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Abstract 

Nowadays, building energy models use parametric analyses to optimize design strategies considering multiple variables. 
Integrated dynamic models combining design tool and visual programming language (VPL) and simulation tools to calculate 
building performance with BIM tool for the whole-building energy simulation have been adopted in the recent studies. Through 
these tools, it is possible to identify parametric systems, which become a “genome”, where a rapid comparison of different 
alternatives is possible through fitness criteria defined by design goals. The aim of the paper is to use this concept and the 
suitable parametric tools such as Grasshopper for Rhinoceros to handle variable hypotheses on users’ occupancy that influence 
building energy performance. The paper focuses on occupancy variability applying the methodology to a university building 
located in northern Italy in the University of Brescia Campus to evaluate how generative modelling can represent an adequate 
approach to energy simulation of occupant behaviour. Sensors are now monitoring the real occupancy trend of the case study 
building and different scenarios defined in the parametric model could be compared to the real weekly. Using parametric tool and 
GA (Genetic Algorithms) can be analysed hundreds of occupancy patterns in order to better understand the influence of the 
occupancy on the building energy use and at the same time evaluate different strategies to save energy.  
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1. Introduction 

The building sector is facing the challenge of enhance energy efficiency through envelope and plants renovation, 
achieving a reduced consumption during the operational phase [1]. The environmental, economic and social 
outcomes of these processes involve the greenhouse emissions (GHG) reduction by cost-optimal solutions [2][3]. 
Renovation can be approached by trivial solutions given by standard guidelines, however missing both 
environmental goals measured in CO2 emission and final energy savings while not achieving substantial economic 
improvement. On the other hand, a deep intervention merging energy efficiency and strong use of renewables 
considered as an economically sustainable way, meeting CO2 targets whereas presenting the lowest energy 
consumption and moreover offering a social improvement by a huge job creation potential could be obviously a 
preferred strategy [4]. The European target for environmental upgrading in the long-term connected to the building 
sector is a reduction of about 88-91% in 2050 compared to 1990 levels [5]. In order to accomplish this aim, the 
European countries need to deal with the performance assessment of the existing building stock and reduce its 
energy use in the long-term period [6] considering the uncertainties given in the prediction of the energy behavior of 
actual buildings [7]. Nevertheless, uncertainty in a number of factors burdens an efficient approach to energy retrofit 
of existing buildings and energy modelling and tuning actual performance to simulated ones to provide reliable 
energy saving scenarios [8] is crucial for cost-optimal interventions [9].  

1.1. Accounting for occupancy variability 

Modelling realistical building energy behavior is a key factor to optimize energy management practices during 
the building lifecycle. However, it meets barriers given by factors such as discrepancy between design and as-built 
data, simulation settings and real parameters, standard operation schedules and actual users’ behavior, etc. [10]. The 
main key factors influencing the performance gap [11] are: for a) predicted performance: 1) design assumptions; and 
2) modelling tools; for b) actual performance: 1) built quality; 2) occupancy behavior; and 3) management & 
controls systems. Occupants’ behavior has a key role on the divergence between actual and predicted energy 
consumption [12][13]. Furthermore, studies based on statistical links between energy behavior and environmental 
constraints confirm that as the objectives of thermal comfort and energy savings clash, the user favors comfort 
losing the focus on energy efficiency [14][15]. Accordingly, occupants’ behavior is one of the most remarkable and 
variable factor in the building energy performance estimation, challenging to forecast and to simulate appropriately 
[16]. The issues correlated to occupancy and adopted in energy modelling are derived in the first step of the research 
[17] from realistic dynamic patterns generated stochastically [18]. The data envelopment of the stochastic schedules 
is used to simulate the potential variability in daily and hourly energy consumption due to changing operational 
patterns and to highlight the “performance gap” with respect to standard simulation settings. The proposed 
modelling approach regarded an initial modelling phase, however it can be extended and validated during real time 
building operation, by implementing coherent performance monitoring and benchmarking practices [19]. The 
research work constitutes the starting point of a more general activity aimed at integrating inverse modelling 
techniques in current design practices for building retrofit. The accessibility of a calibrated and validated building 
energy model is central in propose accurate thresholds of efficiency. In fact, a proper analysis of the effect of 
occupants’ behavior can be seen as an “occupant proofing” process, from building performance standpoint. In fact, 
modeling assumptions can turn into concerns, in terms of robustness and risk, when predicting future performance. 
This is especially significant in techno-economic viability assessments such as cost-optimal analysis [20][21] and 
life cycle cost (LCC) analysis [22][23][24], which are fundamental to delineate energy efficiency investments, or 
energy performance contracting (EPC).  

1.2. Research field and application  

The performance gap between energy forecast and actual consumption reaches dramatically high thresholds, as 
example, in University Campus buildings the difference can reach about +90% considering electricity, ranging to 
+130% including the thermal energy [25]. The environmental impact has been estimated in a +350% of CO2 
emission in comparison with the expected values. Wide-ranging studies and experimentations [26] work towards 
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bridging the gap (Fig. 1a), tuning the predictive models based on design data by actual metered data [27]. The 
performance gap casts questions about the application of physics principles, the difference between as-
built/refurbished and theoretical/documental construction. The input data adopted to outline the building energy 
model [28] as well as the value of a continuous information chain [29] between building information model (BIM), 
updated documentation for management [30] and building energy model (BEM) [31] are broadly discussed key 
aspects. Given that, nowadays the detail of the BIM model from which to derive the analytical model suitable to be 
used to perform the energy analysis is a not fully unveiled issue [32][33]. Real data recorded by rationally installed 
sensors in the building permits definition of energy demand scattering (Fig. 1b) and to reveal relationships between 
factors and correlated influences. In a data-driven process the requirement of information is undeniable [34] and 
confirmation of the correct assumptions and simulation strategies could be endorsed with available monitored data. 
In the case study, the starting phase of recording validation [35] and tuning process [36] is at a starting point. 

 

 
Fig. 1. CabonBuzz benchmarking to promote energy efficiency and CO2 reduction: data about University Campus energy benckmarking (a); 

Energy demand variability due to occupancy of the eLux Lab pilot building at University of Brescia Smart Campus (b). 

The proposed methodology (Section 2) is applied to the eLUX Lab at the University of Brescia Smart Campus 
(Section 3), an educational building composed by three floors with computer laboratories, lecture rooms, an aula 
magna and an atrium as distribution zone used as preferred space for the individual study by the students. In this 
paper, thanks to the previous studies about energy consumptions and occupancy it is possible to evaluate the results 
obtained through VPL tools and develop a new model to simulate all the different cases generated by the occupancy 
uncertainty. Using GA is possible to define new usage strategy (classroom and lab usage) in order to minimize the 
energy demand maintaining the same users’ number.    

2. Materials and methods 

The present study illustrates the application of a methodological approach to simulate building performance 
variability due to occupancy patterns for an education building. The performance modelling of this building presents 
relevant technical issues which are generally encountered in existing buildings (i.e. uncertainty in thermal 
characteristics, efficiency of technical systems, inadequate maintenance, high energy consumption, low level of 
internal environmental quality and highly variable and uncertain occupants’ behavior). Researches discussed how to 
integrate software tools to achieve improvements in energy performance in the design process [37], in the present 
research two main approaches have been undertaken [38]: 

 BIM used to support geometry definition in energy modeling BEM [39]; 
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 Integrated dynamic models combine a design tool, a visual programming language (VPL) and a building 
performance simulation tool [40] and parametric analysis with the aim of optimization using genetic algorithms 
[41]. 

This latter approach has a dramatically powerful potential used in the early stage of design and renovation 
optioneering including the visual programming languages with 3D modeling tools for the improvement of passive 
design practices by showing alternatives and in some cases allowing optimize parameters. The growing diffusion of 
computational design, parametrization and contemporary definition of multi-scenario analyses lead to a novel need 
to code for designers and engineers in order to customize digital tools to achieve specific multi objective tasks. 
Anyway, the core issue is that this need owes a deep effort due to shared languages and knowledge and often the 
designer is not able to code and the communication in the teamwork of the project needs is not easily implemented 
by information technology or computer science experts [42].  

2.1. Application of the VPL  

The VPL is a method used by designer to change parameters of the project in order to optimize component and 
design choices oriented to specific targets. Visual Programming is a type of computer programming where users 
graphically interact with program elements instead of typing lines of text code. In the present work Grasshopper 
[43] has been used. In a Visual Programming environment, numbers, sliders, operators and functions, list 
manipulation tools, graphic creators, scripts, notes, customizable nodes and nodes for other developers (e.g. 
optimization components) are created. The nodes are hardwired effectively in the virtual environment to generate a 
structured system of relationships and reactions. The software tool Grasshopper, enabled by Rhino 3D is a current 
VPL in the building industry event though others (e.g. Dynamo) [44] show an emergent diffusion due to 
interoperability skill. Therefore, Grasshopper is able to interact with a number of simulation-based environmental 
plug-ins such as Ladybug, Honeybee for energy analysis and moreover includes components for single and multi-
objective optimizations (i.e. Galapagos and Octopus).  

2.2. Methodological workflow 

The strategic method adopted in the research is developed by a workflow (Fig. 2) including the previous tools 
starting from the EnergyPlus model derived by the BIM model of the case study (Fig. 3 in section 3). Starting from 
previous steps of the research [45] a building energy model (BEM) to perform dynamic simulation have been 
realized by a SketchUp plug-in developed by Politecnico di Milano able the run of EnergyPlus calculation engine.  

Fig. 2. General workflow adopted to manage energy optimization process in Grasshopper environment. 

The EnergyPlus BEM model (i.e. idf file) has been introduced into Rhino 3D and the set-up has been refined into 
Grasshopper through Ladybug and Honeybee to fix the energy analysis features and then Octopus has been used to 
perform the occupancy pattern analysis by generative algorithms. 
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2.3. Genetic behavioral occupancy pattern analysis 

The occupancy pattern analysis is based on the occupancy in the building: in the university campus building, the 
use of the classrooms is intensive however, the actual attendance to the lectures is at the starting point of the 
monitoring phase. The use of the spaces during the weekdays is regulated by the lectures schedule and in the present 
work the occupancy patterns have been simulated by changing randomly the attendance value with sliders going 
from the maximum people capacity of the classroom to the a minimum defined by a probabilistic behavioral 
approach (Table 2 in Section 3). After that, the associated energy demand has been compared (Section 4) and the 
whole cloud point of possible values of energy demand has been plotted. The possible values include the hypotheses 
of extended schedules of use of the building in summer period as required in the novel educational spaces approach 
pursued at national level [47] aiming at opening the campus to the surrounding community and promoting a self-
sufficient energy and economic framework by social inclusion. 

3. The case study: eLux Lab at University of Brescia Smart Campus, Italy 

The case study is the eLux Lab at University of Brescia Smart Campus, Italy, is a ‘90s building used for lectures 
and informatics labs. The building aims to provide insights about smart control and optimized building management 
by detailed data acquisition and virtual environment (VE) modelling. The building is constituted by three floors with 
two computer labs located in the underground floor, two lectures spaces at the ground floor, an aula magna used for 
lectures and graduation days at the first floor and a glazed atrium (south-east façade). In Fig. 3 an external view of 
the building is shown (Fig. 3a) and the BIM model  generated from geometric data captured with Terrestrial Laser 
Scanner (TLS) is shown in a screenshot of the users’ flow simulation (Fig. 3b), furthermore the BEM model in 
Rhino 3D with a coherent thermal zoning with the different space uses is shown (Fig. 3c). 

  

 

Fig. 3. South-west and south-east façades of the eLux Lab at the University of Brescia Smart Campus, BIM model and BEM with thermal zoning. 

3.1. Thermal zones setting 

The building has been translated into a BEM with the geometrical and constructive thermal features derived by 
the previous step of the research and assuming the envelope characteristics in line with the age of the building as 
detailed documentation was lacking [45]. The building has four thermal zones with an occupancy schedule during 
the weekdays ranging between 7:00-19:00. In Table 1 the spaces and related thermal zone are described through the 
geometrical data (i.e. Dimensions), internal gains (i.e. Lighting and appliances and People) and losses (i.e. 
Ventilation) calculated on standard data based on the national scenario. The ventilation losses have been calculated 
according to the following formulas (1) and (2): 

V

Aiv
n smin      (1) 

nVV ka,       (2) 
where: n is the specific number of air changes [h-1]; vmin is the specific external air flow required in the occupancy 

period [m3/h per person] equal to 21.6 m3/h per person; is is the density of occupants [person/m2]; A is the surface 
area of the zone [m2]; Va,k is the air flow rate required [m3/h]; V is the net volume of the thermal zone [m3].  
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The ventilation is thus calculated on the basis of the variable of number of occupants defined by the occupancy 
patterns (Section 3.2).  

The internal gains are defined on the basis of a detailed survey of the equipment [17] of each room. The total 
amount of internal heat gains used in building energy simulation is related to the number of people (and their 
metabolic rate) and to the equipment (i.e. electric appliances and lighting). The internal gains due to electrical 
appliances (and the related energy consumption) are partially dependent on occupancy [18][46]. The values of the 
people gains can be calculated according to the following formulas (3): 

A

AMn
Q DUo

p
       (3) 

where no is the number of occupants [-]; M is the metabolic heat [W]; ADU is the DuBois corporal area for a 
standard person (e.g. equal to 1.8 m2 for a 1.73 height and 70 kg male student); A is the surface area of the zone 
[m2]. The gains due to equipment (i.e. Lighting and appliances) are calculated as in the formula (4): 

, , , ,l ind l dep app ind app dep
eq l app

P P P P
Q Q Q

A A
    (4)  

where Pl,ind is the power in the zone lighting (e.g. security lighting | occupancy-independent) [W]; Pl,dep the power 
in the zone for lighting (occupancy-dependent |  connected to the operation of zones) [W]; Papp,ind is the power for 
electrical appliances of the zone (e.g. beamer, sound, PC |  occupancy-independent but connected to the operation of 
zones) [W]; Papp,dep is the power for electrical appliances of the zone (e.g. laptops |  occupancy-dependent) [W].  

The amount of internal gains have been divided into user dependent and user independent considering some 
internal gains due to safety lights and constant loads of the lecture spaces (e.g. audio and video equipment) and 
variables related to equipment used by the students and burdening the standard energy consumption of the building 
and besides producing heat (e.g. laptop, mobile devices, etc.). 

Table 1. Space of the building, thermal zones and geometrical and thermal balance specific data. 

Location Space Zone Dimensions  Lighting and appliances  People  Ventilation  

Area     [m2] Volume 
[m3] 

User independent 
[W/m2] 

User dependent 
[W/m2] 

Gains 
[W/m2] 

Air changes 
[m3/h] 

Floor Name n. A V Pl,ind Papp,ind Pl,dep Papp,dep Qp Standard 

Underground MLAB1 1 151.8 455.4 0.76 60.95 15.22 18.22 39.84 1639 

MLAB2 1 207.9 623.8 0.76 60.95 15.22 18.22 42.59 2246 

Ground Atrium 2 178.3 534.8 1.40 1.58 28.01 1.98 33.46 1952 

MTA 3 177.5 532.4 1.28 2.50 25.68 5.93 101.78 1925 

MTB 3 180.8 542.3 1.28 2.50 25.68 5.93 102.23 1917 

First M1 4 337.5 1012.4 2.44 2.11 7.34 8.89 83.85 3645 

The internal gains due to people vary considering the actual schedule of use of the building (i.e. lecture in a space 
and daily/weekly duration) however, approximation has been introduced: the hourly values in the weekdays are an 
average realized on the time slot (Table 2). In the weekends a constant occupancy related to the zone and 
specifically focused in the morning has been set.  

3.2. Occupancy patterns simulations  

As specified in the paragraph 2.1 a VPL methodology has been used, in particular the Grasshopper definition is 
divided in five main parts (Fig. 4): import and visualization of IDF file, internal zone loads, construction of building 
occupancy schedule, EnergyPlus simulation tools and genetic optimization component. Importing the IDF the 
Honeybee component reconstructing the thermal zone geometry and regenerating in Grasshopper environment the 
opaque and transparent building construction layers. In the second part of the script all the unitary loads value, as for  
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 Table 2. Week average hourly occupancy range in different thermal zones (during week). 

 Occupancy range for each thermal zone (n° of people) 

 8 am 9 am 10 am 11 am 12 am 1 pm 2 pm 3 pm 4 pm 5 pm 6 pm 7 pm 

Zone 1 0 to 40 40 to 
140 

80 to 
140 

80 to 
140 

40 to 
140 

40 to 
140 

80 to 
140 

80 to 
140 

80 to 
140 

0 to 
140 

0 to 80 0 to 40 

Zone 2 20 to 
60 

20 to 
60 

20 to 
60 

20 to 
60 

20 to 
60 

20 to 
60 

20 to 
60 

20 to 
60 

20 to 
60 

20 to 
60 

20 to 
60 

20 to 
60 

Zone 3 0 to 
200 

0 to 
200 

0 to 
300 

100 to 
340 

300 to 
340 

100 to 
340 

200 to 
340 

300 to 
340 

200 to 
340 

0 to 
300 

0 to 
100 

0 to 
100 

Zone 4 0 to 
160 

0 to 
160 

80 to 
160 

80 to 
160 

0 to 
160  

80 to 
160 

80 to 
160 

80 to 
160 

0 to 
160 

0 to 
160 

0 to 80  0 to 80 

 

instance equipment load per area, lighting density and ventilation per person are defined. Starting from the hourly 
occupancy range for the different thermal zone defined as function of lecture schedule and preliminary studies as 
specified in Table 2 a parametric occupancy profile has been created. In detail the annual hourly occupancy pattern 
has been obtained by applying a recursive series (a weekday series and weekend series) of hourly data for each 
thermal zone and then duplicated for the number of weeks with the same schedule (spring and fall Italian semester 
and summer season). Twelve different slider for each thermal zone controlling the people number during daily hours 
in order to manage individually the occupancy hourly rates have been set-up. The slider increment step is set up 
equal to twenty people; this step has been defined based on preliminary energy simulation carried out in order to 
understand the users influence on the energy balance of the thermal zones. A 20 people step represents a good 
compromise between the EnergyPlus sensibility and the number of energy analysis. Using this parametric approach 
is possible to investigate nimbly different occupancy combination and connect the Grasshopper script with genetic 
optimization tools such as Octopus. 

 

Fig. 4. Grasshopper definition and used optimization workflow.  

Once defined the energy model settings and the occupancy profile, using the Honeybee components a new IDF 
file is created and the EnergyPlus simulation is started directly in Grasshopper environment. In the case study in 
order to evaluate the influence of the variability of the occupancy, the analyses have been carried out with two 
different approaches: 1) a parametric one modifying manually the number of people contemporary in the university 
building and the other 2) using genetic optimization algorithm. Modifying parametrically the occupancy pattern for 
the different thermal zone it is possible to figure out how the number of people and their spatial and temporal 
distribution influence heating and cooling consumptions. In particular, various scenarios, for instance medium, 
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minimum, maximum occupancy and, maintaining constant the total number of people, different occupancy 
distribution such as Gaussian (max people in the middle part of the day) or inverted Gaussian (max at the beginning 
and at the end of the day) have been investigated and compared (Section 4). To conclude the parametric analysis has 
been studied the energy consumption variations in case of new use configuration during the summer season. In 
particular, the aim was to seek to understand the change occurring increasing the number of people in the period 
from June to September. Starting from the occupancy profiles used during the year different reduction coefficients 
equal to 10%, 30%, 60% and with diverse profile in the different thermal zones in order to define the solution 
providing the higher energy saving (e.g. 60% atrium and classrooms, 10% labs and aula magna) have been applied. 

4. Results 

4.1. Occupancy parametric analysis 

The results show the cases analyzed in the research wok. The minimum occupancy level (Case 1) is an extreme 
condition which is rather infrequent, however it provides the minimum energy consumption as the lower band of the 
values. The daily changing distribution of the users inside the building produces a variation of about 5-8 kWh/m2 
year in winter period. In summer period the occupancy value assumed promote a blocked threshold of energy 
consumption based on medium consumption. The occupancy in the different thermal zones are set up to 60% in the 
classroom and in the atrium while the aula magna and the PC labs have a 10% of occupancy. The cooling energy 
consumption usually grows with increasing users’ number (Case 3). The energy setting allows to contain the 
consumption: in the case of medium rate of occupancy (Case 2) the increase of loads is about +2 kWh/m2 year (Case 
4). On the other hand, if the occupancy reaches the maximum level, the increased cooling need reaches the 27%.  

  

Fig. 5. Energy demand results with different occupancy pattern.  

4.2. Genetic optimization 

After parametric simulation the feasibility and accuracy of genetic optimization process using the Octopus plug-
in based on Hypervolume Estimation Algorithm [48] has been investigated. Compared to a parametric approach 
using a genetic algorithms once defined the genomes, in our test case the number of people present each hour inside 
the building, and the target energy consumption value, will be the component automatically to find the optimized 
solutions. Fig. 6 shows all the solutions obtained through GA, each point is a mathematical solution of the 
performance of that particular occupancy profile. Red cubes (Fig. 6) represent the optimized solutions that lie on the 
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Pareto front [49], these solutions minimize the difference between thermal energy simulation result and the target 
value (Medium Occupancy). 

 

Fig. 6. Pareto front results (red colored cubes represent the optimized solution, minimum gap between objectives and energy consumption). 

5. Conclusion 

The predicted energy performance based on standard profiles demonstrates evidence of inadequacy to describe 
the real use of the building. The proposed methodology benefits of VPL to define a structure in which the users’ 
variable can be predicted through advanced modelling techniques. The advantage is to reduce the manual 
implementation and time-consuming procedures of re-setting of the model to simulate variable behaviors and 
possible configurations. A more detailed description of the hourly schedule will be implemented to increase 
accuracy and tune the model based on installed counting-people sensors data. Automation systems and sensing can 
play an important role in understanding the interaction with occupants by contributing detailed information useful to 
unveil the dynamic operation patterns. In the first set of simulations, using parametric tool and GA has been possible 
to identify different occupancy distributions that allow to save energy compared to the actual people range inside the 
building.   

Eventually, the GA seems to be suitable to be adopted to promote a process of optimized convergence of results 
to energy bills to bridge the performance gap between predicted and actual consumption by a cutting-edge 
workflow. 
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