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Abstract— A faster control of spins is a major request for the new generation of computing and spintronic systems. In 

this framework, since many years, ultrashort light pulses have been utilized to trigger and detect the spin dynamics of 

electrons in magnetic materials and multilayers. Recently, three-dimensional topological insulators (TIs) have received 

attention in the field of spintronics due to their spectacular features, in particular, the existence, within the insulating gap 

of bulk states, of spin-polarized surface states (Dirac-cone) that are protected from backscattering by time-reversal 

symmetry. We have studied the sub-picosecond dynamics in the spin-polarized unoccupied electronic structure of Bi2Te3, 

employing circular-polarized light in time and angle resolved photoemission spectroscopy (trARPES). Exploiting the 

noncollinear optical parametric amplification (NOPA) besides several nonlinear optical processes resulted in tunable 

ultrashort visible pump pulses with 30 fs length and 1.8 eV energy and ultraviolet probe pulses with about 6 eV and 60 

fs. The stable optical setup and the high repetition rate of an Yb-laser source grants a high signal-to-noise ratio in our 

photoemission process. The obtained 65 fs time resolution, along with 30 meV energy resolution of the time-of-flight 

(TOF) energy analyzer, provides us with an exciting possibility to explore the ultrafast electronic dynamics in the 

unoccupied band structures. Furthermore, circular dichroism (CD) allows access to the spin state of the photoemitted 

electrons. We found a signature of femtosecond unpolarized bulk bands dynamics in the presence of spin-polarized 

electrons of the surface states. This observation aided to distinguish the bulk and surface contributions in the spin-

electronic current. 

 
Index Terms— Topological insulators, Spin dynamics, Photoemission spectroscopy, Circular dichroism, trARPES, Bi2Te3 

 
 

I. INTRODUCTION 

Review Using the spin of electrons, in addition to their charge, can 

revolutionize electronic and computing systems to deliver expanded 

performances [Wolf 2001, Awschalom 2013]. Over the last decades, 

many theoretical and experimental investigations on electronic 

structures and dynamics have focused on this technological mission 

[Ostler 2012, Beaurepaire 1996, Kirilyuk 2010, Carpene 2008, Fan 

2014]. In this framework, the exotic properties of three dimensional 

topological insulators (3D TIs) have attracted tremendous attention. 

TIs are promising materials for the emerging field of ultrafast 

spintronics owing to their helical spin-polarized topological surface 

states (TSSs) located within the insulating unpolarized bulk band 

(BB) gap [Hsieh2008, Hsieh 2009, Moore 2010] and characterized by 

an extraordinary backscattering resistance [Zhang 2009, Roushan 

2009].  In the preliminary studies, the spin generation, manipulation 

and control was attributed to surface-related phenomena, and the 

contribution from bulk states was largely obscure. More recently, 

detailed investigations on unpolarized BBs have led to a more 

profound understanding of the spin configuration in TIs. For example, 

the induced Rashba splitting effect and the generation of spin current 
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in BBs are well-established phenomena [Zhu 2011, Wray 2011, Hsieh 

2011]. It has recently been discovered that the spectral weight of BBs 

is reduced in the surface vicinity in favor of the surface resonance 

(SR) states. SRs are spin polarized states with opposite spin direction 

with respect to TSSs [Cacho 2015, Jozwiak 2016]. Nonetheless, a 

careful distinction between the spin structure and ultrafast dynamics 

of bulk and surface states remains a crucial experimental challenge.  

Angle resolved photoemission spectroscopy (ARPES) has been the 

key technique to disclose the electronic structure of TIs [Chen 2010]. 

Combining ARPES with other experimental methods can provide 

additional information on electronic dynamics and spin states. In 

time-resolved ARPES (trARPES), an ultrafast intense laser pulse, the 

pump, brings the electronic system out-of-equilibrium [Sobota 2012, 

Wang 2012, Bugini 2017]. Thus, one can access unoccupied bands 

which after pump excitation are filled with hot electrons. The time 

evolution of their excitation and relaxation can provide valuable 

information on the possible particle and quasi-particle interactions in 

TIs band structure. In circular dichroism ARPES (CD-ARPES), the 

momentum of circularly polarized probe photons couples with the 

angular momentum of electrons [Wang 2011, Park 2012, Jung 2011].  

The difference in the photoemission intensity of each circular probe 
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helicity (Right Circular Light, RCL or Left Circular Light, LCL) 

contains the relevant spin information. The combination of all 

described techniques, i.e. trCD-ARPES, can be employed to elucidate 

the spin-electron dynamics in the unoccupied electronic structure.  

In this letter, we present trCD-ARPES results revealing the 

unoccupied spin-electronic structure of Bi2Te3. Our results show that 

the CD contrast of the surface resonance (SR) state in the empty BBs 

displays opposite spin direction with respect to TSS. Moreover, the 

dynamical CD analysis shows the different behavior of spin polarized 

and unpolarized electrons after photoexcitation. The effect is 

attributed to a spin current or spin accumulation in the BBs and SR 

states, accompanied by different dynamics of the unpolarized 

electrons. 

 
II. MATERIALS AND EXPERIMENTAL METHODS  

A. Synthesis of Bi2Te3 

Bi2Te3 single crystals were grown by the self-flux method. The 

high-purity raw materials were mixed according to the compound 

stoichiometry. The specimens were heated to 1000 °C for 12 hours 

then, gradually cooled down to 500 °C over 100 hours. The samples 

were cleaved and measured at room temperature in ultrahigh vacuum 

with pressure better than 5×10-10 mbar. 

B. TrCD-ARPES system 

Fig. 1 shows a schematic view of the experimental trCD-ARPES 

apparatus. The laser source is a commercial regeneratively amplified 

mode-locked Yb:KGW system delivering pulses at 100 kHz 

repetition rate with 1030 nm central wavelength and 300 fs duration. 

The fundamental beam (FB) is split into two main parts. A fraction of 

the pulses is used to generate ultrashort visible tunable pulses, the 

pump, spanning the 620–720 nm wavelength range, through a 

compressed noncollinear optical parametric amplification (NOPA).  

The other fraction of FB is directed to the sum-frequency generation 

(SFG) part, where the deep ultraviolet probe with about 200 nm 

wavelength and 65 fs duration is generated. Using a quarter waveplate, 

the circular helicity of the probe is carefully adjusted. The time 

evolution is attained by changing the delay between pump and probe 

pulses on the sample surface (delay stage in Fig. 1). The time of flight 

(ToF) spectrometer, is used to extract the energy of the photoemitted 

electrons on a micro channel plate (MCP). More details about the ToF 

system and the optical layout can be found in [Carpene 2009, 

Boschini 2015]. Our trARPES system provides a high signal-to-noise 

ratio with about 70 fs time and 40 meV energy resolutions. 

 

III. RESULTS AND DISCUSSION 

To study the pump-induced dynamics of the unoccupied electronic 

and spin structures, we performed CD-ARPES measurements vs 

pump and probe delay. Fig. 2 (a)-(c) show the data along the Γ̅K̅ 

direction, in equilibrium (a, un-pumped) and at delays of 250 (b) and 

1000 (c) fs after optical excitation with 1.8 eV linear-polarized 

photons.  

 

 
 
 

 

 

Fig. 1.  Schematic drawing of the in house - developed system to measure trCD-ARPES. (a) a Yb:KGW laser source (b) second harmonic generation 

(SHG) doubling the laser fundamental frequency, (c) white light supercontinuum (WLC) generated inside a YAG crystal. (d) WLC seed pumped 515 

nm beam focused inside a 2 mm BBO crystal generating the ultrabroadband NOPA signal. (d) NOPA dispersed by a pair prism (Pr) compressor. 

The output compressed NOPA is then split. One portion goes to a motorized delay stage and is directly used as ultrashort tunable pump. The other 

fraction is frequency doubled in (f) to generate the ultraviolet probe. In (g), the 515 nm beam (e) and the SHG 335 nm beam(f) generate the 203 

nm probe beam in a sum frequency generation (SFG) process. The probe goes through quarter-wave plate and is focused on the sample (h) shows 

the ultrahigh vacuum photoemission chamber, equipped with a time of flight (ToF) analyzer. The ToF records the flight-time of the photoelectrons 

collected by micro channel plate (MCP) detector.  
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The left panels show the band structure at different delays, the right 

panels are the corresponding CD measurements. The dichroic contrast 

is calculated as the normalized difference of the ARPES maps 

measured with probe of opposite helicities, i.e. CD = (RCL-

LCL)/(RCL+LCL). We start from the description of the left panels. 

In Fig. 2(a) we see the band structure in equilibrium condition, with 

the occupied bulk valence band and the partially occupied Dirac-cone. 

Fig. 2(b) shows the bands 250 fs after photoexcitation. The empty part 

of TSS is populated and two bulk bands (BB1 and BB2) are filled at 

higher energies. The lower-lying bulk band (BB2) has a parabolic 

dispersion and is observed in proximity of the linearly dispersing TSS 

(see the dashed line as a guide). BB1 empties within the first 

picosecond, while BB2 and TSS are further filled by electrons 

decaying from higher energy Fig. 1(c)-left. The observed electronic 

dynamics is consistent with previous investigations [Hajlaoui 2011].  

 The CD associated with the observed states is shown in the right 

panels of Fig. 2. Fig. 1(b) shows that both bulk and surface states 

display a CD signal. Moreover, the CD of all bands changes sign when 

crossing the center of the first Brillouin zone, Γ̅. The CD from the BBs 

has opposite sign with respect to the neighboring branch of TSS. The 

BBs are generally considered unpolarized, but our observation of a 

sizable CD reveals the presence of spin polarized electrons. As 

anticipated in the introduction, recent theoretical and experimental 

observations demonstrated the existence of the surface resonance 

(SR) in the nearby BBs with antiparallel spin direction with respect to 

TSSs [Cacho 2015, Jozwiak 2016]. Our CD measurements agree with 

the spin structure of Bi2Te3 recently reported in [Sánchez-Barriga 

2017]. Therefore, the origin of the CD in BB1 and BB2 can be 

explained by the SR spin texture. Another possible explanation for the 

presence of spin polarized electrons in the BBs is the existence of a 

spin-polarized electronic dynamics in unpolarized states. It is well 

known that the excitation of TIs with a linear pulse results in a 

constant spin configuration of the TSS dynamics due to the 

momentum symmetric population of TSS, its robust spin structure and 

to the lack of backscattering events. Instead, in BBs the optical 

excitation cannot generate a constant spin polarization dynamics, 

because of spin-unpolarized states and the unpolarized charge 

dynamics. The presence of an invariable spin dynamics in BBs would 

demonstrate that the BBs are spin polarized like TSS. But finding a 

spin dynamics distinguishable from the unpolarized electronic 

dynamics demonstrates diverse scattering channels of BBs, whose 

origin may require further investigation. 

 We explored the sub-picosecond time and spin evolution of two 

energy-momentum regions shown in Fig. 2(c) (small boxes in the left 

panel) corresponding to the TSS and BB2 regions, respectively. We 

compared the electronic dynamics of each band by looking at the 

time-dependent CD and at the difference (DIFF) in intensity for 

opposite circular-probe lights. DIFF is defined as the non-normalized 

CD (DIFF = RCL-LCL). Thus, similar to CD, a non-zero DIFF 

indicates the spin orientation of electrons, but, unlike CD, DIFF is not 

proportional to the spin polarization. If the dynamics of electrons and 

DIFF are analogous, then CD would be time independent. A time 

invariant CD signal is expected in a spin polarized band since the spin 

polarization is constant regardless of the band population. Fig. 3(a)  

 

 

Fig. 2.  Left panels present the ARPES data on Bi2Te3 along the ΓK̅̅ 

direction, in equilibrium (a) and at a delay of 250 fs (b) and 1000 fs (c) 

after the optical excitation. In (b)-left, the dashed lines guide the eyes 

to follow the BB2 and TSS bands. Right panels show the corresponding 

extracted CD maps. Dark-blue and yellow colors represent the positive 

and negative CD signs for each band. The horizontal black line is the 

Fermi level. Two small boxes in (c)-left are the integration regions to 

extract the detailed dynamics of Fig. 3. 
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Fig. 3.  (a) Sub-picosecond electronic (squares), DIFF (circles) and 

CD (triangles) dynamics of TSS, extracted from box 1 in Fig. 2(c)-left. 

DIFF and CD are defined as DIFF=(RCL-LCL) and CD=(RCL- 

LCL)/(RCL+ LCL). (b) Same dynamics as in (a) for BB2, box 2 in Fig. 

2(c)-left. The CD of BB2 is negative and was multiplied by (-1) to ease 

comparison. The dashed lines show the pump and probe zero time. CD 

is not calculated for negative delays to avoid division by zero. The solid 

lines in (a) and (b) are exponential fits convoluted with the experimental 

time response, the CD of TSS was fitted with a constant function. 

 

 

shows the time dependence of the electronic intensity (black square), 

DIFF (red circles) and CD (blue triangles) for TSS (box 1 in Fig. 2(c)- 

left). The electronic and DIFF dynamics are normalized to their 

respective maxima and fitted by exponential functions convoluted 

with the experimental response. Notice that CD data cannot be 

computed in the time region prior or close to pump excitation since 

the electronic population is negligible, resulting in a division by zero. 

The electronic dynamics (black squares) reveals that the TSS is 

populated after a noticeable delay (about 60 fs). This delay indicates 

that the TSS is not directly photoexcited by the pump photons, but 

filled by electronic relaxation from higher BBs. The corresponding 

DIFF dynamics closely follows the electronic variations, while the 

CD signal is almost constant, with a value of 0.237. Fig. 3 (b) shows 

the data obtained from the second energy-momentum region of Fig. 2 

(c), i.e. the BB2. The electronic dynamics starts without appreciable 

delay and displays a gradual filling. The DIFF signal of BB2, in 

contrast with the case of TSS, does not follow the electronic dynamics 

(compare the squares and circles in Fig. 3(b)). The DIFF dynamics 

exhibit a significant delay (about 60 fs) and a rise-time (215 ± 41 fs) 

different with respect to electronic dynamics in BB2 (178 ± 7 fs, 

extracted from fitting). Likewise, the CD of BB2 varies in time 

(triangles in Fig. 3(b)). The different evolutions of the CD in TSS and 

BB2 reveals the different spin structure and dynamics of the bulk and 

surface states of TIs.  

The TSS has spin-polarized electron states which are robustly 

locked to their momentum and constrain the filling electrons to a well-

defined spin texture. Consequently, the spin polarization is preserved 

also when changing the pump-probe delay. The bulk states show a 

more complex spin dynamics: hot electrons in BBs have more 

scattering channels to lose their energy and spin information. But BBs 

at the surface show a preferred spin polarization opposite the TSS one. 

Thus, electrons cannot decay from BBs to TSSs due to the 

unavailability of spin states. These electrons with opposite spin can 

accumulate in BB2 and scatter away at larger time delays.  

 

IV. CONCLUSIONS 

In conclusion, we studied the spin structure of single crystalline 

Bi2Te3 by the trCD-ARPES technique. TrCD-ARPES provides direct 

access to time evolution, spin direction, energy and momentum of 

photoexcited electrons. For the first time, we reported the circular 

dichroism signal of the unoccupied electronic structure of Bi2Te3. Our 

results demonstrate the complex spin texture of TSS and BBs. The 

spin preference of BBs is attributed to the surface resonance states. 

Moreover, we investigated the femtosecond evolution of spins and 

electrons in TSS and BBs after excitation with a linearly polarized 

pump beam. As expected, a constant spin polarization was observed 

in TSS dynamics. The spin dynamics of BBs showed a qualitatively 

different behavior with respect to TSS. We assign this difference to 

the complex interplay of BBs with the surface, where the development 

of resonant states seems to be a fundamental ingredient.  
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