
Mobile Systems Research with Drones

Luca Mottola∗+ and Kamin Whitehouse†
∗Politecnico di Milano (Italy), +SICS Swedish ICT,

† University of Virginia, US

Robot vehicle platforms, often called “drones”, offer exciting new opportuni-
ties for mobile computing. While many systems respond to device mobility (such
as smartphones), drones allow computer systems to actively control device lo-
cation, allowing them to interact with the physical world in new ways and with
new-found scale, efficiency, or precision.

The startup cost to experiment with and build real drone applications has
dropped dramatically in recent years, also thanks to technological developments
driven by the smartphone industry and the rise of the “makers” and DIY move-
ments. As with any emerging technology, however, a fragmented software and
hardware ecosystem can leave newcomers wondering where to start.

This paper provides an overview specifically for researchers who want to
explore the mobile computing challenges made available by drones, such as
reliability, energy management, mobile communication, and programmability.
Building on several years of research using drones for mobile computing—from
tiny quadcopters weighing 20 grams to octocopters like the one in Fig. 1 and
planes powered by combustion engines—we outline key points of entry into the
drone ecosystem, including several advantages and potential pitfalls.

Figure 1: Aerial drone: octocopter.

1



ground-control station

autopilot

Figure 2: Software components in mainstream drone platforms. The ground
control station (GCS) lets users configure high-level mission parameters, the
autopilot software implements the low-level motion control aboard the drone.

Figure 3: Remote controller for manual flight.

Drones...what?

Drone applications are often designed with a two part architecture in which a
single, centralized computer systems tasks each of the drones, which execute
their tasks autonomously, as illustrated in Fig. 2. Specialized software runs at a
ground-control station (GCS) to let users configure mission parameters, such as
the coordinates to cover through waypoint navigation and the action to take at
each waypoint. The GCS is typically a standard computer that communicates
with the drone using Wi-Fi, Bluetooth, or a long-range low-bandwidth radio.
Unlike Wi-Fi and Bluetooth, the latter most often work in the 433 Mhz or
915 Mhz bands, and may cover up to a few kilometers.

Aboard the drone, the autopilot software implements the low-level control
to autonomously navigate to the next waypoint. The control loop processes
various sensor inputs, such as accelerations and GPS coordinates, to operate
the motors that set the 3D orientation of the drone, also called the drones
attitude. Because of size, cost, and energy concerns, autopilots run on resource-
constrained embedded hardware.

Whether to focus on the GCS or on the autopilot depends on the scope of

2



the project. At the GCS it is possible, for example, to implement high-level
functionality; for example, to coordinate multiple drones for a given applica-
tion [9]. In contrast, the autopilot functionality includes low-level control loops
to steer the drone based on high-level inputs provided by the GCS. The autopi-
lot functionality often does not include any application-specific logic, although
there are many opportunities for cross-layer optimization between the GCS and
autopilot. The latter may also be used without a GCS, using a remote controller
such as the one in Fig. 3 for manual control.

Software platforms for the GCS and autopilot have become widely accessi-
ble. Sophisticated solutions exist both in the open-source and open-hardware
domains, as well as in the commercial landscape. The former naturally offer
more flexibility because anything can be customized or replaced all together,
including GCS software, autopilots, and the underlying hardware. However,
the learning curve for open platforms can be steep because they need to be
configured, assembled, and calibrated from scratch. This often entails choosing
each and every component from a vast and sometimes confusing catalogue of
frames, motors, propellers, autopilot software and hardware, and the like. It
may thus take some time (and several crashes) before being able to fly reliably.
On the other hand, commercial drone platforms often come “ready-to-fly”, but
customization is often limited to only the GCS software.

Available drone platforms already enable a wide range of real-world applica-
tions that would be unfeasible or impractical with any other technology, such as
precision agriculture, aerial photogrammetry, 3D reconstruction, disaster man-
agement, and surveillance applications [2,5,7,10], as illustrated in Fig. 4. Most of
these applications require outdoor operation where positioning can be obtained
from GPS. However, these complex applications also require significant manual
intervention and achieving a fully autonomous behavior is still a challenge.

Figure 4: A hexacopter performing 3D reconstruction in Egypt.

3



Many demonstrations have shown drones performing sophisticated autono-
mous tasks such as throwing and catching balls [14] or cooperatively carrying
large payloads [8]. However, the goal of these demonstrations is to explore new
approaches for mechanical motion control, and they still require extremely ac-
curate positioning systems [15], significant processing power at the GCS, and
highly-instrumented lab settings or highly customized platforms whose mechan-
ical design is strictly coupled with hardware/software components. The chal-
lenges involved in building a fully autonomous system—possibly including mul-
tiple cooperating drones—to complete complex applications in natural, outdoor,
and uninstrumented environments are still relatively unexplored.

Application control

Even with a commercial drone platform that does not offer great customization
opportunities, a wide range of research possibility is within reach. High-level
APIs and supporting communication protocols are available to steer drones
remotely, from a PC or even a tablet or a smartphone. We believe this is,
in fact, one of the best ways to start working with drones. Besides sparing
the effort for configuration, assembly, and calibration, commercial drones offer
simple, yet useful emergency features; for example, pre-programmed maneuvers
in case a drone ended up entangled in hard-to-reach places, such as trees.

DroneKit by 3DRobotics (dronekit.io) is an example framework enabling
high-level control. It offers a Python API including high-level commands to steer
the drone independent of the vehicle platform, from quadcopter to fixed-wing
planes. Applications developed this way may add greater intelligence to the
drone’s behavior and perform tasks that are computationally- or time-sensitive,
such as computer vision and path planning. In addition, these frameworks en-
able the integration of drone-specific processing with larger cloud-based applica-
tions through REST-based interactions or messaging protocols such as MQTT.

Underneath DroneKit and similar frameworks is a standard way to exchange
flight commands and status information with the drone, called MAVLink [13].
This is an open protocol for communicating with small unmanned vehicles,
designed as a header-only message marshalling library. It is also widely adopted:
many open-source and open-hardware platforms, as well as commercial systems
can speak MAVLink. Those interested in realizing high-level applications with
drones, yet unhappy with the aforementioned programming frameworks, may
decide to implement their own framework on top of MAVLink by designing
the programming abstractions that best suit their target application domain.
Alternatively, they may simply let their application talk MAVLink directly, thus
gaining in efficiency but sacrificing generality.

High-level application processing, no matter the software framework, does
not necessarily need to run on the ground. The availability of extremely in-
expensive single-board computers has led to the emergence of the “companion
computer” as a viable alternative to a GCS. DroneKit and similar frameworks
are capable to run on any RaspberryPI or BeagleBone-equivalent, which is suf-

4



ficiently small and lightweight to be physically loaded on the drone, making
the system completely independent of external infrastructure. The energy re-
quired to operate the companion computer is, in most cases, much smaller than
the energy spent to power the motors, so it can be hooked to the main power
source aboard the drone without being overly detrimental to the drone’s lifetime.
On the other hand, the application processing–especially if spanning multiple
drones—and supporting programming frameworks need to be tailored to the
resources available on such single-board devices, where memory and processing
power cannot be taken for granted.

Low-level control

Together with the mechanical design, the autopilot software determines the
effectiveness of physical motion. For example, when using drones in imagery
applications, the low-level control directly influences the quality of the shots [10].
Further, the low-level control is partly responsible for how the energy available
from batteries is consumed, because the drones lifetime is often a result of
streamlined mechanical operation [3].

Most existing autopilot implementations employ Proportional-Integral-De-
rivative (PID) [1] designs for low-level control. These controllers run in a
time-triggered fashion: every T time units, navigation sensors such as GPS,
accelerometers, and gyroscopes are probed, control decisions are computed by
dedicated hardware, and commands are sent to the actuators to operate the mo-
tors. Such an approach enjoys the advantage of highly deterministic operation,
which simplifies implementation.

Although the autopilot implementations aboard commercial drones are typ-
ically closed-source and cannot be customized, a number of mature open-source
autopilot projects are readily available. Among them, Ardupilot (ardupilot.-
org) is a prominent example. The project is at the basis of a large commu-
nity and often comes pre-installed onto many drone platforms, including those
of 3DRobotics and many others. Other examples are Cleanflight (clean-
flight.com) and OpenPilot (openpilot.org). Moreover, while ArduPi-
lot is explicitly designed for autonomous flight, autopilot implementations exist
that are especially optimized for manual control, including “first-person view”
(FPV) operation and aerial acrobatics. In this case, the autopilot also offers
support for streaming high-quality video to a headset, typically through an
additional radio running custom protocols in the 5.8 GHz band.

Most open-source autopilot implementations typically support a few under-
lying hardware platforms; in turn, the latter often come in the form of open-
hardware designs and are particularly optimized for a given autopilot imple-
mentation. For example, in the case of Ardupilot, the ideal hardware platform
is the Pixhawk board [12], shown in Fig. 5, which features a Cortex M4 core at
168 MHz and a full sensor array for navigation, including a 16-bit gyroscope,
a 14-bit accelerometer/magnetometer, a 16-bit 3-axis accelerometer/gyroscope,
and a 24-bit barometer. Most often, at least a sonar and a GPS are added to

5



Figure 5: Pixhawk board for drone autopilots.

the built-in sensor array to provide positioning and altitude information.
Interestingly, much of this hardware—and especially the sensor equipment—

appears to be inherited from smartphones, mostly with a three- to four-year lag.
For example, the Invensense MPU 6000 3-axis accelerometer/gyroscope on the
Pixhawk was seen on a range of HTC smartphones; the ST Micro LSM303D
14-bit integrated accelerometer-magnetometer on the Pixhawk was used in Sam-
sung’s low-range smartphone offering. Here is where drones have benefited the
most from push of the smartphone industry; some argue that without modern
smartphones, we would not have drones in their current form [6].

Working at a high level may appear to offer more readily-available opportu-
nities for researching new problems, compared to dealing with low-level concerns
rooted in decade-old control literature and embedded hardware. Our experience
tells a different story. Several seemingly-solved problems must be revisited in
the new context set by drones and the applications they enable, including con-
trol [4]. Moreover, it is at this level that one of the most severe issues still
plaguing the operation of drones, that is, their dependable behavior, needs to
be tackled [11], as we discuss next.

Lessons learned

Over the past five years, we learned several lessons that may be useful for mobile
systems researchers interested in new projects that involve drones:

Break (your) stuff. We started with drones using the AR.Drone 2.0, a com-
mercial drone platform provided by Parrot. The AR.Drone was, and still is,
among the cheapest drone platforms that still allow for credible research and
experimentation. The AR.Drone 2.0 can speak MAVLink. A C++ SDK is
available from Parrot to implement application-level remote control, while sev-
eral open-source alternatives in other languages also exist. Most importantly,
spare parts are readily available. Breaking bits and pieces was thus not much of
an issue, which lets one experiment with things one would not try if there were
hundreds or even thousands of euros at stake. Being “brave” is fundamental to

6



gain experience with these devices.

Do not break somebody else’s stuff (or people). The AR.Drone was so
easy to fly that it appeared to be safe to do so even indoor or in confined spaces.
We quickly realized, however, how dangerous this could become. The AR.Drone
propellers spin hundreds of times per minute, the device weights about .5 kg,
and it may accelerate up to 10 m/s in a straight line. Hitting an object, or
even a person, in these conditions may cause serious accidents. Independent of
the regulations currently in force in one’s country, and even though a practical
“drone testbed” is yet to be seen, researchers must be sure that a protected area
of reasonable size is available for experimentation.

Fly manual. While our initial research focused mainly on autonomous flight
at the level of application control, flying the AR.Drone manually turned out to
be extremely valuable. It made us understand more precisely how the drone
reacts to external commands, which facilitated debugging the behavior during
autonomous flight; how the environment may affect its operation, for example,
in the case of wind; and what signs indicate that physical breakage is imminent,
which turns out to be fundamental for a dependable operation in the wild. Some
of our research in this area [4] was only possible because of the experience gained
in flying drones manually.

The more sensors, the better. When we transitioned from the AR.Drone
to more custom-designed platforms, we needed to decide the best combination
of components for application needs. While it may be tempting to reduce cost
by reducing the set of navigation sensors, this is often a big mistake. Au-
topilots are complex pieces of software, and their use of sensor inputs is often
not obvious. For example, some autopilots employ two GPS receivers not as a
failover measure, but as parallel receivers used during normal operation, which
drastically increases the precision of navigation. This lead to unexplained frus-
tration with our early custom vehicle platforms, which were equipped with only
a single GPS receiver. When creating a customized platform, we recommend
over-provisioning first and performing the cost engineering in later stages.

Take good care of them. Drones are not like smartphones, where the worst
thing that may happen during routine use is the battery being discharged. Think
of them as a bicycle: they need continuous maintenance. The integrity of the
frame, the proper attachment and rotation of motors and propellers, as well as
the conditions of the battery must be checked before every flight. We learned
this the hard way in a deployment in an archaeological site in Italy [9]. Archae-
ological sites are particularly dusty environments and, as dust enters a drones
gears and shafts, their efficiency quickly drops until the drone fails to operate.
We eventually identified a suitable maintenance schedule but, in the meantime,
we broke four motors, eleven propellers, and uncountable gears. Interestingly, at
least in our experience, mechanical failures on drones are seldom totally unan-
ticipated. If it makes an unusual noise when taking off, land it immediately and
thoroughly re-check everything.

7



Research directions

Drones have suddenly created a cost-effective mobile computing platform whose
physical behavior in time and space is under complete control. What research
opportunities does that offer? There are probably many more than what we can
hint here, spanning essentially every aspect of a computing system, from hard-
ware to application layers. Drones also offer new connections and opportunities
with fields other than mobile computing, such as control and mechatronics, that
can be explored.

For example, achieving fully autonomous behaviors is, in large part, still an
open challenge. Artificial intelligence and robotics have been making progress
in these areas for decades, mainly focusing on general-purpose solutions whose
system implementations are, however, often hardware-specific. In contrast, the
mobile computing community can offer a system foundation to build upon. It
should provide the necessary functionality and performance in a way to sim-
plify the design and implementation of intelligent algorithms, while enabling
portability of implementations across devices.

Tackling the challenge of autonomous behavior becomes even more difficult
when distributed coordination among multiple drones is necessary or simply
beneficial to the application. A range of questions then arise: with each drone
equipped with a limited energy budget, how do we manage the available system-
wide energy in a way to maximize the application objectives? How do we manage
network connectivity to ensure that drones have the necessary communication
support to enable the coordination? What kind of distributed data consistency
models are most suited to a highly mobile scenario, and what can we sacrifice
in overall correctness to gain in net performance? In case system-wide network
connectivity cannot be guaranteed, how do we assign tasks to individual drones
in a way that is robust to communication failures?

The lack of proper abstraction layers in current drone platforms, which re-
sults in laborious and one-off development processes, represents a further or-
thogonal challenge. The idea of installing “apps” on a drone with the same
ease as on smartphones, while fascinating, is still a long way ahead. New and
wide-reaching infrastructure would need to be built towards that end, both on
the drones themselves and in terms of development and deployment support.

Further, problems that are relatively simple to solve on mainstream com-
puting platforms may become extremely difficult on drones, because the de-
pendability requirements are brought to an extreme. Accidents with drones are
often reported whose causes may be attributed to malfunctioning software or
hardware, like the case of the camera drone almost hitting a skier during the
world championship, shown in Fig. 6. Size, cost, and energy concerns, however,
require drones to employ resource-constrained embedded hardware, which only
allows developer to employ low-level languages and forces them to aggressively
optimize implementations. Developing drone code is thus extremely error-prone.
Although we are not necessarily advocating the extremely rigid methodologies
used in avionics, a more principled approach to ensure dependability guarantees
is certainly needed.

8



Figure 6: An accident where a camera drone crashed close to a skier. Investi-
gations later revealed that a malfunctioning battery sensor probably caused the
accident. The human operator realized the potential failure too late.

As much as we are starting to see “smartphone testbeds” appearing, the
issues above would be ameliorated with better simulation support and easily-
accessible “drone testbeds” that enable pre-deployment testing and verification.
As of now, however, simulation support appears either limited in the amount
of realism or focused on specific functionality, such as obstacle avoidance. The
former limitation may be tackled with trace-driven simulations; however, such
an approach becomes difficult or even impossible for systems that involve con-
trol, because control actions would introduce discrepancies between the trace
and the simulated environment. The lack of generality also applies to the few
examples of real-world testbeds, which are often platform-specific and tend to
be complex to employ. Ideally, simulators and testbeds should expose the same
software stack as real systems, enabling smoother transitions between the test-
ing environments and real deployments.

Arguably, one of the main limitations of current drone platforms is still their
lifetime. While we cannot expect battery technology to drastically change this
in the near future, we believe interesting avenues for research are found in both
optimizing the hardware designs for low-power operation of drones and in novel
power provisioning systems. Early experimentation demonstrate, for example,
how wireless energy transfer may be used to power tiny quadcopters remotely,
indefinitely prolonging their lifetime.

Finally, a note is in order about regulations. While this may seem a non-
technical problem, we argue the reason why many countries still do not have a
stable regulation regarding the use of drones is because many technical aspects
of existing platforms are misunderstood. As researchers, it is also our job to
help legislators gain a sufficient, un-biased vision on the technology. At the same
time, it is likely that we will find interesting problems to work on also in this
area. At the time when we will develop an actual drone traffic management
system, for example, one will require algorithms to automatically govern the

9



traffic while ensuring the safety of operation, along with exchangeable data
formats for real-time updates of current conditions across national borders.

Go have fun!

We only scratched the surface of what drones are, what can be done with them,
what interesting research problems they offer, and how to tackle them. We
believe there is much more to it. The best way to find it out is to just set
yourself and your colleagues free from any specific research agenda and play
with the technology. The possibilities are so many that you will likely find a
problem that appeals to you, and the reward of being able to demonstrate your
solution with a real system will be well worth the effort of tackling it.

Acknowledgments. Our work with drones has benefited from the talents and
hard work of many students, including Mikhail Afanasov, Endri Bregu, Daniel
Cantoni, Nicola Casamassima, Mattia Moretta, and Andrea Patelli. The work
was partly supported by the Projects “Zero-energy Buildings in Smart Urban
Districts” (EEB), “ICT Solutions to Support Logistics and Transport Processes”
(ITS), and “Smart Living Technologies” (SHELL) of the Italian Ministry for
University and Research.

References

[1] K. J. Åström and T. Hägglund. Advanced PID control. ISA - The Instrumentation,
Systems, and Automation Society, 2006.

[2] BBC News. Disaster drones: How robot teams can help in a crisis. goo.gl/
6efliV.

[3] G. A. Bekey. Autonomous robots: From biological inspiration to implementation
and control. The MIT Press, 2005.

[4] E. Bregu et al. Reactive control of autonomous drones. In Proceedings of ACM
MOBISYS, 2016.

[5] A. Bürkle. Collaborating miniature drones for surveillance and reconnaissance.
In Europe Security+ Defence, 2009.

[6] C. Anderson. How I accidentally kickstarted the domestic drone boom. goo.gl/
SPOIR.

[7] IEEE Spectrum Online. SenseFly and DroneAdventures toss UAVs off the summit
of Matterhorn. goo.gl/N6ekAA.

[8] N. Michael et al. Cooperative manipulation and transportation with aerial robots.
Autonomous Robots, 30(1), 2011.

[9] L. Mottola et al. Team-level programming of drone sensor networks. In Proceed-
ings of ACM SENSYS, 2014.

[10] F. Nex and F. Remondino. UAV for 3D mapping applications: A review. Applied
Geomatics, 2003.

10

goo.gl/6efliV
goo.gl/6efliV
goo.gl/SPOIR
goo.gl/SPOIR
goo.gl/N6ekAA


[11] A. Patelli et al. Model-based real-time testing of drone autopilots. In Proceedings
of DRONET, 2016.

[12] PixHawk.org. PX4 autopilot. goo.gl/wU4fmk.

[13] QGroundControl. MAVLink: Micro Air Vehicle Communication Protocol. goo.
gl/fMPw0D.

[14] R. Ritz et al. Cooperative quadrocopter ball throwing and catching. In Proceed-
ings of IROS, 2012.

[15] Vicom. Motion capture systems. goo.gl/Vh5Q4c.

11

goo.gl/wU4fmk
goo.gl/fMPw0D
goo.gl/fMPw0D
goo.gl/Vh5Q4c

