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Abstract

The advance of sensor and information technologies is leading to data-rich
industrial environments, where big amounts of data are potentially available. In
this scenario, image data play a relevant role, as they can easily describe many
phenomena of interest. This study focuses on images where several and simi-
lar features of interest are randomly distributed and characterized by no spatially
correlated structure. Examples are pores in parts obtained via casting or addi-
tive manufacturing, voids in metal foams and light-weight components, grains in
metallographic analysis, etc. The proposed approach consists of summarizing the
random occurrences of the observed features via its (empirical) probability density
function (PDF). In particular, a novel approach for PDF monitoring is proposed.
It is based on simplicial functional principal component analysis (SFPCA), which
is performed by applying an isometric isomorphism between the space of density
functions, i.e., the Bayes space B2, and the space of square integrable functions
L2. A simulation study shows the enhanced monitoring performances provided
by the SFPCA-based profile monitoring against other competitors proposed in
the literature. Eventually, a real case study dealing with the quality control of
foamed materials production is discussed, to highlight a practical use of the pro-
posed methodology.

Keywords: statistical process control, image-based process monitoring, functional data
analysis, constrained curves, Bayes space

1 Introduction

In the recent years, we are experiencing a quick evolution towards digitalized factories
where continuously evolving sensor and information technologies are shaping data-rich
industrial environments. On the one hand, the use of novel in-line sensing solutions
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Figure 1: Examples of image data for quality monitoring applications: a) pores in products
obtained via metal additive manufacturing , b) cross-section of a metal foam , c) micrographs
of steel powder particles for metal additive manufacturing

(e.g., machine vision systems, non-contact in-line metrology, etc.), allows one to link
the quality and stability of processes to high-frequency streams of images, surface ele-
vation maps, 3D data clouds, etc. On the other hand, emerging production technologies
(e.g., additive manufacturing, Gibson et al., 2010), pave the way to products character-
ized by more and more complicated shapes and lightweight structures.

In this framework, Wells et al., (2013) and Wang and Tsung (2005) suggested an
approach for statistical process control (SPC) of high-dimensional data via profile mon-
itoring. An extended literature has been devoted to the suite of profile monitoring tech-
niques so far: the interested reader may refer to Woodall et al., 2004 and Noorossana et
al., 2012 for an overview. The main idea of Wang and Tsung (2005), later extended by
Wells et al., (2013), consists of translating huge sample size data or high density point
clouds into linear profiles through the use of Q-Q plots, and then applying traditional
profile monitoring to check the stability of Q-Q plot parameters. This paper applies a
similar rationale for monitoring the occurrence of random shapes in image data, as pores
in casting/additively-manufactured components (Fig. 1 a), voids in lightweight metal
foams (Fig. 1 b), or powder grains for additive manufacturing (Fig. 1 c). In particular,
we attempt to generalize the seminal idea proposed by Wang and Tsung (2005) and
Wells et al. (2013) by monitoring the functional shape of probability density functions
(PDFs) rather than Q-Q plot parameters.

With reference to the examples shown, we assume that one synthetic descriptor
is primarily of interest (usually the area of pores/voids/grains) and no spatial correla-
tion structure is observable (i.e., the features are randomly distributed within the image
area). As a matter of fact, the proposed approach deals with univariate PDFs, although
extensions to the multivariate case can be easily envisaged. In case of spatially corre-
lated features, the proposed method can be applied to residuals obtained after removing
the correlation structure (that should be separately monitored with an additional control
chart).

PDFs represent a special case of functional data (Ramsay, 2005) that, in principle,
can be modelled and monitored via functional principal component analysis (FPCA)
(Colosimo and Pacella, 2007; 2010), provided that the constrained nature of PDFs is
appropriately taken into account. As a matter of fact, when the functional data of in-
terest is a PDF, f(x), two constraints have to be satisfied, namely (i) f(x) > 0 and
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(ii)
∫
f(x) = 1. By performing PCA on PDFs, even if the loadings should form an

empirical basis for the original data, densities approximated on the basis of the retained
functional principal components (FPCs) may violate the above constraints (Delicado
(2011), Hron et al. (2016)). This may have a detrimental effect both on process moni-
toring performances and on dimensionality reduction capabilities. A number of authors
(e.g., Egozcue et al. (2006), Van den Boogaart et al., 2010, Delicado (2011), Van den
Boogaart et al. (2014), Menafoglio et al. (2014, 2016a, 2016b), Hron et al. (2016))
pointed out that PDFs can be interpreted as functional compositional data, i.e., func-
tional observations carrying only relative information, which are usually collected in
the form of constrained data integrating to a constant. Traditional FDA techniques
operate in the space of square-integrable real measurable functions L2, whereas com-
positional data entails the use of a different space, known as Bayes space, B2 (Egozcue
et al. (2006), Van den Boogaart et al., 2010, Egozcue et al. (2013), Van den Boogaart et
al. (2014)), that generalizes to the functional setting the well-known Aitchison geom-
etry for compositional data (Aitchison, 1986; Pawlowsky-Glahn and Egozcue, 2001;
Egozcue and Pawlowsky-Glahn, 2006; Egozcue, 2009; Pawlowsky-Glahn and Buc-
cianti, 2011). Therefore, the theory of Bayes spaces can be used to extend the applica-
tive domain of FDA techniques to probability density curves.

This study presents a novel approach for FPCA-based profile monitoring of em-
pirical PDFs by exploiting their inner constrained nature. The proposed methodology
relies on a variant of the FPCA known as simplicial functional principal component
analysis (SFPCA), where the term “simplicial” refers to the use of an infinite dimen-
sional simplex. The method is based on applying an isometric isomorphism between
the space of density functions B2 and L2. Such an isomorphism allows one to resort
to traditional FDA tools by preserving the capability of properly dealing with density
curve constraints.

A motivating real case study dealing with the quality control of foamed materials
production is presented and discussed. Metal foams are special cases of porous metals
with a cellular structure characterized by interesting combinations of physical and me-
chanical properties (Banhart, 2001). A simulation analysis is discussed to demonstrate
the enhanced monitoring performances provided by the SFPCA-based profile monitor-
ing against the traditional FPCA-based monitoring and other benchmarks, including the
Q-Q plot-based scheme and simple Shewhart’s control charts.

The remaining part of this work is organized as follow. Section 2 introduces the real
case study; Section 3 describes the SFPCA technique and how it is implemented into
the proposed profile monitoring framework; Section 4 presents the simulation study and
the comparison against competitor methods; Section 5 presents the results achieved on
real data; Section 6 eventually concludes the paper.

2 A motivating real case study

The use of image data for part quality inspection is becoming more widespread in in-
dustry (Qiu, 2005; Yan et al., 2015; Megahed et al., 2011). Random porous and cellular
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materials represent a category of complicated structures where novel SPC methods are
needed to cope with the challenging nature of quality inspection data (Kim et al., 2014;
Zhuravleva et al., 2013; Campoli et al., 2013; Banhart, 2001). In this framework, prac-
titioners need effective methods to describe, in a synthetic way, the quality signatures
enclosed in cross-section images. Indeed, the quality of the part is related to descriptors
(e.g., size or shape of random features) that can be roughly summarized by their first
few statistical moments. However, a better description can be ascribed to the whole
PDF of the feature descriptors. As a matter of fact, the shape of the PDF can be used
as a quality signature to determine both the quality of the part and the stability of the
process.

This Section presents a real case study regarding the characterization of porous ma-
terials known as “metal foams” via image analysis. Metal foams are a special case of
highly porous materials with a cellular structure characterized by interesting combina-
tions of physical and mechanical properties, i.e., high stiffness at low specific weight or
high gas permeability at high thermal conductivity (Banhart, 2001; Strano, 2001; Villa
et al., 2011). In this framework, the improvement of the production process is aimed at
achieving a better reproducibility and predictability of the morphological and structural
homogeneity of cellular structures.

Two aluminium foam samples produced via the powder compact melting technique
(Banhart, 2001) are considered in our study. The samples, called sample A and sample
B, respectively, were analysed via optical image analysis, which consists of cutting the
sample, polishing the slices and capturing high contrast pictures where cell membranes
and the interior of the cells appear in different brightness (Banhart, 2001). Despite
being a destructive technique, it is quite useful during the material development and
process setup phase to determine the pore size distribution and/or to perform a shape
analysis of the cells. The two samples, of diameter D = 35 mm, were produced under
the same process conditions, but different methods for slice polishing on the preparation
plane were adopted. Thus, a process monitoring tool is expected to detect a shift in the
pore-size distribution whose assignable cause is a change of the polishing treatment.
Both the samples were cut in such a way that the distance between consecutive sections
was higher than the larger expected pore size, in order to minimize the between-section
correlation. Fig. 2 shows the binary images generated after basic image pre-processing
steps for a sub-sample of 10 sections from Sample A (27 sections in total) and a sub-
sample of 10 sections from Sample B (30 sections in total). The images of all the
sections are shown in the Supplementary Material.

In both the samples, the distribution of the cell sizes exhibit a certain randomness,
typical of the powder compact melting processes. The pore-size descriptor used in this
study is the “area ratio”, which is defined as:

Ar(i, j) =
Ai(j)

Atot(j)
, i = 1, ..., Nj ; j = 1, 2, ... (1)

where Ai(j) is the area of the i-th pore in the j-th section, Nj is the number of pores
in the j-th section and Atot(j) is the total area of the j-th section. In order to de-
termine if the Ar(i, j) exhibits some statistically significant spatial autocorrelation, the
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Figure 2: An example of 10 sections from Sample A (top) and Sample B (bottom).

global Moran’s test (Bivand and Piras, 2015) was applied to the metal foam data in both
the samples, revealing no significant spatial autocorrelation for the analysed sections.
Due to the lack of spatial autocorrelation, the probability density curves of the Ar(i, j)
descriptor can be used as synthetic process signatures. This allows transforming the
information content enclosed by original cross-section images into 1D curves that can
be monitored via profile monitoring methods.

3 Proposed methodology

The proposed profile monitoring approach envisages a training phase (a.k.a. Phase I
in SPC literature) and a monitoring phase (Phase II). The training phase aims at (i)
characterizing the natural (in-control) variability of the process described in terms of
PDFs of the univariate statistical descriptor of interest, and (ii) estimating the control
limits for process monitoring. During the training phase, three major steps are needed:
(i) PDF estimation, (ii) SPFCA and selection of the number K of SFPCs to retain
and (iii) multivariate control chart design for the scores associated with the retained
SFPCs and the SFPCA reconstruction error along the directions orthogonal to the first
K SFPCs. During the monitoring phase, the PDF of each new sample is estimated and
it is projected onto the space spanned by the K retained SFPCs. If the control statistics
violate the previously designed control limits, an alarm is signalled, otherwise the new
density curve is deemed representative of an in-control state. The different steps of the
proposed approach are schematically depicted in Fig. 3 and described in more detail
in the following subsection. For a brief review of the FPCA methodology the reader is
referred to Colosimo and Pacella (2007; 2010).

5



Figure 3: Scheme of the proposed approach

3.1 Probability density curve estimation

Having acquired the training sample of descriptors extracted from the j-th sample, de-
noted by xj = (x1j , ..., xNjj) with j = 1, 2, ..., we first aim to compute a smooth
estimate of the underlying distribution, described equivalently by the PDF fj(x) or
by the cumulative distribution function (CDF) Fj . We will always assume Fj to be
continuous, and supported on a compact domain [0, 1], for = 1, 2, ... . Note that the
case of a general compact support [a, b] is obtained through the variable transformation
x = (t−a)

(b−a) , with t ∈ [a, b]. Given a sample of i.i.d. observations x1j , ..., xNjj from Fj ,
a (discontinuous) non-parametric estimator for Fj is given by the Empirical Cumulative
Distribution Function (ECDF), denoted by FNj and defined as

FNj (x) =
1

Nj

Nj∑
i=1

Ixij<x. (2)

Although FNj is strongly consistent for Fj , it does not provide a smooth estimate of
the underlying CDF, since it has jump discontinuities (of amplitude 1/Nj) in correspon-
dence of the observations. The problem of smoothly estimating the underlying CDF
FNj can be overcome by smoothing the ECDF through the use of, e.g., Bernstein Poly-
nomials. The use of Bernstein Polynomials to this purpose is well documented in the
literature (e.g., Vitale (1975), Petrone (1999), Leblanc (2010) and references therein).
We here follow the approach of Babu et al. (2002), who proposed the estimator

F̂j(x;Nj , Bj) =

Bj∑
k=0

FNj (k/Bj)bk,Bj
(x), (3)
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where bk,Bj
(x) = Bjkx

k(1 − x)Bj−k, k = 0, ..., Bj . Estimator (3) is still strongly
consistent for Fj (Babu et al., 2002), but it is also continuous and allows computing the
associated (smooth) PDF f̂j as

f̂j(x;Nj , Bj) = Bj

Bj−1∑
k=0

(
FNj ((k + 1)/Bj)− FNj (k/Bj)

)
bk,Bj−1(x). (4)

As opposed to kernel smoothing estimators (e.g., Rosenblatt 1956; Parzen 1962;
Silverman 1986), the estimator is well suited for distributions with compact support,
as those we analyse. Note that estimator (3) only depends on FNj and on the number
Bj of Bernstein polynomials. The higher Bj , the better the fitting of the ECDF, at
the expense of a more fluctuating estimate (i.e., bias-variance trade-off). Based on
simulations, Babu et al. (2002) found acceptable the use of Bj =

Nj

log(Nj)
. We here

set Bj = Nj to avoid over-smoothing of the resulting PDFs, which may turn in losing
interesting features of the samples and power to discriminate between in-control and
out-of-control conditions. More refined methods to estimate the optimal value of Bj
have been recently proposed by Dutta (2016), but are not considered here for the sake
of limiting the computational cost of the procedure.

3.2 SFPCA of probability density curves

Given the smooth density functions f̂1, ..., f̂M estimated for the indicators of each of
theM Phase I realizations, we now aim to explore the variability of the dataset and con-
sistently reduce its dimensionality, while properly accounting for the data constraints
(i.e., positivity and integral constraint). We here consider the densities f̂1, ..., f̂M as
elements of the Bayes space B2, that is the space of (equivalence classes) of positive
functions integrating to a constant, with square-integrable logarithm, i.e.,

B2 =

{
f : f > 0,

∫ 1

0
f(t)dt = c, log(f) ∈ L2

}
. (5)

The spaceB2 can be equipped with the operations of perturbation⊕ (that plays the role
of the sum) and powering � (i.e., the product by a constant)

(f ⊕ g)(t) = f(t)g(t)∫ 1
0 f(τ)g(τ)dτ

; (α� f)(t) = f(t)α∫ 1
0 f(τ)

αdτ
, (6)

and with the inner product

〈f, g〉 = 1

2

∫ 1

0

∫ 1

0
log

f(t)

f(s)
log

g(t)

g(s)
dtds. (7)

This space was designed by Egozcue et al. (2006) and Van den Boogaart et al.
(2014) precisely to represent the salient features of density functions when interpreted
in the light of compositional data analysis. For instance, the information conveyed by
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compositional data is well-known to be relative (Aitchison, 1986; Pawlowsky-Glahn
and Egozcue, 2001), that is, the relevant information is provided by ratios between the
parts (i.e., the point evaluation of the functions) rather that by the absolute value of
the functions themselves. This is precisely expressed by the inner product in (7), that
generalizes to the functional case the Aitchison inner product for multivariate composi-
tional data (Pawlowsky-Glahn and Egozcue, 2001). In addition, the operations between
densities defined in (6) guarantee that taking a linear combinations of densities results
in a density function, unlike the usual geometry of L2. Besides this, these operations
have meaningful interpretation in mathematical statistics, e.g., perturbation can be in-
terpreted as a Bayesian update of information (Egozcue et al., 2013).

Egozcue et al. (2006) proved that the space B2 equipped with the operations in
(6) and the inner product in (7) is a separable Hilbert space. This allows to generalize
most methods in FDA – that are typically developed for data in L2 – to the Bayes space
setting. Amongst these, we here focus on Simplicial Functional Principal Component
Analysis (SFPCA, Hron et al., 2016), that aims to reduce the dimensionality of a dataset
of density functions. Given f̂1, ..., f̂M , we aim to find the directions in B2, denoted by
ζ1, . . . , ζM−1, along which the dataset displays the maximum variability. Formally, ζ1
maximizes

M∑
j=1

〈f̂j 	 f, ζ〉
2

subject to ‖ζ‖ = 1, (8)

where f = 1
M �⊕

M
j=1f̂j is the sample mean, and for j > 1, ζj maximizes

M∑
j=1

〈f̂j 	 f, ζ〉
2

subject to ‖ζ‖ = 1, 〈ζ, ζi〉 = 0, i < j. (9)

Note that f̂j 	 f is the observation in the j-th sample, f̂j , centered with respect to
the sample mean f , whereas 〈f̂j 	 f, ζ〉 represents the projection of the j-th centered
observation along the direction in B2 identified by ζ. Hence, the objective functional
in (8) and (9) is the sample variance of the projections along the generic direction ζ,
that has to be maximized to find the principal directions. Hron et al. (2016) proved that
minimization of (8)-(9) can be performed by solving an equivalent FPCA problem in
L2, on a transformed dataset. More precisely, one can map the dataset of density curves
f̂1, . . . , f̂M fromB2 in L2 by using the centered log-ratio (clr) transformation, defined,
for f ∈ B2, as

[clr (f)] (t) = log (f (t)) −
∫ 1

0
log (f (τ)) dτ, t ∈ [0, 1] . (10)

From the mathematical viewpoint, transformation (10) is an isometric isomorphism
between B2 and L2, i.e., it is a map allowing to represent elements in B2 as elements
of L2, preserving their distances. In practice, having transformed the density curves
f̂1, . . . , f̂M in elements of L2, y1, . . . , yM , one can then apply to the latter dataset the
usual FPCA, obtaining (a) the FPCs ξi, i = 1, 2, . . . ,M−1, that are linked to the SFPCs
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by the relation ξi = clr(ζi), i = 1, 2, . . . ,M−1; and (b) the scores zji of the j-th curve
yj along the i-th FPC, i.e., zji =

∫ 1
0 y (t) ξi (t) dt. The latter scores are equivalent to

the scores of the j-th density along the i-th SFPC ζi, i.e., zji = 〈f̂j	f, ζi〉. The scores
zji can be treated by using the usual Euclidean geometry, as they are coordinates with
respect to an orthonormal basis of B2. For additional details on FPCA, we refer the
reader to Ramsay and Silverman (2001).

For the purpose of reducing the dimensionality of the dataset based on SFPCA,
one can employ very similar techniques as in FPCA. For instance, one can compute the
variability displayed by the scores along a given principal direction ζi inB2 through the
associated eigenvalue ρi, i = 1, . . . ,M −1. Note that the latter is equivalently found as
the eigenvalue associated with the i-th FPC in L2, ξi. One can then retain the minimum
number, K, of SFPCs allowing to express a given amount of the total variability (e.g.,
95% or 98%), quantified as

∑K
i=1 ρi/

∑∞
i=1 ρi.

3.3 Profile monitoring

The profile monitoring procedure based on the SFPCA is equivalent to the one based on
the FPCA described by Colosimo and Pacella (2007). It requires the computation of two
statistics: one is the Hotelling’s T 2 statistic, used to detect shifts along the directions of
the first K SFPCs:

T 2
j (K) =

K∑
i=1

z2ji
ρi
, j = 1, 2, . . . , (11)

where ρi is the i-th eigenvalue and zji is the j-th score associated with the i-th SFPC.
The second is the sum of prediction error statistic, used to detect shifts along directions
orthogonal to the ones associated with the first K SFPCs:

SPEj (K) = 〈f̂∗j 	 f̂j , f̂∗j 	 f̂j〉, j = 1, 2, . . . , (12)

where f̂∗j = ⊕Ki=1zji � ζi is the reconstruction of the j-th density curve after retain-
ing the first K SFPCs. Two control charts can be designed to monitor the T 2

j (K)
and SPEj (K) statistics with probability limits, analogously to the FPCA-based SPC
scheme (Colosimo and Pacella, 2007; 2010).

4 Simulation study

A simulation study is presented to demonstrate the effectiveness of the SFPCA for
profile monitoring of PDFs. The framework of the study is inspired by pore-size prob-
ability distribution monitoring problems. To this aim, synthetic porous structures were
generated by adapting the algorithm presented in Tschopp et al. (2008). The output
of the algorithm at each execution run is a 2D binary image where connected compo-
nents (i.e., the pores) with fixed aspect ratio equal to 1 (i.e., circular pores) but ran-
dom radius are spread within a square region of fixed size without overlapping (see
Tschopp et al., 2008 for details). The pore sizes were controlled by defining the PDF
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of the pore radius, f(r). A random sample of N radius values, r1, . . . , rN , was drawn
from f(r) and the corresponding pores were created. This synthetic structure gener-
ation process was repeated J times to simulate J random sections of a porous struc-
ture. The dataset used for monitoring purposes consists of vectors x1, . . . .,xJ , where

xj =
[
log(A1j), . . . , log(ANj)

]T
and Aij is area of the i-th pore of the j-th section

based on pixel counting.
Three different scenarios for the generation of both in-control and out-of-control

pore size distributions were considered. In Scenario 1, the in-control distribution of pore
radii is lognormal and the out-of-control condition consists of a shift from a unimodal
to a bimodal distribution, where the additional term affects the right tail of the pore-
size distribution, corresponding to a density increase of larger pores. In Scenario 2,
the in-control distribution of pore radii is chi-squared and the out-of-control condition
consists of a shift towards a bimodal distribution affecting the upper tail. In Scenario
3, the in-control distribution is bimodal and the out-of-control condition consists of a
variance increase of one of the two components. The three scenarios were selected
because they provide realistic pore structures and challenging out-of-control deviations
that may be difficult to detect with traditional monitoring approaches. The details about
the simulation of different scenarios are provided hereafter.

Scenario 1 In-control (IC) distribution:

rij ∼ logN (1, 0.5) , i= 1, . . . ,N, rij∈ [0, 50] , j= 1, . . . , M.

Out-of-control (OOC) distribution:

rij ∼
1

1 + w1 (sev)
logN (1, 0.5)+

w1 (sev)

1 + w1 (sev)
N (20, 5) ,

i= 1, . . . ,N, rij∈ [0, 50] , j= 1, . . . , J −M,

where M is the number of in-control sections, sev = 1, . . . , 4, is the severity level in-
dex, and J−M is the number of out-of-control sections at each severity level. w1 (sev)
is a severity-dependant weight such that: w1 (sev) ∈ {0.001, 0.01, 0.02, 0.03}.

Scenario 2 In-control distribution:

rij ∼χ2 (3) , i= 1, . . . ,N, rij∈ [0 50] , j= 1, . . . , M.

Out-of-control distribution:

rij ∼
1

1 + w1 (sev)
χ2 (3) +

w1 (sev)

1 + w1 (sev)
N (20, 5) ,

i= 1, . . . ,N, rij∈ [0 50] , j= 1, . . . , J −M,

where w1 (sev) ∈ {0.005, 0.015, 0.025, 0.035}.
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Figure 4: Comparison between 100 in-control density curves (grey lines) and 100 out-of-
control density curves at the highest severity level (red lines) for different scenarios atN = 400;
cross-sectional average curves are depicted with solid thick lines.

Scenario 3 In-control distribution:

rij ∼ 0.7 logN (1, 0.5)+0.3 logN (2, 0.25) , i = 1, ..., N, rij ∈ [0, 50], j = 1, . . . ,M ;

Out-of-control distribution:

rij ∼ 0.7 logN (1, 0.5)+0.3 logN
(
2, σ2(sev)

)
, i = 1, ..., N, rij ∈ [0, 50], j = 1, . . . , J−M ;

where σ2sev ∈ {0.30, 0.045, 0.40, 0.45}.
For each scenario, two cases were considered, one withN = 400 and one withN =

200, in order to investigate the effect of the number of pores on the density-based profile
monitoring performances. As a way of illustration, Fig. 4 shows a superimposition of
100 in-control PDFs and 100 out-of-control PDFs in the three scenarios at N = 400
(the out-of-control curves corresponds to the highest severity level, sev = 4). Further
examples of in-control and out-of-control porous structures and corresponding PDFs
are shown in the Supplementary Material.

Four different control charts were applied and compared to determine if the gen-
erated porous sections were in-control or not. The first control chart is a Shewhart’s
control chart X − S (Montgomery, 2008) with probability limits applied to the sam-
ple mean of the xj descriptor values. This is representative of a traditional approach
for quality monitoring via pore area computation. The second is the Q-Q plot-based
approach proposed by Wang and Tsung (2005) and extended by Wells et al., (2013).
Three variables are monitored in this case, i.e., the intercept and the slope of the fitted
Q-Q plot, and its mean square error (MSE). For a fair comparison, the first two vari-
ables were monitored via a Hotelling’s T 2 chart and the MSE via a univariate chart
for individual observations. The third is a profile monitoring approach based on FPCA
(Colosimo and Pacella, 2007), where the FPCA methodology is applied to the f̂j den-
sity curves. This is representative of a traditional profile monitoring scheme applied
without keeping into account the constrained nature of the density curves. The third is
the proposed approach based on SFPCA, where the SFPCA is applied to the density
curves f̂j , j = 1, . . . , J . Regarding both the FPCA-based and SFPCA-based meth-
ods, the number of retained FPCs was selected such that a given percentage of data
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Figure 5: Type II error, β, and 95% confidence intervals in Scenario 1 (N = 400, left panel
and N = 200, right panel); thick solid line: SPFCA-based approach; solid line: FPCA-based
approach; dash-dot line: Q-Q plot approach; dashed line: Shewharts approach
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Figure 6: Type II error, β, and 95% confidence intervals in Scenario 2 (N = 400, left panel
and N = 200, right panel); thick solid line: SPFCA-based approach; solid line: FPCA-based
approach; dash-dot line: Q-Q plot approach; dashed line: Shewharts approach

variability was explained. Due to the smooth nature of the curves, few FPCs are ex-
pected to explain a large percentage of the overall variability. Because of this, a high
threshold at 98% was used. For each scenario, 100 simulation runs were performed at
each severity level. Each run consisted of M = 1100 in-control density curves and 250
out-of-control density curves. The M curves were split into two datasets. A dataset of
size M1 = 100 was used as Phase I dataset for control chart and principal component
parameter estimation. A dataset of size M2 = 1000 was used to estimate the empirical
control limits corresponding to a Type I error α = 0.01.

Fig. 5, 6 and 7 show that the SFPCA-based approach outperforms both the tradi-
tional Shewhart’s control chart and the FPCA-based method in all the simulated sce-
narios. In Scenario 1 and 2, the out-of-control condition locally affects the PDF in a
portion of the domain (the upper tail) with small natural variability. The FPCA-based
T 2 statistic is not able to detect the shift and, due to its local nature, the FPCA-based
SPE statistic is poorly affected as well. The SFPCA-based approach, instead, is able to
detect the shift thanks to a better characterization and reconstruction of the natural vari-
ability of the PDF curves. Moreover, it is worth to notice that, in Scenario 1, the FPCA
is even outperformed by the Shewhart’s control chart. From previous studies (Kim et

12



Severity
1 2 3 4

T
yp

e 
II 

er
ro

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Scenario 3 (N=400)

Severity
1 2 3 4

T
yp

e 
II 

er
ro

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Scenario 3 (N=200)

Figure 7: Type II error, β, and 95% confidence intervals in Scenario 3 (N = 400, left panel
and N = 200, right panel); thick solid line: SPFCA-based approach; solid line: FPCA-based
approach; dash-dot line: Q-Q plot approach; dashed line: Shewharts approach.

al., 2014; Woodall et al., 2004; Colosimo and Pacella, 2010), it is known that profile
monitoring schemes, particularly FPCA-based ones, are more effective than traditional
control charts. However, in the presence of PDF profiles, the conventional FPCA is not
only unable to preserve the constrained nature of the curves themselves, but it may be
also less influenced by small local shape variations than traditional methods. Because
of this, the conventional FPCA is not the best candidate for the development of profile
monitoring schemes applied to probability density curves, and the SFPCA should be
preferred instead. In Scenario 3, the shape variation of the bimodal distribution poorly
affects the sample mean and variance of the monitored descriptor, which reduces the
effectiveness of the Shewhart’s control chart. Again, the SFPCA-based approach is
the one that better captures the occurred shape modifications and yields to the highest
detection power. However, the larger is the portion of the PDF affected by the out-of-
control shift, the lower is the gap between the SFPCA- and FPCA-based approach per-
formances. Regarding the Q-Q plot-based method, it provides very good performances
in Scenario 1, where the log-area descriptor exhibits an in-control normal distribution.
It also outperforms the FPCA-based one in Scenario 3 when N = 400, despite of the
non-normal distribution. Nevertheless, its performances worsen as the number of pores
in the section decreases and it is outperformed by our proposed approach in Scenario
2 and 3. As a matter of fact, the Q-Q plot-based method is thought for in-control dis-
tributions that are normal or transformable to normal and its reliability decreases as the
actual PDF deviates from this assumption. Thus, the SPFCA-based approach can be
regarded as a generalization of profile monitoring methods to PDFs regardless of the
in-control distribution. Table 1 reports the number of retained FPCs to explain about
98% of the overall variability of the density curves included into the Phase I dataset.
Table 1 shows that the SFPCA requires only 2 SFPCs to explain such a percentage of
variability, whereas the FPCA requires about 10 – 14 FPCs. This makes the SFPCA not
only more effective than the FPCA for profile monitoring of density curves, but also
more efficient in terms of dimensionality reduction.
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Table 1: Average number of retained FPCs (sample standard deviation in brackets), atN = 400
and N = 200.

Scenario N. of PCs (N = 400), K N. of PCs (N = 200), K

SFPCA FPCA SFPCA FPCA

1 2.02 (0.1407) 13.5 (0.5025) 2 (0) 9.98 (0.1482)
2 2.05 (0.219) 14.96 (0.4245) 2.4 (0.4926) 10.08 (0.3082)
3 2 (0) 14.4 (0.4924) 2 (0) 10.7 (0.4606)

5 Real case study results

The metal foam case study introduced in Section 2 is here adopted to test the pro-
posed approach on real data. In order to compare the SFPCA-based against previously
mentioned competitor techniques, the Sample A data was used as Phase I dataset (i.e.,
representative of in-control patterns) whereas the Sample B data was used as Phase II
(i.e., representative of out-of-control patterns). Fig. 8 shows some results achieved by
applying the SFPCA to Sample A. Fig. 8 shows the Pareto plot (or scree plot) (a), the
variability of the scores depending on the number of SFPCs (b), the loadings corre-
sponding to the first 4 SFPCs estimated via SFPCA (c), their counterpart in L2 (d) and
additional plots to enhance interpretability (e-h). The latter displays the mean density f
perturbed by plus/minus each of the first four SFPCs powered by the standard deviation
along the corresponding direction, i.e., f ⊕ (±√ρi) � ζi, i = 1, . . . , 4. This kind of
plots shows typical behaviour of density curves associated with high/low scores along
the considered SFPC. For instance, Fig 8 (e) evidences that densities with high scores
along the first SFPC tend to be more concentrated on low values of pore size and vice
versa. The second SFPC (Fig 8 (f)) mainly characterises the left tail of the distribu-
tion: high scores are presented by densities concentrated on very low small sized pores,
low scores by densities with lighter left tails. The third SFPC, Fig 8 (g), is associated
with the modality of the densities (unimodal for high scores, slightly bimodal for low
scores), whereas no clear interpretation is obtained for the fourth SFPC.

By setting a threshold on the percentage of explained variance at 98%, the FPCA
requires retaining K = 4 FPCs, whereas the SFPCA requires retaining K = 3 SF-
PCs. Fig. 9 shows a comparison of the smoothed PDFs for Sample A (grey curves in
background) and Sample B (red curves in foreground). For both samples, the density
curves exhibit a quite large shape variability. However, in Sample B there is an infla-
tion of the left tail corresponding to a higher fraction of small pores than in Sample
A. Moreover, in Sample B, some curves, especially the ones associated with the 23-rd
and 25-th sections, exhibit the largest peak at quite low values of the descriptor, due to
a predominance of small and medium size pores. These differences are caused by the
different polishing and section preparation treatments applied on the two samples.

Table 2 compares the Type II error for all the competing techniques considered in
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Figure 8: Results of the SFPCA applied to Sample A: (a) Pareto plot for the SFPCA; (b) score
variability as a function of the number of PCs; (c) loading in B2 associated with the first four
SFPCs (i.e., ζ1, . . . , ζ4); (d) loading in L2 associated with the first four SFPCs (i.e., ξ1, . . . , ξ4);
(e) to (h) plot of f ⊕ (±√ρi)� ζi, i = 1, . . . , 4.
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Figure 9: Superimposition of Sample A density curves (grey lines in background) and Sample B
density curves (red lines in foreground); solid thick lines corresponds to cross-sectional average
curves.

Table 2: Type II errors for the metal foam case study

Method Type II error

SFPCA 0.1
FPCA 0.1333
Q-Q plot 0.5333
Shewhart 0.4

Section 3, with α = 0.01. Table 2 shows that the SFPCA-based and FPCA-based ap-
proaches perform better than the Q-Q plot-based approach and the traditional Shewart’s
control chart. Indeed, the departure from normality shown in Fig. 9 makes these two
latter competitors poorly effective in detecting the distributional change between the
two samples. Similarly to the simulation study, the SFPCA-based approach should be
preferred to the FPCA-based one. Fig. 10 and Fig. 11 compare the SFPCA-based and
FPCA-based control charts. In the SFPCA-based approach, both the T 2 and SPE con-
trol charts clearly signal a sustained shift in terms of PDF shape change between Sample
A and Sample B. Only three sections of Sample B (section 4, 9 and 30) are classified
as in-control observations, whereas all the remaining sections are signalled by at least
one of the two control charts. Fig. 10 also shows that the two largest peaks of both
the control statistics in Phase II correspond to the 23-rd and 25-th section of Sample B,
whose density curves were indicated in Fig. 9. In the FPCA-based approach, instead,
the T 2 signals only five data points, without showing any evident sustained shift. The
difference between the two samples is almost entirely captured by the SPE control
chart alone, which means that the major differences occur along principal directions
that explain a small portion of the Phase I data variability. In addition, the FPCA-based
method is less effective in signalling the 23-rd and 25-th section of Sample B, where
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Figure 10: SFPCA-based control charts for the metal foam case study.
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Figure 11: FPCA-based control charts for the metal foam case study.
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the visual analysis of curves revealed the larger departure from the Phase I pattern. This
is caused by a different definition of the loadings affected by a non-appropriate curve
projection. Because of this, the SFPCA is a more effective approach to capture the
differences of PDF shapes.

6 Conclusion

The development of novel SPC tools must face the need to synthesize the information
enclosed by the original data and, by transforming it to a format that is easier to han-
dle and more convenient from a computational viewpoint. The underlying idea of our
study consists of transforming a high-dimensional data sample (e.g., an image) into a
profile by analysing the PDF of a descriptor of interest, whose values are computed
for a large number of random features. Although probability density curves represent
a special case of functional data, most profile monitoring methods are not appropriate
for constrained functions. Therefore, we proposed a profile monitoring approach that
relies on a simplicial variant of the FPCA, which allows preserving the constrained na-
ture of the data thanks to the Bayes space geometry. The simulation study showed that
the SFPCA-based approach outperformed the FPCA-based profile monitoring in all the
simulated scenarios. The results highlighted that, in the presence of probability den-
sity curves, the well-known FPCA is not only unable to preserve the constrained nature
of the curves, but it also yields a reduced out-of-control detection power, especially in
the presence of local shifts in the tails of the distribution. Because of this, the SFPCA
should be preferred to FPCA for the development of profile monitoring schemes ap-
plied to probability density curves. The comparison study also showed that the SFPCA
requires a smaller number of principal components to explain the same amount of vari-
ability explained by the FPCA. This makes the SFPCA not only more effective than the
FPCA for profile monitoring of PDFs, but also more efficient in terms of dimensionality
reduction. Moreover, the proposed approach can be considered a generalization of the
Q-Q plot-based method to any in-control distribution.

The real case study in metal foam production confirmed the higher effectiveness
of the SFPCA-based approach against the competitors to capture the shape modifica-
tions of PDFs. Generally speaking, the use of PDFs in process monitoring problems
represents a compromise between data synthesis and goodness of process signature
characterization, but it yields a loss of information about possible spatial or temporal
dependencies. In principle, the proposed approach represents a suitable choice when
spatial/temporal auto-correlation modelling is not necessary or not feasible. But it can
also be used in parallel to other monitoring methods when spatial/temporal models are
available, to couple a distributional data analysis to other modelling paradigms.

Future studies will be aimed at extending the proposed methodologies to problems
where more than one single statistical descriptor is of interest. In those cases, rather than
monitoring the marginal PDFs, the signature of the process can be related to the multi-
dimensional shape of the joint PDF of monitored descriptors. The SFPCA method
can be extended to the multivariate case, but additional research efforts are needed to
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formalize the method and to determine its performances.
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