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Matched asymptotic solution for crease nucleation
in soft solids
P. Ciarletta 1,2

A soft solid subjected to a large compression develops sharp self-contacting folds at its free

surface, known as creases. Creasing is physically different from structural elastic instabilities,

like buckling or wrinkling. Indeed, it is a fully nonlinear material instability, similar to a phase-

transformation. This work provides theoretical insights of the physics behind crease

nucleation. Creasing is proved to occur after a global bifurcation allowing the co-existence of

an outer deformation and an inner solution with localised self-contact at the free surface. The

most fundamental result here is the analytic prediction of the nucleation threshold, in

excellent agreement with experiments and numerical simulations. A matched asymptotic

solution is given within the intermediate region between the two co-existing states. The self-

contact acts like the point-wise disturbance in the Oseen’s correction for the Stokes flow past

a circle. Analytic expressions of the matching solution and its range of validity are also

derived.
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A soft solid subjected to a large compression can develop
sharp self-contacting folds at its free surface, also known
as creases. This behaviour is illustrated in Fig. 1 for a

nonlinear elastic slab made of a compliant acrylamide gel.
In contrast to the finite-time formation of singular surface

cusps in viscous hydrodynamic flows1, creases in soft solids occur
instantaneously when a critical stretch threshold is attained,
without any preceding surface furrowing. This singular behaviour
displays similar features to phase-transition phenomena. Indeed,
it allows the co-existence of two scale-invariant solutions with the
remarkable difference of not having an energy barrier from the
flat surface to the creased solution2. In analogy to liquid–vapour
transformations, taking the compressive stretch as the state
parameter of the system, creasing in soft solids occurs at a critical
binodal threshold occurring before the spinodal limit predicted by
Biot3. In practice, the free surface is linearly stable to small per-
turbations up to the Biot threshold but it can become metastable
at lower compression, thus bifurcating into a localised singular
solution that is able to release the overall elastic free energy.

Creasing has attracted a lot of interest not only from engi-
neering sciences, especially for the possibility to fabricate devices
with adaptive surface morphology at different length-scales4–6,
but also from developmental biology, in order to explain the
formation of localised furrows during either tissue morphogen-
esis7, e.g., the convolutions of the brain8, or tumour develop-
ment9. The problem of detecting the critical stretch for crease
nucleation has been the focus of many recent numerical studies,
in which the main challenge was to reproduce a spontaneous
breaking of the scale symmetry in finite element simulations. This
has been done either by introducing a stabilising bending energy
at the free surface, and then looking for the limiting behaviour
whilst letting this additional term goes to zero10, or by enforcing
self-contact in a small portion of the free surface, and then
looking for the energy difference between the creased and the
smooth solution11. Numerical estimates for the critical nucleation
threshold are reported, in good agreement with the experimental
data12.

Unlike similar material instabilities in solids, such as crack-
ing13, twinning14 and cavitation15, the nucleation condition for
creasing is still unexplained theoretically. Difficulties arise since
the free elastic energy of a nonlinear elastic solid contains

derivative nonlinearities. In such a particular case, the Weierstrass
criterion of positiveness of the second variation of the energy
functional is not sufficient for material stability. Thus, even when
considering a solid with a smooth, strongly elliptic elastic energy,
singular solutions can nucleate as localised creases16. Such dis-
continuous solutions represent strong marginally stable states,
that appear locally and are independent on the geometry. They
can occur not only as a consequence of the loss of energy con-
vexity introduced by the incompressibility constraint, but also in
compressible solids17. A more restrictive necessary condition,
quasi-convexity18, is related to the existence of minimal solutions
nucleating in the inner part of the domain. Nonetheless, only in
very special cases does this result of calculus of variations provide
an operative rule to build a general criterion of global stability,
e.g., in solid–solid phase transformations19. Moreover, creasing is
a problem of additional complexity, since quasi-convexity must
be imposed at the Neumann part of the boundary20,21.

In summary, although much progress has been done in the last
years in the comprehension of the creasing behaviour, a complete
understanding of the physics behind crease nucleation remains
elusive. This works derives an analytic criterion of crease
nucleation by making use of bifurcation techniques and singular
perturbation theory. After defining the elastic problem, the crease
nucleation threshold is calculated analytically from the necessary
and sufficient condition for the onset of a global instability. A
matched asymptotic approximation of the crease solution is later
derived and validated against experimental and numerical results.

Results
The nonlinear elastic model. We consider an elastic half-plane
subjected to a planar deformation with a controlled stretch in the
horizontal direction. Dealing with an intrinsically scale-free
instability, it is indeed expected that the results will also be
relevant to the finite-size problem, because the crease scaling
makes every free surface behave locally as a half-plane. The
vectors X ¼ XðR;ΘÞ and x ¼ xðr; θÞ denote material and spatial
positions in cylindrical polar coordinates, respectively. The
coordinate system is centred at the crease nucleation point, and
the free surface in the material configuration is described by
Θ ¼ ± π=2, as illustrated in Fig. 2.

The kinematics is described by the geometrical deformation
tensor F ¼ ∂x=∂X.

The elastic body behaves as an incompressible Neo-Hookean
solid, so that its strain energy density reads:

W ¼ μ

2
ðtrðFFTÞ � 2Þ � p det F� 1ð Þ; ð1Þ

where μ is the shear modulus, and p is the Lagrange multiplier
enforcing the incompressibility constraint. Neglecting the body
forces, the elastic equilibrium equation reads:

div σ ¼ 0; ð2Þ

where σ ¼ μFFT � pI is the Cauchy stress tensor, I being the
identity matrix. The nonlinear elastic boundary value problem
must be complemented by different boundary conditions at the
free surface for each of the two homogeneous states that are
assumed to co-exist after crease nucleation, as hinted in2.

Firstly, the material is subjected to a uniform stretch λx along
the horizontal direction far away from the crease, where the top
surface is free of external traction. In this case, the boundary value
problem is made by Eq. (2) with the following Neumann
conditions at the free surface:

σrθ ¼ σθθ ¼ 0; Θ ¼ ± π=2; ð3Þ

and it is solved by an affine mapping given by the following outer

a b

L
�x L

Fig. 1 Crease formation in a compressed soft slab. a A 5 × 5 × 2 cm3 soft
block is made by mixing 37.2 mL of deionised water containing Blue
Dextran (1 mg/mL) with 16mL of 0.5M Tris–HCl buffer at pH 6.8, and
8.75mL of a solution containing Acrylamide (30% w/v) and Bis-acrylamide
(0.8% w/v) in a soft silicone-based mould. In total 625 μL of APS solution
(10% w/v) and 125 μL TEMED were gently mixed to the gel-forming
mixture, which was allowed to polymerise for 1 h. b The gel is then gently
pulled out from the mould and axially compressed by hand using
polystyrene sheets to avoid friction. The white arrow indicates the finite
crease at the free surface observed at an axial stretch of about λx ’ 0:6
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solution:

rout ¼ λ2xsin
2Θþ λ�2

x cos2Θ
� �1=2

R

θout ¼ tan�1 λ2x tanΘ
� �

; pout ¼ μλ�2
x ;

ð4Þ

where the subscript indicates that the fields pertain to the outer
domain. In particular the top surface remains flat, being
θ ¼ ± π=2, and the controlled stretch is sustained by a uniform
horizontal stress σout given by:

σout ¼ σrrðr; ± π=2Þ ¼ μ λ2x � λ�2
x

� �
: ð5Þ

Second, the inner creased solution allows a frictionless self-
contact at the top surface, so that:

σrθðr; ± πÞ ¼ 0; σθθðr;�πÞ ¼ σθθðr;þπÞ r � rc: ð6Þ

The continuity of the hoop stress across the self-contact line is
dictated by assuming a mirror symmetry across the vertical axis
passing through the nucleation point and by neglecting a surface
energy contribution. Being subjected to a unilateral constraint, it
is also assumed that the hoop stress σθθ in Eq. (6) is everywhere
non-positive within the creased domain.

As remarked in16, the boundary value problem given by Eqs.
(2, 6) admits a solution that is invariant by re-scaling, i.e.,
xðXÞ ¼ Rc xðX=RcÞ, and by horizontal translation along the free
surface. Such a mapping transforms a half-circle of radius Rc in
the material configuration into a full circle with radius rc ¼
Rc=

ffiffiffi
2

p
with self-contact along a line of length rc, as shown by the

dotted lines in the insets of Fig. 2.
This inner solution is given by:

r ¼ R=
ffiffiffi
2

p
; θ ¼ 2Θ; p ¼ μ

2
� σrrðrcÞ � 3

2
μ log

r
rc

� �
; ð7Þ

where σrrðrcÞ represents the hydrostatic pressure that the outer
solution exerts on the crease. Eq. (7) belongs to the class of
universal solutions for isotropic nonlinear elastic materials22,23,
resulting in a logarithmic stress singularity at the nucleation
point.

The creased half-plane is characterised by a crossover between
the co-existing scale-invariant solutions given by Eqs. (4, 7), since
such homogeneous states are geometrically incompatible. In
contrast to previous numerical works, singular perturbation
techniques will be used in the following to match analytically
these inner and outer solutions.

Crease nucleation threshold. The above inner and outer solu-
tions are intrinsically incompatible from a geometric viewpoint. A
half-circle in the material configuration is indeed mapped into a
full circle by the former and into a half-ellipse by the latter. Since
they cannot be matched directly, an inhomogeneous solution is
expected to emerge in an intermediate domain when the com-
pressive stretch reaches the threshold λcr for nucleation. In the
following, the creasing threshold is sought by investigating the
necessary and sufficient conditions for the existence of such a
matching solution.

Trivial estimates of the upper and lower bounds for the
nucleation threshold can be derived by simple physical
considerations.

A trivial lower bound λlbx is given by the loss of local stability
with respect to weak variations, i.e., perturbations that are small
together with their derivatives. This problem has been solved by
the Biot, giving the limit λlbx ’ 0:544. In the post-buckling regime,
the nonlinear resonance between all modes seems to drive the
formation of crease-like static shocks beyond this critical
value24,25. Notwithstanding, experiments have reported that
creases nucleate much before this limiting stretch is attained.
This means that at a higher stretch the body becomes unstable
with respect to local strong variations, i.e., local perturbations
with small amplitudes but non-small derivatives.

A trivial upper bound λubx can be estimated by recalling that the
creased solution must globally have a lower strain energy
compared to the homogeneous outer compression. Since all
weak perturbations of the outer solution locally increase its strain
energy density for λ>λubx , it is necessary that the inner solution
locally possess a lower elastic energy. Taking into account the
principal stretches of both inner and outer solutions, this
condition requires that λubx ¼ 1=

ffiffiffi
2

p ’ 0:707.
Since the body is linearly stable to weak perturbations in the

range 0:544<λx<0:707, a necessary condition for creasing is that
the body becomes metastable with respect to a localised rotation
at the free surface, taken large enough to create a self-contact.
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Fig. 2 Definition of the elastic model. Sketch of the reference (a) and
current (b) configurations, with the corresponding coordinate systems, of a
soft elastic half-space subjected to a controlled finite axial stretch λx,
sustained through an axial compressive stress σout. The insets show the
inner solution, defining a small crease nucleating in the point C, in which an
half circle of radius Rc is mapped into a full circle of radius rc (dotted red
lines), with self-contact along the lines AC and AB. The far-field outer
solution defines an affine transformation, deforming a square of length H
into a rectangle of sides λxH and H=λx (dashed red lines)
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Thus, creasing occurs after a global bifurcation in the configura-
tional space, being mathematically associated with the loss of
strong local minimum.

In nonlinear ordinary differential equations, the onset of a
inhomogeneous solution connecting two fixed points can be
proved by showing the existence of a heteroclinic trajectory
between them26. The fixed points represent two homogeneous
states of the original problem, none of which agrees with all side
conditions. The same underlying principle can be adapted to the
elastic boundary value problem for establishing an operative rule
to detect crease nucleation. The scale-free inner and outer states
can not be matched directly. Thus, a criterion for crease
nucleation can be sought by proving the existence of a
inhomogeneous displacement field matching the perturbative
series of the inner and outer solutions. A necessary condition for
creasing is given by the loss of marginal stability of the inner
solution. Indeed, it opens the possibility for the existence of an
adjacent inner solution that can be matched with the far–away
displacement and pressure fields of the perturbed outer solution.

This necessary condition is studied using the theory of
incremental elastic deformations superposed on a finite strain27.
Let the inner solution be confined in the spatial domain given by
0 � r � rc, in which the crease radius rc is considered small
compared to any characteristic length in a finite-size problem.
The basic inner solution is given by Eq. (7). Recalling the axial
symmetry of the inner solution, the horizontal force exchanged
across the vertical line bisecting the crease is given by
2
R rc
0 σθθdr ¼ 2rc σrrðrcÞ. Enforcing the balance of forces between

the inner solution and the outer uniform traction exerted at the
side wall gives σrrðrc; θÞ ¼ σout. It is important to highlight that
this boundary condition corresponds to the application of a dead
load, since this applied traction only exists in the spatial
configuration, not having any material counterpart. Let δx ¼
½uðr; θÞ; vðr; θÞ�T be an incremental deformation vector super-
posed on the inner solution, i.e., jδxj � rc, with radial and
tangential fields u and v, respectively. Let Γ ¼ gradðδxÞ, where
the gradient operator is referred to the finitely deformed inner
solution. The incompressibility constraint imposes:

tr Γ ¼ 0: ð8Þ

By standard Taylor expansions around the inner solution, the
components of the push-forward δS of the incremental Piola-
Kirchhoff stress tensor read:

δSji ¼ AjiklΓlk þ pinΓji � δpinδji; ð9Þ

with ði; j; k; lÞ ¼ ðr; θÞ, δpin being the increment of the Lagrange
multiplier, δji the Kronecker delta and Ajikl the elastic instanta-
neous moduli. The incremental equilibrium equations are given
by:

div δS ¼ 0; ð10Þ

with the following boundary conditions at the free surface:

δSrr ¼ δσrr ¼ 3μu
2rc

; δSrθ ¼ 0 at r ¼ rc; ð11Þ

where δσrr is the increment of the external traction caused by the
perturbation of the interface. The incremental boundary value
problem given by Eqs. (8, 10, 11) can be solved by enforcing the
boundedness of the incremental displacement and stress fields at
the crease nucleation point r ¼ 0 for the sake of physical
compatibility. Considering the periodicity imposed by self-
contacting, the solution is sought using normal modes such that
uðr; θÞ ¼ UðrÞcosðmθÞ, vðr; θÞ ¼ VðrÞsinðmθÞ, where m is the

integer circumferential wavenumber. The dispersion relation
giving the marginally stable mode m as a function of the order
parameter λx is found after standard manipulations of the
incremental equations (see Supplementary Note 1). Most
interestingly, the inner solution loses its local uniqueness for
m=2 at the following value of critical outer stress:

σout ¼ μ
8 1� 3

ffiffiffi
5

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18� 2

ffiffiffi
5

pp�
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
26

ffiffiffi
5

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
62

ffiffiffi
5

p þ 1038
p

þ 28
q �

’ �2:053μ:
ð12Þ

From Eq. (5), the necessary condition in Eq. (12) corresponds
to a precise surd prediction of the crease nucleation threshold λcr,
such that:

λcr ’ 0:637554 ð13Þ

Eq. (13) is the first theoretical insight giving an analytic
criterion about the critical stretch for crease nucleation. This
predicted threshold is in excellent agreement with both experi-
mental and numerical investigations, reporting a value in the
range 0:63� 0:6432,12. In particular, the theoretical prediction is
strikingly close to the experimental value of 0:635, that has been
recently measured with a high resolution imaging technique28.

In order to prove that this necessary condition is also sufficient
for creasing, so that Eq. (13) is an actual prediction of the
nucleation threshold, matched asymptotic theory will be used to
show the existence of a inhomogenous solution matching the
perturbative series representing the inner and outer states.

Near-field solution in the intermediate region. The geometrical
incompatibility between the outer and inner solutions has a
striking analogy with the 2D Stokes paradox of the uniform
viscous flow around a circle29. The similarities are discussed in
detail in the following.

Let H be a macroscopic characteristic length for a finite-size
block. The outer solution is displayed at a very large distance
r � rc from the nucleation point, where the effect of the presence
of a small crease becomes negligible. Thus, the outer solution of
this elastic problem plays the role of the uniform flow solution in
the hydrodynamic problem very far away from the obstacle. As
for the Oseen’s correction30, let us investigate the existence of a
near-field matching solution at a typical length-scale ~r, such that
rc � ~r � H.

After crease nucleation, the elastic boundary problem changes
radically, since the a localised portion of the free surface is no
longer free of tractions. Assuming a frictionless contact, there is
an exchange of a distributed normal traction across the self-
contact line, with a zero net force in the current configuration.
However, by pulling back this self-contact traction to the
homogeneously deformed state, a vertical distributed pressure is
obtained on a flat portion of the free surface in the finitely
deformed configuration. If a near-field solution is sought
sufficiently far away from the crease, the distributed pressure
can be approximated by a vertical concentrated force F at the
crease nucleation point, given by:

F ¼ 2
Z rc

0
σθθ dr ¼ 2 rc σ

out; ð14Þ

whose magnitude scales as the crease radius. Thus, the
perturbative outer series takes into account for the vertical
compression due to the localised surface folding superposed over
the homogeneous state of horizontal compression. In practice, the
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self-contact in this elastic problem has an analogous effect to the
flow disturbance of the circle in the Oseen problem. Since for an
incipient crease F ¼ OðrcÞ has a small magnitude compared to
the total axial force necessary to sustain the uniform stretch on
the side walls, the elastic solution in the intermediate region can
be found by superposing the singular force Fðx; yÞ ¼ F δðx; yÞ,
where δðx; yÞ is the delta function, over the affine outer solution
given by Eq. (4). Transforming to Cartesian coordinates as in
Fig. 2, an elastic stream function Ψ is introduced to enforce
incompressibility, such that the incremental displacement vector
components uy and ux are given by:

ux ¼ �Ψ ;y; uy ¼ Ψ ;x: ð15Þ

After standard manipulations31, the incremental equilibrium
condition in Eq. (10) reads:

∇∇Ψ ¼ 0; ð16Þ

where ∇ ¼ ð∂xx þ ∂yyÞ and ∇ ¼ ð∂XX þ ∂YYÞ are the Laplacian
operators in the stretched ðx; yÞ and reference ðX;YÞ ¼
ðx=λx; y λxÞ coordinates, respectively. Since we deal with a point
force at the origin, the stream function is given by the Green’s
function solving Eq. (16) for the half-plane32. Imposing a zero
shear stress component at the free surface y ¼ 0, the solution for
the incremental displacement fields reads:

ux ¼ �2a0 λ4x þ 1
� �

tan�1 x
y

� �
� 2λ2xtan

�1 x

λ2xy

� �� �
; ð17Þ

uy ¼ a0 λ4x þ 1
� �

log
x2 þ y2

H
2

� �
� 2 log

λ4xy
2 þ x2

H
2
λ2x

 ! !
: ð18Þ

The characteristic length H in Eq. (18) re-scales the maximum
vertical displacement h at the free surface, i.e., the crease depth.
The assumption that h ¼ OðrcÞ for an incipient crease gives an
order of magnitude for H, but fixing its value is beyond a linear
stability analysis. The parameter a0 can instead be calculated by
imposing overall vertical equilibrium under the action of the
concentrated load33, as:

a0 ¼
rc λ2x þ 1
� �

π λ6x þ λ4x þ 3λ2x � 1
� � : ð19Þ

In particular, it can be observed that a0 diverges when the
denominator at the rhs of Eq. (19) vanishes, which happens
exactly at the Biot threshold, since all surface undulations become
unstable even in the absence of a singular force. From a
mathematical standpoint, this situation implies an incompatibility
between the principal parts of the linearised elliptic differential
operator and the corresponding boundary operator at the free
surface, i.e., a violation of the complementing condition34.

At a distance r � rc from the crease, the incremental
displacement and pressure fields become negligible, thus auto-
matically matching the outer solution. In proximity of the inner
solution, i.e., for r ! rc, the near-field displacement and pressure
fields become of order Oð1Þ, the perturbative expansion becomes
ill-posed and a direct matching cannot be achieved. However, the
near-field approximation shows that displacement and pressure
fields of the inner and outer solutions become geometrically and
physically compatible in proximity of the crease boundary (see
Supplementary Note 2).

The range of validity for the intermediate solution is finally
investigated. A lower bound is given by enforcing that the
incremental displacements be much smaller than the ones
corresponding to the outer solution, obtaining that r � rc. The
upper bound results from the global area-preservation of the
deformed body in the intermediate region. Indeed, since the lower
bound excludes the singularity of the logarithm at the nucleation
point in Eq. (18), it can be shown that the global area is preserved
if and only if r=H � rc=H logðrc=HÞ�� ��. In summary, the
asymptotic matching with the outer and inner solutions imposes
the following restrictions for the dimensionless intermediate
variable r

H
:

rc
H

� r

H
� rc

H
log

rc
H

� �����
����� 1; ð20Þ

that define the domain of validity of the near-field solutions given
by Eqs.(17,18). It is worth noticing that the description of the
crease opening at the free surface is out of reach of this model,
since it occurs in a domain situated outside the ranges of validity
of both the inner and the intermediate solution.

Mixed finite element simulations. The boundary value problem
is then solved numerically using a mixed finite element for-
mulation. The simulations are performed using the software
ABAQUS 6.14.1 (Dassault Systems Simulia Corp., Providence,
Rhode Island, USA). A block of finite thickness L is discretized
imposing a homogeneous horizontal stretch λx on the side walls,
preventing the vertical displacement of the bottom line. The
horizontal width is taken much bigger than the thickness in the
reference configuration, in order to neglect the boundary effects
of the lateral block walls on the fully developed creased regime.
The block is discretized using a structured mesh made of 17,600
hybrid, four-node bilinear elements, providing a suitable stability
range in mixed formulations of finite elasticity35. Self-contact is
allowed at the free surface, yet not prescribed a priori, with a
tangential frictionless contact based on a finite sliding algorithm
not allowing overdisclosure. A nodal compressive force of small
amplitude is incrementally imposed in the middle of the free
surface, simultaneously with an horizontal stretch on the block
sides, in order to obtain a single crease in a weakly nonlinear
regime at λx ¼ 0:62. The nodal force is then removed whilst
keeping the stretch constant. Thus, the crease nucleation and its
morphology are studied by gradually and completely removing
the axial compression whilst keeping the nodal force equal to
zero. An adaptive, iterative increment algorithm is set for both the
nodal force and the applied strain. Since creasing is a subcritical
instability, a pseudo-dynamic method is introduced36. An auto-
matic stabilisation scheme with a small damping factor γ is
implemented in the direct solver using a Full Newton technique.

The resulting numerical displacement fields are compared to
the theoretical predictions of the inner, outer and intermediate
solutions in Fig. 3. In particular, the panel e in Fig. 3 illustrates
that the vertical displacement at the free surface predicted by Eq.
(18) perfectly fits the numerical result without any adjustable
parameter, within the whole predicted range of asymptotic
validity given by Eq. (20).

The detection of the crease nucleation point has been
performed by progressively reducing the damping coefficient
down to the minimal value at which the simulated creased slab is
able to jump back to the homogeneous outer solution whilst
reducing the axial compression beyond the critical point (see
Supplementary Note 3). Figure 4 finally displays the ratio of the
simulated total strain energy of the block Enum over the
corresponding value Ehom for the basic homogeneous solution
at different damping values, so that the crease nucleation point is
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given by the critical stretch at which this ratio becomes smaller
than one. In particular, by decreasing the damping factor down to
its minimal value allowing numerical convergence, the value of
nucleation threshold is numerically found at λcrx ¼ 0:6372, in
excellent agreement with the analytic prediction of Eq. (13). In
summary, the numerical results fully validate the theoretical
predictions about the crease nucleation threshold and the
matched asymptotic solution.

Discussion
Creasing is a material instability, meaning that it nucleates locally
in space and does not depend on the global geometry of the body.
This work demonstrates indeed that crease nucleation results
from a global instability in the configurational space, allowing the
co-existence of an affine outer deformation and an inner solution
with localised self-contact at the free surface.

An analytic criterion for nucleation is formulated by showing
that a creased solution can exist if and only if the inner state loses
its marginal stability, so that the inner and outer solution can be
matched. Accordingly, Eq. (13) gives a theoretical prediction of
the critical stretch for crease nucleation, in excellent agreement
with previous numerical and experimental studies. The loss of
marginal stability of the inner solution is a fundamental under-
standing on the physics behind the onset of creasing. Creasing is
ubiquitous since the inner deformation is a universal solution in
finite elasticity, meaning that it can be supported in equilibrium
for every isotropic material by suitable surface tractions alone.
Thus, the creasing threshold specific to a different constitutive
equation can be calculated by solving the corresponding inner
incremental problem, exactly as it is shown in this work. This
operative rule can also be useful in other system models where a
nucleus spontaneously appears at a free boundary.

The existence of a inhomogeneous creased solution is shown
using a matched asymptotic approximation, constructing analy-
tically a near-field solution in the intermediate region between the
co-existing inner and outer homogeneous states. The outer per-
turbative problem becomes singular because of the surface self-
contact in the inner creased domain, acting like the point-wise
disturbance in the Oseen’s correction for the 2D Stokes problem
of the flow past a circle. Using Green’s functions in the half-space,

a matching solution is given by Eqs.(17,18) within a range of
validity of the intermediate variable given by Eq. (20). This
analytic prediction perfectly fits the results of numerical simula-
tions without any adjusting parameter.

This scale-invariant approximation is unable to resolve the
indeterminacy on the crease radius and depth, since an infinite
degeneracy of self-similar creases becomes available due to the
lack of an energy well for crease nucleation. Adding a regularising
effects, such as a surface energy37, would introduce an energy
barrier that automatically selects the creased state with minimal
energy. For this purpose, the proposed perturbation analysis
should be pushed to higher orders of approximation, since
nonlinearities become dominant in pattern formation16. More-
over, the proposed perturbation method is unfit for deriving the
scaling law that governs the cusped profile of the free surface in
vicinity of the crease opening. Another open challenge is unra-
velling the interaction mechanisms between multiple creases
resulting from heterogeneous nucleation, due to the high

Outer solution : r >> rc log rc

O (rc) O (rc log rc)

Inner solution : r < rc Intermediate solution :
rc << r << rc log rc
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FE simulation
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Fig. 3 Finite element simulations. Results of the mixed finite element simulation of an elastic slab of initial unit thickness displaying a crease with radius
rc ¼ 0:04 and depth h ¼ 2rc at an axial compression just beyond the nucleation threshold, i.e., λx ¼ 0:63. The outer, inner and intermediate solutions are
depicted in a–c, highlighting the respective range of validity in the asymptotic analysis. The overall deformed shape of the elastic slab is shown in d, with
indication of the underlying mesh. In e, the numerical near-field vertical displacement (blue solid line) is fitted by the theoretical prediction of Eq. (18)
(dashed orange line) without any adjustable parameter

1.0000

γ = 10–7

γ = 10–8

γ = 10–9

Enum

Ehom

0.9995

0.9990

0.7 0.8 0.9

0.6370 0.6372 0.6374

1.0 �x

�x �x

Fig. 4 Numerical results. The solid curves depict the ratio of the total elastic
energy Enum of the numerical simulation and the corresponding energy Ehom
of the homogeneously compressed slab at different values of the damping
coefficient γ. The inset shows that the resulting nucleation limit tends to the
critical threshold of λcr ¼ 0:6372 whilst decreasing the damping factor, in
excellent agreement with the prediction of Eq. (13)
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sensitivity of creasing to imperfections. In fact, multiple creases
can nucleate at distant sites to minimise the total elastic energy in
a finite–size body, as observed experimentally in soft slabs of
different geometry under compression28.

In conclusion, this work fosters our physical understanding of
creasing, presenting important insights for pushing key theore-
tical advances enabling technological progress. For example, the
steps towards the comprehension on how to control pattern
formation and channelling on-demand represent a potential
breakthrough in the design and the fabrication of the next gen-
eration of morphable meta-materials.

Data Availability. The author declares that all data supporting
the findings of this study are available within the article and
its Supplementary Information, or are available from the author
upon request.
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