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Abstract— In this paper, an automatic planner for minimally
invasive neurosurgery is presented. The solution can provide the
surgeon with the best path to connect a user-defined entry point
with a target in accordance with specific optimality criteria
guaranteeing the clearance from obstacles which can be found
along the insertion pathway. The method is integrated onto the
EDEN2020∗ programmable bevel-tip needle, a multi-segment
steerable probe intended to be used to perform drug delivery
for glioblastomas treatment. A sample-based heuristic search
inspired to the BIT* algorithm is used to define the optimal
solution in terms of path length, followed by a smoothing phase
required to meet the kinematic constraint of the catheter. To
account for inaccuracies in catheter modeling, which could de-
termine unexpected control errors over the insertion procedure,
an uncertainty margin is defined so that to include a further
level of safety for the planning algorithm. The feasibility of
the proposed solution was demonstrated by testing the method
in simulated neurosurgical scenarios with different degree of
obstacles occupancy and against other sample-based algorithms
present in literature: RRT, RRT* and an enhanced version of
the RRT-Connect.

I. INTRODUCTION

In the recent years, minimally invasive surgery (MIS)
has been taking hold in hospital practice because of the
unquestionable advantages for the patient. In the field of
neurosurgery, common MIS include keyhole procedures such
as diagnostic biopsy, Deep Brain Stimulation, Stereoelec-
troencephalography and drug delivery [1]. These procedures
are generally performed by means of rigid linear tools which
limit the usage cases to only situations where a straight line
trajectories is viable.
In this context, steerable catheters can come in help as tools
able to overcome limitations of the rigid embodiments, espe-
cially in scenarios where obstacles-avoidance capabilities are
crucial to avoid any damage to relevant anatomical regions.
In neurosurgery, such obstacles are generally represented by
blood vessels, lateral ventricles, midbrain and cerebellum [2].
Many prototypes of steerable catheters have been developed
for application in different surgical specialties: concentric
tubes composed by multiple pre-bent stylet [3], [4], duty-
cycle bevel tip solutions [5–7], a tendon-actuated tip imple-
mentation [8] and a multi-segment programmable bevel-tip
needle (PBN) [9]. The latter represents the case of interest
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of this work: it consists in the bio-inspired EDEN2020∗

catheter [10], a steerable needle composed by four axially
interlocked segments whose degree of steering is a function
of the offset between the needle segments at the catheter
tip. EDEN2020 catheter finds a direct application scenario in
drug delivery in glioblastomas treatments, but can also see
possible implementations in tumor treatment, brachytherapy
and diagnostic biopsy of cancerous tissue.
An intelligent planner can result useful in assisting the sur-
geon to define the best surgical trajectory to perform, giving
the possibility to automatically estimate a viable pathway
in accordance with kinematic constraints of the catheter and
refining the solution in accordance with optimality criteria as
the total path length and the distance from the safety-critical
obstacles.
The present work aims to describe an automatic 3D path
planning solution for robot-assisted neurosurgery. This al-
gorithm is designed to meet PBN’s kinematic constraints
and non-holonomicity and to guarantee a high reliable level
of obstacles-avoidance capability, crucial for the intended
neurosurgical application, through the definition of a proper
uncertainty margin designed to account for inaccuracies in
the catheter modeling which can result in possible obstacles
collisions.
The proposed automatic planner exploits the asymptotically-
optimum planning solution described in [11] for estimating
an obstacle-free raw path to solve a single-query planning
task (i.e. to connect a start point to a goal) and performs
a path optimization according to a cost function in order
to maximize the obstacle clearance, reducing the total path
length and meeting PBN’s curvature limit. The proposed
solution comes as a 3D Slicer c© (www.slicer.org) module.
The paper is structured as follows. In Section II an overview
of the current approaches to path planning is given, including
solutions specifically intended for MIS applications. Section
III provides a description of the presented approach: the
planning problem, the path smoothing, the implementation
of the uncertainty margin and the definition of a cost func-
tion. Results from simulations are presented in Section IV;
discussion and conclusions can be found respectively in in
Section V and Section VI.

II. RELATED WORKS

In the context of path planning, a variety of approaches has
been proposed in literature. Duindam et al. in [12] describe
an inverse kinematics solution to the problem of estimating a
catheter pathway, the method was tested in a simplified envi-
ronment with obstacles represented by geometrically-shaped



object showing limited obstacles-avoidance capabilities. In
[13], an algorithm for MIS trajectories based on a probability
map is presented, but the solution has not been tested in
presence of obstacles.
Potential field methods, originally introduced in [14], are
based on the computation of a field that increases getting
closer to the obstacles, which has the disadvantage of deter-
mining local minima. To address this problem, Li et al. [15]
suggested an application for brachytherapy procedures with
obstacle avoidance capability based on an artificial potential
field where a conjugate gradient algorithm is used. Clearance
from anatomical structures is achieved, but the path can not
be optimized for optimality criteria as the total trajectory
length.
Further solutions presented in literature can be divided in two
main categories: graph-based and sampling-based methods.

A. Graph-based methods

Dijkstra algorithm [16] and A* [17] are two typical
graph-search methods based onto the discrete approximation
of the planning problem. They are “resolution-complete”
algorithms, as they can determine in finite time weather
a solution exists, and “resolution-optimal” since they can
estimate the best path given the specific resolution of the
approximation.
An incremental A* solution for 2D applications was pro-
posed Likhachev et al. [18] which reuses previous informa-
tion and drives the path towards the optimality.
The relative simpleness of these methodologies conflicts
with the high computation time necessary to solve the
optimal planning problem in high dimensional cases, as the
discretization of the environment becomes finer. For this
reason, they are not suitable for a neurosurgical application,
where the search for optimality requires to densely sample
the working domain.
Discretization of the working domain in subspaces is the base
of Adaptive Fractal Tree [19], which exploits fractal theory
and parallelization to process them separately and builds a
tree composed by arcs with bounded curvature. It focuses
the research toward the goal guaranteeing a computational
time compatible with real time, computer-assisted MIS,
but it needs a performing GPU to cope with the domain
discretization.

B. Sampling-based methods

In presence of kinematic constraints, as in the case of
steerable MIS probes, the current trend in path planning
is represented by sampling-based methods. Based on the
random sampling of the working space, they avoid the
discretization typical of graph-based solutions. Rapidly-
exploring Random Trees (RRT) and RRT-Connect [20] are
sampling-based solution able to scale more effectively with
high dimensional query problems. Their enhanced versions,
RRT* [21] and bidirectional-RRT [22], are probabilistically
complete as they have a probability which tends to one to
find a solution, if it exists, as the number on samples goes
to infinity. Moreover, they are also asymptotically optimal

as they can refine the initially-estimated raw path when
new points are sampled, providing the shortest solution to
the query problem at the limit. A combination of RRT
and a reachability-guided sampling heuristic (RG-RRT) is
used in the work of Patil et al. [23] to compute motion
plans for steerable needles in complex 3D environments by
constructing the tree via a sequential connection of arcs with
bounded curvature. Fast computation allows these solutions
to be used in real time applications, but efficacy test have
been carried out only in a simplified space with few spherical
and cylindrical objects. A neurosurgical implementation of
RG-RRT is the one proposed by Caborni et al. in [24], but
the solution estimates trajectories only in 2D space.
Gammell at al. [11] proposed the Batch Informed Tree
(BIT*). The algorithm balances the benefits of a graph-
search approach as it originally creates a graph solved
through an incremental variation of the A*, and advantages
of sampling-based algorithms since it asymptotically finds
the optimal query-problem solution in terms of path length
by increasingly sampling the working domain. As soon as
a first raw path is found, BIT* confines the research within
an ellipsoidal region whose size depends on the cost of the
current solution so that the research for a shorter path occurs
only within a subspace of the working domain.
BIT* approach allows to achieve good performance in
terms of computational time with respect to other standard
sampling-based algorithms but its feasibility has never been
assessed in MIS automatic planning, where multiple other
parameters have to be considered in addition to the path
length.
In this paper, a novel 3D MIS path planner for neurosurgical
application is presented. It exploits the search approach
implemented in BIT*, adapting the solution to limits de-
termined by PBN and optimizing the path not only for
the length but also for kinematic constraints and obstacles
clearance capability required by the intended application.

III. METHODS
A. The workflow

At first, the single-query problem is solved through an
implementation of the BIT* approach, which generates a set
of feasible paths (Section III-B, III-C, Step 2 of Fig.1).
In order to guarantee a C2 continuity, the estimated path
undergoes a cardinal spline interpolation and an uncertainty
margin is built around them to account for catheter model
inaccuracies (Section III-D, Step 3 of Fig.1).
Limits to the path curvature related to kinematic constraints
of the catheter are addressed in Section III-E, where paths
smoothing is described (Step 4 of Fig.1). This step is useful
also for maintaining the path the straighter as possible,
as large degree of steering is shown to be correlated to
greater trajectory tracking errors [25]. Smoothing stops when
curvature reduction drives the path too close to an obstacles
or when it does not produce further relevant changes in the
curvature.
The last step consists in ranking the obtained paths. At
this stage, the estimated solutions meet both kinematic



Fig. 1: Schematic representation of the workflow for the presented solution.

constraints and obstacles avoidance. In Section III-F the cost
function implemented to find the best solution to the query
problem is described (Step 5, Fig.1).

B. Path search

At first, a distance map (distmap) is estimated on the 3D
working domain. The map labels each voxel with the Eu-
clidean distance to the nearest obstacle and it is interrogated
at each iteration to ensure that new segments added to the
path are safe in terms of obstacles avoidance.
An initial ellipsoid H is built similarly to [11] as:

X = {x ∈ X : ‖xstart − x‖2 + ‖x− xgoal‖2 6 cbest} (1)

where the focal length is set as the Euclidean distance
between the start and goal points, and a preset value is given
to the minor axis.
A uniform random distribution of samples U are taken within

XHfree, defined as:

XHfree = {p ∈ (XH ∩Xfree)} (2)

where XH is the subspace of the working domain contained
in H and Xfree the subspace represented by the obstacles-
free voxels.
For each randomly-sampled point pnew in XHfree, a set of
neighbors Pn is defined as:

Pn = {p ∈ G : ‖pnew − p‖ < r} (3)

where G represents the connected graph built within the
ellipsoid through an RRT* approach and r is a fixed radius
of a sphere; pnew is connected to the point of G included
in the set Pn which minimize the total length from start
to pnew while maintaining the new connection at a distance
d > Dsafe from obstacles. When all the points of U have
been inspected and, if safely attachable, added to G, the
algorithm tries to connect goal to G. If this step goes though,
a first raw solution to the query problem is found and the
algorithm proceeds to the optimization phase (Section III-C).
Otherwise, a larger ellipsoid Hnew is defined, widening
the subset of the working domain where the query-problem
solution can lie and a new set of points are randomly sampled
within Hnew and added to U maintaining an uniformed
distribution. G is thus populated with new nodes and the
search for the query solution repeats until a path is found
or the number of iterations reaches a limit, meaning that
the algorithm could not solve the planning problem (Step 1,
Fig.1).

C. Path optimization

As the first feasible solution is found, path, it is stored
in a set of feasible paths (Fpaths) and its length, lpath, is
computed. A new ellipsoid Hnew is defined by setting the
major axis equal to lpath and U is populated with a new set
Unew of uniformly distributed samples taken within Hnew

so that U +←− Unew. If a shorter path exists, it can only lies
within Hnew, as demonstrated in [26].
Path optimization (Step 2, Fig.1) is presented in Algorithm 1
and herein discussed. An illustration of the method is shown
in Fig.2.
Each new point pnew ∈ U which has never been examined

is add to G following an RRT* approach similarly to III-
B (Fig.2b, Lines 2-4). At Line 5, the subset of points Gn

of path in proximity of pnew and lying within a sphere of
radius r is defined. For each node gn ∈ Gn, the segment
from pnew to gn is checked for its clearance from obstacles
(Lines 6-7). If gn is safe, the length dgoal of the connection
between pnew and goal over the graph G passing though gn

is determined (Line 8). In case dgoal represents the shortest
pathway from pnew to goal, gn is stored in gbest (Fig.2c,
Lines 9-11). When all the points in Gn has been checked,
pnew is connected to G though gbest. G is then updated
(Fig.2d, Line 12) and in case a new shorter solution to the
query problem is found, this is stored in path (Lines 13-14),
resulting in focusing research to smaller ellipsoidal region,
and the new solution is pushed in the set of feasible path
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Fig. 2: Illustration of the optimization algorithm in a simple 2D environment. The start and goal points are shown in red dots, the red path represents the
current best solution and the blue point the new sample to be added to the graph (Fig.2a). Fig.2b shows the connection of the new sample to the existing
tree by choosing among the neighbors the one that minimizes the total length from start. Fig.2c depicts the research for a better solution: the new sample
is linked to the neighbor which minimizes the total length to the goal. The updated best path is shown in Fig.2d.

Algorithm 1 PathOptimization(path,G,distmap)

1: dbest = inf
2: for pnew ∈ U \ Unew do
3: Pn = {p ∈ G : ‖pnew − p‖ < r}
4: RRT*(pnew, Pn, G)
5: Gn = {p ∈ path : ‖pnew − p‖ < r}
6: for gn ∈ Gn do
7: if isSafe(gn, path, distmap) then
8: dgoal ← lengthToGoal(pnew,gn, G)
9: if dgoal < dbest then

10: dbest ← dgoal
11: gbest ← gn

12: connect(pnew,gbest, G)
13: if getBestPath(G) 6= path then
14: path← getBestPath(G)
15: Fpaths ← push(path)

return path

Fpaths.
Optimization repeats until the density of samples in U has
reached a predefined threshold.
As points in U are uniformly sampled within subspaces of
the working domain and a RRT* strategy is used to populate
the graph G, Algorithm 1 herein proposed will converge
asymptotically to the shortest query problem solution as the
number of samples in U goes to infinity [21].

D. Path interpolation and uncertainty margin

The result of Section III-C consists in a set Fpath of
feasible paths able to solve the planning problem. Each of
them represents a piecewise-linear trajectory. To achieve the
C2 continuity required by the catheter, a cardinal spline
interpolation is carried out on paths in Fpath using path nodes
as control points (Step 3a, Fig.1).
To account for inaccuracies in catheter modeling and add a
further level of safety with respect to the strong obstacles
clearance required by the presented MIS application, an
uncertainty margin is built (Step 3b, Fig.1) around each
interpolated trajectory in Fpath (Fig.3). Similarly to [27],
where a non-holonomic steerable needle is used as test case

for path planning simulations under uncertainties, here a
zero-mean Gaussian distribution is considered to model the
motion error m with a variance M equal to 0.001mm2.

m ∼ N (0,M)

A confidence bound cb of one standard deviation is con-
sidered, a catheter insertion speed speed of 3mm/s and it is
supposed that the robot position is periodically checked with
a sampling time ∆ = 0.5s. This results in an increase in the
confidence bounds of one cb every 1.5mm of path length.
A continuous representation of the uncertainty margin is
obtained by linearly interpolating cb from one time step
to the other resulting in a cone whose radius enlarges in
approaching the goal point.
All paths in Fpath are then checked to verify whether they are
still safe after the implementation of the uncertainty margin.
Solutions which result unfeasible at this stage are discarded.

Fig. 3: Illustration of the uncertainty margin. The solid black line represents
the estimated trajectory after the interpolation step while the constant-radius
tube symbolizes the actual catheter size.

E. Path smoothing

To meet the limit of the catheter curvature, a smoothing
phase is then accomplished (Step 4, Fig.1). The smoothing
solution is presented in Algorithm 2 and described here-
inafter. Fig. 4 illustrates the idea behind the method.
The smoothing algorithm receives one by one the paths of
Fpath to correct and the distance map. The curvature K is
computed over the whole path under examination and points
that do not satisfy kinematic constraints (s ∈ path : Ks >



Algorithm 2 Smoothing(path, distmap)

1: K = {|path′′ |s,∀s ∈ path}
2: Pcritic = {s ∈ path : Ks > Kmax}
3: CPcritic = {cp ∈ path : argmincp(‖pcritic −

cp‖),∀pcritic ∈ Pcritic}
4: for cpold ∈ CPcritic do
5: N ← path

′′

cpold
/|path′′

cpold
|

6: slow ← 0, sup ← smax, step← smax/2
7: GO ← TRUE
8: while GO do
9: cpnew ← cpold − step ·N

10: pathnew ← update(cpnew, path)
11: dd← path

′′

cpnew
x

12: if |dd| < Kcpold
− thr & !flip(dd/|dd|) then

13: GO ← FALSE

14: if GO|flip(dd/|dd|) then
15: if isSafe(pathnew) & !flip(dd/|dd|) then
16: path← pathnew
17: slow ← step, step← (step+ sup)/2
18: else
19: sup ← step, step← (slow + step)/2

return path

Kmax) are linked to their closest control point cp so that a
set CPcritic of control points that required revision is defined
(Lines 1-3).
For each cp ∈ CPcritic (Line 4) the principal normal vector
N to the curve is determined as the direction along which
cp has to be moved in order to decrease Kcp (Line 5):
exploiting a bisection approach, the method will try to move
cp as much as possible along N (up to a preset limit smax)
maintaining the required clearance from obstacles. At Lines
6-7, parameters linked to cp displacement are set, as well as
a flag variable used to terminate the iterations.
Smoothing of path is accomplished within Line 8 and 19.
The process starts by moving cp to cpnew along N by
a certain amount of space defined by step (Line 9). A
new cardinal spline interpolation and the related uncertainty
margin are computed, identified as pathnew (Line 10) and
the new second derivative dd in cpnew is calculated (Line
11).
If the stop condition is reached, i.e. the curvature reduction
results to be too small (Line 12), the correction of the current
cp stops. More than the check of the curvature variation, in
Line 12 the function flip verifies whether cpnew has been
moved so far that the curvature has changed its sign (in Fig. 4
this condition happens when the curve is flipped downside),
in this case the step has to be reduced and the algorithm will
move directly to Line 19.
In case the uncertainty margin related to pathnew maintains
a safety distance from obstacles after cp adjustment, path
is updated and step is resized in order to move cp further
in the same direction (Lines 15-17).
Differently, in case of a collision with an obstacle or a

change in the curvature sign, the upper limit sup is reduced

Fig. 4: Description of the curvature correction algorithm: the control point
cp is moved to the new position cp0 as the midpoint between cp and smax.
The new path computed through cp0, in red line, results not safe and a the
new position cp1 is searched by decreasing the step size at the midpoint
between cp and cp0. The resulting path is now feasible (green line), and
a smoother solution is searched at the midpoint between cp0 and cp1.
The stop condition is reached when cp is moved to cpbest and path is
accordingly modified (blue line).

and step is shortened as the midpoint between slow and its
current value.
The smoothing of path repeats until the stop condition
is reached and all the critical points cp ∈ CPcritic are
corrected.

F. Cost function

Section III-E updates Fpaths with smoothed trajectories
able to solve the query problem through feasible pathways
which guarantee obstacles clearance and the meet of curva-
ture limits.
In order to rank these solutions, a proper cost function (Step
5, Fig.1) is introduced so that the optimum path in Fpaths

will be the one that minimizes Fcost, defined as:

Fcost = α · l
lm
− β · dm

dM
− γ · d̄

dM
+ δ · kM (4)

where l is the total path length, lm the Euclidean distance
between start and goal, , dm and d̄ the minimum and
mean distances from obstacles over the whole path length,
dM the maximum value stored in distmap and kM the
maximum curvature reached along the path, while α, β, γ, δ
are the parameters weights respectively equal to 1, 0.8, 0.2,
1/mm−1.

IV. RESULTS

The feasibility of the proposed method was assessed
via simulations. In light of this, two Magnetic Resonance
Imaging (MRI) acquisition protocols have been employed to
collect the data required for defining a typical neurosurgical
environment. A T1-weighted volumetric acquisition (Philip
Ingenia CX 3T, TR/TE (ms): 12/5.8, data matrix: 320×299,
FOV (mm): 256×240, in-plane resolution (mm): 0.80×0.80,
thickness (mm): 0.80, number of sections: 236) was used
for the definition of the brain volume, whilst a 3D high-
resolution time-of-flight (TOF) acquisition (Philip Ingenia
CX 3T, TR/TE (ms): 23/3.5, acquisition plane: axial, data
matrix: 500 × 399, FOV (mm): 200 × 200, in-plane res-
olution (mm): 0.40 × 0.50, thickness (mm): 0.90, number



Fig. 5: The presented solution (�) is tested against three different planning algorithms: RRT, RRT*, RRT-ConnectE in five 3D scenarios with different
percentages of space occupancy: 1%, 2%, 5%, 9% and 14%. Algorithms is asked to solve a total of 50 queries for each scenario and each time the first
raw path is evaluated. The box-plots resume the obtained results in term of cost function 4), statistical significance between different algorithms is also
reported.

of sections: 210) allowed the identification of the cerebral
arteries, which represent the obstacles for the planning algo-
rithm. Brain volume and arterial vessels segmentations were
performed manually though 3D Slicer. Data acquisitions
from one healthy subject were performed at the Center of
Excellence for High Field Magnetic Resonance (CERMAC),
Ospedale San Raffaele, Milan, Italy under ethical approval
n.80/INT/2016 and patient gave written informed consent.
The experimental setup consists in testing the algorithm on
a set of 50 single queries (the combinations of start and
goal), placed within the working scenario at different MIS-
like locations. The arterial vessels tree, which represents the
original working scenario, has been incrementally magnified
so that to dispose of a total of 5 different working envi-
ronment, where the obstacles occupancy ranges from 1%
(i.e the original angiography, case O-1%) to 14% (larger
angiography dilation, case O-14%). As testing environment,
3DSlicer c© has been used.
Tests were run on iMac (OS-X 10.11.6, 3.1GHz Intel Core
i7, 8GB of RAM). The initial minor axis of the starting
searching ellipsoid defined in Sec.III-B was set equal to
10mm (1). The initial number of samples in U was set to 5,
the radius r to 40mm 3, Dsafe to 0.25mm and a threshold
for the density of points in U are to 0.01sample/mm3 . The
smoothing algorithm in III-E uses a smax equal to 10mm,
the maximum curvature Kmax was set to 0.014mm−1 as
the reported in [19], and the threshold for sensible curvature
variation thr to 0, 001mm−1.

A. Comparison with solutions from literature

A first test has been carried out to compare the results
in terms of cost function obtained by the presented solution
against existing sample-based planning algorithms: RRT,
RRT* [21] and an enhanced version of RRT-Connect (RRT-
ConnectE). The latter consists in a standard RRT-Connect
solution [20], consisting in two graphs rooted at the start
and goal point spanning the working domain to connect to
each other, to which a r-radius sphere is added to prune the
graph, as in III-B.

As RRT and RRT− ConnectE are not incremental
algorithms, they do not refine the first raw path even if new
points are sampled in the working domain. For this reason,
this test analyses only the first raw solution discovered by
the four algorithms to the query problems (Step 1, Fig.1)
to which a cardinal interpolation is applied (Step 3a, Fig.1)
in oder to let the computation of the path curvature be
possible.
Fig. 5 shows the obtained results. We evaluated the
performance of the four different algorithms by referring
to the cost computed by the cost function. As the variable
cost was not normally distributed (lilliefors test, p<0.05),
we ran non-parametric statistics. The Kruskal-Wallis
test highlighted significant effects of the algorithm over
the performance in all the different working domains
(H(3,196)>98.95, p<0.05). To evaluate differences between
each pair of methods, we ran pairwise comparisons through
Mann-Whitney U test (U(1,98)>18, p<0.0125). As can be
noticed, the heuristic search implemented in our solution
(identified as � in Fig.5) leads to a first raw path which cost
is globally smaller with respect to other algorithms for all
the working scenarios.

B. Test of the algorithm workflow

Tests have been carried to verify the feasibility of the
proposed method in its entirely, i.e. following all the step
described in the workflow of Section III-A and depicted
in Fig.1. The 50 single-queries are provided again to our

TABLE I: Success rate and computational time for the test of the algorithm
workflow

Comput. Time Constraints compliance
Case 25th median 75th Geom. Cin. Overall

O-1% 21.2s 42.2s 71.4s 90% 14% 12%
O-2% 32.7s 45.8s 65.5s 76% 2% 2%

O-5%• 35.9s 56.6s 85.4s 76% 0% 0%
O-9%• 38.5s 66.0s 96.5s 52% 0% 0%

O-14%• 45.1s 71.9s 115.2s 38% 0% 0%



TABLE II: Path costs and cost function parameters for the test of the algorithm workflow

Overall Cost Length [mm] D min [mm] D mean [mm] K max [1/mm]
Case 25th median 75th 25th median 75th 25th median 75th 25th median 75th 25th median 75th

O-1% 0.979 0.980 0.990 66.5 74.1 81.8 0.82 1.12 1.63 6.47 7.13 7.65 0.016 0.026 0.056
O-2% 1.001 1.001 1.001 70.1 77.3 81.1 1.18 1.34 1.49 5.45 6.03 6.71 0.029 0.041 0.066

O-5%• 1.015 1.038 1.063 69.4 77.9 82.5 1.19 1.43 1.84 4.81 5.64 6.73 0.040 0.068 0.185
O-9%• 1.058 1.083 1.195 68.2 76.5 83.5 1.15 1.33 1.51 4.89 5.60 5.99 0.051 0.111 0.163
O-14%• 1.093 1.122 1.221 78.9 86.2 94.6 1.27 1.37 1.51 4.54 4.75 5.08 0.066 0.088 0.164

algorithm in the 5 different working domains (from case O-
1% to O-14%).
Table I shows the results for the 5 different domains. The
computational time required to perform the entire workflow
is reported in the first column with its 25% quartile, median
value and 75% quartile. Success rate is also presented in
the second column in terms of compliance with respect
to the geometric and the kinematic constraints, respectively
represented by the obstacles avoidance and maximum cur-
vature admitted by the catheter. Case O-5%, O-9% and O-
14% consist in scenarios where the space occupancy of
the obstacles precludes the possibility to solve the planning
problem, these cases have been identified with (•). Table I
reports the simulations results in terms of cost function and
related parameters. In cases (•), where no solution has been
found that fulfills the curvature limit, the cost function and
related parameters are computed only considering the paths
that meet the geometric constraint of obstacles avoidance.

V. DISCUSSION

When compared with other sampling-based algorithms,
simulations demonstrated that the proposed method out-
performed other approaches in all the different domains,
estimating the best raw path according to the cost function.
This outcome can be explained by the heuristic implemented
in our solution that, differently from RRT, RRT* and RRT-
ConnectedE, focuses the research to a subspace defined by
the ellipsoid having start and goal points as focal length.
When the aim was to test the entire workflow, simulations
demonstrated the feasibility of the method in a standard neu-
rosurgery working scenario (case O-1%), where the 12% of
the queries resulted connectible through feasible paths. The
number decreases to only one query in case O-2%, where the
obstacles size were duplicated. Despite the acceptable results
in terms of geometric constraints compliance, our method
was not able to find a feasible solution in scenarios with
denser obstacles occupancy (case O-5%, case O-9%, case
O-14%) and this is due to PBN’s strict curvature limit. In
these tests, computational time ranges between few dozens
of seconds up to some minutes depending on the working
scenarios. This can be explained by the number of steps
composing the workflow, the computational time required
for resizing the ellipsoid in Section III-B and the need to
repeat steps 3 and 4 of Fig. 1 for each path in Fpath.

VI. CONCLUSIONS

The present work proposes a novel automatic planner for
minimally invasive neurosurgery. The solution can provide

the surgeon with feasible paths in accordance with the
kinematic limits of the catheter to implant and the obstacles
clearance required by the intended application. Exploiting an
heuristic search based on [11], the algorithm can save time
in searching for better paths by focusing only to volume
where a better solution can lies, incrementally shortening
the initial raw path as the samples density of the working
domain becomes finer.
An uncertainty margin is implemented to increase the safety
limit and thus to address possible control errors which can
occur during the implantation phase due to catheter model
inaccuracies.
A bespoke cost function is then used to sort the set of
feasible trajectories and provide the surgeon with the optimal
path. Integrated onto PBN, the method showed good results
in finding a solution to the query problems despite the
strict curvature limit imposed by the catheter kinematic and,
when inquire only for a unoptimized solution (Step 1 if
Fig. 1), it outperformed other searching algorithms presented
in literature in terms of cost function. Computational time
can be ameliorated by the reduction the sequence of steps
composing the workflow: using an approach similar to [19],
[24] arcs with bounded curvature can be used instead of
straight segments to directly build both a curvilinear path and
the uncertainty margin, without the need of any interpolation
step.
Moreover, the search for the first raw path described in
Section III-B can be accelerated by the implementation of
a bidirectional approach.
In addition to modeling errors, the noise related to the
catheter sensing system can be considered in the definition
of the uncertainty margin which would add a further level
of safety to the automatic planner.
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