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EXTENSORS AND THE HILBERT SCHEME

JEROME BRACHAT, PAOLO LELLA, BERNARD MOURRAIN, AND MARGHERITA ROGGERO

ABSTRACT. The Hilbert scheme Hilbj ;) parametrizes closed subschemes and families of closed
subschemes in the projective space P™ with a fixed Hilbert polynomial p(t). It is classically
realized as a closed subscheme of a Grassmannian or a product of Grassmannians. In this paper
we consider schemes over a field k of characteristic zero and we present a new proof of the
existence of the Hilbert scheme as a subscheme of the Grassmannian Gr;\z(f)), where N(r) =
h°(Opn (1)). Moreover, we exhibit explicit equations defining it in the Pliicker coordinates of
the Pliicker embedding of Gr;\;(f)).

Our proof of existence does not need some of the classical tools used in previous proofs, as

flattening stratifications and Gotzmann’s Persistence Theorem.

The degree of our equations is deg p(t) + 2, lower than the degree of the equations given by
Tarrobino and Kleiman in 1999 and also lower (except for the case of hypersurfaces) than the
degree of those proved by Haiman and Sturmfels in 2004 after Bayer’s conjecture in 1982.

The novelty of our approach mainly relies on the deeper attention to the intrinsic symmetries
of the Hilbert scheme and on some results about Grassmannian based on the notion of extensors.

INTRODUCTION

The study of Hilbert schemes is a very active domain in algebraic geometry. The Hilbert
scheme was introduced by Grothendieck [17] as the scheme representing the contravariant func-
tor Hilb ) : (Schemes/k)® — (Sets) that associates to a scheme Z the set of flat families
X — P" Xgpeck Z — Z whose fibers have Hilbert polynomial p(t). Thus, the Hilbert scheme
Hilbz(t) parametrizes the universal family of subschemes in the projective space P with Hilbert
polynomial p(t). It is natural to embed the Hilbert functor in a suitable Grassmann functor
and to construct the Hilbert scheme as a subscheme of a Grassmannian Grﬁig) for a sufficiently
large r, where N (t) equals (™).

Over the years, several authors addressed the problem of finding simpler proofs of the rep-
resentability of the Hilbert functor and explicit equations for the representing scheme. This is
also the aim of the present paper. In fact, we present a new proof of the existence of the Hilbert

(r)

scheme as a subscheme of Grﬁgr) and we exhibit explicit equations defining it in the case of a
field k of characteristic 0.

There are some reasons for which we consider our work significant that concern the tools used
in the proofs and the shape of the equations, in particular the degree.

In order to simplify Grothendieck’s proof, a first crucial point is the concept of regularity
that Mumford introduced for the choice of the degree r [26, 27]. A further simplification is due
to Gotzmann, whose Regularity Theorem gives a formula for the minimum 7 only depending
on p(t) [15]. Other key tools and results that usually appear in this context are flattening
stratifications, fitting ideals, Gotzmann’s Persistence Theorem and Macaulay’s Estimates on the
Growth of Ideals.

In this paper, the number r is always that given by Gotzmann’s formula and in our proof
we make use of Macaulay’s Estimates, but we do not need any of the other quoted results. We
replace them by a deeper attention to the inner symmetries of the Hilbert scheme induced by the
action of the projective linear group on P", and by exploiting the nice combinatorial properties
of Borel-fixed ideals. These are far from being new ideas to study Hilbert schemes. Indeed, they
play a central role in some of the more celebrated and general achievements on this topic, first of
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all Hartshorne’s proof of connectedness [19]. However, to our knowledge, they have never been
used before to prove the existence or to derive equations for Hile(t).

The proof of the representability of the Hilbert functor given by Haiman and Sturmfels in [15]
following Bayer’s strategy starts with a reduction to the local case; the open cover of Hilbg(t)

they consider is that induced by the standard open cover of @;\Eg)

. We introduce a new open
cover for the Grassmann functor, that we will call the Borel open cover. It is obtained considering
only a few open subfunctors G of the standard cover, each corresponding to a Borel-fixed ideal
generated by N(r) — p(r) monomials of degree 7, and all the open subfunctors Gz ,, for every
g € PGL(n + 1), in their orbit (Proposition 3.2). The Borel open subfunctors Hy , of the Hilbert
functor are defined accordingly.

Restricting to each Borel subfunctor Gz ,, the properties of J-marked sets and bases over a
Borel-fixed ideal J developed in [24] allow us to prove that Hy , is representable and to obtain

a new proof of the existence of Hilb},) (Theorem 4.9).

Towards the aim of deriving equations for the Hilbert scheme, we then expand the notion of
marked set to the universal element of the family

(r)

F — P" X Spec k GI‘;\ET) — GI‘N(T)

p(r)

parameterized by the Grassmannian and to its exterior powers. Indeed, exploiting the notion
of an extensor and its properties, we obtain a description of the universal element by a set of
bi-homogeneous generators of bi-degree (r,1) in k[x, A], where x and A are compact notation
for the set of variables on P™ and the Pliicker coordinates on the Grassmannian. We also obtain
a similar description (again linear w.r.t. A) for the exterior powers of the universal element of
F (Theorem 5.10). These sets of generators allow us to write explicitly a set of equations for
the Hilbert scheme in the ring k[A] of the Pliicker coordinates (Theorem 6.5).

The degree of our equations is upper bounded by d + 2, where d := deg p(t) is the dimension
of the subschemes of P" parametrized by Hilbz(t). It is interesting that the degree of the
equations is so close to the geometry of the involved objects. Furthermore, d + 2 is lower than
the degree of the other known sets of equations for the embedding of the Hilbert scheme in
a single Grassmannian. We quote the equations of degree N(r + 1) — p(r + 1) + 1 in local
coordinates given by larrobino and Kleiman [21, Proposition C.30], and the equations of degree
n + 1 in the Pliicker coordinates conjectured by Bayer in his thesis [3] and obtained by Haiman
and Sturmfels as a special case of a more general result in [18].

By the way, we observe that our method, applied with slightly different strategies, also allows
to obtain sets of equations very similar to those by Iarrobino and Kleiman and by Haiman and
Sturmfels (Theorems 6.6 and 6.7).

At the end of the paper we apply our results in order to compute a set of equations defining
the Hilbert schemes of 2 points in P2, P2 and P* and of 3 points in P2. In particular, we illustrate
in detail our method in the case of Hilb% and we compare the equations we obtain with those
obtained by Brodsky and Sturmfels [7]. We observe that the two sets of equations, though
different, generate the same ideal, more precisely the saturated ideal of Hilb% in Gr§ c P4
Our equations describe the saturated ideal also in the case of Hilbj in Gri® c P*, Hilbj in
Gr%‘r’ c P19 and Hilb% in Gréo C P19 but we do not know if this nice property holds in
general. However, the lower degree marks a significant step forward in order to compute this
special ideal (see Table 1) and allows further experiments and investigations.

Let us now explain the structure of the paper. In Section 2, we recall some properties that we
will use throughout the paper. In particular, we describe the Hilbert functor, its relation with
the Grassmann functor and the standard open cover. In Section 3, we introduce the Borel open
cover. Section 4 contains the generalities about marked sets and bases over Borel-fixed ideals
and it ends with the first main result of the paper, namely Theorem 4.9 on the representability
of the Hilbert functor. Section 5 contains the results on Grassmannians based on the theory of
extensors (Theorem 5.10). In Section 6, after some new technical results about marked bases,
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we present the equations defining the Hilbert scheme and we prove their correctness (Theorem
6.5). In Subsections 6.1 and 6.2 we derive equations similar to those by Iarrobino-Kleiman and
by Haiman-Sturmfels. In Section 7, we illustrate the constructions and results of the paper in
the case of Hilbert schemes describing 2 or 3 points.

1. NOTATION

Let k be a field of characteristic 0. In the following k[x] will denote the polynomial ring
k[xo,...,z,] and P" the n-dimensional projective space Projk[z]. For a k-algebra A, we will
denote by Alx] := A ®y, k[z] the polynomial ring with coefficients in A and by P’} the projective
space Proj Alz] = P™ Xgpec Spec A. As usual, for a subset E of a ring R, we denote by (E)
the ideal of R generated by F and for a subset F' of an R-module M, we denote by (F') the
R-submodule of M generated by E; we sometimes write r(E) and r(F) when more than one
ring is involved.

Let us now consider a scheme X C P%. For each prime ideal p of A, we denote by A,
the localization in p, by k(p) the residue field and by X, the fiber of the structure morphism
X — Spec A. The Hilbert polynomial p,(t) of X, is defined as

pp(t) = dimk(p) HO(XP, OXp (t)) Rk k(p), t> 0.

If X is flat over Spec A and the Hilbert polynomial py(t) of every localization coincides with p(t),
then p(t) is called the Hilbert polynomial of X (for further details see [20, III, §9]). There exists
a positive integer r only depending on p(t), called Gotzmann number, for which the ideal sheaf
Zx of each scheme X with Hilbert polynomial p(t) is r-regular (in the sense of Castelnuovo-
Mumford regularity). By Gotzmann’s Regularity Theorem ([15, Satz (2.9)] and [2], Lemma
C.23]), this implies the surjectivity of the morphism

HO(Op, (r)) 25 H(Ox(r)).

We will denote by N(t) the dimension of k[x];. The polynomial ¢(t) := N(t) — p(t) is the
Hilbert polynomial of the saturated ideal defining X and it is called the volume polynomial of
X. In particular, for ¢ = r the Gotzmann number of p(t), we set p := p(r), ¢ := ¢(r) and
N := N(r).

We will use the usual notation for terms z® := z§° - -- 29, where a = (ag,...,a,) € N*TL
When a term order comes into play, we assume the variables ordered as zg < --- < xy,; we will
denote by <pegrevrex and <rex the degree reverse lexicographic and the lexicographic orders. We
will denote by z*® the i-terms of degree r in descending DegRevLex order. For any term z%, let
min(z®) and max(z®) denote respectively the minimal and the maximal variable which divides
x®.

For any polynomial f € A[z], the support Supp(f) of f is the set of terms that appear in f
with non-zero coefficient and coeff,(f) C A is the set of coefficients of the terms in Supp(f);
with the obvious meaning, we use the notation coeff, (U) also if U is a subset of A[z].

We loosely denote by the same letter the monomial ideals in k[z] and that in Alx| generated
by the same set of terms. If J is a monomial ideal, we will denote by B its minimal monomial
basis and by N (J) the set of terms in k[z] \ J. For a subset V of a standard graded module
R =, Ry, Vs and V¢ will denote respectively V N Rs and V NP, , Ry

An s-multi-index H = (hyq,...,hs) is an ordered sequence h; < hg < -+ < hg in {1,...,N};
its complementary H€ is the (N — s)-multi-index with entries in the set {1,..., N} \ H. For any
s-multi-index H, we will denote by €3 € {—1,1} the signature of the permutation (1,...,N)
H,HE. Moreover, if H C K, 8712 is the signature of KL — H, K\ H. For every m < N — p, we will
denote by £0™ the set of all (p + m)-multi-indices.

For every Z € £ J (Z) is the ideal generated by the terms z2U) corresponding to the indices
jeI°.
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2. HILBERT AND GRASSMANN FUNCTORS

In the following, Hilb ) will denote the Hilbert functor (Schemes/k)® — (Sets) that asso-
ciates to an object Z of the category of schemes over k the set

Hile(t)(Z) = {X CP" Xgpeck Z | X — Z flat with Hilbert polynomial p(t)}.

and to any morphism of schemes f: Z — Z’ the map
X’ — X' x a1
It is easy to prove that Hilbz(t) is a Zariski sheaf [27, Section 5.1.3]; hence, we can consider
it as a covariant functor from the category of noetherian k-algebras [28, Lemma E.11]
Hilb ), : (k-Algebras) — (Sets)
such that for every finitely generated k-algebra A
Hilb} (A) = {X C P} | X — Spec A flat with Hilbert polynomial p(t)} .
and for any k-algebra morphism f: A - B
Hilb}, (f): Hilbj,(A) —  Hilbj,)(B)
X — X Xgpeca Spec B.

The Hilbert scheme Hilbg(t) is defined as the scheme representing the Hilbert functor. Our
notation for the Hilbert functor follows that used for instance in [18], where the functor of points
of a scheme Z is denoted by Z. Note that we are not assuming the representability of @Z(t)
as a known fact, but we will prove it at the end of Section 4.

Let us briefly recall the strategy of the construction of the Hilbert scheme based on Castelnuo-
vo-Mumford regularity and Gotzmann number. The following proposition suggests to look for
an embedding in a representable functor and reduce to the local case.

Proposition 2.1 ([18, Proposition 2.7 and Corollary 2.8]). Let Z be a scheme andn: F — Z be
a natural transformation of functors (k-Algebras) — (Sets), where F is a Zariski sheaf. Suppose
that Z has a cover of open subsets U such that each subfunctor n~1(U) C F is representable.
Then, also F is representable.

Moreover, if the natural transformations n~1(U) — U, given by restricting 0, are induced by
closed embeddings of schemes, then so is 7.

The overall strategy introduced by Bayer [3] for the construction of the Hilbert scheme uses
an embedding in a Grassmann functor (for a detailed discussion we refer Section 2 of [18] and to
[11, Section VL1]). If X' € Hilb/ (A), then by flatness HY(Ox(r)) is a locally free A-module

of rank p(r). Hence, the surjective map ¢x : H° (Opg (r)) ~ AN — HY(Ox(r)) is an element
of the set defined by the Grassmann functor Qév over A. Indeed, the Grassmann functor
Qg : (k-Algebras) — (Sets) associates to every finitely generated k-algebra A the set

Gr)'(4) = {

isomorphism classes of epimorphisms
n: AN — P of locally free modules of rank p

GrN(A) | submodules L C AN such that
B ~ | AN/L is locally free of rank p [

In the second formulation, 7 is the canonical projection 77 : AN — AN /L. This functor is

(2.1)

representable and the representing scheme Gri,v is called the Grassmannian (see [30, Section
16.7]).
We fix the canonical basis {ai,...,ay} for AV and the isomorphism AV ~ HO (O]PZ (r)) given

by a; — x*@. Thus, we obtain a universal family

F < P"x Gr) — Gr)) (2.2)
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parameterized by the Grassmannian and the natural transformation of functors
: Hilb?") — Grl

sending X € Hilbﬁ(t)(A) to mx: HO(OPZ(T)) — H°(Ox(r)) € Qﬁ,v(A) (or equivalently to
L=HIx(r))).

The Grassmannian has the following well-known open cover that we call the standard open
cover of Q;,V. Let us fix a basis {ej,...,e,} for AP. For every T = (i1,...,i,) € £, let us
consider the injective morphism

Iz: AP — AN
ej > aj;
and the subfunctor G that associates to every noetherian k-algebra A the set
Gz(A)={Le Qg(A) such that 77, o 'z is surjective} .
Proposition 2.2. For Z € £ the G are open subfunctors of @év that cover it.
Proof. See [29, Section 22.22]. O

Remark 2.3. For every L € G7(A) the map 7y o I'z is an isomorphism, as it is a surjective
morphism from a free A-module to a locally free A-module of the same rank. Therefore, L is the
kernel of the epimorphism ¢y := (7 o I'z) "' oy : AN — AP such that QSL(aZ-j) = e; for every
ij el

On the other hand, the kernel of every surjective morphisms ¢: AV — AP sending a;; to
e; is by definition a module L € Gz(A): we will write ¢;, instead of ¢ to emphasize this
correspondence.

Every map ¢, is completely determined by the images of the ¢ = N — p elements a; with
heZe If prlan) = D201 ymjej = or <Z§:1 Yhj aij>, the kernel L contains the free A-module
L' generated by the ¢ elements by, = aj — Z§:1 Vhj &i; € AN with h € Z¢. Then, AN =
L'®(a;; | ij €T) C L& (ay | i; € I) € AN, so that L = L’ and AV /L are free A-modules of
rank g and p respectively.

Through the fixed isomorphism AN ~ HO (Opn (1)) given by a; + 2°U), the elements by,
correspond to polynomials fo ) = z(h) Zp 1 Y @) e HO(OPZ(T)). In this way, for
L = ¢(A)(X) € Gz(A), the polynomials f, ) generate the ideal (Ix)>,, while for a general
L € Gz(A), the A-module (fypu),h € I¢ C H?(Opn (r)) is free of rank ¢, but the Hilbert
polynomial of Proj(A[z]/(fa(n), h € Z¢)) is not necessarily p(t).

In the following, keeping in mind the above construction, we often consider the ideal I =
(fa(n)s b € Z°) as an element of G7(A), identifying it with the A-module L = I,. In the same
way, we will write / € H7(A) when I € G7(A) and the Hilbert polynomial Proj(A[z]/I) is p(t).

The proof of the representability of the Hilbert functor after Bayer’s strategy given in [18]
uses the open cover of Hilb”( £ of the subfunctors H; := 2~ 1(G7) N mg(t)’ that we will call
the standard open cover of Hllbp(t)

In this paper we introduce new open covers of the Grassmann and the Hilbert functors, called
Borel open covers, that take into account of the action of the projective linear group on the
Grassmann and Hilbert functors induced by that on P™.

3. THE BOREL OPEN COVER

An ideal J C k[z] is said Borel-fized if it is fixed by the action of the Borel subgroup of the
upper triangular matrices.

These ideals are involved in many general results about Hilbert schemes for the following
reason. Galligo [141] and Bayer and Stillman [1] proved that the generic initial ideal of any
ideal is Borel-fixed, which means, in the context of Hilbert schemes, that any component and
any intersection of components of Hilbz(t) contains at least a point corresponding to a scheme
defined by a Borel-fixed ideal.
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In characteristic zero, the notion of Borel-fixed ideals coincide with the notion of strongly
stable ideals. An ideal J is said strongly stable if, and only if, it is generated by terms and for
each term xz® € J also the term %xo‘ is in J for all z; | * and x; > x;. Moreover, the regularity

of J is equal to the maximum degree of terms in its minimal monomial basis [16, Proposition
2.11]. For further details about Borel-fixed ideals see [6, 16, 25].

Notation 3.1. For any Hilbert polynomial p(t) and for the related integers r, p, N, ¢
e B is the set of the Borel-fixed ideals in k[z] generated by ¢ terms of degree r.
e B, is the set of Borel-fixed ideals in B with Hilbert polynomial p(t).

e A Borel multi-indez T is any multi-index in £©) such that J(Z) € B.

e For every element g € PGL := PGLg(n + 1), g denotes the automorphism induced by ¢
on Alz], and on the Grassmann and Hilbert functors and g. denotes the corresponding
action on an element.

Notice that the set of Borel-fixed ideals in B),;) can be efficiently computed by means of the
algorithm presented in [¢] and subsequently improved in [23].

For any p-multi-index Z € £© and any ¢ € PGL, we consider the following subfunctor of the
Grassmann functor :

Gr ()= {

free quotient AN T AN /L of rank p
such that 77, o g o I'7 is surjective ’

These subfunctors are open, because the functorial automorphism of @é\/ induced by g ex-

tends to Gz , ~ Gz ;g = Gz. It is obvious that these subfunctors also cover Qév , but in fact it
is sufficient to consider a smaller subset.

Proposition 3.2. The collection of subfunctors
{Qz,g |gerar, Te&O st J(T) € IBB}

covers the Grassmann functor @é\/ and the representing schemes Gz 4 cover the Grassmannian
Grév .
Proof. Let m: AN — P be an element of @f,v(A). Following [29, Lemma 22.22.1], we prove the
result showing that for any p € Spec A there exist a multi-index Z and a change of coordinates
g such that the morphism 7 o g o I'z is surjective in a neighborhood of p.

Let A, be the local algebra obtained by localizing in p, m, its maximal ideal and k(p) the
residue field. Tensoring by k(p) the morphism 7, we obtain the morphism of vector spaces

Ty k(p)N — By /m, P,

whose kernel is a vector subspace of k(p) ® S, of dimension g.

Now, consider the ideal I C k(p) ® S generated by ker m, and let J be its generic initial ideal.
We fix an element g € PGL such that J = in(g.I). By properties of Grébner bases, we know
that dimy,) J; = dimyp (9. 1), (J and g. I have the same Hilbert function). Furthermore, the
terms of degree r not belonging to J are a basis both of (k(p) ® S,)/J, and (k(p) ® S;)/(g+I),.

Finally, the multi-index Z is the one such that J(Z) = J. O

Definition 3.3. We call Borel subfunctor of Qg any element of the collection of subfunctors
of Proposition 3.2. Moreover, we denote by Hy , the open subfunctor J# _1(§I,g) N Hilbz(t).

Theorem 3.4. The collection of subfunctors
{Hz, |gerar, Tee st J(T) € By (3.1)

covers the Hilbert functor Hile(t).
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Proof. Consider an element X € @Z@ (A). As above, it is sufficient to prove that for any
p € Spec A, there exists a subfunctor Hy ; such that X, = X x Spec k(p) is an element of
EI,g (k(p)) :

Localizing at p, we obtain a scheme X, flat over Speck(p) with Hilbert polynomial p(t), as
the flatness and so the Hilbert polynomial are preserved by localization. Let Ix C k(p) ® S be
the saturated ideal defining X, I := (Ix)>, and J the generic initial ideal of I. By the same
argument used in the proof of Proposition 3.2, we fix a change of coordinated g € PCGL such that
J =in(g.I) and the multi-index Z € £ such that J(Z) = J. By construction, J(Z) € By,
as J and I share the same Hilbert function. 0

Definition 3.5. The Borel cover of Hilbg(t) is the collection of the open subfunctors (3.1) of
Theorem 3.4.

In next section we will prove that the open subfunctor Hy / is empty if J(Z) € B\ B ).

4. REPRESENTABILITY

Our proof that the Hilbert functor is representable mainly uses the theory of marked sets and
bases on a Borel-fixed ideal developed in [9, 5, 21]. We recall some of the results and notation
contained in the quoted papers.

Definition 4.1 ([9, Definitions 1.3, 1.4]). A monic marked polynomial (marked polynomial for
short) is a polynomial f € A[z] together with a specified term 2% of Supp(f), called head term
of f and denoted by Ht(f). We assume furthermore that the coefficient of ® in f is 14. Hence,
we can write a marked polynomial as f, = 2% — ) cqy2?, with 2% = Ht(f,), 27 # 2z and
Cay € A.

Definition 4.2. Let J be a monomial ideal. A finite set F' of homogeneous marked polynomials
Jfa =2% =) caya?, with Ht(f,) = 2, is called a J-marked set if the head terms z* form the
minimal monomial basis By of J, and every z7 is an element of NV (J). Hence, N'(J) generates
the quotient A[x]/(F') as an A-module.

A J-marked set F is a J-marked basis if the quotient Alx]/(F) is freely generated by N (J)
as an A-module, i.e. A[x] = 4 (F) ® aN(J)).

Remark 4.3. Observe that if I is generated by a J-marked basis, then Proj(A[z]/I) is A-flat,
since A[z]/I is a free A-module.
In the following we will consider only J-marked sets F' with J € B, i.e. of the shape

F = {fa =% — chaﬂ | 2 € Jp, 27 € N(J)r, Cay € A}. (4.1)

For every ideal I generated by such a J-marked set F', we have A[z], = (F)® (N (J),), hence I,
is a free direct summand of rank ¢ of A[x], = H° (Opn(4)(r)) and it corresponds to an element
of @év(A). In fact, if Z € £ is the p-multi-index such that J(Z) = J, then I € G(A).

Moreover I € H7(A) if, and only if, the Hilbert polynomial of A[z]/(I) is p(t). Now we will
prove that this happens if, and only if, J € B),;) and F is a J-marked basis.

We need some more properties concerning Borel-fixed ideals and marked bases.
Lemma 4.4. If J € B, then tk(J;) > q(t) and k[xgiq,. .., 2]t C Jp for allt > r.

Proof. The first assertion follows by Macaulay’s Estimates on the Growth of Ideals [16, Theorem
3.3]. Thus, the degree of the Hilbert polynomial of Alx]|/J is at most d = degp(t). By [8,
Proposition 2.3], we have 7, ; € J that implies k[z4y1,...,2n]¢ C J; for t > r, by the strongly
stable property. O

Proposition 4.5 ([12, Lemma 1.1], [5, Lemma 1.2]). Let J be a strongly stable ideal and let By

be its minimal monomial basis.

(i) Each term x® can be written uniquely as a product xVz° with 7 € By and min 27 > max x°.

Hence, 20 <pex 2" for every term x" such that x" | x% and z*~" ¢ J. We will write
z® = 27 x5 2% to refer to this unique decomposition.
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(it) If x* € J\ By and x; = minz®, then 2% /z; € J.
(iii) If 2P ¢ J, while 2°25 € J, then 2%2° = 2% «; 2 with 2* € By and 2° >pex 2% (possibly
29 = 1). In particular, if zxP e J, then either z;2? € By or x; > min 2P,

Definition 4.6. Let J € B and I be the ideal generated by a J-marked set F in A[z]. We
consider the following sets of polynomials:

o F05) .= {x‘sfa ‘ deg (w‘sfa) =t, fo € F, minz® > maxa? (i.e. 2970 = 2% «; x5)};

o () = {x‘sfa ‘ deg (w‘sfa) =t, fo € F, minz® < maxw‘s};

o N(J,I):=INn(N(J)).

Note that for s = r, we have F") = F, (F"V) = I, and N(J,I), = 0.

Theorem 4.7 ([24, Theorems 1.7, 1.10]). For J € B, let I be the ideal generated by a J-marked
set F in Alz]|. Then, for every s >,
(i) I, = (F) + (FO));
(ii) the A-module (F®)) is free of rank equal to |F®)| = rk(J);
(iii) Iy = (F©&)) @ N(J, ).
Moreover, the following conditions are equivalent:
(iv) F is a J-marked basis;
(v) forall s >r, Iy = <F(S)>;
(’U’i) N(J, I)r+1 = 0,‘
(vii) Ipy1 = (FU+D);
(viii) /\Q+1 I.+1 =0, where @Q :=rk(Jy41).

Proof. This result is proved in a more general context in [21]. We only observe that the conditions
“N(J,I)s =0 and I, = <F(S)> for every s < reg(J) + 1”7 appearing in [24] are equivalent to (vi)
and (vit), since in the present hypotheses J is generated in degree r and r is its regularity. With
respect to [24], the only new item is (viii), which is obviously equivalent to (vi) and (vii). In

fact, by (ii) and (iii) we have I, 1 = (FU+DY@N (J,I),41 and 1k (FUHD) = 1k(J, 1) = Q. O
Corollary 4.8. Let T € £ be such that J(T) € B and let g € PGL. Then:
Hy , is not empty <= J(Z) € B,).
Moreover, for J = J(I) € B,y and any k-algebra A
Hy (A) ={g.I s.t. I is generated by a J-marked basis in Alz]} .

Proof. Tt is sufficient to prove the result for g = id, i.e. for H;.

Let A be any k-algebra. If J = J(Z) € B, (), then J € G7(A) and the Hilbert polynomial of
Proj(A[z]/J) is p(t); hence J € H7(A).

On the other hand, if J = J(Z) € B\B),;) and I € Gz(A), then I is generated by a J-marked
set and rk(Js) > ¢(s) for every s > 0 (Lemma 4.4). By Theorem 4.7, the A-module I contains
a free submodule of rank equal to that of J,, hence I ¢ H;(A).

The second statement directly follows from Theorem 4.7 (7i) and the equivalence (iv)< (v). O

In [24] a functor Mf ;: (Rings) — (Sets) is defined for a strongly stable ideal J in Z[zg, . . . , Z,],
by taking for a ring A

MI ;(A) = {ideals I generated by J-marked bases in Az, ...,z,]}.

Therefore, the open subfunctor Hy is the restriction of Mf ; to the sub-category (k-Algebras).

The marked functor Mf ; is represented by a closed subscheme of the affine space Ag , for a
suitable D. For the main features of Mf ; and the proof of its representability see [241]. Here,
we are only interested in the case J € B. Under this condition, any J-marked set has the shape
(4.1) and is uniquely determined by the list of D = ¢(r) - p(r) coefficients c,,. Among the ideals
generated by marked sets, those generated by marked bases are given for instance by the closed
condition (viii) (or even (vi)) of Theorem 4.7.
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Theorem 4.9. The Hilbert functor Hilbz(t) is the functor of points of a closed subscheme
Hilbg(t) of the Grassmannian Grév.

Proof. By Proposition 2.1, it suffices to check the representability on an open cover of Qg and
m;;(t): we choose the Borel open cover (Definitions 3.3 and 3.5). For every Z € £ such that
J:=J(ZT) e B, and for every g € PGL, Hy , is naturally isomorphic to Hz. Moreover, Hy is
the functor of points of the k-scheme Hz := Mf; Xgpecz Speck. Indeed, the scheme Hz is the
subscheme of AP = Gz (where D = p(r) - ¢(r)) defined by the closed equivalent conditions of
Theorem 4.7. Hence H is the functor of points of a closed subscheme Hz of Gz.

On the other hand if J(Z) € B\B,;, then Hy is empty (Corollary 4.8), hence it is the functor
of points of a closed subscheme of Gz. By Proposition 3.2 and the second part of Proposition

2.1, we conclude that Hilbz(t) is the functor of points of a closed subscheme Hilbz(t) of Grév . 0O

Next sessions are devoted to describe how to determine equations defining the Hilbert scheme
Hilbg(t) as subscheme of the Grassmannian Grév .

5. EXTENSORS AND PLUCKER EMBEDDING

In this section we consider any Grassmann functor, that we will denote by @g . In next
sections, we will apply the tools developed to the study of the Hilbert functor and scheme.
However, all the results of this section hold true for every p and IV, not only for those obtained
starting from an Hilbert polynomial p(t) of subschemes of P".

In this section, we think at Qg (A) as presented in (2.1); furthermore, our arguments allow us
to restrict to the open subfunctors Gz, introduced in Section 3. Thus, the elements of @é\/ (A)
we are mainly interested in are free submodules L of AV of rank ¢, such that AV /L is free of
rank p.

We begin stating some well-know notions and results about exterior algebras.

Definition 5.1. Given a free A-module M, an extensor of step m in M is an element of A™M
of the form puy A -+ A ptyn, with pq, ..., iy in M.

Notice that w1 A--- A py, vanishes whenever the submodule generated by p1, ...,y has rank
lower than m.

Lemma 5.2. Let ¢: P — Q be a linear morphism of A-modules.

(i) For any m, there exists a unique map NP — AN™Q such that

PLA - Apm = @(p1) A+ A d(pm)-

We denote this morphism by ¢™.

(i) If ¢ is an isomorphism (resp. surjective), then ¢(™ is an isomorphism (resp. surjective)
for every m.

(iii) If ¢ is injective and P is free, then #™) is injective for every m [13, Theorems 1, 8].

(v) If Q is free with basis {l1,...,ls}, then for every 1 < m < s, the exterior algebra N™Q is
free of rank () with basis {liy A+ Nl;, | 1<i1 <+ <ip < s}
In particular, all the extensors of step s = rk Q) associated to different bases of Q are equal
up to multiplication by an invertible element of A [10, Corollary A2.3].

(v) IfM=Pa®Q, then N"(PDQ) =P, .., " PN Q.

Remark 5.3. As in the previous sections, aj,...,ay is a fixed basis of the A-module AY. We
also fix the isomorphism /\N AN ~ A sending a; A --- Aay to 14. For any m-multi-index
J = (j1,---,Jm), we will denote by ay the extensor aj, A---Aaj, of NAN. By Lemma 5.2 (iv),
these extensors give a basis of A™AYN. We observe that as Aay = 0 if HNJ # (), while
az Nage =€ega1 A --- Aay, where 7 is the signature of 7,7¢. Taking into account the fixed
isomorphism, we will simply write a7 A agec = €.
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Every A-module L € G7(A) has the special free set of generators

Bz(L) := {bs =a, — Z%i a; | s € Ic}

i€l
described in Remark 2.3. We will call it the Z-marked set of L, extending the terminology we
use in the special case of interest in this paper (Definition 4.2)".

Definition 5.4. For every L € G7(A) and S = (s1,...,S$m) C Z¢ we denote by bs the extensor
bs, A=+ Abg, € AN™L. The T-marked set of AL is the free set of generators

BY(L) == {bs | S C I¢, |S| = m}.
In particular, Bg)(L) = Bz(L).

The aim of the present section is that of determining a unified writing in terms of the Pliicker
coordinates of Qg of a set of generators of AL, where 1 < m < g and L € G7(A). This set
of generators will also contain the Z-marked set of A" L.

By Lemma 5.2(7ii), there is a natural inclusion A™L C A™AN for every L € G7(A). Hence,
every element f € A™L has a unique writing f = Y cyay, with coefficients cs € A.

Lemma 5.5. Let L € G7(A).
(i) If bs € BY(L) and K := S UL, then

bS =as + €§ Z E% (bIc VAN aK\H) ay (51)

where the sum is over the m-multi-indices H # S such that H C I, and Eﬁ is the signature
of the permutation K — H,IC\ H.

(i) If f = S.cray is any non-zero element of N™L C NAYN, then there is at least one
non-zero coefficient cq with J C I°.

Proof. Up to a permutation, we may assume that K¢ S,Z = (1,..., N). Hence, a§ =1.

(i) We use the distributive law with b, = as; — Yoier 7s;i @i and immediately see that the
coefficient of ag in bg is 14, as ZNS = (), and the other extensors ay # as that can appear with
non-zero coefficient are those given in the statement. As a consequence, note that bs Aayr =0
if 7 is an (N —m)-multi-index and 7¢ Z K, i.e. T 2 K°.

Now we prove the given formula for the coefficients, focusing on each m-multi-index H. Let us
denote by 73 the coefficient of a3 in bs. Applying again the distributive law on age Abs Aajc\ 4,
the only non-zero summand is v (axe Aay A ag\y) = Tx 67’3, hence, vy = 8712 (axce Abs ANag\y)
and

bs = as + Z 8713 (axe Abs A aK\H) ay (5.2)

with H C K, [H|=m, H #S.
It remains to verify that (aie A bs Aax\y) = (bze A ag\y). Applying (5.2), we can write
axe = bxe — Y vy agy where |H'| = |K¢| and H' # K. We substitute and get

(axce Abs Aag\y) = (bxe Abs Aagyy) — Z Yo (a3 Abs Aagyz)-
7_[/
All the summands on H’ vanish. Indeed, this is obvious if #' and K\ H are not disjoint. On the
other hand, if they are and we denote by T their union, then bg A a7 = 0 since KXNK\H =0
and H' 2 K¢. Finally, (axe Abs Aax\y) = (bxe Abs Aax\y) = (bze Aag\y)-
(ii) As f € AL, we can also write f = > dsbg, with S C Z¢ and ds # 0. By the previous
item, ag appears only in the writing of bg, hence its coefficient cg is ds # 0. U

IThe marked set Bz(L) is in fact a basis for L; however, we do not call it “marked basis”, because in the case
of a Grassmannian containing an Hilbert scheme, this terminology refers only to the points of the Hilbert scheme.
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We would like to rewrite the coefficients appearing in the writing of the extensors bg given in
(5.1) in terms of the Pliicker coordinates of L. Then, let us recall how they are defined.

The projective space P can be seen as the scheme representing the functor
PE: (k-Algebras) — (Sets)
that associates to any k-algebra A the set

pE (A) = isomorphism classes of epimorphisms
— T | 7w APFL 5 Q of locally free modules of rank 1 [

Hence, we can consider the natural transformation of functors Z: @f,v — P¥ given by:
T 7(P)
P(A): (m: AN I, AN/L) €Grl(4) +— <¢<g’>; AP AN ZZ, Ap(AN /L)> € PE(A)

where APAY is free of rank (]Z) = E+1 and APAY /L is locally free of rank 1.

The collection of open subfunctors Gz of Proposition 2.2 is exactly that induced by the
transformation £ and the standard affine cover of the projective space P¥ corresponding to the
basis {az | T € EO} of APAN.

We denote by A the variables of P and we index them using the multi-indices Z € £©
so that Gz be the open subscheme of the Grassmannian defined by the condition Az # 0.
The Grassmannian Grf,v is a closed subscheme of P¥ = Projk[A] defined by the Pliicker rela-
tions, that are generated by homogeneous polynomials of degree 2: we will denote by k[A]
the coordinate ring of Grév , i.e. the quotient of k[A] under the Pliicker relations, so that
Grév = Proj k[A] € P¥ = Proj k[A] (see for instance [22]).

We can also associate Pliicker coordinates to each module L € G7(A). Upon fixing an
isomorphism i: AP (AN /L) ~ A, 2(A)(L) can be seen as the map i o gb(Lp) or, equivalently, as
the function

iogb(Lp): {aj | J € 5(0)} — A given by agz— Az (L) :=i( %))(aj)).

Since two isomorphisms i,i’: AP AN /L — A only differ by the multiplication by a unit u € A,
the Pliicker coordinates of L are defined up to invertible elements in A.

By definition of G7(A), we have the decomposition as direct sum AN = L @ (a; | i € T), so
that gb(Lp) factors through APAN — AN AN 5 AP(AN /L) given by az + bze Aag +— a7, where
bze is the only element of the Z-marked set B(Iq)(L) of N1L.

Hence, the Pliicker coordinates of L are

(AJ(L) —breNag | T € 5<0>) . (5.3)

We identify bze Aas with elements of A by fixing the isomorphisms ANAN ~ A and
i: AP AN /L — A. For the first one we fixed that sending a(,...,n) to 1; if we choose i: az — 1,
then (5.3) gives the representative of the Pliicker coordinates with Az(L) = 1. Indeed, in our
setting eze = 1 and bze A az = aze Aaz = a(y,.. n) by Lemma 5.5.

Therefore, Pliicker coordinates of L can be obtained as the maximal minors of the ¢ x N matrix
whose rows contain the elements of Bz(L). More precisely, A 7(L) is the minor corresponding
to the columns with indices in J¢, up to a sign given by the signature €.

Using (5.3) we can finally rewrite the coefficients appearing in (5.1) in terms of the Pliicker
coordinates of L.

Corollary 5.6. Let L € G7(A), bs be any extensor in Bém)(L) and K :=SUZ. Then

e§ Az(L)bs =el§ Az(L)as + Y e Ap(L) ay
where the sum is over the m-multi-indices H such that H CIKC, H # S.
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Definition 5.7. For every 1 < m < ¢, we define the following subset of k[A]V:

B = { g = N K Apyan | K e
HCK
|H|=m

Moreover, for every Z € £©) we define B(Im) = {5,(Cm) | Ke&gm, KD I}.

Remark 5.8. For every m-multi-index S that does not intersect Z, ag appears in a single element
of Bém), the one with index K = Z U S. Moreover, 5,(Cm) — EE Az ag is the sum ) a?’i Ajo\y an,
where all the m-multi-indices H intersect Z.

Hence, for every element f € A™k[A]Y we can write Azf as a sum fi + fo with f; € (Bém)>
and fy € (ay s.t. [H|=m and HNZ # ().

We will now evaluate the elements 5,(Cm) at L € G7(A); of course, such evaluations are defined

only up to units of A. Through evaluation at L, we can also see that the notations of Definition
5.7 are consistent with those introduced in Definition 5.4 to denote Z-marked sets of A" L.

Theorem 5.9. Let T € £, A be a k-algebra and L be a module in G7(A). Then, for every
1<m<yq,

(i) the evaluation of B(Im) at L is the T-marked set Bém) (L) of N™L;

(ii) the evaluation BT (L) of B at L is a set of generators of N™L.

Proof. (i) Let K be a (¢ +m)-multi-index containing Z and let S = KL\ Z. As a straightforward
consequence of Lemma 5.5 and Corollary 5.6, we see that 5,(Cm) (L) is equal (up to units of A) to
the element bg of the Z-marked set of A™L. Note that for L € G7(A) and H = S we may set
Ag\s(L) = Az(L) =1.

(ii) By the previous item, it suffices to prove that B (L) c A" L.

Let us consider any 5,(57) e B and write Az 5(@ = 01+ 99 as in Remark 5.8 with §; € (Bém)>
and 02 € (ay s.t. |H| = mand HNZ # (). Under our assumption, Az(L) is a unit in A;
therefore, we need to prove that d2(L) = 0.

If there is a p-multi-index Z' C K’ such that L € G/(A), then it follows by (7) that sim (L) €
Bgﬂ)(L) C A™L, so that also da(L) € A™L and we get d2(L) = 0 by Lemma 5.5 (7).

Therefore, J; vanishes over the non-empty open subfunctor G7(A)NG/ (A) of the Grassmann
functor, hence it vanish on Grév . O

We will use the results of this section in order to compute equations defining globally the
Hilbert scheme as subscheme of the Grassmannian, starting from those defining Hz in Gz.
Then in the following the elements of basis ai,...,ay of AN will correspond to the terms
oM 2*WN) in k[z],. We can reformulate Theorem 5.9 in this special setting.

Theorem 5.10. The universal family F — P™ X Grév — Grf,v parameterized by the Grassman-
nian, given in (2.2), is generated by the set of bi-homogeneous elements in k[A, x|

{51(5) =Y cfy b ® | vie 5(”}
hek

and the m-th exterior power of the universal element is generated by

5I(Cm> _ Z e Ay @ A p gl ' vV K e gm

HCK
[H|=m
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6. EQUATIONS

In this section we will obtain global equations defining the Hilbert scheme. In particular, the
new set of equations has degree lower than the other known equations. Towards this aim we
need to refine some results of Section 4, in particular Theorem 4.7.

These results concern any J-marked set F', where J is a Borel-fixed ideal generated by ¢ terms
of degree r; we do not assume that the Hilbert polynomial p;(t) of A[z]/J is p(t). However, we
know that r is the regularity of J and, by Lemma 4.4, k[xg11,...,2n]>r C J and degpy(t) < d =
degp(t); hence N'(J)>, C (x0,...,24). In particular, the support of every polynomial f, € F is
contained in (zg,...,zq), except for only one possible term, the head term Ht(f,) = z.

Definition 6.1. Let J € B and let I C A[z] be an ideal generated by a J-marked set F'. Making
reference (and in addition) to Definition 4.6, we set:

° F' = {w;fa € F+1) | i=d+1,...,n} = FU+ON (0, ..., 2q);

. = {xlfa e FO+D) | § = 0,...,d} = FUt) 0 (z,...,zq);

e S := {xjfg —zifa | Vaifs € ﬁ”*”,x,fa e Fir+l) gy, xjxﬁ = xixa};
L q dmkk[$d+1,...,$n]r+1;

e ¢ =q(r+1)—d;

o [": =110 (x0,...,%a);

.I<1>- (xpl, |V h=0,...,d) CI".

Theorem 6.2. Let J € B and I C Alx] be an ideal generated by a J-marked set F. Then,

(i) (F') is a free A-module of rank ¢';
(ii) (F") is a free A-module contained in IV of rank > ¢";
(iii) I, = (FY® I";
(iv) I = {F") & N(J D)rr = (F") + (5).
Moreover, the following conditions are equivalent:
(v) J € By and F is a J-marked basis;
(vi) NICHDHL = 0;
(vii) AT T = 0;
(viii) AT =0 and (AT TW) AT = 0.

Proof. (i) It is sufficient to recall that F” is a subset of the set of linearly independent polynomials
F+1 hence the A-module (F') is free of rank equal to |F’|. Moreover |F’| = ¢’ by Lemma 4.4.

(i) We can prove that (F") is free with rank | F”| by the same argument used for (7). Moreover,
by definition and Lemma 4.4, (F") = |FUtD| — |F'| = tk(J,11) — |F'| > q(r +1) —

(ii1),(iv) We obtain the equality I, 11 = (F')& (F")® N (J, )41 as a consequence of Theorem
4.7 (iii) and the fact that F("+1) is the disjoint union of F” and F”. It is obvious by the definition
that (F") & N(J,I),+1 C I”. Then, to prove I,.1 = (F') & I" it suffices to verify that the
sum (F') + I" is direct. If h is any element h = > dijn2ifoa € (F') with d;o, € A, din # 0,
then z;2* € Supp(h), since the head terms of the monic marked polynomials z;f, € F’ are
distinct terms in k[zgy1,...,Tn]r+1, while z;fq — ;2% € (xo,...,2,). Therefore, we also get
I// — <F//> @N(J7 I)T‘_l’_l’

Let us consider the set of generators F/ U F” U F(r+1) of the A-module I,,1. For every
element z;fg € F\(TH), we can find an element x;f, € F' U F” such that z;z% = xjxﬁ and
hjg = xjfg—x;foa € S. Then, we get a new set of generators replacing P+ by S. The union
of the three sets F’, F” and S generates the A-module I,.1 and, in particular, F”/ U S generates
I", since S C I".

(v)& (vi) If J € By, then the statement is given by Theorem 4.7 (iv)< (viii), as tk(Jr11) =
q(r +1). On the other hand, if J ¢ B, then by Gotzmann’s Persistence Theorem we have
rk(Jy11) > q(r 4 1), so that AT+DHLL 1 =£ 0 by Theorem 4.7 (ii).

(vi)< (vii )< (viii) are straightforward consequences of previous items. O
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Proposition 6.3. In the setting of Theorem 6.2, let B be any set of polynomials of I, containing
F and consider the following two subsets of Iry1:

1) Uiz i B;
2) {xif —xj9 |V f,g9 € B such that x;f — xjg € (zo,...,2q)}

For s = n the elements in 1) generate I,y1, while for s = d they generate IV Moreover, the
first set for s = d and the second set generate I".

Proof. The first and second assertions are straightforward by the definitions of I, and I,
For the latter one, we observe that the polynomials in these two sets are contained in I” =
(F)py1 N (xg,...,2q). Thus, it suffices to prove the statement in the case B = F.

By Theorem 6.2(iv), the A-module I” is generated by F” U S. Obviously, F” is contained
in the set given in 7). Moreover, S in contained in the set given in 2). Indeed, by definition
of J-marked set and Lemma 4.4, for every f, € F we have f, —2® C (N(J)), C (zo,...,xq).
Then, f, € (zo,...,xq) if, and only if, * € (xq,...,zq). O

Remark 6.4. For every ideal I € G7(A) with J(Z) € B, we will apply the previous results
considering J(Z) as J and the set of generators B! (I) (where I stands for I,) as B. Note that
BW(I) contains the Z-marked set B(Il)(I ), which is monic since Az([) is a unit in A and we may
set Az(I) = 1.

In order to apply to I the equivalent conditions (v),...,(viii) of Theorem 6.2 we need to
consider exterior products of the type A"™(xol,,...,xsl) for some integers 1 <m < q(r+1)+1
and 0 < s < N. The set of generators for this module we use is

/\ xiél(cn;i)(l) v 5,%7” e BMi) st Zm, =m

0<i<s

m; >0
This set is obtained considering the decomposition of A™(xgl,,...,zsI,) as the sum of the
submodules (zg A™0 I )A- - - A(xsA™ I,.) over the sequences of non-negative integers (mo, ..., ms)

with sum m. Note that in this writing we assume that the ¢-th piece x; A" I, is missing whenever
m; = 0; the number of factors is at most s and the maximum is reached only if all the integers
m; are positive.

We are now able to exhibit the ideal $) in the ring of Pliicker coordinates k[A] that globally
defines the Hilbert scheme as a subscheme of the Grassmannian. First, we set

b1 := coeff, /\ ﬂ:i(S,(CTi) ‘ v 5,%?” e Bmi) gt Zmi =q¢"+1 (6.1)
Oéiéél
m; >

(

v 5,(Cmi) c Bmi) g t. S m;=4q"

[]2 = coeffm xﬁf&bl) A CC](SS) + xkég) 1 1 (62)
ng/ld ( i) W 208 & wrds) € W
m; >0

where W is the set of polynomials acjég_? + xké%) such that

e H=(HNH)U{h} and H = (HNH) U {h}, i.e. the polynomial 55_1) contains the term

AHmﬁxa(h) and 5%) contains Aﬂmﬁxa(h); ) )
e the pair (z;, —x) is a syzygy for the monomials 2 and z%" ie. x;20") = ppre®)

and the sign =+ is chosen in order for the terms A?_mngxa(h) and A?_mgxkxa(ﬁ) to cancel;
o x—supp(xjég) + :Uk(S%)) C (xoy ... 2q).
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Moreover, we set hh := b1 Ubho and consider for every g € PGL the set of equations g.h obtained
by the action of g on the elements of h. Finally we define the ideal

Theorem 6.5. Let p(t) be an admissible Hilbert polynomial for subschemes of P™ of degree d.
The homogeneous ideal $) in the ring of Pliicker coordinates k[A] of the Pliicker embedding

Grév — PP is generated in degree < d+ 2 and defines Hilbz(t) as a closed subscheme of Grév.

Proof. By definition, ) is the smallest ideal in k[A] that contains the union of the two sets of
equations h; and b, given in (6.1) and (6.2), and is invariant by the action of PGL. Since the
action of PGL does not modify the degree of polynomials, in order to prove the first part of the
statement it suffices to recall that each 5,(Cm) is linear in the Pliicker coordinates (Theorem 5.10);
hence, the degree of each polynomial in (6.1) is at most d+ 1 and the degree of each polynomial
in (6.2) is at most d + 2. In both cases equality is achieved only when all the integers m; are
strictly positive.

For convenience, we denote by Z the subscheme of Grév defined by $) and by © the saturated
ideal in k[A] that defines Hilbz(t) as a closed subscheme of Grév . We have to prove that
Z = Hilbz(t). Note that £ does not need to be saturated and coincide with ©.

As equality of subschemes is a local property, we may check the equality locally. The proof is
divided in two steps.

Step 1. For every Borel multi-index Z such that J(Z) € B, the ideal generated by b defines Hy
as closed subscheme of G7.
Step 2. For every (closed) point I of Gri,v , Z and Hilbz(t) coincide on a neighborhood of I.

Proof of Step 1. We have to prove that for every k-algebra A and ideal I in G;(A), I is contained
in H;(A) if, and only if, the polynomials in b vanish when evaluated at I.

Referring to Theorem 6.2 and Proposition 6.3, the vanishing at I of the polynomials of h;
is equivalent to AY"t17()) = (0 and that of the polynomials of by to AT A T” = 0. The
equivalence (v)< (viii) of Theorem 6.2 and the definition of marked basis allow to conclude.

Proof of Step 2. Both ideals $ and ® are invariant under the action of PGL, $) by construction
and ® because Hilbg(t) is.
Due to the noetherianity of the ring of Pliicker coordinates k[A], we can choose h1, ..., h,, €
UQGPGL g« b that generate $). If h; € g; . b, then we get
(g1+HU---Ugm.h) =9

By the invariance of $) under the action of PGL, we also get, for each g € PGL

(991 b U Uggm+h)=g.(g1.hU- Ugn.h) =g.H=9.
On the other hand, if we restrict to the open subset Gz 44, N---N Gz gg,,, then by Step I and
by the invariance of ® under the action of PGL, we see that the ideal
D=(991.DU---Uggm.D)
defines the same subscheme as $ = (gg1 . h U - U ggm « h). Therefore,
Hilby ) N (Gz,g9, N -+ N Gzgg,,) = ZN (G199 N+ N Grgg,,)-

It remains to prove that for every I € Gri,v , we can find suitable g € PGL and J(Z) € B, such
that I € GI,QQl n---N Gngm.

By Proposition 3.2, there are J(Z) € B and g such that I € Gzz. The orbit of I under the
action of PGL is almost completely contained in Gz z; let U be an open subset of PGL such that
()1 IeGry iele Gz gg. Therefore, for a general g € PGL, it holds 9 g Y. 99mG L E
Uand I € Gz 49, N--- NGz g, as wanted. O
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For sake of completeness we now show how our strategy also allows to mimic the construction
of equations for Hilb},) presented in the well-known papers by larrobino and Kleiman [21] and
by Haiman and Sturmfels [15].

6.1. Equations of higher degree. Let A be a k-algebra and I be an ideal in G7(A). Ex-
ploiting Theorem 5.10, we obtain a set of generators for I,.,; evaluating at I the following set
of polynomials

2BV U Uz, B = {a6d) | i=0,... 0, K egW].

By Theorem 6.2 (v)< (vi), we know that I € Hy(A) if, and only if, A9C+D+1T, | vanishes. The
exterior power /\q(”l)HIrH is generated by all the possible exterior products of order ¢(r+1)+1
among the given set of generators of I,;. Therefore, the conditions I € H7(A) is given by the
vanishing at I of the z-coefficients in the wedge products

q(r+1)+1
/\ xz‘jél(clj), v0§i1§...<iq(r+1)+1§n, VICng(l).
j=1

The open subfunctors G7 cover the Grassmann functor and each H7 is representable, so that
we can apply Proposition 2.1. The natural transformations 77: H; — G; are induced by

closed embeddings of schemes, hence the same holds true for .77 : Hilbg(t) — @i,\f .

Theorem 6.6 (Iarrobino-Kleiman-like equations for the Hilbert scheme). The subscheme of
Gri,v representing the Hilbert functor Hilbg(t) can be defined by an ideal generated by homoge-
neous elements of degree q(r + 1) + 1 in the ring k[A] of the Pliicker coordinates.

The above equations of degree ¢(r + 1) + 1 coincides on each open subscheme Gz of the
standard open cover of the Grassmannian with the set of equations obtained by larrobino and
Kleiman in local coordinates. We could also exploit this same argument using the Borel open
cover of Gri,v , instead of the standard one and obtain a different set of equations of the same
degree.

6.2. Equations of degree n + 1. As pointed out by Haiman and Sturmfels, if I = (I,) is
generated by a set of polynomials B, then the matrix M, that represents the generators
xoBU---Ux,B of the module I, contains n+ 1 copies of the matrix M, corresponding to B.
Hence, some minors of M, are also minors of M, and every minor of M, ; can be obtained
as the sum of products of at most n + 1 minors of M,..
This observation suggests to expand AYTTDH1] 1 as done in Remark 6.4 and take the -
coefficients of
/\ xié,(gi), N 5,%7” € B gt Zml =m.

0<i<n

m; >0
Theorem 6.7 (Bayer-Haiman-Sturmfels-like equations for the Hilbert scheme). The subscheme
of Gri,v representing the Hilbert functor @Z(t) can be defined by an ideal generated by homo-
geneous elements of degree < n+ 1 in the ring k[A] of the Pliicker coordinates.

In this case, if we use the standard open cover of Grf,v , we obtain the same global equations
given by Haiman and Sturmfels, while using the Borel open cover we obtain a different set of
equations with maximum degree n + 1.

7. EXAMPLES: HILBERT SCHEMES OF POINTS

7.1. The Hilbert scheme Hilb3. The Gotzmann number of the Hilbert polynomial p(t) =
is 7 = 2, hence N(r) = 6 and p(r) = 2. We identify H°(Op2(2)) with k® by setting a; = o

ol

2
i)

where 2% is the -th term in the sequence (23, 2oz, 72, 2970, T170, x%) In this way we obtain
the natural transformation of functors Hilbs — Gr$.
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6
2

cover, each corresponding to a 2-multi-index Z C {1,2,3,4,5,6}. Not every element of Gr$(A)
is contained in one of them (not even the free ones), if A is not a field or even a local ring.
Let us consider for instance A := k[t] and

Standard open cover of Qg. There are ( ) = 15 open subfunctor G in the standard open

(17t 0 t2 o0 0 0)
0 0 1 0 14t 1
A2

7. AS (7.1)

This map is surjective, since (1,0) = (1 + t)w(a1) + w(ag) — m(ag) and (0,1) = 7(ag). Its kernel
is the free A-module L = (t?a; + (t — 1)ag — (t — 1)ag, ag, a4, a5 — (t + 1)ag).

Thus, the quotient Q := A%/ ker 7 is isomorphic to A% and Q € Gr§(A). Notice that the set
of non-zero maximal minors {1 —¢,1 — t2,#? + 3 ¢2} of the matrix defining 7 generates A, but
none of them alone does, so that () does not belong to any G7(A).

On the other hand, for the local k-algebra A’ := k[t];), the A’-module Q' := Q ®4 A’ is in
G (A") for T = (1,3). The Z-marked set of the A’-module L’ such that Q' = A’S/L’ is

by =ay;  bs=a;+ tiff a; — (1 +t)as

t2
by =a4 bg=as+ 15a1 —as

The Pliicker coordinates of L’ (with Ay3(L’") = 1) are given by Corollary 5.6

Ap(L') =0, Aog3(L') =0, Ags(L) = ££82
A(L) =1, An(L) =0, Ass(L) = {5,
A(L) =0, Ag5(L") =0, Ays(L) =0,
As(L) = (1+1),  Agk(L) =0, Ag(L') =0,
Ag(L) =1, Az (L") =0, Asg(L') = 0.
The generators B, For m = 1 there are 20 elements in B(!), since there are (g) = 20

multi-indices £ € £1). For instance for K € 51%) we get

5%?5 = Agga; — Ajgag + Appag
5%21 = Aszga; — Ajgaz + Az ay
5%)5 =Agsa; — Ajsaz + Az as
5%2; = Agga; — Ajgaz + Az ag

and for £ = (3,5,6) we get
5%2; = Aspaz — Aspas + Aszsag.

They are not independent. For instance there is the relation

ANE:! 5;(3% + Aszg 5%)5 — A355%)6 = (A13Ase — A15 Ags + A1 Azs J)ag = 0

(note that the expression in the round brackets is a Pliicker relation).
For m = 2, B® contains (2) = 15 elements. For instance,

2
5%3)56 = Aq3zas A ag — Aqsag A ag + Aqgas A as + Asgsa; A ag — Aggag A as + Asgag A ag.

Finally, B®) contains (6

5) = 6 elements and B® has a unique element.
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Borel open cover of Gr$. It is easy to check that there is only one Borel multi-index of two
elements, namely Z = (5,6).

As the minor of the matrix (7.1) corresponding to the last two columns is identically zero,
for every p € Specklt], @y is not contained in Gs¢(k[t],). We can apply Proposition 3.2 and
determine for p = (1 —t) a change of coordinates g € PGLg(3) such that @, is contained
in Ggg ,(k(p)). Tensoring by the residue field k(p) ~ k, we obtain the following surjective
morphism of vector spaces
(881828 1%)

kQ

whose kernel is the vector space (z3, xox1, 22w0, 2170 — x%> The generic initial ideal of the ideal
I = (23, 291, T9T0, T1T0 — x%) is J = (23, z9mw1, 22, 29m0). A change of coordinates g such that
g.I = J is, for instance, the automorphism swapping x; and xg. Indeed,

1
2 2 2 2
g+ (x5, maw1, T, T1T0 — X) = (23, TaTo, ToT1, TT — 5961900)

and
100 00O
000100
~ 000001 ~ 0 1
9= 0100 0 0 so that ﬂpOgOF56—<2 1>
000010
001000

is surjective. Notice that this change of coordinates does not work for all localizations. Indeed

- 0
mogelss=| 411 1

is not surjective in the localizations k[t];11) and k[t];) as the determinant is not invertible.

New equations. Let us finally show how to determine the equations of degree 2 defining the
scheme representing the Hilbert functor Hilb3 in the Grassmannian Gr$.

As d =0, IV = zyI, and its rank is equal to q(2) = ¢ = 4. Therefore, the set of equations
b1 of (6.1) is empty.

The set of equations ho ensures that /\4 IMW A T" = 0 and contains the z-coefficients of the

products between :c05%é456 and each element of W = {2?2(552,—) — xléﬁ)g), 2?25&23 — xléﬁé, xgé%é —

185, 22035 — 210545, Ta05uk — L1044, 20555 — 1855y, L1845 — Todssy, Ta05ss — T0d\ks, 10555 +

xoééié, xgéiéé + x05§i)6}. We notice that this set gives redundant relations, indeed for instance

4 1 1 4 1 4 1 4 1
z05§2)3456 A ($154(15)6 - $05é523) = z05§2)3456 A 35154(1523 — 2o (5§2)3456 A 555)6) = z05§2)3456 A $154(15)6 =

4 1 4 1 4 1 1
= $05£22’>456 A 1'154(15)6 + Zo (5§2)3456 A 55,4)6) = $05£22’>456 A ($15z(15)6 + z05§4)6)

as each exterior product of order greater than 4 vanishes (in fact the z-coefficients we ob-
tain from such products of order 5 are contained in the ideal generated by the Pliicker rela-
tions). Hence, in order to determine the equations of hy we consider the set of polynomials

W = {268 — 210005, wa0uys — 210345, wadsss — 210\55, 22855k — 2165y, Tadygs — 1055k, 20585 —

xléé}%, xléi},]%, xgég%}. We get 48 equations which are reduced to 30 by Pliicker relations.
To obtain the equation defining Hilb3 C Gr$, we need to determine the orbit of these
polynomials with respect to the action of PGL@(3). However, in this special case, we discover

that the ideal generated by the Pliicker relations and by b9 is already PGL@(3) invariant, i.e. the
equations in ha define the Hilbert scheme. The Pliicker relations and the following 30 equations
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define Hilb3 as subscheme of P4

A13A1s — A12loy — A12Ags, A13Doy — A1aAzy — A12los, Aozloy — AjaAszs,

A14Dss — A1aAys + A1aAig, Ajy — A1alos 4+ A1aAog, AgzAsy + ApzAas — A3Asgs,
A14Azs — A1gAos + A1aAys + A1aAog, AogAzy — A1gAgs + AraAsge,

A3y — A1sAss — AozAgs + A13A36, ATy — A1gAos — AizAie + A12Aog, AogAos — AjgAss,
A150s5 — A1sAss — A1zAos + A12A36, A3 — A15A35 — ApzAys,

AgyAzs — A15A35 — AozAys + AozAog, AzsAss — AosAgs + AozAge, A14A45 — A1y,
A2gAys — A12A56, AzsAys + AozAge — A13A56, A15845 — A13046 + A12A56,

Ao5Ays — NogAyg, AssAys — AgzAse, Ay — AosAys + A5 s,

AgyAog — A14A36 + A12A56, Ao5Ass — A15A36 — AazAye + A13A56,

A3 — A16Asz6 — AosAyp + A15A56, AosAus — A1sAse, Azslyp + AosAss — AogAse — AqsAsg,
AgsAye — DosAse, AgsAse — DosAye + A16856, Azeldss — AusAse — A26As6.

Furthermore, we check that the ideal they generate is saturated, then it is the saturated ideal of
Hilb%. Its Hilbert polynomial is %t‘l + lfftg + %tQ + %t + 1, hence Hilb% C P is a subscheme
of dimension 4 (as expected) and degree 21, as already proved in [18, 7]. A different set of
quadratic equations defining this Hilbert scheme can be obtained also using border bases and
commutation relations of multiplicative matrices (see [1]).

Iarrobino-Kleiman equations. Let us now see how to compute the Iarrobino-Kleiman equa-
tions for Hilb3. The universal element of Gr§ is generated by BM. In order to compute
/\Q(TH)‘HITH = A?I3 we use the set of generators xOB(l)leB(l)ngB(l) of I3. The z-coeflicients
of any exterior product of order 9 are expressions of degree 9 in the Pliicker coordinates. Their
union defines Hilb2 C Gr$.

For instance, considering the 9 elements .%'25%%, .%'25%%, .%'25521, @5%%, xuﬁg, 9U15;(),}1)57 xoéﬁé,

xoééézl, xoéflé)ﬁ, the x-coeflicients of their exterior product are the maximal minors of the following
matrix

1’3 l’%:ﬂl l’g:ﬂ% 1’? :E%:Eo T2X1X0 l’%l’o 1'21'(2) 1'11'(2) 1'(?;
-’62595 Ay —As O 0 0 0 0 A1 0 0
xQ(s%)G Asg 0 0 0 0 —Ase 0 Ais 0 0
-'325%11 0 Asg SAVYRRN| JADY 0 0 0 0 0
anc(ié)G 0 0 Asg 0 0 —Asg 0 Ass 0 0
-'315%;)3 0 JADY —A1z Ap 0 0 0 0 0 0
65y | o 0 0 Ass 0 “Ass Ay 0 0 0
wodizy [ 00 0 A 0 0 ~As 0 Au
zo0syy | 0 0 0 0 0 Az ~Aos Agz O 0
wodims \ 0 0 0 0o 0 0 0 Ass  —Aug Aus

Bayer-Haiman-Sturmfels equations. In order to lower the degree of the equations, we can

impose the vanishing of the exterior power A°I3 by considering AYI5 generated by all exterior
(m1)

products :U05‘(7WOLO) Nz167 " A 5626‘(71?2) for (mg, m1, ms) such that mg + my +mo = 9 and 0 <

mo, m1, my < 4. For mg = 3, my = 2, mg = 4, we get for instance $05§?§Z;56 A xléfﬁw A x26$é456,

where
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:1:0552156 = Asg x2x120 N\ m%mo A :1:2:1:(2) — Ay T2T1TO N :v%:vo A mlm% + Ays Tox1xo N m%mo A :v(?; +
A3zg T2T1T0 A 1’21'(2) A :1:1:1:(2) — Ass xox1To A :1:2:1:(2) A m% + Asyq xoxixo N mlm% A :v(?; —
Aop 2z A maxd A w123 + DNos aixg Axiad Al — Asgalzo Axiad A xd + Aos zoad Axiad A xd,
mlégie = Ayp x%xl A a:? — Asg $%$1 A xox1To + Asg $%$1 A a:lxg + A x‘;’ A xox1xo — Alg x‘;’ A J:lazg +
A13 x2T120 A J:la:g,
:1:25%)3456 = Asg :v% A x%ml A 1’2:)3% A m%mo — Auyp m% A :v%:vl A 1’21’% A z2x1T0 + A4s mg’ A m%:}:l A :vgm% A 1’2:)3% +
Asg :vg A x%ml A m%:}:o A zoz1z0 — Ass m% A :v%:vl A m%mo A :1:2:1:(2) + Asg m% A m%:}:l AN zax120 N\ :1:2:1:(2) —
Aog :vg A :vgm% A m%:}:o A z2z1z0 + Ags m% A :1:2:13% A m%mo A :1:2:1:(2) — Aoy m% A 1’2:)3% AN zax120 N\ :1:2:1:(2) +
Aos :vg A x%mo A xox1To N mgm(z) + A1g m%:}:l A :vgm% A m%:}:o Axox120 — A1s m%:}:l A xzm% A m%:}:o A :vzm(z) +
A1y :v%:vl A 1’21’% A xox1To N mzmg — Aq3 :v%:vl A m%mo A xox1To N mzmg + A1o :vzzv% A m%mo A :v%:vo A mzmg.
Its z-coefficients are the following polynomials of degree 3 in the Pliicker coordinates:
A2sAus — Nos A% — A16AssAse + A1gAZg, AosAogAys — AasAusAss — A1gAasAse,
A24A26A46 — A16A24A56 — A14A45A856, A23A26A46 + Ao5A34846 — A16A23A56 — A14A35A56,
AosAo6Azs — NosNosAsg — NosAzsAys + A13005 M55, A16A2aAus + A1aAls + A3 Ass — A1aAasAge,
A2y Ao Ay — A14Q25A56, A16A24035 — A14A25036 + A14A35 045 + Aoz Aoy Ayg,
A16A24A25 - A14A25A26 + A14A25A45; A15A16A24 - A14A16A25 + A14A15A45 - A12A24A46-

In Table 1, there is a comparison between the number of generators of the ideal defining the
Hilbert scheme obtained according to the three different strategies.

7.2. The Hilbert scheme Hilbj. The Hilbert scheme of 2 points in the projective space P3
can be constructed as subscheme of the Grassmannian Gri’ C P*. The set b is empty (this
happens for every Hilbert scheme of points) and the set hy contains 600 equations of degree 2
that can be reduced to 330 modulo the Pliicker relations. The ideal generated by he and by the
Pliicker relations is not PGLg(4)-invariant. To obtain the equations defining Hilb3 C Grl’, we
need to determine the orbits of these polynomials with respect to the action of PGLg(4). From
a computational point of view, we consider a random element of PGL@(4), apply to our set of
equations the induced automorphism on the ring of Pliicker coordinates of Gri’, add the new
equations to the previous set and repeat this process until the generated ideal stabilizes.
The ideal we obtain is again saturated and its Hilbert polynomial is

370 .6 8345 86 44 33543 823,2 61
Grt ot + gt 5Pt + S5+t + 1

so that Hilb;’ turns out to be a subscheme of P4 of dimension 6 and degree 370, defined by 570
quadratic equations (210 of them are Pliicker relations).

7.3. The Hilbert scheme Hilbj. The Hilbert scheme of 2 points in P* is constructed as
subscheme of the Grassmannian Grr%,5 C P'%. From the computational point of view, the hardest
part is the computation of the orbit of the equations g . bh for a given change of coordinates
g € PGLg(5). A first trick is to start considering simple changes of coordinates, for instance
change of sign of a variable (v; — —x;), swap of two variables (x; <+ x;) and sum of two
variables (z; = ; +x;). These changes of coordinates are easier to compute and bring us closer
to the PGLg(5)-invariant ideal of the Hilbert scheme, but in general they are not sufficient. In
this case, a generic (random) change of coordinates g € PGLg(5) induces a change of coordinates
of Gri® described by a dense 105 x 105 matrix, so that computing the action of g on a monomial
of degree 2 in the Pliicker coordinates requires more than 10000 multiplications, as each variable
is replaced by a linear form with 105 terms. Therefore, it would be better to avoid redundancy
in the equations of h. It is possible to reduce the redundancy replacing the set B(™) with the
union J B(Imi), with Z a Borel multi-index, in the definition of equations (6.1) and (6.2). In the
case of 2 points, there is a unique Borel multi-index and for instance in the case of P*, the set
BM contains (135) polynomials while 88315 has only 13 polynomials. Applying these two tricks,
we are able to compute the equations of Hilb% C P4, The equations contained in h obtained
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considering only the Borel multi-index are 480 and besides 24 simple changes of coordinates
we need 3 random changes of coordinates to obtain the PGLg(5)-invariant ideal. Finally, the
Hilbert scheme turns out to be a subscheme defined by 3575 quadratic equations (1365 of them
are Pliicker relations) with Hilbert polynomial

61258 | 452,7 |, 402746 , 635,5 , 31703,4 |, 7849,3 | 4849,2 |, 145
s bt ogst tpet T oggl T et g U+ g T+ ot + 1,

i.e. Hilbj is a subscheme of P19 of dimension 8 and degree 6125.

7.4. The Hilbert scheme Hilbj. The Hilbert scheme Hilb can be defined as subscheme of
the Grassmannian G’I'%O C P9, There are two Borel-fixed ideals defining 3 points in the plane:
(z2,23) and (22, z271,2}), so that in this case we can restrict to Borel multi-indices considering
the elements of 5’%19)710 and Bé719)710. In this way, the set f contains 720 equations and we obtain a
PGLQ(3)-invariant ideal applying 10 changes of coordinates (8 special and 2 random). The ideal
defining the Hilbert scheme is generated by 5425 quadratic equations (2310 Pliicker relations)
and Hilb% is a subscheme of P'? of dimension 6 and degree 3309, as its Hilbert polynomial is

330946 4 155745 4 3yt 4 5840 4 2RL2 4 By 4,

80 16

16 120

New equations

B-H-S equations

I-K equations

Hilb; C Gr§ c P™
(15 Pliicker relations)

Degree of equations: 2

dim (Iigp3) =4
Number of equations: |h| = 24
Changes of coordinates: 8 + 0

Degree of equations: 3
dim (Igypg) = 445
M\ THib3 ) 0

Number of equations: ~ 8160

Degree of equations: 9
dim (IHﬂb%)g = 808225

Number of equations: ~ 9-10%°

Hilb} C Gry’ c P*
(210 Pliicker relations)

Degree of equations: 2

dim (I3 ) = 570

A Faiwg ),
Number of equations: |h| = 140
Changes of coordinates: 15 + 1

Degree of equations: < 4

dim (1Hi1b3)4 = 185390
Number of equations: ~ 2-10*!

Degree of equations: 19
. 15

dim (g ) 610

Number of equations: ~ 9-10%4

Hilbj C Gri® c P!
(1365 Pliicker relations)

Degree of equations: 2
dim (Iyypg ), = 3575
Number of equations: |h| = 480
Changes of coordinates: 24 + 3

Degree of equations: < 5
dim (Tggyp4 , = 116461170

Number of equations: ~ 4-10%2

Degree of equations: 34
. 32
dim (lmlb%)34 ~ 210
Number of equations: ~ 1077

Hilb} ¢ Gri° c p'°
(2310 Pliicker relations)

Degree of equations: 2
dim ( Iy, = 5425
R 2 11
Number of equations: |h| = 720
Changes of coordinates: 8 4+ 2

Degree of equations: < 3
dim (IH“bg)s = 283245

Number of equations: ~ 6-10%

Degree of equations: 13

B 17
dim (I ) L0

Number of equations: ~ 3-10%%

TABLE 1.

A comparison among the characteristics of the different sets of equa-

tions defining the Hilbert schemes discussed in Section 7. The set h of new
equations in this table contains the equations obtained considering only Borel
multi-indices. In order to determine the PGLg(n + 1)-invariant ideal, we have
always applied (n + 1)? — 1 (the first summand) special changes of coordinates
and the second summand corresponds to the needed random changes of coor-
dinates (see tinyurl.com/EquationsHilbPoints-m2 for the explicit computa-

tions).

The values of the Hilbert function of the ideals defining the Hilbert

schemes have been computed from the ideal generated by the new equations.
Notice the large redundancy of Bayer-Haiman-Sturmfels equations and Iarrobino-
Kleiman equations which do not take into account the symmetries of the Hilbert

scheme.
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