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Abstract
Structured targets offer great control over ultra-intense laser-plasma interaction, allowing the
optimization of laser-target coupling for specific applications. By means of particle-in-cell
simulations we investigated three applications in particular: high-order harmonic generation
(HHG) with grating targets, enhanced target coupling with multilayer targets and the generation
of intense laser-driven terahertz (THz) pulses with structured targets. The irradiation of a solid
grating target at the resonance angle for surface plasmon excitation enhances the HHG with
respect to flat targets. Multilayer targets consisting of solid foils coated with a very low-density
near-critical layer lead to a strong laser absorption and hot electron production that can improve
laser-driven ion acceleration. We also explored the generation of THz radiation showing how
using either gratings or multilayer targets the emission can be strongly enhanced with respect to
simple flat targets.

Keywords: relativistic laser-plasma interaction, high-order harmonic generation, structured
targets, laser-driven ion acceleration, laser-driven terahertz generation, particle-in-cell
simulations

(Some figures may appear in colour only in the online journal)

1. Introduction

The realization of laser-driven ultra-intense radiation sources
is one of the main goals of the research activities carried out
in the field of relativistic laser–matter interaction. Various
schemes have been proposed for a number of applications,
including high-energy particle sources (electrons [1] and ions
[2, 3]), high intensity photon sources [4], high-order harmonic
generation (HHG) [5] and ultra-intense terahertz (THz)
sources [6]. In parallel with the development of these appli-
cations, several advanced target concepts [7] have been
investigated, aiming at an improvement or a better control
over the aforementioned schemes.

In this work we review some recent numerical results
obtained with two specific advanced targets: relativistic surface-
plasmon enhanced HHG with gratings [8](section 2), electron
heating and enhanced ion acceleration with multilayer targets
[9–11](section 3). Moreover, we provide an exploratory num-
erical investigation of laser-driven THz generation exploiting
the aforementioned target concepts (section 4). THz emission
from solid targets irradiated at relativistic or sub-relativistic
intensities has been correlated with the conversion efficiency of
laser energy into hot electrons energy [12]. Since both grating
targets [13, 14] and multilayer targets [11, 15] generally provide
a significantly higher laser absorption with respect to simple flat
targets, an enhancement of THz emission may also be expected.
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2. Enhanced HHG with grating targets

Grating targets have been investigated for a wide variety of
applications, including laser-driven ion acceleration [13, 14, 16],
synchrotron emission [17], electron acceleration [18, 19] and
control [20, 21] or enhancement [8, 22–25] of HHG from laser–
solid interaction. Here we review a recent numerical work on
HHG using solid grating targets, where we observed that the
irradiation of a grating at the resonance angle for surface plasmon
excitation enhances HHG with respect to a flat solid target [8].

HHG with relativistic laser pulses interacting with solid
targets [5, 26–30] is due to the relativistic motion of the electrons
in the intense laser field at the target surface [31, 32] and has been
proposed as a way to achieve higher intensities of the emitted
harmonics with respect to conventional schemes based on atomic
recollision in gaseous targets [33]. Indeed, HHG generation with
gas targets is ultimately limited by the ionization threshold
(I 10 W cm15 2~ - ), while such intensity limit does not apply for
HHG with laser–solid interaction. The use of a grating as a target
for HHG has been proposed as a strategy to angularly separate
the emitted harmonics, in order to obtain a quasi-monochromatic
extreme ultra-violet (XUV) source [24, 25, 34] (the harmonic
orders between the 8th and the 80th of a Ti:Sapphire laser with a
wavelength ∼800 nm lie in the XUV spectral region). Given a
grating with a spacing d between the grooves, the m th harmonic
order is diffracted according to [21, 22]:

n md sin sin , 1mnil q q= +( ) ( ) ( )

where λ is the laser wavelength, n is the diffraction order, iq is the
angle of incidence of the laser pulse and mnq is the diffraction
angle.

When focusing a laser pulse on a grating target, a surface
plasmon can be excited if a matching condition between the
grating period and the angle of incidence is met. Experimental
evidence of the excitation of surface plasmons in laser-grating
interaction at relativistic intensities has been recently pro-
vided [13, 19, 35]. Since surface plasmon excitation is asso-
ciated with electromagnetic field enhancement at the target
surface, an enhancement of HHG can be expected, in addition
to the grating diffraction effects.

Neglecting relativistic effects, for a cold, dense plasma
(i.e. plasma frequency c2pw p l ), the resonance angle θres
for surface plasmon excitation is given by [36]:

j d 1 sin , 2resl q= + ( ) ( )

where j is an integer. Even though equation (2) has been
derived in a purely non-relativistic theory, recent works
[13, 19, 35] suggest that this condition should hold even at
relativistic laser intensities.

The irradiation of a grating target in a configuration
suitable for the excitation of surface plasmons has been
considered in [8], by means of 2D numerical simulations
performed with the open source particle-in-cell (PIC) code
piccante [37, 38]. A box size of 80 80l l´ and a resolution
up to 400l were used. The laser had a normalized intensity
a0 = 15 and a temporal duration of 12 λ/c (intensity FWHM).
The target was a 1l thick grating with a spacing d 2l= ,
which according to equation (2) corresponds to a resonance

angle 30resq = . The peak-to-valley depth of the grooves was
0.25l. A simple flat target was also simulated for comparison.
The electron density of the targets was n n128e c= , sampled

with 144 macro-particles per cell (n m c

ec
e

2

2 2= p
l

is the critical
electron density (e is the elementary charge, me is the electron
rest mass and c is the speed of light). In the simulations the
targets were irradiated at various incidence angles (15◦–45°)
and a Fourier transform of the diffracted electromagnetic field
was performed in order to extract the harmonic content.

Figure 1(a) shows the ẑ component of the magnetic field
before and after the interaction with the grating target.
Figure 1(b) shows the Fourier transform of the ẑ component
of the magnetic field in the x 0> half-plane for a flat target
irradiated at 45◦ and for a grating target irradiated at θi =
15 , 30 , 35   and 45°. In the case of a flat target all the
harmonic orders are emitted along the specular direction,
while for the grating high-order harmonics are diffracted,
according to equation (1). A strong enhancement of harmonic
emission is observed at incidence angles close to 30°, the
expected surface plasmon resonance angle, in particular for
harmonic orders diffracted close to the target surface (kx = 0).

Finally, figure 1(c) shows a comparison between the
spectrum of the emission collected within 45 2.5   for the flat
target irradiated at 45° and that of the emission collected within
80 2.5   for the grating target irradiated at 35° (these cases
were observed to provide the highest harmonic yield for the two
target types). While the spectrum for the flat target is dominated
by the m=1 order (i.e. the reflected laser light), for the grating a
suppression of the m=1 order and a significant increase of the
intensity of emitted harmonics is observed. The enhancement of
the harmonic emission is particularly evident for higher har-
monic orders (≈2 orders of magnitude for m= 40).

These results show that the implementation of the
described scheme in a laser-plasma interaction experiment
should allow to observe higher-order harmonics irradiating a
grating target near-resonance than a simple flat target. This
approach may find application as an ultra-intense, quasi-
monochromatic, XUV source.

3. Foam-attached foils for enhanced electron heating
and ion acceleration

Multilayer targets consisting in solid foils coated with a low-
density layer [39–41] have been investigated within the fra-
mework of laser-driven ion acceleration [2, 3], where they
have been proven to optimize the process. Specifically, they
can lead to an increase of both the energy and the number of
accelerated ions with respect to flat solid foils [9–11, 15,
41–43]. This could be beneficial for several potential appli-
cations [44, 45], such as radiotherapy [46, 47], material sci-
ence [48, 49] or ultra-fast neutron sources [50].

Here we review some recent results concerning a numerical
investigation of electron heating with multilayer targets [11],
which is strongly related to the ion acceleration process [2, 3].

The use of a solid foil coupled with a low-density layer—
near-critical when fully ionized—has been proposed as a

2
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possible solution to increase laser-target coupling [15, 51].
Indeed, laser interaction with a plasma at density n ne c~ is
characterized by strong absorption and several nonlinear
effects such as channel formation [52], self-focusing [52] and
high-energy particle acceleration [53].

Experimental and numerical investigations of laser-dri-
ven ion acceleration with near-critical materials [9, 10, 41–43]
reported a strong enhancement of the energy and the number
of accelerated ions under certain target parameters. In
[9, 10, 43] the effect was attributed to an enhanced target
normal sheath acceleration (TNSA) mechanism due to an
increase of the energy and of the number of electrons accel-
erated towards the back side of the target, while in [41]
authors claimed an enhanced radiation pressure acceleration
mechanism due to self-focusing and steepening of the laser
pulse in the near-critical plasma.

Near-critical layers in [9, 10, 43], were obtained coating a
thin solid foil with a very low-density nanostructured carbon
foam [40]), whereas in [41, 42] authors exploited nanotubes
and plastic foams, respectively. Regardless of the technique,
while near-critical on average, all these targets are constituted
by alternating voids and solid-density nanostructures. Due to
the extreme contrast of modern day ultra-short laser systems
[54], these nanostructures can survive long enough to influ-
ence the interaction with the laser.

In [11] an extensive numerical campaign was carried out
in order to elucidate the electron heating process in multilayer

targets, taking into account a possible role played by the
nanostructure of the near-critical layer. In this work 2D
numerical simulations were performed with piccante code
[37, 38]. Simulated targets consisted in 0.5 μm thick pre-
ionized (Z/A = 1/3) foils with an electron density n n80e c= ,
coated with a 8 μm thick ‘foam’ layer with an average
electron density equal to n1 c (Z A 1 2= ). Two different
types of foam were compared: a ‘homogeneous’ and a
‘nanostructured’ near-critical layer consisting in a spatially
random collection of 10 nm over-dense (100 nc) spheres, with
a filling factor of 1% (so that the average density of the
plasma was still 1 nc). The laser pulse (λ = 0.8 μm) was
P-polarized, Gaussian shaped in the transverse direction
(waist of 3 μm) with sin2 temporal envelope (intensity
FWHM of 25 fs). The peak intensity was varied between the
normalized laser amplitudes a0 = 1.5 and a0 = 15 (i.e. from a
table-top multi-TW facility up to a few hundred s TW facility
[55]). The angle of incidence was 30°. As reported in figure 2,
laser interaction with foam-attached targets, either modelled
with a homogeneous or nanostructured near-critical layer,
results in an enhanced laser-matter coupling, leading to a
significant increase of the electron temperature with respect to
simple foils. The electron temperature was found to be lower
for the nanostructured target than for the homogeneous one.
This might be due to the fact that a fraction of the total energy
is lost to the ion population in the Coulomb explosion of the
nanospheres. A similar effect was observed in [56], where an
extensive parametric investigation of laser interaction with

Figure 1. Resonant enhancement of HHG with grating targets. (a) ẑ component of the magnetic field before and after the interaction with the
grating target (expected resonance at 30◦). (b) Fourier transform of Bz for a flat target irradiated at 45◦ and for the grating target irradiated at
15 , 30 , 35  , 45◦. (c) Spectrum of the emitted radiation collected by a synthetic detector at 45 2.5   and 80 2.5   for the grating target.
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nanostructured near-critical plasmas was carried out. In order
to benchmark the results of this numerical campaign with
experimental data, the electron temperatures obtained from
the simulations were coupled with simple models of TNSA
[57], providing an estimation for the maximum ion energies.
Estimations obtained using the electron temperature of the
nanostructured case proved to be in close agreement with
recent experimental results [9, 10], while the higher tem-
peratures obtained with the uniform foam targets lead to an
overestimation of the ions maximum energies. The higher
electron temperatures obtained with foam-attached targets
with respect to simple flat foils justify the higher ion energies
observed in the experiments with the formers.

We remark that simulations with foam-attached targets in
[11] were performed with a relatively small angle of incidence
of 30°. However, results in [15] provide an indirect indication
that foam-attached targets could still allow for a significant
enhancement of electron heating with respect to flat solid foils
even for larger incidence angles (up to 60°).

Figure 2. Laser interaction with flat foils and foam-attached targets. (a) Electron energy spectra taken when the kinetic energy of the electron
population reaches its maximum for a flat foil (black), a nanostructured foam-attached target (red) and a homogeneous foam-attached target
(blue). (b)–(d) Electron density normalized with respect to the critical density for a flat foil, homogeneous foam-attached target and
nanostructured foam-attached target, respectively. The snapshots were taken at the same temporal frame of panel (a). The ẑ component of the
magnetic field is superimposed to the density plot in blue-red scale.

Figure 3. The Bz field component at t c200l= averaged over one laser cycle for the flat target, the target with an exponential density
gradient optimized for resonant absorption, the grating target and the foam-attached target described in section 4. The numbered dots show
the position of ‘probe’ diagnostics, which collect the value of the electromagnetic field as a function of time in a given position. Probes are
positioned at a 70l distance from the target centre, at 85 , 75 , 65 , 55    and 45° from target normal, respectively. Field intensities are shown
in kiloTesla units (for the conversion from code units, a laser wavelength 0.8 ml m= was considered).

Figure 4. Absorption of laser energy into electron kinetic energy as a
function of time for all the cases simulated in section 4. After reaching
a peak at t c75l» , the energy of the electron population decreases
over time due to energy absorbed by the ion acceleration process.
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4. THz generation with structured targets

THz sources are of great interest for several scientific and
technological applications [58, 59], such as time-resolved
THz spectroscopy [60] or imaging [61]. Conventional THz
sources with high energy per pulse (in the range of 100 Jm~ )
are based on large electron accelerators [62, 63]. Recently,
sources based on ultra-intense laser–solid interaction have
been proposed as a possible path to generate THz pulses with
energies similar to those that can be obtained with particle
accelerators, but with a compact set-up [6, 12, 64–69]. The
experimental observation of 400μJ per pulse broadband THz
emission from solid foils irradiated at I 10 W cm19 2~ - has
been reported [6, 66], with a peak power of the emitted
radiation approaching 1 GW [6]. THz emission from the rear
of irradiated targets is attributed to coherent transition radia-
tion of hot electrons [12, 65, 66, 70, 71], transient surface

currents [6] and time varying TNSA charge separation field at
the rear side of the target [6]. In these scenarios the intensity
of THz emission has been directly correlated with the laser
absorption. As already discussed, structured targets provide a
mean to improve laser absorption [11, 13–15], which might
also lead to an enhancement of THz emission. Here we pre-
sent an exploratory numerical investigation of THz emission
from irradiated gratings and multilayer targets. The properties
of THz emission using these structured targets are compared
with those obtained using a simple foil and a solid foil with a
tailored exponential ramp (the gradient length-scale has been
chosen so to enhance resonance absorption, as in [12]).

Numerical simulations were performed with the open
source, massively parallel PIC code Smilei [72]. In this section
Smilei rather than piccante was used due to its additional diag-
nostics, such as ‘probes’ and time-averaged fields. Cross-checks
were performed between the two codes showing a very good
agreement. A 250 448l l´ numerical box with a resolution of
48 points per wavelength was used. The simulation time was

c350l . The P-polarized laser pulse had a Gaussian transverse
shape (waist of 5l), a Gaussian temporal profile (field FWHM
duration of c15l ) and a normalized laser intensity of a 20 =
(i.e. a mildly relativistic regime accessible with a compact ∼10
TW laser system [14]). The incidence angle was 30°.

Four different targets were simulated: a simple flat foil
(5λ thick, n n40e c= ), a grating target (5λ thick, n n40e c= ,
0.25 λ peak-to-valley depth, distance of the grooves d 2l= ),
a foam-attached target (flat foil plus 5λ thick uniform foam
layer at n n1e c= ) and a simple target with an exponential
density ramp (5λ thick, n n40e c= , length-scale of the ramp
l 0.65l= , which is the optimal length-scale for resonance
absorption at 30° [73]). Forty-nine macro-electrons per cell
were used to sample the electron density.

Figure 3 shows the ẑ component (averaged over one laser
cycle) of the magnetic field at t c200l= for the considered
targets. In the four cases the emission of a half-cycle

Figure 5. ẑ component of the magnetic field as a function of time
measured by probes 1 and 3 (see figure 3) for all the simulated
targets. The light shade curves represent raw data, whereas the
darker curves are calculated averaging over 120 neighbouring points
(i.e. within a c0.86l interval). Field intensities are shown in
kiloTesla units (for the conversion from code units, a laser
wavelength 0.8 ml m= was considered).

Figure 6. Squared amplitude of the Fourier transform of the ẑ
component of the magnetic field seen by probes 1 and 3. The lower
limit of the frequency axis (1.8 THz) is due to the time window of
the probe diagnostics. The laser frequency is ≈375 THz. Only data
for the optimized gradient target and the foam-attached target are
shown, since the strongest emission is observed in these cases.
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electromagnetic burst from the back side of the target can be
observed. The lowest intensity of the emitted radiation is
observed for the flat target. All the other targets allow for a
significant enhancement of electromagnetic emission with
respect to the former. The strongest emission is obtained with
the gradient target and the foam-attached target. The intensity
of this electromagnetic burst can be directly correlated with
the conversion efficiency of laser energy into electron kinetic
energy, reported in figure 4. The absorption efficiency is

10%» for the flat target, while it reaches 20%» for the
grating target and 60%» for the other two targets. Figure 5
shows the ẑ component of the magnetic field measured by
‘probes’ 1 and 3 (see figure 3). The decay time of the signal is
of the order of several tens of cl , which implies a typical
frequency of few tens of THz for 0.8 ml m= .

Figure 6 shows the squared amplitude of the Fourier
transform of the signal detected by probes 1 and 3 for the
optimized gradient and the foam-attached targets. The signal is
broadband between few THz and ≈100 THz. Limited differ-
ences can be observed in the spectra obtained with the two
targets. These results confirmed that, as previously suggested
[12], the THz emission from a target with a controlled plasma
gradient is significantly higher than from a simple flat foil. The
grating target allows for a moderate enhancement of the THz
emission. On the other hand, using foam-attached targets the
emission intensity is comparable with that obtained with the
gradient target. However, foam-attached targets do not require a
fine control of the laser temporal shape nor a pre-heating pulse in
order to obtain a tailored gradient. This relaxes the experimental
set-up, while still allowing for a significant THz emission.

5. Conclusions

Our results show that structured targets can be used to optimize
laser-plasma coupling for a variety of applications. Here we have
considered two specific target designs irradiated at laser inten-
sities readily available in existing laser facilities: grating targets
and foam-attached targets. Irradiating grating targets with an
angle of incidence close to the one expected for surface plasmon
resonance allows a significant enhancement of HHG with
respect to simple flat targets. Foam-attached targets consisting of
solid foils coated with a near-critical layer allow one to strongly
enhance the laser-to-electrons conversion efficiency; this leads to
an increase of the maximum energy and of the total charge of the
TNSA ions. Finally, numerical simulations suggest that gratings
and multilayer targets are a promising solution for the generation
of electromagnetic bursts at THz frequencies, since in both cases
a strong enhancement of THz emission with respect to simple
flat targets is observed.
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