
Ncpu = 64, 128, 256, 512, 1024. In Table 5 the computational time and the number of iter-
ations employed online by the MSRB-preconditioned FGMRES is reported. The number of
iterations slightly increases by increasing the number of processors, but it never exceeds 5
iterations. As for the computational times, the results confirm ideal scalability, as it is pos-
sible to infer from Figure 4. This is due to the fact that the dimensions of the RB coarse
corrections are small and do not vary by changing the number Ncpu of processors, which does
not impact the computational time required by solving the RB problems. Consequently, the
computational time tMSRB is mainly devoted to the construction and the application of the
fine component PBJ(µ), which is embarrassingly parallel.

Table 4: Grid analysis: FGMRES with P1 FE.

Nh Ncpu L Nk, k = 0, 1, 2 tMSRB [s] (It) tGML [s] (It) toff [s] BEP
T3 46456 12 3 22 118 303 0.07 (3) 0.13 (41) 352.32 5488
T3 365254 96 3 22 111 290 0.11 (6) 0.32 (40) 646.57 3052
T3 2887193 768 3 24 110 276 0.47 (12) 1.71 (62) 3799.56 3062
T3 22767295 6144 3 22 100 258 0.26 (13) 49.56 (81) 57493.6 1167

Table 5: Scalability analysis: FGMRES with P2 FE, Nh = 2′848′000.

Ncpu Dof/cpu Nk tMSRB [s] (It) toff [s]

T3 64 44500 26 139 372 4.56 (3) 32194.30
T3 128 22250 26 136 365 2.03 (3) 18208.60
T3 256 11125 26 134 361 0.83 (4) 13572.30
T3 512 5563 26 131 354 0.47 (4) 12657.70
T3 1024 2782 26 129 345 0.26 (5) 12043.90
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Figure 4: Speed up (left) and strong scalability (right) for online evaluations.

5. Conclusions.

In this paper we have assessed the computational performances of the MSRB precondi-
tioner for large-scale FE advection-diffusion problems. While the performances of standard
AMG preconditioners are usually affected for advection-dominated problems featuring an
anisotropic behavior and ad hoc techniques must be employed, see e.g. [8,16]; such an impact
is not observed in the case of the proposed MSRB preconditioner. Indeed, the results confirm
that relying on a RB coarse correction allows to fasten the convergence of the preconditioned
iterative method for all the cases investigated. This is made possible by the construction of
the RB spaces which surfing the manifold of the PDE solutions in the parameter range as
well as the ones generated by the errors at the successive steps. On the contrary, standard
AMG preconditioners in a parametrized context would build the preconditioning matrix from
scratch at any new parameter instance queried during the online stage, hence without tak-
ing into account the parametric dependence of the PDE solution, and possible correlations
among PDE solutions obtained for parameter values not too far from each other. Finally,
since the iteration count can be reduced to an extremely small amount, this methodology can
be exploited to boost the convergence of iterative methods for other classes of parametrized
problems, such as saddle-point problems, where the fine grid preconditioner cost per iteration
may be particularly expensive. In this respect, suitable fine preconditioners trained for saddle-
point problems can be combined with RB coarse components tailored for solving parametrized
saddle-point PDEs, as shown in [19,20].
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