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Abstract—The curse of outlier measurements in estimation
problems is a well-known issue in a variety of fields. Therefore, out-
lier removal procedures, which enables the identification of spu-
rious measurements within a set, have been developed for many
different scenarios and applications. In this paper, we propose a
statistically motivated outlier removal algorithm for time differ-
ences of arrival (TDOAs), or equivalently range differences (RD),
acquired at sensor arrays. The method exploits the TDOA-space
formalism and works by only knowing relative sensor positions.
As the proposed method is completely independent from the ap-
plication for which measurements are used, it can be reliably used
to identify outliers within a set of TDOA/RD measurements in
different fields (e.g., acoustic source localization, sensor synchro-
nization, radar, remote sensing, etc.). The proposed outlier removal
algorithm is validated by means of synthetic simulations and real
experiments.

Index Terms—TDOA space, TDOA measurements, range differ-
ences, outlier removal.

I. INTRODUCTION

RANGE Differences (RDs) are widely used in estimation
problems based on sensor arrays, ranging from source

localization to array calibration and synchronization [1]–[4].
Given a pair of sensors, RD is defined as the difference between
the two propagation distances from the emitting source to the
sensors. RDs can be computed in several ways. For example, in
wireless sensor networks RDs can be computed from Received
Signal Strength Indications (RSSIs) measured at sensor pairs. In
acoustic and radar applications, RDs are often obtained through
peak-picking on the Generalized Cross Correlation (GCC) func-
tion [5] associated to the received signals. Notice that RDs are
equivalent to Time Differences of Arrival (TDOAs), as they
can be obtained by simply dividing the RD measurements by
the propagation speed, which is normally assumed to be known
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and constant. This is why, with a slight abuse of terminology,
hereafter we consider TDOAs, though our results can be readily
extended to RDs.

Given a distribution of n + 1 sensors, the number of distinct
possible TDOAs that can be measured is equal to n(n + 1)/2
(complete set). Many applications, however, rely on a subset
of n TDOAs, all measured with respect to a reference sensor.
This collection of n TDOAs is typically referred to as the non-
redundant set or reduced set as, in the absence of measurement
noise, all the other TDOAs can be obtained through a linear com-
bination of such measurements. The redundancy of the complete
set, however, can be fruitfully exploited to achieve robustness of
the considered application against additive measurement noise
[6], [7].

Unfortunately, additive noise is only one of the problems that
adversely affect solutions based on TDOAs. The presence of
interfering sources or phenomena related to multipath propaga-
tion (i.e. reflection, diffusion and diffraction) tend to generate
erroneous TDOAs (outliers) and negatively affect the perfor-
mance of TDOA-based applications if not properly accounted
for. Quite a few techniques have been developed for identify-
ing and removing outliers in various areas of application (e.g.
audio, radar, global-positioning systems, etc.). Such techniques
can be broadly classified based on their working principle. One
class of solutions is based on an a-posteriori evaluation of the
residuals of the used cost function. More specifically, outliers
are recognized as the measurements that contribute the most
to the residual value of the cost function [8]–[11]. A second
class of algorithms, specific for TDOA-based techniques, aims
at improving the estimation of TDOAs by improving the GCC
peak-picking strategy. In particular, heuristic rules related to
the shape of the GCC in the proximity of peaks are applied in
order to identify the TDOA that is most likely related to the
desired source [12]–[14]. A third class of algorithms is based
on the observation that TDOAs must satisfy some geometrical
and mathematical constraints based on signal propagation. A
popular one is DATEMM [15], [16], which is based on finding
the sets of TDOAs that satisfy the raster and zero-sum condi-
tions. The former compares the autocorrelation with the GCCs
for discarding the GCC peaks generated by reflections. The lat-
ter aims at matching peaks in the GCC to each source that is
present in the environment. It is worth noticing that the zero-sum
condition exploits the fact that the sum of TDOAs over closed
paths of three or more microphones (i.e., paths that begin and
end at the same microphone) is bound to be zero. In [17] TDOA
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matrices (i.e. skew-symmetric matrices containing in the ijth
position the TDOA between sensors i and j) are found to satisfy
some interesting algebraic properties, which are used for devel-
oping a set of denoising techniques in the presence of outliers.
In particular, a two-step iterative algorithm is proposed, which
requires the number of outliers to be small and upper-limited.

In this work we propose a novel algorithm for removing out-
liers from a set of TDOA measurements. This method is not
strictly related to the problem of source localization, as it does
not depend on any localization cost function. Our algorithm is
also independent of how TDOAs are measured, and it does not
rely on a-priori information on the number of outliers within the
measurement set. Our algorithm is based on the properties of the
TDOA space, i.e. the space spanned by TDOA measurements.
This space was introduced in [18] and further investigated in
the literature. In particular, the closed-form analytical determi-
nation of the feasible set (i.e. the region in the TDOA space
that corresponds to feasible source locations), and the mapping
between TDOA and geometric spaces were subject of research
in [19] for the specific case of three sensors and source lying on
the same plane. The analysis was accomplished for both com-
plete and reduced TDOA sets. In the complete space, TDOAs
are bound to lie on a plane. The equation of this plane corre-
sponds to the zero-sum condition exploited in [16]. Moreover,
in the plane determined by the zero-sum condition, TDOAs cor-
responding to a real source must lie in a well defined closed
region. In [7] authors enriched this description with a statistical
model and characterization.

In this contribution we exploit the concept of the feasible set
derived from the TDOA space and we put the statistical model
to work for the detection of outliers. More specifically, in a
noiseless scenario, TDOAs are bound to lie within a well de-
fined subset of the TDOA space. We show that, considering any
single TDOA, this region is a finite interval in one dimension.
Considering pairs of TDOAs that share a sensor, the feasible
set is a convex region in two dimensions. Considering triplets
belonging to a closed-loop of sensors the region is bound to lie
on a convex subset of a given plane. In the presence of addi-
tive noise the considered group of TDOAs could fall outside
the respective region. Nevertheless, it is possible to characterize
the distance of the TDOAs from the corresponding feasible set
exploiting the statistical noise model. In particular, assuming
Gaussian additive noise, the distance from the feasible set must
follow a Chi-Square distribution. An outlier removal algorithm
is thus devised by testing the likelihood of the group of TDOAs
(pairs and triplets) to be consistent with this Chi-Square dis-
tribution. The information coming from groups is then fused
to identify and remove the outlier TDOAs, by means of an al-
gorithm based on multiple testing and combined testing. More
specifically, multiple statistical tests are performed to detect the
groups of TDOAs that potentially include outliers. The results of
these tests are then combined to identify and remove the outlier
TDOAs. We demonstrate that the devised algorithm yields a re-
liable outlier identification both in simulated and real scenarios.
Moreover we also tested the proposed method in the context of
acoustic source localization, whose accuracy is increased when
outliers are removed from the set of TDOA measurements.

The rest of the manuscript is organized as follows. Section
II introduces the TDOA space and defines the TDOA feasible
regions when different numbers of sensors are considered. Sec-
tion III explains how to formulate and test statistical hypotheses
about the presence of outliers within TDOA sets exploiting the
TDOA space formalism. Section IV builds upon the previous
one providing all the algorithmic details about the proposed
TDOA outlier removal procedure. Section V describes a set of
simulation results in order to validate the proposed approach.
Section VI presents an example of application, which shows that
the proposed algorithm helps improving TDOA-based source
localization accuracy. Finally, Section VII offers concluding re-
marks.

II. THE TDOA SPACE

In this section, we recall the definition and some useful prop-
erties of TDOA space, TDOA maps and feasible sets of the
TDOAs, from [7], [19]–[21]. In particular, we give the full de-
scription of the feasible set when groups of two or three sensors
are considered. We then describe some characteristics of the
feasible set in the more general scenario of more than three
sensors.

A. TDOA Map and Feasible Set

Let us fix some ideas and notations that will be useful through-
out the manuscript.

� We identify the physical world with the 3D Euclidean
space and, after choosing an orthogonal Cartesian coordi-
nate system, with R3 . The Euclidean scalar product of the
vectors v1 ,v2 and the norm of v are

〈v1 ,v2〉E = v1
T v2 and ‖v‖E =

√
〈v,v〉E ,

respectively.
� mi = (xi, yi , zi)T is the location of the i-th sensor. We

take the indexes i = 0, . . . , n and we assume that the n + 1
sensors are in distinct positions.

� dji = mj − mi is the displacement vector from the sensor
mi to the sensor mj, for i, j = 0, . . . , n.

� x is the position of the source.
� For notational simplicity, and with no loss of generality,

we assume the propagation speed to be equal to 1, so that
the noiseless TDOAs correspond to the range differences.

In this setting, we define the TDOA function for the pair of
sensors (mj ,mi), i �= j as

τji : R3 −→ R
x �−→ τji(x) , (1)

where

τji(x) = ‖x − mj‖E − ‖x − mi‖E . (2)

For every source position x, the function τji(x) gives the value
of the noiseless TDOA between the two selected sensors. We
define the TDOA map as the function that collects all the q =
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Fig. 1. Crosses indicate the source positions on the left and the corre-
sponding TDOAs on the right. The two symmetric blue sources generate the
same blue TDOA. The image of τ1 depicting the feasible set is the segment
Θ1 = [−d10 , d10 ], contained in the linear space V1 = R.

n(n+1)
2 range differences (2) having n ≥ j > i ≥ 0 :

τn : R3 −→ Rq

x �−→ (τ10(x), τ20(x), . . . , τn n−1(x))T . (3)

Therefore, for every source position x, the map gives a q-
dimensional vector that contains all the TDOAs with respect
to x. In [19], τn has been called the complete TDOA map,
while the target set Rq of τn is referred to as the TDOA space.

The set of noiseless measurements generated by all the
potential source positions coincides with the image Im(τn)
of the TDOA map. We call it the feasible set Θn . This
means that any collection of noiseless TDOAs defines a point
τ = (τ10 , . . . , τn n−1)T ∈ Θn and viceversa. However, a com-
plete set of noisy TDOAs defines a point τ̂ = (τ̂10 , . . . , τ̂n n−1)T

that is not necessarily in Θn . On the contrary, τ̂ can be anywhere
in the TDOA space Rq . In particular, it is reasonable to assume
that the presence of an outlier measurement τ̂j i can push the
point τ̂ really far away from Θn . The purpose of the manuscript
is to delve deeper into this observation, in order to define a
rigorous and statistically justified procedure able to correctly
identify the erroneous coordinate τ̂j i of τ̂ as an outlier. To this
aim, it is necessary to gain a better understanding of the feasible
sets Θn . This is the goal of the next subsections.

B. The Case n = 1

In this situation the feasible set of TDOAs is very simple,
as shown in Figure 1. Two receivers m0 ,m1 and a source x
define a triangle, therefore τ10(x) is uniquely constrained by
the corresponding triangular inequalities. It follows that

Θ1 = {τ10 ∈ R | − d10 ≤ τ10 ≤ d10} . (4)

In Figure 1(a) we show a configuration of two microphones
m0 = (0, 0, 0)T ,m1 = (1, 0, 0)T and three different source po-
sitions x = (0.6,±0.7, 0)T , (−0.6, 0, 0)T . In Figure 1(b) the
corresponding range difference measurements in the TDOA
space are shown.

C. The Case n = 2

Let us consider the function τ2 |R2 defined as the restriction of
the TDOA map to R2 . This map was thoroughly studied in [19],
[21], in the context of planar source localization. Furthermore,
in [22] (Remark 10.4) is the proof that

Θ2 = Im(τ2) = Im(τ2 |R2 ).

Fig. 2. The crosses indicate the source positions in the physical space and
the corresponding TDOAs in Θ0

2 . The two blue sources generate the same
blue TDOA. The image of τ0

2 is the gray subset of the hexagon P 0
2 with

continuous and dashed sides. Let us observe that the medium gray region is
entirely contained in C+ ∩ P 0

2 . The continuous part of the boundary of the
hexagon and the blue ellipse E, together with the vertices Ri , are in the image,
while the dashed boundaries do not belong to Θ0

2 .

Here, we summarize the main properties of this set, that have
been detailedly described in the above references.

Θ2 is a surface embedded into R3 , being the image of
R2 through τ2 |R2 . Moreover, it is well known that the three
TDOAs are not independent, since they satisfy the Zero-Sum
Condition (ZSC) [15]. Indeed, the linear relation τ21(x) =
τ20(x) − τ10(x) holds for each x ∈ R3 . Geometrically speak-
ing, this means that three noiseless TDOAs are constrained on
the plane

V2 = {τ ∈ R3 | τ10 − τ20 + τ21 = 0} ⊂ R3 (5)

and so Θ2 ⊆ V2 .
Because of the above linear relation, in the literature it is

customary to work with a reference sensor, for example m0 , and
to consider only the two TDOAs τ10(x), τ20(x). Mathematically
speaking, let us define the reduced TDOA map

τ 0
2 : R3 −→ R2

x �−→ (τ10(x), τ20(x))T . (6)
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Fig. 3. The image of τ2 is the green subset of the hexagon p−1
3 (P 0

2 ) ⊂ V2 ,

while the image of τ0
2 is the red subset of P 0

2 . There is a 1–to–1 correspondence
between Θ2 and Θ0

2 via the map p3 .

The image Θ0
2 = Im(τ 0

2 ) is strictly related to the feasible
set Θ2 . Indeed, let us take the forgetting map

p3 : R3 −→ R2

(τ10 , τ20 , τ21)T �−→ (τ10 , τ20)T , (7)

i.e. the projection that takes care of forgetting the third coordi-
nate. Then, we have τ 0

2 = p3 ◦ τ2 , where ◦ is the composition
operator. Moreover, p3 is a natural bijection between the feasible
set Θ2 and Θ0

2 , as one can see in Figure 3. Hence, we can inves-
tigate the properties of the noiseless TDOA model by studying
the simpler map τ 0

2 . From now on, we separately consider the
cases of sensors in general and aligned configurations.

1) General Configurations: First of all, we observe that Θ0
2

is contained into the hexagon P 0
2 defined by the following tri-

angle inequalities:
⎧
⎪⎨

⎪⎩

−d10 ≤ τ10 ≤ d10

−d20 ≤ τ20 ≤ d20

−d21 ≤ τ20 − τ10 ≤ d21

. (8)

In particular, the vertices of the hexagon R0 = (d10 , d20)T ,
R1 = (−d10 , d21 − d10)T , R2 = (d21 − d20 ,−d20)T of P 0

2
correspond to the pairs of TDOAs associated to a source at
m0 ,m1 ,m2 , respectively (see Figure 2).

Without loss of generality, we assume that the receivers lie
on the horizontal plane and the displacement vectors d10 ,d20

are counterclockwise oriented. Let us consider τ 0 =
(τ10 , τ20)T ∈ R2 . Following the analysis of Section 6 in [19],
we give the following definition.

� W = det
(
d10 d20 e3

)
and the rotation matrix

H =

⎛

⎝
0 −1 0
1 0 0
0 0 1

⎞

⎠ .

� The vectors

v(τ 0) = H (τ20 d10 − τ10 d20), (9)

l0(τ 0) = H
(d2

20 − τ 2
20)d10 − (d2

10 − τ 2
10)d20

2W
. (10)

� The polynomials

a(τ 0) = ‖v(τ 0)‖2
E − W 2 ,

b(τ 0) = 〈v(τ 0), l0(τ 0)〉E . (11)

What we obtain are the following facts:
� a(τ 0) = 0 is the equation of the unique ellipse E tangent

to every facet of P 0
2 . We name E− and E+ the interior and

the exterior regions of E where a(τ 0) < 0 and a(τ 0) > 0,
respectively;

� b(τ 0) = 0 is the equation of a cubic curve C. We name
C− and C+ the regions where b(τ 0) < 0 and b(τ 0) > 0,
respectively.

In [19] is a proof of the fact that the image of τ 0
2 is given by

the set

Θ0
2 = E− ∪ (C+ ∩ P 0

2 ) ∪ R0 . (12)

In Figure 2(a) we show the plane containing the sensors at
m0 = (0, 0, 0)T ,m1 = (1, 0, 0)T ,m2 = (1, 1, 0)T and three
source positions at x = (0.4, 0.4, 0)T , (0.9,−0.2, 0)T and ap-
proximately (1.2,−0.625, 0)T . In Figure 2(b) it is depicted the
corresponding situation in Θ0

2 . Roughly speaking, the set Θ0
2 is

given by the interior of the ellipse and the three medium gray
regions. These three subsets of P 0

2 are on the same side of the
curve C, in the region C+ . The TDOA map is a bijection be-
tween the light gray regions in the physical and TDOA spaces,
while it is 2–to–1 in the medium gray regions (the interested
reader can find the complete analysis of these properties in [19],
[21]). Finally, Figure 3 shows the relation between Θ2 and Θ0

2
given by the forgetting map.

2) Aligned Configurations: Let us assume that m0 ,m1 ,m2

are aligned, then two of the inequalities (8) are redundant and the
polyhedron P 0

2 is the parallelogram with vertices R0 , R1 , R2 .
The image of τ 0

2 is the triangle T with the same vertices minus
the diagonal of the parallelogram.

In Figure 4(a) we show a configuration of three
aligned sensors m0 = (0, 0, 0)T , m1 = (1, 0, 0)T and m2 =
(−1, 0, 0)T and three different source positions x =
(0.6,±0.7, 0)T , (−0.6, 0, 0)T . In Figure 4(b) there is the set
Θ0

2 and the TDOAs associated to the source positions on the
left.

For future reference, we give the inequalities defining the
topological closure of T. Let us define c±±± = ±d10 ± d20 ±
d21 , then:

⎧
⎪⎨

⎪⎩

c−−+ τ10 + 2 d10 τ20 ≤ d10 c−++

2 d20 τ10 + c−−+ τ20 ≤ d20 c+−+

c+−− τ10 + c−+− τ20 ≤ d21 c++−
. (13)
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Fig. 4. The crosses indicate the source positions on the left and the corre-
sponding TDOAs on the right, where there is the image of τ0

2 . The polyhedron
P 0

2 is a rectangle. The dashed side of T is not in Θ0
2 .

D. The General Case (n > 2)

We do not have the full description of τn for n > 2 and
its study goes beyond the scope of this manuscript. Instead, in
this section we focus on a simpler problem, which is the analysis
of the linear relations that exist between the q TDOAs of the
complete set. We begin our analysis by introducing the space of
the linear relations among the TDOAs.

Definition 2.1. Let us consider n + 1 sensors at m0 ,
. . . ,mn in R3 , where n ≥ 2.

i) A linear relation l(a10 , . . . , an n−1) of the TDOAs is a
linear combination of the TDOA functions that is identi-
cally equal to zero. This means that

l(a10 , . . . , an n−1) =
n−1∑

i=0

n∑

j=i+1

ajiτji(x), (14)

where aji ∈ R with 0 ≤ i < j ≤ n, and l(a10 , . . . ,
an n−1) = 0 for every x ∈ R3 .

ii) The length of l(a10 , . . . , an n−1) is the number of non-
zero coefficients aji .

iii) We name Ln the set of all linear relations.
ZSCs are an example of linear relations. In particular, we

say that a ZSC is minimal if it involves only three sensors, or
equivalently, if its length is three:

τji(x) − τki(x) + τkj (x) = 0, 0 ≤ i < j < k ≤ n. (15)

A geometric interpretation of the linear relations between
the TDOAs can be found in [7]. Indeed, they define an n–
dimensional linear subspace Vn of the TDOA space Rq , and
Θn is a complicated three-dimensional semialgebraic variety
(i.e. a set defined by algebraic equations and inequalities [23])
embedded in Vn .

As we will see in the next Sections, our algorithm for the
removal of the outliers among TDOA measurements is based
on the linear relations that are valid in minimal sets of TDOAs.
With this in mind, the aim of the section is to show that the
minimal ZSCs play a key role among the possible linear relations
between TDOAs:

a) the minimal ZSCs are exactly the relations that involve
the minimum number of TDOAs;

b) any other relation can be decomposed into a linear com-
bination of minimal ZSCs.

To this purpose, we investigate in depth the properties of Ln .
There is a natural linear structure over this set. Indeed, it is
straightforward to verify that Ln is closed under the operations

� l(a10 , . . . , an n−1) + l(b10 , . . . , bn n−1) = l(a10 +
b10 , . . . , an n−1 + bn n−1);

� t · l(a10 , . . . , an n−1) = l(ta10 , . . . , tan n−1) for t ∈ R
and that they satisfy all the requirements for vector spaces.
Therefore, Ln is a real vector space.

Then, we can state the main theorem of this subsection, that
characterizes the space Ln and the role of ZSCs.

Theorem 2.2.
i) the minimal length of a non-trivial linear relation

l(a10 , . . . , an−1 n ) ∈ Ln is three;
ii) the set of length-three relations coincides with the set of

minimal ZSCs, up to multiplicative constants;
iii) a basis of Ln is given by the minimal ZSCs involving a

reference sensor, for example m0

τi0(x) − τj0(x) + τji(x) = 0, 0 < i < j ≤ n. (16)

Notice that properties (a) and (b) of the minimal ZSCs are a
direct consequence of Theorem 2.2. In the next section we will
analyze their consequences for our outlier removal procedure.

We conclude our investigation by proving the above theorem.
We need the following lemma.

Lemma 2.3. An equation in x ∈ R3 of the form

n∑

i=0

ωi ‖x − mi‖ = 0, ωi ∈ R, (17)

is an identity, i.e. it is satisfied for every x, if and only if ω0 =
· · · = ωn = 0. In general, equation (17) defines a set in R3 that
is contained in an algebraic surface.

Proof of Lemma 2.3: the lemma follows by adapting the proof
of Theorem 4.1. in [24]. �

Proof of Theorem 2.2: Let us define aii = 0 and aij = −aji .
Thus, we can rewrite the linear form in (14) as

l(a10 , . . . , an−1 n ) =
n−1∑

i=0

n∑

j=i+1

aji (‖x − mj‖ − ‖x − mi‖)

=
n∑

j=0

(
n∑

i=0

aji

)

‖x − mj‖.

By Lemma 2.3, the linear relation l(a10 , . . . , an−1 n ) = 0 is true
if and only if

n∑

i=0

aji = 0 for each j = 0, . . . , n. (18)

Let us define the skew-symmetric matrix

A =

⎛

⎜⎜
⎝

a00 a01 . . . a0n

a10 a11 . . . a1n

. . . . . . . . . . . .
an0 an1 . . . ann

⎞

⎟⎟
⎠=

⎛

⎜⎜
⎝

0 −a10 . . . −an0
a10 0 . . . −an1
. . . . . . . . . . . .
an0 an1 . . . 0

⎞

⎟⎟
⎠.
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Recalling (18), the coefficients of A define a linear relation if
and only if the vector 1 = (1 . . . 1)T lies on ker(A). We now
use the structure of the matrix A to prove the theorem.

It should be quite clear that the length of any non-trivial
relation is at least two. With no loss of generality, let us assume
that a10 �= 0. From the product of the first row of A and 1,
the second non-zero coefficient of A must be aj0 = −a10 for
some j = 2, . . . , n. We can assume a20 = −a10 . This, however,
implies that the product of the second and third row of A and 1
are a10 �= 0 and a20 �= 0, respectively, hence 1 /∈ ker(A). This
is why we have to consider length-three relations. In this case,
it is easy to check that there is only one way to set both the
above products to zero, which is by setting a21 = a10 = −a20 .
We therefore obtain a ZSC (up to a scaling factor), which proves
the first two claims of the theorem.

In order to prove the third claim, we begin with noticing
that (18) is a linear system of n + 1 equations in q variables.
The first n equations are clearly independent, while the last
one is a linear combination of the others. This follows from the
identity 1T A1 = 0, which is, in turn, a consequence of the skew
symmetry of A. The dimension of Ln is, therefore, q − n. As
the ZSCs (16) form an independent set of q − n linear relations,
they define a basis of Ln . �

We finally remark that the linear relations inLn do not depend
on the position of the receivers. This is in contrast, for example,
with both the inequalities (4) and (8, 13), which constrain Θ1
and Θ0

2 , respectively. In particular, this means that they are not
sensitive to the accuracy in the knowledge about the location of
sensors.

III. STATISTICAL TESTS ON G-TUPLES OF TDOAS

In the presence of measurement errors on the data, we must
resort to statistical modeling. Using the same notations of
Section II, let us consider n + 1 sensors. By assuming addi-
tive Gaussian noise, the TDOAs associated to a source in x are
described by the multivariate parametric model [6], [25]

τ̂n(x) = τn(x) + ε, (19)

where ε ∼ N(0,Σ). Additive error could be, as an example,
the error introduced by acquiring at a finite sampling frequency.
An outlier is assumed as a measurement that is not compatible
with (19). In order to identify the outlier, we work in a two-
step fashion. In this section we focus on the problem of testing
whether a G-tuple of TDOAs, G = 1, 2, 3, potentially contains
outliers. This information will then be used for outlier detection
and removal as explained in Section IV.

A. Statistical Noise Model

Under the assumption (19) and without the presence of out-
liers, the probability density function (p.d.f.) of the TDOA set
is

p(τ̂ ; τn(x),Σ) =
e−

1
2 (τ̂−τn(x))T Σ−1 (τ̂−τn(x))

√
(2π)q |Σ| . (20)

From a geometric standpoint (see, for example, [26]), the Fisher
matrix Σ−1 defines a Euclidean structure on Rq . In general,

given a symmetric and positive-definite matrix G of order q, it
allows us to define the scalar product

〈v1 ,v2〉G = v1
T Gv2 , v1 ,v2 ∈ Rq (21)

on the vector space Rq and the corresponding norm

‖v‖G =
√

vT Gv , v ∈ Rq . (22)

If G = Σ−1 , (21) and (22) are known in the statistical literature
as the Mahalanobis product and norm, respectively. Within this
setting, the p.d.f. (20) can be rewritten as

p(τ̂ ; τn(x),Σ) =
e
− 1

2 ‖τ̂−τn(x)‖2
Σ [ 1 . 0 ]−1

√
(2π)q |Σ| , (23)

which only depends on the square of the Mahalanobis distance
between τ̂ and τn(x).

As already noted in Section II, in the presence of noisy mea-
surements the point τ̂ can be outside the feasible set Θn . In
particular, a set of measurements containing an outlier may de-
fine a point very distant from Θn . Under the assumption (19),
the squared Mahalanobis distance between τ̂ and τn(x) has a
Chi–square distribution with q degrees of freedom [27]:

d(τ̂ , τn(x);Σ)2 = ‖τ̂ − τn(x)‖2
Σ [ 1 . 0 ]−1 ∼ χ2

q .

However, as we generally do not know the position x of the
source, we have to focus on the distance of τ̂ from Θn . In
the following, we discuss in details the cases involving sets
composed by one, two and three TDOAs.

B. G = 1: Test on Single TDOAs

Let us consider the null hypothesis H0,j i that τ̂j i is not an
outlier and the corresponding alternative hypothesis H1,j i =
HC

0,j i . Our goal is to build a test for assessing which one of
the hypotheses is correct. In particular - following common
statistical practice - we control the probability of type-I errors,
i.e. the probability of wrongly rejecting H0,j i in favor of H1,j i :

P [reject H0,j i |H0,j i true] ≤ α, (24)

α being a pre-defined probability value (typically 5%). With this
goal in mind, we define a test statistic and compute a p-value λij ,
which, under the null hypothesis H0,j i , measures the probability
that the statistic be equal to or larger than its observed value.
If the p-value of the test is larger than α, the null hypothesis is
accepted, otherwise it is rejected.

Let us call Θ1,j i the feasible set of the single TDOA τ̂j i .
As seen in Section II, we have Θ1,j i = [−dji , dji ]. A natural
choice for the test statistic is the squared Mahalanobis distance
d(τ̂j i ,Θ1,j i ;σji)2 . We have:

d(τ̂j i ,Θ1,j i ;σji) =

⎧
⎪⎨

⎪⎩

0 if τ̂j i ∈ Θ1,j i ,

|τ̂j i | − dji

σji
otherwise.

(25)

To compute the p-value of the test we need to find the
distribution of the statistic under the null hypothesis. Un-
fortunately, this depends on the true parameter τji , that is
unspecified and is only known to lie in Θ1,j i . On the other
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Fig. 5. In the preprocessing of the TDOAs, we eliminate every τ̂j i that is
not sufficiently close to the feasible set Θ1 ,j i = [−dj i , dj i ]. The acceptance
region Ij i corresponds to Θ1 ,j i plus the grey segments. A TDOA lying on one
of them is not considered an outlier, even though it would not be feasible in a
noiseless scenario.

hand, P [reject H0,j i |H0,j i true] is maximized when τji lies on
the boundary of the feasible set, e.g. if τji = dji . Hence, in
order to compute λji we put us in this extreme situation, so
that P [reject H0,j i |H0,j i true] ≤ α regardless of the unknown
value τji .

Based on the analysis in [28], [29], we have the following
consequential facts:

i. if the noise σij is negligible with respect to dji , we can
approximate Θ1,j i with the half–line (−∞, dji ];

ii. the squared Mahalanobis distance d(τ̂j i ,Θ1,j i ;σji)2 has
the same probability to be equal to 0 or to follow a Chi-
square distribution with one degree of freedom. So, the
test statistic distribution is a mixture between a Dirac
delta on zero (that we denote with χ2

0), and a χ2
1 :

d(τ̂j i ,Θ1,j i ;σji)2 ∼ 1
2
χ2

0 +
1
2
χ2

1 ;

iii. the p-value of the test can be computed as

λji =
1
2

(
1 − Fχ2

1
(d(τ̂j i ,Θ1,j i ;σji)2)

)
,

where Fχ2
1

is a Chi-square cumulative distribution func-
tion (c.d.f.) with one degree of freedom.

The measurements τ̂j i whose p-values λji are lower than α are
marked as outliers, and removed from the set of measurements.
By setting α = 5%, we are guaranteed that the probability of
wrongly removing an inlier is 5% in the worst case. At the end,
we are able to define the so-called acceptance region for τ̂j i as

Ij i = [−dji − γ2α,j i , dji + γ2α,j i ], (26)

where γ2α,j i = σji

√
F−1

χ2
1
(1 − 2α). The TDOA is considered

an outlier if τ̂j i /∈ Ij i (see Figure 5).
The single TDOA test is a refinement of the usual practice

of removing every τ̂j i that does not satisfy the corresponding
triangular inequality [15]. As a matter of fact, we can consider
it as a form of preprocessing of the measured data and in the
rest of the manuscript we will assume to always perform it.

C. G = 2: Test on Pairs of TDOAs

Let us consider a pair of TDOAs τ̂j i , τ̂ki estimated from the
signals acquired by a shared sensor of index i ∈ {0, . . . , n} and
two other sensors of indices j, k, where 0 ≤ j < k ≤ n and
k, j �= i. The TDOAs define the point τ̂ i

kj = (τ̂j i , τ̂ki)T ∈ R2 ,

whose corresponding feasible set Θi
2,kj has been described in

Sections II-C1 and II-C2, for the case i = 0, j = 1, k = 2.
For investigating the presence of at least one outlier in τ̂ i

kj , we
proceed as in the previous case. For each considered microphone

pair, we need to construct a statistical test on the hypotheses

Hi
0,kj : τ̂ i

kj does not contain outliers; Hi
1,kj = HiC

0,kj . (27)

The test statistic is again the squared Mahalanobis distance
d(τ̂ i

kj ,Θ
i
2,kj ;Σ

i
kj)

2 between τ̂ i
kj and Θi

2,kj , which depends on
the (2, 2) covariance matrix Σi

kj associated to τ̂j i , τ̂ki .
As for the test G = 1, we need to find the distribution of

the statistic under the null hypothesis, considering the worst
situation that is when τ i

kj lies at the boundaries of the feasible
set. However, even in such a case, the distribution of the squared
Mahalanobis distance is not univocally determined. Consider
the following two extreme cases (see [28], [29] for details):

i. the true TDOA vector τ i
kj is an interior point of an edge

of the feasible set. If the size of the noise is low with
respect to the length of the edge, the feasible set can be
approximated with a half plane. Therefore:

d(τ̂ i
kj ,Θ

i
2,kj ;Σ

i
kj)

2 ∼ 1
2
χ2

0 +
1
2
χ2

1 ;

ii. the true TDOA vector τ i
kj corresponds to a vertex of

Θi
2,kj . In this case the distribution is a mixture between

a Dirac delta in zero, a chi-squared with one degree of
freedom and a chi-squared with two degrees of freedom,
whose mixing probabilities depend on the local geometry
of the feasible set. For instance, if τ i

kj coincides with R0

in Figure 4, we have:

d(τ̂ i
kj ,Θ

i
2,kj ;Σ

i
kj)

2 ∼ 1
4
χ2

0 +
1
2
χ2

1 +
1
4
χ2

2 .

In general situation, the distribution of the test statistic is

d(τ̂ i
kj ,Θ

i
2,kj ;Σ

i
kj)

2 ∼ β0χ
2
0 + β1χ

2
1 + (1 − β0 − β1)χ2

2 ,

with mixing probabilities (β0 , β1 , 1 − β0 − β1) depending on
the location of τ i

kj .
This means that also the p-value of the test is a function

of the true TDOAs. However, following usual statistical prac-
tice [28] (and also for containing the computational cost of the
algorithm), we are interested in defining a test that does not
depend on the unknown true parameters of the model. This is
achieved by globally approximating β0 , β1 with the values that
best describes the distribution of the squared distance in most
situations. We remind that we are assuming the absence of any
information on the true TDOAs and the hypothesis of low noise
on the measurements, compared to the distances between the
sensors. Therefore, it is justified to deduce that the generic τ i

kj

belonging to the boundary of Θi
2,kj is not too close (in terms of

Mahalanobis distance) to any vertex of the feasible set. Based on
the previous discussion, we consequently choose β0 = β1 = 1

2
and so the p-value of test (27) is:

λi
kj =

1
2

(
1 − Fχ2

1
(d(τ̂ i

kj ,Θ
i
2,kj ;Σ

i
kj)

2)
)

. (28)

If λi
kj ≤ α, there is statistical evidence to say that the vector

τ i
kj has at least one outlier component. In this approach, the

acceptance region for G = 2 test is the offset of the feasible set

Θi
2,kj at Mahalanobis distance

√
F−1

χ2
1
(1 − 2α).
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Fig. 6. Given mi = (0, 0, 0), mj = (0, 1, 0), mk = (1, 1, 0), in medium
gray we depict Θi

2 ,k j . Once the analysis for G = 1 has been accomplished,

τ̂i
kj is guaranteed to be in the rectangle Ij i × Ik i delimited by the external

dashed lines. The only unexploited inequalities are the ones related to the lines
l±. Here, we aim at removing the TDOAs in the dashed gray region, so that the
simplified acceptance region is the hexagon given by the union of the medium
and light gray sets.

In Section IV, we will show how to merge the test results
on the various pairs of TDOAs in order to detect outlier mea-
surements. In the following, we focus instead on the efficient
computation of d(τ̂ i

kj ,Θ
i
2,kj ;Σ

i
kj). If τ̂ i

kj is feasible, then the
distance is equal to zero. Otherwise, we should take the distance
of τ̂ i

kj from the topological boundary ∂Θi
2,kj of the feasible set.

Our strategy is based on two points:
� thanks to the preprocessing performed on individual

TDOAs and detailed in Section III-B, we assume that τ̂ i
kj

lies in the rectangle Ij i × Iki ;
� for every configuration of the sensors, we define the sim-

plified acceptance region of the measurements, which is
a good approximation of the true acceptance region with
more manageable geometric features.

There are two different situations, depending on the sensors
arrangement.

1) Sensors in General Position: ∂Θi
2,kj is a complicated set,

being the union of three arcs of ellipse and six linear segments
(see Figure 6). In order to compute the exact distance we should
use an ad hoc algorithm. Since this computation is to be per-
formed for every τ̂ i

kj , this could have a significant impact on
the computational costs of the outlier removal procedure. For
this reason, let us address an easier problem.

The idea is to approximate the feasible set Θi
2,kj with the

hexagon P i
2,kj defined by:

⎧
⎪⎨

⎪⎩

−dji ≤ τji ≤ dji (29a)

−dki ≤ τki ≤ dki (29b)

−dkj ≤ τki − τji ≤ dkj (29c)

Thus, the goal becomes the elimination of the points τ̂ i
kj that

are sufficiently far from the hexagon.
The first four inequalities (29a, 29b) have been exploited

in the analysis for G = 1 and the outliers that do not satisfy
them have already been removed. Hence, the only inequalities
to take care are (29c). Let l± be the lines defined by τki − τji =
±dkj , respectively, andn = (1 − 1)T . Through straightforward

computations, we obtain the Mahalanobis distances between
τ̂ i

kj and the lines l±:

d(τ̂ i
kj , l±;Σi

kj) =
|τ̂ki − τ̂j i ∓ dkj |

‖n‖Σi
kj

.

Finally, the approximation of d(τ̂ i
kj ,Θ

i
2,kj ;Σ

i
kj) is given by

f(τ̂ i
kj ;Σ

i
kj) =

⎧
⎪⎨

⎪⎩

0 if |τ̂ki − τ̂j i | ≤ dkj ,

d(τ̂ i
kj , l+;Σi

kj) if τ̂ki − τ̂j i > dkj ,

d(τ̂ i
kj , l−;Σi

kj) if τ̂ki − τ̂j i < −dkj .

(30)

From a geometric standpoint, this function gives the distance
between τ̂ i

kj and the strip bounded by l±.

The simplified acceptance region associated to f(τ̂ i
kj ;Σ

i
kj)

is depicted in Figure 6. The approximation in it concerns the
three dashed curvilinear boundaries of Θi

2,kj and the vertexes
R0 , R1 , R2 , where the true acceptance set has rounded edges.

2) Sensors in Aligned Position: the topological closure of
Θi

2,kj is the triangle defined by
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c−−+
kji τji + 2 dji τki ≤ dji c−++

kji (31a)

2 dki τji + c−−+
kji τki ≤ dki c+−+

kji (31b)

c+−−
kji τji + c−+−

kji τki ≤ dkj c++−
kji (31c)

where c±±±
kji = ±dji ± dki ± dkj . Let us name lj i , lki , lkj the

lines containing {Ri,Rj}, {Ri,Rk}, {Rj ,Rk}, respectively.
They support the boundary of Θi

2,kj . The corresponding dis-
tances of a point τ̂ i

kj from the lines are:

d(τ̂ i
kj , lj i ;Σi

kj) =
|c−−+

kji τ̂j i + 2 dji τ̂ki − dji c−++
kji |

‖(c−−+
kji 2 dji)T ‖Σi

kj

,

d(τ̂ i
kj , lki ;Σi

kj) =
|2 dki τ̂j i + c−−+

kji τ̂ki − dki c+−+
kji |

‖(2 dki c−−+
kji )T ‖Σi

kj

,

d(τ̂ i
kj , lkj ;Σi

kj) =
|c+−−

kji τ̂j i + c−+−
kji τ̂ki − dkj c++−

kji |
‖(c+−−

kji c−+−
kji )T ‖Σi

kj

.

According to the configuration of sensors, one or two in-
equalities in (31) correspond to the triangular inequalities for
the single TDOAs (see Figure 7). Thus, they have already been
used in the analysis for G = 1. We have the following situations:

i. if mi lies between mj and mk , the feasible set is the
one depicted on the left of Figure 7. The only inequality
that has not been used is (31c). In this case, the relevant
function for the outlier removal procedure is

f(τ̂ i
kj ;Σ

i
kj) =

{
0 if holds,

d(τ̂ i
kj , lkj ;Σi

kj) otherwise.
(32)

It gives the distance between τ̂ i
kj and the half–plane

bounded by ljk and containing Θi
2,kj ;

ii. if mi does not lie between mj and mk , we obtain a
feasible set of the type depicted on the right of Figure 7.
The relevant inequalities are (31a) and (31b), that define
four distinct regions of the real plane. However, we are
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Fig. 7. The feasible sets Θi
2 ,k j and Θk

2 ,j i , for the sensors mi =
(0, 0, 0), mj = (1, 0, 0), mk = (−1, 0, 0). Once the analysis for G = 1 has
been accomplished, the TDOAs are guaranteed to be in the rectangles delimited
by the external dashed lines. In the G = 2 analysis, we remove the TDOAs in
the dashed gray regions. On the left, the simplified acceptance region is given
by the inequality related to the diagonal lk j . On the right, we use the two
inequalities related to the lines lk i and lk j .

interested in the TDOAs lying on the rectangle Ij i × Iki .
Therefore, in this case we define the function

f(τ̂ i
kj ;Σ

i
kj) =

⎧
⎪⎨

⎪⎩

d(̂τ i
kj , lki ;Σi

kj) if only (31a) holds,

d(̂τ i
kj , lj i ;Σi

kj) if only (31b) holds,

0 otherwise.
(33)

Geometrically, it gives the distance between τ̂ i
kj and the

line supporting the closest diagonal side of Θi
2,kj , for

points τ̂ i
kj in Ij i × Iki but not belonging to the feasible

set (see Figure 7).
The simplified acceptance regions for the two scenarios are

depicted in Figure 7. Again, we have an approximation near the
vertexes R0 , R1 , R2 , where the true acceptance set has rounded
edges. Preliminary results for sensor configurations tested in
Section V showed that the functions f(τ̂ i

kj ;Σ
i
kj) defined in

(30), (32) and (33) well approximate d(τ̂ i
kj ,Θ

i
2,kj ;Σ

i
kj) in the

context of outlier removal. We can therefore run the statistical
tests using an approximation of the p-values (28) defined as

λi
kj ≈ 1

2

(
1 − Fχ2

1
(f(τ̂ i

kj ;Σ
i
kj)

2)
)

. (34)

We postpone to future investigations a deeper study on the ef-
fect of this choice, considering the impact of different array
geometries.

D. G = 3: Test on Triplets of TDOAs

Consider now the triples of TDOAs estimated from the
signals measured by three sensors. We call them τ̂kji =
(τ̂j i , τ̂ki , τ̂kj )T ∈ R3 , where 0 ≤ i < j < k ≤ n. The feasible
set of τ̂kji is Θ2,kj i (see Figure 8), which is a subset of the

Fig. 8. The feasible set Θ2 ,k j i is a subset of the polytope P2 ,k j i . The G = 3
test takes care of the points τ̂kji too far from the plane V2 ,k j i containing
Θ2 ,k j i .

linear space V2,kj i defined by the zero-sum condition

τji − τki + τkj = 0. (35)

As above, we need a statistical test on the hypotheses:

H0,kj i : τ̂kji does not contain outliers; H1,kj i = HC
0,kj i . (36)

Θ2,kj i is bounded by the triangular inequalities involving
τji , τki and τkj . For example, if the receivers are in general po-
sitions, we have twelve non-redundant inequalities of type (29).
They define a three–dimensional polytope P2,kj i with twelve
facets and Θ2,kj i ⊂ P2,kj i . The goal of G = 1, 2 tests is to elim-
inate the outliers too far from P2,kj i . What remains to take care
of are therefore the points τ̂kji that are close to the polytope,
but are too distant from V2,kj i .

Given n = (1 − 1 1)T , the Mahalanobis distance between
τ̂kji and V2,kj i is

d(τ̂kji, V2,kj i ;Σkji) =
|τ̂j i − τ̂ki + τkj |

‖n‖Σkji

, (37)

where Σkji is the covariance matrix associated to the three
TDOAs that we are considering. In this case, if τ̂kji does not
contain outliers, one has exactly

d(τ̂kji, V2,kj i ;Σkji)2 ∼ χ2
1 . (38)

In particular, the distribution does not depend on the unknown
true TDOAs.

The p-value of test (36) is

λkji = 1 − Fχ2
1
(d(τ̂kji, V2,kj i ;Σkji)2). (39)

E. Discussion

In the above analysis, we considered only some kind of sub-
sets of the complete set of TDOA measurements. In particular,
we never took G–tuples of TDOAs involving more than three
receivers. The practical reason behind this choice is the lack of
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the description of the feasible sets Θn for n > 2. However, there
are also statistical and computational arguments in support of
our procedure.

From a statistical standpoint, we can list two relevant advan-
tages of considering groups of few TDOAs at a time:

� in order to simplify the identification of the outliers, we
need subsets of TDOAs containing few of them, ideally no
more than one outlier per subset. But the number of outliers
is positively correlated to the cardinality of such subsets
and so it is correct to consider minimal data groups;

� the presence of noise on the measurements tends to mask
the presence of the outliers. This is particularly true if we
combine the errors from many measurements. Also in this
case, by taking minimal data subsets we can contain this
phenomenon most effectively.

From a computational standpoint, we should stress that our
approach is based on the linear relations (i.e. the ZSCs and
the triangular inequalities) that exist between the TDOAs, for
n ≤ 2. This implies that we only deal with simple closed-form
expressions, which we only have to compute a limited number
of times. Conversely, if n > 2 Theorem 2.2 tells us that, in order
to work with relations independent from the ZSCs, we should
consider nonlinear relations. This, however, would make the
algorithms more complicated in terms of computational cost as
well as robustness.

Finally, we briefly discuss the role of the squared Mahalanobis
distance as test statistic. In the statistics literature, an important
and widespread hypothesis test is the ratio likelihood test. Its
popularity is due to the Neyman–Pearson lemma [30], which
guarantees that it is the most powerful test between two simple
hypothesis. In order to define this test, one need the likelihood
functions of the two hypothesis. In our manuscript, we made
no assumption on the distribution of the outliers. However, in
the absence of any information, it is reasonable to think that
an outlier τ̂j i could assume any value in a sufficiently large
set containing the feasible set Θ1,j i , with equal probability. In
this hypothesis, one can compute the log-likelihood ratio and
easily obtain that it is equivalent (up to an additive constant)
to the squared Mahalanobis distance of the measured data from
the feasible set. This reasoning strongly supports our choice of
the test statistic.

IV. OUTLIER IDENTIFICATION

In the previous Section, we showed how to perform statistical
tests on each Group of G = 1, G = 2 or G = 3 TDOAs sepa-
rately. In the case of G = 1, each test directly identifies whether
the considered TDOA is an outlier. For this reason, this step is
treated as a pre-processing that is always applied to remove out-
liers before proceeding with other tests. After pre-processing,
we have up to 3

(
n+1

3

)
and

(
n+1

3

)
(possibly dependent) tests for

G = 2 and G = 3, respectively. These tests, performed sepa-
rately, are only able to determine whether at least one TDOA in
the group is a possible outlier, but do not provide any informa-
tion on which one it is.

In this section, we focus on outlier identification within the
available TDOAs by merging results from tests performed on

multiple G-tuples. This is done by exploiting two methods avail-
able in the statistical literature: multiple testing [31] and com-
bined testing [32], [33]. More specifically, we devise an iterative
algorithm that exploits multiple testing to detect whether out-
liers are still present within the available measurements, and
combined testing to remove them.

A. Multiple Testing

In both cases of G = 2 and G = 3, each TDOA τ̂j i is included
in several tests (namely, all triplets of sensors containing the ith
and jth ones). In Section III, we showed how to control the
probability of false detection in each separate test comparing p-
values to a threshold α. However, in order to control the whole
family of tests when they are considered at once, a p-value
correction strategy must be applied according to the dependency
structure of the tests. For example, let H

(1)
0,j i , . . . , H

(M )
0,j i be a set

of M null hypotheses pertaining τ̂j i , λ
(m )
j i be the corresponding

p-values, and I0 be the set of tests corresponding to true null
hypotheses. In the case of independent tests, if we set a value α
for the probability of false discovery of each test, the probability
of ending up with at least one false discovery on the whole family
of tests becomes

P [reject at least one H
(m )
0,j i |H(m )

0,j i true ∀m ∈ I0 ]

= 1 − P [accept all H
(m )
0,j i |H(m )

0,j i true ∀m ∈ I0 ]

= 1 − P [∩m∈I0 (accept H
(m )
0,j i |H(m )

0,j i true )]

= 1 − (1 − α)M 0 > α,

(40)

where M0 denotes the cardinality of the set I0 , i.e. the number
of true null hypotheses. This is why, when testing multiple
hypotheses, it is common practice to adjust the test results in
such a way to account for multiplicity.

Several multiple testing techniques exist in the statistics lit-
erature [31]. The method that we exploit in this article is the
Benjamini-Hochberg (BH) adjustment [34], [35], which com-
putes adjusted p-values λ

(m )
j i,BH for each test as follows:

� order the p-values in increasing order so that λ(1)
j i ≤ λ

(2)
j i ≤

. . . ≤ λ
(M )
j i ;

� compute the adjusted p-values λ
(m )
j i,BH = λ

(m )
j i M/m.

After the multiplicity adjustment, if

λji = min
m

{λ(m )
j i,BH | m = 1, . . . , M} ≤ α (41)

we say that τ̂j i is a potential outlier. However, the low value
of λji could be caused by the other TDOAs involved in the
corresponding test. To overcome this ambiguity, in the next
subsection we exploit combined testing.

B. Combined Testing

If at least one λji satifies condition (41), we infer that the
TDOAs dataset is affected by at least one outlier. In order to
compute how likely it is for τ̂j i to be the searched outlier, all tests
concerning this TDOA must to be considered and combined.
This can be done by simply applying the standardized Fisher
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combination function [36], [37]

Tji = − 2
M

M∑

m=1

ln(λ(m )
j i ) . (42)

This statistic is a combination of all tests including τ̂j i . The
lower are the p-values, the greater is Tji . By computing (42) for
all the measurements, the TDOA associated to the largest Tji

can be considered as outlier and can thus be removed from the
set.

C. Algorithm

The statistical procedures described above are jointly used
in our proposed outlier removal algorithm. We start from pre-
processed TDOAs, which are those that fall within the accep-
tance region defined in (26). For all the sensor pairs we correct
the p-values using the BH adjustment procedure. If at least one
of these p-values is smaller than α, we conclude that the mea-
surements contain outliers. If so, we compute the Fisher’s statis-
tic (42) and we remove from the measurement set the TDOA(s)
associated to the greatest Tji value. The whole procedure is
iterated until no outliers are detected anymore. The detailed
procedure is shown in Algorithm 1.

This algorithm can be applied considering only G = 2 or
G = 3, and it can also be applied first to G = 2 and then to
G = 3 or viceversa.

D. Computational Complexity

We now analyze the computational complexity of Algo-
rithm 1. To do so, we evaluate the number of iterations of the
two loops involved in the algorithm. The most extern while
loop is iterated until all the outliers are removed from the set of
pairs U . Thus, in the presence of Z outliers, it is in principle
executed for a maximum of Z iterations. The innermost for
loop cycles on the elements of U . We notice that complexity is
dominated by the computation of the adjusted p-values, which
involves the sorting of the elements of Wj i . The complexity
at each iteration is therefore in the order of O(|Wj i | log |Wj i |),
where |Wj i |) denotes the cardinality of Wj i . It is worth noticing
that number of elements in both U and Wj i diminishes at each
iteration of the external loop. However, the number of elements
removed at each iteration is difficult to predict, as it depends on
the number of outliers. We therefore limit ourselves to provide
an upper bound for the overall complexity, assuming that the
cardinalities of U and Wj i remains constant to their maximum
values, corresponding to the initial conditions. In particular, in
the worst case, the cardinality of U corresponds to the number
of microphone pairs, i.e. |Q| = q = (n + 1)n/2. The cardinal-
ity of Wj i is given by the number of elements of W in which
the ith and jth microphones are involved. It is easy to verify
that |Wj i | = 2(n − 1) when G = 2 and |Wj i | = n − 1 when
G = 3. Therefore, in general |Wj i | ∝ n.

In the light of these observations, we can conclude that the
upper bound for the computational complexity is

O(Z · q · n log(n)) . (43)

Expressing it with respect to the number of microphones, we
finally obtain

O(Z · n3 log(n)) . (44)

In the worst possible scenario, the number of outliers approaches
the number of measurements, i.e. Z ≈ q, thus the upper bound
rises to O(n5 log(n)) in this case. However, in practical situa-
tions it is more realistic to assume Z � q.

E. Remarks

In the described Algorithm the BH adjustment is separately
performed on each set of p-values pertaining to each TDOA
τ̂j i separately. This choice favors the possibility of discarding
some inliers rather than missing possible outliers. This is the
most natural choice for all the applications in which even a few
outliers could severely hinder the achieved result (e.g., source
localization, array calibration, etc.).
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For those applications where it is more important to preserve
the largest number of inliers even at the price of a larger number
of outliers, a more conservative procedure can be devised. In-
deed, it would be possible to adjust in a single step all p-values
of all TDOAs. This variant would lead to a more conservative
procedure, the study of which is beyond the scope of this paper.

V. EVALUATION ON SYNTHETIC DATA

In order to evaluate the proposed methodology for outlier
removal, we run a series of tests simulating the use case of
acoustic TDOA measurements with microphone arrays. Notice
that the outlier removal algorithm is not strictly tailored to this
specific scenario, but can be used for whatever task is based on
time or range differences of arrivals.

We tested the proposed algorithm for the cases involv-
ing multiple/combined testing, i.e. for tuples of G = 2 and
G = 3 TDOAs. The case G = 1 was not explicitly tested, as its
behavior is completely deterministic. Indeed, all measurements
outside the acceptance region defined by (26) are detected as
outliers with probability 1. In the light of these considerations,
we tested four different possibilities for detecting and removing
outliers:

� G2: Alg. 1 applied to pairs of TDOAs;
� G3: Alg. 1 applied to triplets of TDOAs;
� G2+G3: G2 followed by G3;
� G3+G2: G3 followed by G2.
As microphones configurations we considered: i) an uniform

linear array composed by 7 microphones spaced by 10 cm;
ii) a 3D cross array composed by 7 microphones in posi-
tions (0, 0, 0)T , (±0.3, 0, 0)T , (0,±0.3, 0)T , (0, 0,±0.3)T m.
For each configuration we simulated TDOA acquisition from
an acoustic source located at x. More specifically, we corrupted
the nominal TDOAs adding zero mean gaussian noise with stan-
dard deviation σ = 0.7 cm and simulating the presence of a
given number Z of outliers. We run Monte-Carlo simulations
of this experiment testing different source positions and number
of outliers. In particular 100 source positions were randomly
selected within 2m from the array center, considering a 2D sce-
nario for the linear array and a 3D scenario for the cross array.
Outliers were modeled by selecting Z TDOAs and randomly
replacing each one of them with a value uniformly distributed
within the interval

Ij i \ [τji(x) − γα,ji , τji(x) + γα,ji ] .

This means that we consider as outliers values within the ac-
ceptance region (26), but out of (1 − α)th percentile of the
Gaussian distribution describing additive noise on the nominal
TDOA τji(x).

As a matter of comparison, the state-of-the-art robust denois-
ing (R-DEN) algorithm proposed in [17] were included in the
testing campaign. To enable a fair comparison, we informed
this method with the exact number of outliers present for each
Monte-Carlo run. Indeed, R-DEN require knowledge about the
maximum number κ of outliers present in the measurement set.

In order to evaluate the performance of each method, we re-
sorted to classical statistical metrics: i) true positive rate (TPR) is

Fig. 9. Simulation results averaged over 100 realizations using either the linear
(a)(c) or cross (b)(d) array.

the percentage of outliers TDOAs detected as such; ii) true neg-
ative rate (TNR) is as the percentage of inlier TDOAs detected
as such. The larger the TPR, the larger the number of outliers
we are correctly detecting. The larger the TNR, the larger the
number of inliers that we are keeping.

Figure 9 shows the obtained results averaging 1000 Monte-
Carlo runs for each source position and number of outliers.
Outliers range between Z = 0 (i.e., no outliers) and Z = 21
(i.e., no inliers) and α = 0.05 for all methods. Already at a
first glance it is possible to notice the inherent trade-off between
TPR and TNR: methods achieving a high TPR tend to exhibit
a low TNR. This means that the larger the number of outliers
that we remove, the larger the number of inliers that we remove
as well. Nonetheless, it is possible to achieve more promising
performance, such as TPR larger than 95% and TNR reaching
nearly 100% when 5 measurements out of 21 are outliers.

It is interesting to notice that G2 exhibits better performance
for the linear array rather than for the cross-shaped one. As
a matter of fact, in the linear case, microphones are always
aligned, thus the feasible set is the one depicted in Figure 7.
Conversely, using the cross-shaped array, when microphones
are not aligned the feasible set is the one depicted in Figure 6.
With a finer analysis we found that in this case of non-aligned
microphones the likelihood that an outlier will fall within the 2D
feasible region is larger than in the case of aligned microphones.
The intuition behind this behaviour is that the ratio between the
dashed gray region and the feasible set area in Figure 7 is larger
than in Figure 6.

From a general point of view, the use of G2 alone leads to the
worst performance in terms of TPR. However, its use together
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Fig. 10. Mean TDOAs error for the linear (a) and the cross (b) array. Results
are compared with the mean error relative to raw TDOAs (dashed line).

with G3 allows us to achieve a larger TPR than using G3 alone,
which motivates its use. We also notice that G2+G3 or G3+G2
are the most robust choices whenever it is acceptable to throw
away some good measurements in order to remove the largest
number of outliers.

As far as R-DEN is concerned, we observe that it generally
achieves lower TPR and TNR scores than the proposed methods.
Only in case of using the cross-shaped array R-DEN achieves
slightly superior performances compared to those of G2. It is
worth noticing, however, that the TPR behavior of R-DEN is ac-
tually meaningful only when the number of outliers is lower than
10. Above this value, the TPR starts increasing since R-DEN
tends to eliminate κ TDOAs from the measurement set. Clearly,
as the number of outliers increases approaching the total number
of TDOAs, the probability of correctly identifying the outliers
increases. In the extreme situation in which exactly 21 outliers
are present, R-DEN removes almost all the measurements from
the set, leading to a TPR very close to 100%.

In order to give more insight about the residual error on
TDOAs left after outlier removal, we compute the Mean Error

ME =
1
|U|

∑

(i,j )∈U
|τji − τ̂j i | , (45)

where U is the set of inlier microphone pairs indexes. Results
are reported in Figure 10, which shows the mean error for all the
algorithms under analysis and on raw TDOAs (i.e., the whole
set of measurement before outlier removal). We first notice that
outlier removal always reduces the mean error, which means
that the selected inlier TDOAs are closer to the groundtruth
than the raw TDOA set. Indeed, while the mean error of raw
data linearly grows with the number of outlier, outlier removal
algorithms keep the mean error at bay. Moreover, the mean error
of the 4 tested algorithms confirms the general trend observed
from the analysis of TPR and TNR. It is worth noticing that,
using any combination of algorithms involvingG3, it is possibile
to maintain the mean error constant at the minimum level up to
the presence of 10 outliers. As expected, the G2 performances
are slightly worse for the cross array. Nevertheless, even using
G2, the gap from the mean error of raw TDOAs is always
significant. The results related toR-DEN generally confirm what
we observed for the TPR and TNR scores. Indeed, R-DEN is
comparable to G2 only for the cross-shaped array case, while

TABLE I
MEAN TDOA ERROR [CM] OBTAINED ON REAL DATA APPLYING OUTLIER

REMOVAL SUPPOSING DIFFERENT σ VALUES. IN ANY CASE, OUTLIER

REMOVAL ENSURES BETTER PERFORMANCES THAN USING RAW

MEASUREMENTS

it exhibits worse performances compared to the other methods.
Finally, it can be observed that R-DEN achieves slightly better
results when the number of outliers is very high (i.e., greater
than 18). This fact is a further consequence of specifying the
parameter κ as an input of R-DEN. Indeed, in the rightmost part
of the plots, the TPR is very high compared to that achieved by
the proposed methods, i.e.R-DEN tends to remove more outliers
than the other algorithms, thus leading to a lower residual TDOA
error.

VI. CASE OF STUDY: ACOUSTIC SOURCE LOCALIZATION

In this Section we show the positive effect of TDOA out-
lier removal in a real-world application. More specifically, we
focused on TDOA-based acoustic source localization. A local-
ization system composed of four synchronized microphone ar-
rays was installed in a medium-sized (i.e., 7 × 7 × 3 m3) office
room, with reverberation time RT60 � 0.7 s. Within this room,
we considered a localization volume of about 4 × 2.5 × 2 m3 ,
with the microphone arrays located at four corners of the vol-
ume (two at the top and two at the bottom, at opposite sides).
Each microphone array is made of four sensors, deployed on
the vertices of a tetrahedron of side 40 cm. In this scenario, a
small loudspeaker emitted 30 s of male speech from 36 differ-
ent positions homogeneously covering the localization volume.
For each source position, each microphone acquired a signal at
48 kHz. Signals were segmented into windows of 4096 samples,
from which we selected the most spectrally rich ones, to discard
too harmonic-like portions of the recording. From the selected
frames, we measured TDOAs within each array, by picking the
maximum of the GCCs computed at all microphone pairs. Note
that we did not measured inter-array TDOAs, as the micro-
phone distance would make them not reliable [13]. Therefore,
for each frame we ended up with a total of 6 × 4 measurements.
The pre-processing step (i.e., tests for G = 1) was embedded in
the computation of the TDOAs, as peak-picking of GCCs was
restricted to the acceptance region defined in (26).

It is worth noticing that, due to the reverberation, peak-picking
of the GCCs may lead to erroneous TDOA estimation. More
specifically, outlier TDOAs may be generated by two distinct
phenomena (or a combination on them). On one hand, the pres-
ence of coherent reflections may introduce a bias in the position
of the main peak of the GCC. On the other hand, reflections can
generate secondary peaks in the GCC, which for some micro-
phone pairs may be stronger than the expected one [38].

Table I reports the mean TDOA error averaged over all the
analyzed time windows both considering raw TDOAs and the
application of outlier removal algorithms. As in this real-world
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TABLE II
RMSE [CM] ON SOURCE LOCALIZATION APPLYING OUTLIER REMOVAL

SUPPOSING DIFFERENT σ VALUES

TABLE III
AVERAGE NUMBER OF DETECTED OUTLIERS OVER THE AVAILABLE 6 × 4

MEASUREMENTS SUPPOSING DIFFERENT σ VALUES

case additive noise standard deviation σ is not known, we tested
outlier removal procedures using different values of σ ranging
from 0.5 cm to 1 cm (i.e., corresponding to approximately 1
sample at 48 kHz), which are negligible values with respect to
microphone distance, thus completely fulfilling the hypothesis
made in Section III. Results show that the error decreases when
outliers are removed through any of the proposed procedures.
When an algorithm involving G3 exploration is used, the error
is reduced by a factor greater than three. As expected from the
simulative results reported in Section V, G2 is the one with
worse performances. Moreover, it is interesting to notice that a
precise estimate of σ is not mandatory, as results remain pretty
stable.

In order to investigate the positive impact of reducing the
mean TDOA error, we also performed source localization for
each source position. To this purpose, we iteratively mini-
mized the Maximum-Likelihood cost function [25], providing
the room center position as the initial guess for the source loca-
tion. The average Root Mean Squared Error (RMSE) is reported
in Table II. Results show source localization highly benefits from
reducing the mean TDOA error. Indeed localization is more ac-
curate using only inlier TDOAs. The best accuracy is achieved
when methods involving G3 are considered. Also in this case,
localization is only slightly affected by the choice of the standard
deviation σ.

For the sake of completeness, Table III also reports the aver-
age number of rejected measurements (i.e., identified outliers)
by the different tested algorithms and configurations. On aver-
age, among the 6 × 4 available measurements, one to three of
them were removed as outliers.

VII. CONCLUSIONS

In this manuscript we proposed an algorithm for removing
outliers from sets of TDOA or RD measurements. This method
is developed exploiting the TDOA space framework, in which
outliers can be identified as they lie too far from the feasible
TDOA set. The algorithm exploits statistical testing procedures.
Specifically, after a pre-processing stage, multiple testing is used
to detect groups of G = 2, 3 TDOAs containing at least one

outlier. Combined testing is then used to remove the outlier
measurements.

The proposed approach has been first validated by means of
simulations, which proved the effectiveness of the algorithm
even in presence of many outliers. Moreover, as the algorithm
does not depend on any specific application, we selected the
task of acoustic source localization with microphone arrays for
testing the method in a real scenario. Also in this case, outlier
removal showed a positive effect, significantly improving the
localization accuracy.
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