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Abstract: 4,5,6,7-Tetrabromo-1H-benzotriazole (TBBT) is still considered a reference inhibitor of
casein kinase II (CK2), a valuable target for anticancer therapy, even though the poor solubility in
water of this active pharmaceutical ingredient (API) has prevented its implementation in therapy.
We decided to explore the interactions preferentially formed by TBBT in crystalline solids in order
to obtain information helpful for the development of new TBBT cocrystals possibly endowed with
improved bioavailability. In this paper, we describe the synthesis and the structural characterization
of the TBBT methanol solvate and of the TBBT salt with N,N,N’,N’-tetramethylethylenediamine. It is
shown that TBBT can give rise to several competing interactions. This APl is clearly a good halogen
bond (XB) donor, with bromine atoms adjacent to the triazole ring possibly better donors than the
two others. TBBT is also a good hydrogen bond (HB) donor, with the triazole hydrogen forming an
HB with the acceptor or being transferred to it. Interestingly, one of the triazole nitrogens was proven
to be able to work as a hydrogen bond acceptor.

Keywords: halogen bonding; hydrogen bonding; supramolecular chemistry; self-assembly;
pharmaceutical cocrystals; solvates

1. Introduction

Casein kinase II (CK2) is an enzyme involved in DNA repair, hence it is considered a target for
the development of anticancer drugs [1-8]. A CK2 inhibitor recently entered Phase II clinical trials to
obtain approval as an anticancer drug for human use [9,10].

4,5,6,7-Tetrabromo-1H-benzotriazole (TBBT, Scheme 1) is a small polyhalogenated heterocycle
discovered almost 20 years ago. It remains nowadays a particularly potent and selective CK2
inhibitor [1,2,5,7] and is still considered the reference compound among CK2 inhibitors. However,
this active pharmaceutical ingredient (API) encountered bioavailability issues that precluded its
implementation in anticancer therapy. The four bromine atoms decorating the benzotriazole scaffold
are responsible for both the high affinity of the compound for CK2 and its very low solubility in
aqueous media [11]. Over the years, several analogues of TBBT have been studied with the aim
of improving the potency, selectivity, and solubility in water of this API. Unfortunately, only small
improvements have been obtained, despite considerable synthetic efforts to prepare and test libraries
of TBBT analogues [6,7,11,12]. The study of analogues of a therapeutically relevant drug is not the only
viable strategy when an improved drug solubility and dissolution kinetics are pursued. The synthesis
of noncovalent adducts between an API and a suitable cocrystal former (CCF) has been demonstrated
to be a fruitful alternative approach. This approach benefits from the fact that the pharmacological
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activity of the API remains unaltered in noncovalent adducts, as the molecular structure of the APl is
unchanged on self-assembly with the CCF and on supramolecular adduct formation [13-16].

\\

Ir=

Scheme 1. Molecular structure of 4,5,6,7-tetrabromo-1H-benzotriazole (TBBT). Brown: halogen bond
(XB) donor sites; red: hydrogen bond (HB) donor site; blue: HB/XB acceptor sites.

When an API-CCF adduct is formed, the recognition and binding phenomena typically occur
between molecules displaying a wealth of different functional moieties, which may compete with each
other in the formation of the interactions [17-20]. The evaluation of the specific role of the moieties
characterized by a similar supramolecular behavior is thus fundamental to identify the most reliable
supramolecular synthetic strategies.

Halogen bonding (XB) is the noncovalent interaction wherein a halogen atom, typically bonded
to an organic residue, functions as an acceptor of electron density and forms attractive, directional,
and short contacts with neutral and anionic electron density donors [21-25]. A large fraction of drugs,
both used in clinics and under pre-clinical studies, are halogenated. The specific role of halogen
atoms in pinning a drug at the active site of the target enzyme via XB has been proven. In general,
the role of XB in affecting binding and recognition phenomena between halogenated residues and
biomacromolecules is attracting growing interest [26-28]. In this context, we have recently shown
that the formation of halogen-bonded API-CCF cocrystals is a further opportunity offered by this
interaction in biopharmacology [29,30]. The relevance of this opportunity is confirmed by the numerous
halogen-bonded cocrystals of pharmaceutical interest reported after our papers [31-36].

Thanks to its heavy halogenation, TBBT represents a promising candidate for the synthesis
of halogen-bonded pharmaceutical cocrystals. However, this molecule is also a very challenging
substrate. The high melting point of pure TBBT (264-266 °C) and its poor solubility in water, as in
most organic solvents, suggest the presence of very strong intermolecular API-API interactions in the
pure solid compound. Though the crystal structure of the TBBT:CK2 complex has been determined [1],
clear indications of the interactions preferentially formed by this API are not available. The TBBT
molecular structure displays various electrophilic sites (namely the triazole acidic proton, hydrogen
bond (HB) donor, and the aromatic bromine atoms, XB donors), as well as nucleophilic sites (namely
the two non-protonated nitrogen atoms of the triazole ring and the benzene 7 electrons). Consequently,
when pursuing the self-assembly of TBBT with a CCF containing basic moieties as XB acceptor sites,
the formation of halogen-bonded cocrystals might be hampered by a competition between the basic
sites of the CCF and those of TBBT. Alternatively, the XB acceptor sites of the CCF might behave as HB
acceptor sites and hydrogen-bonded cocrystal might be formed on interaction of the CCF with the
triazole acidic proton.

In this paper, we describe the synthesis and the structural characterization of the TBBT methanol
solvate 1 and the TBBT cocrystal with N,N,N’,N’-tetramethylethylenediamine (TMEDA) 2. Information
is obtained on the interplay between HB and XB in these two noncovalent adducts, namely on
the preferred supramolecular interaction modes of TBBT. This may help in identifying new CCFs
generating TBBT pharmaceutical cocrystals with solubility higher than the original API.
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2. Results and Discussion

Literature provides few examples of crystal structures where TBBT interacts with proteins,
including CK2 [1,37]. In these structures, TBBT is involved in multiple interactions with the protein,
namely several XBs between the API bromine atoms and carbonyl oxygens of the protein’s backbone,
and an HB between the API acidic proton and crystallized water molecules. Although these data
provide useful information regarding TBBT’s favored supramolecular synthons, their formation may
be biased (within certain limits) by the compositional and conformational features of the protein’s
binding site.

Aiming to obtain the crystal structure of pure TBBT—which has not been reported so far—we
undertook a crystallization screening using several solvents and the slow evaporation crystal growth
technique. The low solubility of TBBT in water as well as in most of the organic solvents limited
the choice of the crystallization conditions, and crystalline samples suitable for single crystal X-ray
diffraction studies were obtained only when methanol was used as solvent. Interestingly, the obtained
crystals were a TBBT /methanol solvate (1). This solvate crystallized in the monoclinic P2,/c space
group and contained TBBT and methanol in a 1:1 ratio. The melting point of this new crystal form is
130 °C, remarkably lower than pure TBBT (264-266 °C). This difference indicates that interactions of
TBBT with methanol remarkably modify the pattern of interactions occurring in the pure API.

The crystal structure of 1 shows that the two components of this solvate play a multifaceted role in
the crystal packing. Both methanol and TBBT have the dual role of HB donors and acceptors, and TBBT
also works as self-complementary XB donor and acceptor (Figure 1). Specifically, short C—Br4---N2
contacts (291.4(4) pm) form halogen-bonded infinite chains, which develop along the b crystallographic
axis. These XBs are probably rather strong, since the observed Br---N separation corresponds to a
normalized contact (Nc) of 0.86 [38], a quite low value for this type of XBs [25]. Consistent with the
involvement of the lone pair of N2 in the Br---N XB formation, the bromine atom is nearly coplanar
with the triazole ring (the distance of bromine from the mean square plane through the triazole heavy
atoms is 15.1 pm) and N1-N2.--Br4 and N3-N2.--Br4 angles are 115.54° and 135.38°, respectively.
Any two adjacent TBBT molecules are further connected by a methanol molecule, which bridges N1
of one molecule and N3 of the other. The former interaction, where TBBT is the HB donor, is much
shorter than the latter, where TBBT is the HB acceptor (N---O separations are 277.3(5) and 294.5(5) pm,
respectively). This difference is probably related to the fact that TBBT is a weak acid (pKa ~ 5) and a
very weak base [5]. These HBs are nearly coplanar with the benzotriazole moiety and, along with the
XBs, give rise to nearly planar ribbons that loosely interact with each other [39].

Figure 1. Partial view (Mercury 3.9, ball and stick representation) of one ribbon in the crystal structure
of 1. XBs and HBs are brown and black dotted lines, respectively. Color code: carbon, grey; hydrogen,
light grey; nitrogen, light blue; bromine, brown; oxygen, red.

The interaction pattern observed in solvate 1 suggests that TBBT is a good XB and HB donor. Thus,
we decided to gain further insights in the TBBT interaction modes by probing it with a stronger XB and
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HB acceptor, namely N,N,N’,N’-tetramethylethylenediamine (TMEDA). Slow isothermal evaporation
of a TBBT and TMEDA solution (2:1 molar ratio) in isopropanol afforded crystals 2, which melt at
190 °C, also in this case at a lower temperature than pure TBBT. Single crystal X-ray analysis indicates
that the system crystallizes in the monoclinic P2;/c space group and that the two components are
present in a 2:1 ratio, as in the starting solution. In the cocrystal, TBBT and TMEDA are involved in a
net of XB and HB contacts. Consistent with the ApKa of the involved species [40], the occurrence of a
proton transfer from TBBT to TMEDA is preferred over the formation of an HB. In the formed salt,
a fairly short HB exist between the N-H4 groups of bis-protonated TMEDA and N1 of the benzotriazole
anions (N---N distance is 269.4(3) pm). These HBs give rise to well-defined trimeric units (Figure 2).

Figure 2. Three bis-protonated TMEDA molecules and hydrogen-bonded TBBT units (Mercury 3.9,
ball and stick representation). HBs are represented by black lines; Br---N halogen bonds are represented
by brown dotted lines. The color code of atoms is the same as that in Figure 1.

Asinsolvate 1, TBBT in 2 acts as a self-complementary module and forms halogen-bonded infinite
chains along the crystallographic a axis (Figure 3). Br3 atoms act as XB donors, N2 atoms act as XB
acceptors and the separation of the formed Br3---N2 XB is 307.1(3) pm (Nc = 0.90). The C—Br3---N2
angle is 172.31(9)°, namely the interaction is close to linearity, a distinctive feature of strong XBs. These
halogen-bonded chains are connected to each other by Br---7t XBs, where the Brl atoms of one chain
are the XB donors, while the benzene rings 7 electrons of an adjacent chain work as XB acceptors.
Specifically, Brl atom points almost perpendicular towards the midpoint of C4-C5 bond, with Brl---C4
and Brl---C5 distances of 331.5 and 331.8 pm (Nc = 0.93 for both contacts) and Br3—C4---Brl and
Br4—C5---Brl angles of 97.79° and 98.89°, respectively.

Figure 3. Partial view (Mercury 3.9) of two infinite chains formed by Br---N halogen bonds and bridged
by Br---mt halogen bonds. Both halogen bond types are brown dotted lines. The color code of atoms is
the same as that in Figure 1.
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Both Br---N and Br---7t XBs are short and occur with the geometries close to the theoretical ones.
These features are typical for strong XBs [25]. The likely strength of these XBs and their importance in
determining the crystal packing is corroborated by the fact that TBBT molecules interacting via Br---7
XBs, and the respective chains, are orthogonal to each other. This configuration has quite demanding
steric requirements and is enacted by the network of XBs despite the overall crystal packing of 2 is
largely determined by the strong cations/anions electrostatic attraction.

3. Materials and Methods

Starting materials, solvents, and reagents were purchased from Sigma-Aldrich (Merck KGaA,
Darmstadt, Germany) in high purity grade and used without further purification. NMR spectra
were collected on a Bruker AV400 spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany).
FTIR spectra were collected using a Nicolet Nexus FTIR spectrometer (Thermo Fisher Scientific Inc.,
Waltham, MA, USA) equipped with Smart Endurance Attenuated Total Reflectance (ATR) device,
and analyzed using Nicolet’s Omnic®software (Thermo Fisher Scientific Inc., Waltham, MA, USA).
Peak values are given in wavenumbers (cm~!) upon automatic assignment. Melting points were
collected using a Linkam Hot-Stage microscopy apparatus (Linkam Scientific Instruments, Tadworth,
UK). Multicomponent crystals were obtained by slow evaporation from solutions in the appropriate
solvent. Crystals were separated from the mother solutions before complete evaporation of the
solvent occurred and crystals suitable for X-ray crystallography were selected using an optical
microscope. X-ray diffraction data were collected on a Bruker-KAPPA-APEX II CCD diffractometer
(Bruker AXS GmbH, Karlsruhe, Germany) using Mo K« radiation (A = 0.71073 A). Data integration and
reduction were performed using SaintPlus 6.01 (Bruker, Madison, WI, USA). Absorption correction was
performed with a multi-scan method implemented in SADABS (University of Gottingen, Gottingen,
Germany) [41,42]. Structures were solved using SHELXS-97 (direct methods) and refined using
SHELXL-97 (University of Gottingen, Gottingen, Germany) [43] (full-matrix least-squares on F?)
contained in APEX II and WinGX v1.80.01 software packages [44]. All non-hydrogen atoms were
refined anisotropically. Hydrogen atom solution and treatment: In 1, the O-H hydrogen atom
on methanol and H1-N1 were found from a difference map, while other H atoms were placed
in geometrically calculated positions and included in the refinement process using a riding model
with isotropic thermal parameters. The O-H hydrogen atom on the methanol was refined with soft
restraints, and the H1-N1 distance was refined without restraints. In 2, the hydrogen atom H4 was
found from the difference map and refined isotropically without restraints, while all the other H
atoms were placed in geometrically calculated positions and included in the refinement process using
a riding model with isotropic thermal parameters. Crystallographic data for 1 and 2 are reported
in Table S1. CCDC 1574367 and 1574368 contain the supplementary crystallographic data for this
paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/structures. Analysis of crystal data was performed with Mercury 3.9.

Synthesis of 4,5,6,7-tetrabtomobenzotriazole (TBBT): TBBT was synthesized based on literature
procedures [45]. Five hundred milligrams of 1H-benzotriazole (4.19 mmol), concentrated nitric acid
(6.3 mL), and 3.02 g of bromine (18.8 mmol) were placed in a round bottom flask equipped with
a magnetic stirrer. The reaction was stirred at reflux (120 °C) for 3 days, the product precipitating
from the reaction in the form of a yellow powder. The powder was then recovered by filtration and
recrystallized twice from hot acetic acid, giving TBBT as pale yellow crystalline powders (950 mg,
51% yield). m.p.: 262-264 °C; 13C NMR (101 MHz, CD;0D) & (ppm) 149.55, 134.95, 121.46; (ATR)FTIR
(v, selected bands): 3505, 3073, 1627, 1423, 1262, 1175, 773 cm ™.

Synthesis of solvate (1): In a glass borosilicate vial, 5 mg (0.012 mmol) of TBBT were dissolved in
about 2 mL of hot methanol. Once the solution cooled down, it was allowed to slow evaporate at room
temperature under a hood. After 1 day, small clear crystals of a bipyramidal shape were found on the
bottom of the vial. m.p.: 130-131 °C; (ATR)FTIR (v, selected bands): 2956, 2871, 1725, 1471, 1262, 1177,
1010, and 863 cm ™.
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Synthesis of salt (2): Fourteen milligrams of N,N,N’,N’-tetramethylethylenediamine (0.13 mmol)
were added neat to a solution of 55 mg of TBBT (0.013 mmol) in isopropanol (about 20 mL) in a
borosilicate glass vial. The solution was allowed to evaporate slowly under a hood. After 4 days,
small yellowish crystalline blocks were found on the bottom of the vial. m.p.: 190-192 °C; (ATR)FTIR
(v, selected bands): 2088, 1397, 1377, 1157, 1088, 761, 699 cm 1.

4. Conclusions

The crystal structure determination of the solvate (1) and the salt (2) of TBBT confirms indications
from the TBBT:CK2 complex [1] that the pattern of interaction preferentially formed by this API is not
dominated by a single interaction but is the synergistic result of the balanced contribution of several
different attractive forces. The crystal structures of 1 and 2 show that bromine atoms adjacent to the
triazole ring (Brl and Br4) are preferentially involved in XB formation. The same occurs when TBBT
forms a complex with CK2 and CDK2 [1,37], and it might thus be suggested that Br1 and Br4 are better
XB donors than Br2 and Br3.

In the structures of both 1 and 2, TBBT forms halogen-bonded chains by acting as a self-complementary
module. Self-complementarity between XB donor (Br atoms) and acceptor sites (N2 or 7 electrons)
might drive intermolecular recognition phenomena in pure TBBT as well, and these interactions might
be responsible for the poor solubility of the API and its high melting point. TBBT’s tendency to
self-associate makes identifying effective CCFs more difficult. Furthermore, several Br atoms in TBBT
have a Lewis acid character, allowing for a complex multimodal XB donor behavior of TBBT.

HBs in 1 and 2 involve both the API and the CCE. This suggests that the HB donor site of TBBT
(namely the acidic N-H group) may have a general tendency to interact with a variety of molecular
partners. It is also interesting that, in the structure of the solvate (1), N3 acts as an HB acceptor. To the
best of our knowledge, this feature has not been previously observed in any of the reported structures
of TBBT:protein assemblies, and suggests that also HB donors might find application as CCFs for the
synthesis of TBBT’s pharmaceutical cocrystals.

In conclusion, the obtainment of the solvate (1) and the salt (2) of TBBT, and the structural analyses
of the two systems, allowed us to identify interactions consistently formed by this API in crystalline
solids. This information might be helpful in further studies where crystal engineering is used to
design and synthesize new TBBT cocrystals with improved bioavailability. The obtainment of TBBT’s
pharmaceutical cocrystals using inorganic anions as XB acceptors are under study to assess if the
resulting synthon can displace the C—Br---N2 synthon observed herein.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4352/7/11/332/s1,
Figure S1: FTIR spectra of pure TBBT (top) and of the solids obtained on recrystallization of TBBT from methanol,
ethanol, trifluoroethanol, i-propanol, and acetonitrile (from second to sixth spectrum in the order). Only in the
case of methanol were crystals suitable for single crystal X-ray analyses obtained. It seems that pure TBBT was
obtained in all cases, except that of ethanol, which might have formed a solvate, or a polymorph, of TBBT. Table S1:
Crystallographic data for 1 and 2.
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