
Model-based Real-time Testing of Drone Autopilots

Andrea Patelli∗ and Luca Mottola∗+

∗Politecnico di Milano (Italy), +SICS Swedish ICT
Contact author: luca.mottola@polimi.it

ABSTRACT
Key to the operation of robot drones is the autopilot soft-
ware that realizes the low-level control. The correctness of
autopilot implementations is currently mainly verified based
on simulations. These may overlook the timing aspects of
control loop executions, which are however fundamental to
dependable operation. We report on our experience in ap-
plying model-based real-time testing to Ardupilot, a widely
adopted autopilot. We describe our approach at deriving a
model of Ardupilot’s core functionality and at reducing the
model to enable practical testing. Our work reveals that
Ardupilot may fail in meeting the time constraints associ-
ated to critical functionality, such as enabling fail-safe oper-
ation. Through controlled experiments, we demonstrate the
real-world occurrence of such erroneous executions.

1. INTRODUCTION
Aerial vehicles, ground robots, and aquatic rovers enable

sophisticated applications [5, 16, 24]. Key to their depend-
able operation is the autopilot software that implements the
low-level motion control. Autopilots process various sensor
inputs, such as accelerations and GPS coordinates, to oper-
ate the electrical motors that set the vehicle’s attitude. The
high-level inputs come from a ground-control station (GCS)
where mission parameters are configured, or from a human
operator who drives the drone using a remote controller.

Problem. The autopilot is responsible for a number of
safety functionality triggered in response to faults. For ex-
ample, it may force the drone to land should the battery
voltage drop below a threshold. Correctly implementing this
functionality is fundamental: accidents are often reported
whose causes may be attributed, in a way or the other, to
malfunctioning autopilots [19].

Implementing autopilot software is, nevertheless, challeng-
ing. Size, cost, and energy concerns require autopilots to run
on resource-constrained embedded hardware. This forces de-
velopers to employ low-level languages and to aggressively
optimize implementations. Moreover, autopilot software op-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DroNet’16, June 26 2016, Singapore, Singapore
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4405-0/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2935620.2935630

erates in a setting where developers struggle to gain run-time
information useful for verifying the correctness. Besides the
hurdles at testing autopilots in real executions, resource-
constraints hamper extensive logging and monitoring.

To complicate matters, many autopilot functionality need
to execute in real-time, that is, subject to given time con-
straints. A paradigmatic example is that of safety function-
ality, which must be operated within strict time bounds to
be effective. Should these bounds be violated, the drone
may harm surrounding people or objects. Testing real-time
software, however, is challenging even in mainstream com-
puting, as testified by the bast literature on the subject [12].

The result of such a state of affairs is that autopilot soft-
ware often undertakes little testing compared to the key
role it plays. Further, most such testing is essentially per-
formed in simulations and looks at functional requirements.
However, simulations provide little coverage, whereas non-
functional requirements such as real-time functionality are
tackled by over-provisioning the hardware so that the soft-
ware runs “fast enough” not to cause problems in everyday
use. This provides no definitive guarantee on the correct
functioning of autopilots, which is unacceptable especially
for safety functionality.

Contribution. This paper presents our work and experi-
ence at gaining a deeper insight into the proportions, depth,
and implications of the issues above.

We take Ardupilot [3], a widely employed open-source
autopilot implementation we describe in Sec. 2, and apply
state-of-the-art model-based real-time testing techniques for
verifying the correctness of crucial safety functionality. As
illustrated in Sec. 3, the techniques we adopt are both ex-
haustive, that is, given certain inputs, they can verify if
developer-provided correctness properties hold in every pos-
sible execution, and operate off-line. The latter feature is
immensely useful to overcome the aforementioned practical
hurdles in testing autopilots right on the drones.

We build a model of Ardupilot’s core functionality in two
steps. Sec. 4 describes how we derive the code’s control flow
graph in a fully automated way, which guarantees the model
is structurally equivalent to the code. Next, we perform ex-
tensive measurements of the execution times of Ardupilot’s
code over a Pixhawk board in a minimally invasive way, us-
ing custom hardware and during actual executions.

The model derived this way, however, turns out impracti-
cal to carry out the actual testing process. As it is common
when applying exhaustive techniques, we stumble upon state
space explosion problems that hamper the conclusion of the
verification process [13, 25]. To overcome these, Sec. 5 il-
lustrates model reduction techniques we apply to shave the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/154334275?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1145/2935620.2935630

fast loop schedulersetup

time

Figure 1: Ardupilot’s control loop.

state space, ultimately obtaining a model usable on ordinary
personal computers.

The outcome of the testing process on the reduced model,
described in Sec. 6, indicates that, for example, specific exe-
cutions are possible where Ardupilot’s fail-safe mode might
be arbitrarily delayed. This means that, even though a fault
happens that requires the fail-safe mode to be enabled, the
latter might not operate immediately. Rather, the drone
continues working (or not working) as in the absence of the
fault. Through real-world controlled experiments using a
custom-built aerial drone, we demonstrate the not-so-rare
occurrence of such erroneous executions.

We conclude the paper by offering in Sec. 7 an outlook on
how the insights we present in this work may represent an
input to further developments in the field.

2. BACKGROUND
We describe the autopilot we consider and cast our work

in the broader context.

2.1 Ardupilot
Ardupilot is an open-source project [3] at the basis of

many commercial products, including those of 3DRobotics [1]
and many others, and boasts a large on-line community. It
well exemplifies the state of the art in the field of autopi-
lot development, platforms, and testing. Other existing au-
topilots, such as OpenPilot [17] and Cleanflight [10], show
similar characteristics.

Implementation. Fig. 1 shows the execution of Ardupi-
lot’s control loop. The fast loop only includes critical mo-
tion control functionality. The time left from the execu-
tion of fast loop is given to an application-level scheduler
that distributes it among non-critical tasks, such as log-
ging. The scheduler operates in a best-effort manner based
on programmer-provided priorities.

Initially, fast loop processes values from the Inertial Mea-
surement Unit (IMU), which provides an indication of the
vehicle’s forces in the three dimensions. IMU information is
combined with GPS readings to determine updated attitude
control by minimizing the error between the desired and ac-
tual pitch, roll, and yaw. This information is then converted
into commands sent to the motors to orient the vehicle.

Ardupilot runs on various embedded hardware. A primary
example is the Pixhawk board [18], which features a Cortex
M4 MCU at 168 MHz and a full sensor array for navigation.
On Pixhawk boards, Ardupilot’s control loop is statically
configured to run at 400 Hz.

Testing. The correctness of Ardupilot’s implementation
is currently mainly verified using simulations. Ardupilot’s
distribution includes the Software In The Loop simulator
(SITL) [3], which allows one to run Ardupilot on ordinary
machines. SITL offers the same APIs as a real instantiation
of Ardupilot on embedded hardware. The drone behavior

is rendered based on a model of flight dynamics embedded
within SITL. A GCS can connect to the simulated Ardupilot
instead of a real drone, and issue commands to drive way-
point navigation and remotely log the mission execution.

Using SITL provides a practical means to quickly test
functional properties of Ardupilot, or to check Ardupilot’s
behavior in specific circumstances. Further, tests can be
scripted. This allows one to build automatic testing frame-
works, for example, to perform regression testing on nightly
builds as new features are added.

2.2 Related Work
In embedded software, the lack of exhaustiveness is widely

acknowledged as a drawback of simulation-based testing [8].
The testing outcome only applies to that specific execution
with given inputs. Simulations may also fall short in real-
ism [8], for example, as it is difficult to accurately model
the execution times of embedded hardware. However, test-
ing on top of resource-constrained hardware is likely difficult
without generating “heisenbugs”: fictitious software defects
induced by probing the executions [15].

Model-based testing complements simulations [11] by op-
erating on an abstract representation of the system, which
allows to test a system without concretely running it. The
models are input to a tool together with developer-provided
properties, that is, an encoding of what is considered the cor-
rect behavior. The tool returns whether the model satisfies
the properties in every possible execution, and is therefore
exhaustive. If a property is violated, a counter-example is
produced that shows an execution where a property does
not hold. Because of these features, model-based testing is
widely used in safety critical software [8].

Applying model-based testing to the special case of real-
time software requires dedicated models and tools [12]. For
example, various kinds of timed automata [11, 13] to model
the behavior of the system exist. Different model represen-
tations require different algorithms to check the properties of
interest [13,25]. A vast literature exists on the subject [12],
which shows how these techniques can be effectively applied
to a number of different application domains.

Among these domains is also the one of avionics [6,21,22].
However, compared to traditional avionic systems, robot
drones are peculiar in at least three respects. First, many
state-of-the-art systems, including Ardupilot, are the result
of a community-driven unstructured development process
that favors agile methods and tools [14] over more system-
atic ones, such as model-based testing. Second, the hard-
ware to run avionics software is often carefully dimensioned
and custom-zed to the specific functionality; resource con-
straints rarely represent an issue [21]. In robot drones, how-
ever, off-the-shelf hardware is employed to keep costs down.
Finally, unlike traditional avionic systems, the operation of
robot drones depend on a long-range wireless connection to
the GCS or the user’s remote controller, whose failure dras-
tically impact the device’s operation.

3. ARDUPILOT MODEL-BASED TESTING
We apply model-based testing to Ardupilot’s core func-

tionality, that is, the fast loop portion of Fig. 1, and partic-
ularly focus on Ardupilot’s failsafe flight mode. The latter
should be automatically enabled, for example, whenever no
valid signal is received from the telemetry radio or the re-
mote controller for a given time period. We next describe

the properties and tools we consider. Sec. 4 illustrates how
we build an Uppaal model to represent Ardupilot’s process-
ing relevant to check these properties.

Properties. We examine three classes of properties. We
test two reachability properties [2], that is, properties spec-
ifying that certain critical portions of the code should be
reachable in every possible execution:

R1: the function responsible for processing the signals from
the telemetry radio or the remote controller, should
terminate for every possible input;

R2: it should be possible to enable the failsafe flight mode
should the need arise as described above.

We also consider three safety properties [2] stating that
unwanted situations should never happen:

S1: the worst-case execution time of fast loop should be at
most Tw, not to impact the resulting rate of control
loop executions;

S2: there should be no executions of fast loop that result
in a deadlock that indefinitely prevents enabling the
failsafe mode;

S3: the time that fast loop takes to enable the failsafe mode
should never exceed Tf .

In Ardupilot, the actual values for Tw and Tf are platform-
dependent. Finally, we also examine one liveness prop-
erty [2] that indicates a desirable condition that should even-
tually occur:

L1: after the failsafe mode is enabled, re-gaining a signal
from the telemetry radio or the remote controller even-
tually disables it.

Tools. We use Uppaal [13], a state-of-the-art environment
for simulation and testing of real-time systems. Uppaal is
appropriate for systems that can be modeled as a collection
of non-deterministic processes with real-valued clocks, com-
municating via channels or shared variables. Uppaal’s target
applications include closed-loop controllers and communica-
tion protocols.

Uppaal requires the input models to be specified as a net-
work of timed automata. Sec. 4 describes how we build such
a model for Autopilot’s core functionality. Properties in Up-
paal are specified using a subset of Timed Computation Tree
Logic (TCTL) [2]. The translation of the properties above in
TCTL is straightforward; the most complex being L1 that
requires using three temporal operators.

4. MODEL CONSTRUCTION
We build the model for Uppaal in two steps. First, we

derive a state machine from the code’s control flow graph.
Next, we add execution times for each state by profiling real
executions of Ardupilot.

4.1 State Machine
We use Scitool’s Understand [20] to automatically derive

the control flow graph for fast loop in Ardupilot 3.1.0. Un-
derstand is a static analysis tool often employed to reverse-
engineer safety critical software.

Fig. 2 shows a snippet of Understand’s output for the func-
tion processing the inputs from the remote controller. Using
Understand, we recursively generate the control flow graph
for every function possibly executed within fast loop, along
with the connections between the individual control flow

startuint32_t tnow_ms = millis();
int8_t switch_position = init();

g.rc_5.radio_in < 1231

g.rc_5.radio_in < 1361switch_position = 0;

… …

yes no

noyes

Figure 2: Snippet of the control flow graph for
Ardupilot’s function that processes inputs from the
remote controller.

graphs due to function calls. We implement a post-processor
that automatically transforms an XML-based representation
of Understand’s output into Uppaal’s input format.

Such a processing, however, does not suffice to represent
the behavior of fast loop:

1. Understand does not represent function calls due to in-
terrupt handlers, as they are not visible in the source
code. To cater for these executions, every time the
code runs with interrupts enabled, our post-processor
adds non-deterministic transitions in the Uppaal model
that lead to the control flow of interrupt handlers.

2. Understand cannot render the semantics of timers in
Ardupilot’s code. To this end, we create an Uppaal
sub-model that counts the number of time units ac-
cumulated in the main model. Whenever the count-
ing reaches a threshold, a shared Boolean variable is
flipped to signal the timer expired. This causes the
model execution to enter the control flow of the func-
tion attached to the timer.

The resulting Uppaal model for Ardupilot’s fast loop in-
cludes about 10,000 states connected by about 90,000 tran-
sitions. Note that a single state in the model does not nec-
essarily map to a single instruction in the code. Whenever
possible, Understand groups instructions in the same state,
as shown at the top of Fig. 2. This does not entail that those
instructions are executed atomically; the non-deterministic
transitions we add ensure that interrupt handlers may pre-
empt the model execution at any point in time, including
between instructions that Understand groups together.

4.2 Execution Times
The model above still lacks information on the execution

times in every state. Multiple approaches are possible to
gain this information. One may estimate the number of ma-
chine instructions corresponding to every C++ instruction
in Ardupilot, based on the target MCU architecture. An
alternative would be to run the code in a suitable emulator.
Finally, one may attempt to profile real executions.

Counting the machine instructions is likely to be inac-
curate, as it cannot account for features such as instruction
pipelines available on Cortex M4 MCUs. Emulators for Cor-
tex M MCUs exist; however, they would need to be heavily
customized to account for the variable times in interacting
with the specific sensor hardware on Pixhawk boards. We
therefore opt to profile real executions, which would return
precise results only by ensuring that we only minimally alter
the executions.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5000 10000 15000 20000E
x
e
c
u
ti
o
n
 t
im

e
 [
c
lo

c
k
 c

y
c
le

s
]

Measurement

Figure 3: Results from profiling the execution time
at one sample state. Some measurements show very large
values due to the preemption of the main code by interrupt
handlers.

Profiling. We connect a separately-powered RaspberryPI
board to the GPIO pins of a Pixhawk board, and instru-
ment Ardupilot’s code to signal through the GPIO pins the
transitions between the states of the Uppaal model. The
RaspberryPI timestamps all such transitions and logs them
asynchronously on local storage.

We already verified that such an approach is minimally in-
vasive [7]: the added processing times in Ardupilot amount
to a few MCU cycles and, most important, are deterministic.
We can therefore subtract these times when post-processing
the logs. Other than this, the added weight of the Raspber-
ryPI and of its small battery, which only needs to power the
board for the 20 minute duration of a flight, are negligible.

We total more 30 hours of flight using a custom-built
quadcopter, a custom-built hexacopter, and a 3DR Y6 drone
in both indoor and outdoor settings, alternating the use of
a telemetry radio and a remote controller. To make sure
we obtain the needed time information for every state in
the Uppaal model, we manually force all executions of inter-
est; for example, by artificially creating the conditions for
Ardupilot to enter the failsafe mode because of a failure of
the telemetry radio.

Results. The measurements turn out deceptive, as they
show more variability than expected.

Fig. 3 exemplifies this aspect by showing the measure-
ments during a single flight at one sample state that in-
cludes three assignments of 32 bit integer variables. Most
of the measurements report very small values, as expected.
A small fraction of the measurements, however, indicates
that the MCU takes thousands of clock cycles to execute
the three instructions.

Further investigations reveal that the variability in the
measurements is due to the way hardware interrupts are
managed. To ensure that interrupts are immediately served,
especially those triggered by navigation sensors when a new
reading is available, most of Ardupilot’s processing in fast
loop is preemptable. This means that a function’s execution
may be suspended for an arbitrary amount of time, until all
pending interrupts are served. Such a design choice trades
low latency in serving interrupts for deterministic execution
times, which may however impact the time dynamics of con-
trol loop executions.

5. MODEL REDUCTION
The model we obtain is sufficient to check the properties

of Sec. 3 using Uppaal, yet it is not practical. To be ex-

haustive, the checking process needs to explore all possible
executions of the code to verify whether a certain property
holds. Thus, Uppaal explores all model executions that cor-
respond to different assignments of variables in the code.
This creates huge processing demands. With the model in
Sec. 4, checking the reachability properties fails because Up-
paal reaches the memory allocation limits for single pro-
cesses on our Linux machine. Differently, we give up on
checking the liveness property after letting Uppaal run for
two days on an Intel Xeon E3 processor clocked at 3.2 GHz.

We apply several reduction techniques to make the model
practical. Some of these are domain-specific:

Radio channel abstraction: in Ardupilot, the execution
is often driven by comparisons of the radio or sensor
inputs against pre-defined thresholds. One example is
in Fig. 2, where the code executes differently by com-
paring the input from radio channel 5 with two fixed
values. In these cases, the actual input value is irrel-
evant as long as we can distinguish the cases leading
to different execution paths. Thus, whenever possible
in the Uppaal model, we reduce the domain of such
decision variables to be of a cardinality equal to the
number of execution paths they may determine. This
limits the number of different executions Uppaal needs
to explore.

Flight mode abstraction: depending on the flight mode,
the admitted ranges of radio and sensor inputs change.
For example, when the super simple mode is enabled,
the admissible ranges of inputs from the remote con-
troller is further limited to facilitate novice pilots. Ar-
dupilot includes a sizeable amount of code merely to
check these ranges and react accordingly. Similar to
the case above, the concrete values of the inputs are
immaterial as long as we can discern whether they are
within or outside the admitted range. We thus restrict
the domains of all relevant variables as done above,
further limiting the number of different executions.

We also apply a number of domain-agnostic model reduc-
tion techniques. One example is the reset of variables [13].
If a variable v is never used again after state s, its value
becomes immaterial. For all states that follow s in an ex-
ecution, however, variable v is still part of the program’s
data and concurs to make executions different. By resetting
v right after s to a fixed value, we help Uppaal join execu-
tions that would be different only for the value of a variable
that is however immaterial.

The reduced model makes it possible to verify the prop-
erties of Sec. 3 in a matter of minutes on an ordinary PC.
We discuss next the outcome of the process.

6. TESTING OUTCOME
Key to the testing process is how to account for the exe-

cution times we described in Sec. 4.2. We consider five ways
to represent their variability:

Average assigns a state with the average execution time
out of all measures we gather.

Min-max asks Uppaal to check all time values within an
interval from the minimum to the maximum execution
time we record.

Extreme considers the min-max interval on a post-processed
set of measures obtained by applying the “extreme”
outlier filtering [23].

Property M
in

-m
a
x

A
v
e
ra

g
e

E
x
tr

e
m

e

M
il
d

P
e
rc

e
n
ti

le

R1 Yes Yes Yes Yes Yes
R2 Yes Yes Yes Yes Yes
S1 No Yes Yes No Yes
S2 Yes Yes Yes Yes Yes
S3 No Yes No No Yes
L1 No Yes Yes No Yes

Figure 4: Outcome of testing process depending on
variable execution times. Time-sensitive properties are
verified as a function of the impact on interrupt handlers.

Mild considers the min-max interval on a post-processed
set of measures obtained by applying the“mild”outlier
filtering [23].

Percentile considers the min-max interval on a post-pro-
cessed set of measures obtained by only considering
the 99% percentile.

Results. Depending on the above, some properties may or
may not be verified, as shown in Fig. 4.

On the bright side, the reachability properties are con-
stantly verified, as expected given these are not time sensi-
tive. Moreover, property S2, which checks the absence of
deadlocks, is also verified no matter how the variable execu-
tion times are factored in. This gives us confidence in the
quality of the code.

The remaining properties consistently fail when the ex-
ecution times cover the Min-max interval. This entails
taking into account all possible circumstances, no matter
how rare they are: even if we recorded a single excessively
long execution time in a state, that would be considered as
the maximum value of the interval. As we exemplified in
Fig. 3, there may be cases where such a maximum is orders
of magnitudes larger than the most common values.

As for property S1, the worst-case execution time for fast
loop on the Pixhawk should be Tw = 2.5 ms, as the loop
is configured to run at 400 Hz. This already represents an
undesirable situation, in that fast loop would eat the entire
processing time for a single iteration, leaving no time for the
scheduler part of the loop. Our analysis indicates that Tw is
easily exceeded if interrupt handlers preempt the execution,
as discussed in Sec. 4.2. This means that control slows down,
and the drone looses reactivity.

The outcomes related to the management of the failsafe
mode are possibly more notable. As for property S3, on the
Pixhawk the upper bound to enable the failsafe mode is set
to Tf = 500 ms (2000 ms) for failures of the remote controller
(telemetry radio). Uppaal returns that these bounds are
plainly violated as a result of interrupt handlers preempting
the execution of fast loop.

As for property L1, Uppaal indicates that if the failsafe
mode is enabled late, it may never be disabled even though
the signal from the telemetry radio or the remote controller
is re-acquired. The corresponding counter-example shows an
inconsistency in the values of relevant variables: the failsafe
is, in fact, operational, but some variables still refer to the
previous flight mode.

The results of testing properties S1, S3, and L1 using

Mild outlier filtering are the same as in the Min-max case.
Even though the counter-examples returned by Uppaal dif-
fer, this kind of filtering still does not suppress enough large
values to change the outcome of the verification. When ap-
plying Extreme outlier filter, instead, only property S3
keeps failing, again with a different counter-example.

Viceversa, properties S1, S3, and L1 are verified when
considering either the Average execution times or the 99%
Percentile. Because the large values we record are some-
what“rare”, they bear little impact on the average and likely
fall outside the 99% percentile.

Back to reality. The results we obtain indicate that inter-
rupt handlers are crucial. The question that naturally arises
is then: how rare is “rare” ?

To find an answer, we modify the equipment we described
in Sec. 4.2 to monitor real executions searching for any of
the counter-examples that Uppaal returns. Note that we are
able to do so because we can leverage detailed information
on the specific executions that violate a property; in other
words, we know what we are looking for. Otherwise, mon-
itoring real executions searching for any possible property
violation would be prohibitively complex. By the same to-
ken, as Uppaal only returns the first counter-example found,
it also means that a property may fail in a different way dur-
ing a real execution, but that situation will go unnoticed.

We perform an additional 10 hours of flight using the same
drones and settings of Sec. 4.2. To trigger the failsafe mode,
we artificially disconnect the telemetry radio every 2 min-
utes, and reconnect it 10 seconds later. Throughout these
experiments, we detect twice on two different drones the
counter-example when property S1 fails under the Min-
max setting. Moreover, we detect three times on the same
drone the counter-example when S3 fails under the Min-
max setting, and we recognize once the counter-example
when property S3 fails under the Mild setting.

7. DISCUSSION AND OUTLOOK
Notwithstanding the tremendous effort of Ardupilot’s com-

munity, the efficient operation of the current implementa-
tion, and the fact that the telemetry radio is not expected to
fail that often, a total of six property violations in 10 hours of
operation are arguably significant for a potentially harmful
system [19]. While the developer community of Ardupilot
has confirmed the bugs we identified, some key developers
also pointed out that no easy fix exists to these issues, and
a significant re-design would be needed instead [4].

In a way, this is a reflection of the development process
adopted for Ardupilot. The Ardupilot codebase changes of-
ten due to bug fixing or the introduction of new features, and
with little overall coordination. In such a fluid community-
driven setting, it is difficult to apply techniques such as
model-based testing, in that someone should volunteer the
effort to keep the models updated as the codebase changes.

On the other hand, we auspicate that autopilot software
would follow the practice of larger open-source projects, such
as the Linux kernel, where systematic testing techniques pro-
gressively integrated with agile development processes [9].
To this end, greater efforts are required from academia to
customize techniques such as model-based testing for use in
autopilot software.

Acknowledgments. The work was partly supported by the
Projects “Zero-energy Buildings in Smart Urban Districts”

(EEB), “ICT Solutions to Support Logistics and Transport
Processes”(ITS), and“Smart Living Technologies”(SHELL)
of the Italian Ministry for University and Research.

8. REFERENCES
[1] 3D Robotics. UAV Technology. goo.gl/sBoH6.

[2] R. Alur et al. Model-checking for real-time systems. In
IEEE Symposium on Logic in Computer Science, 1990.

[3] Ardupilot. Home. goo.gl/x2CHyM.

[4] Ardupilot Discussion Forums. Topic: ”real-time
violations”, started February 11th, 2016.
goo.gl/tIXfHH.

[5] BBC News. Disaster drones: How robot teams can
help in a crisis. goo.gl/6efliV.

[6] T. Bienmüller et al. Formal verification of an avionics
application using abstraction and symbolic model
checking. In Towards System Safety. Springer, 1999.

[7] E. Bregu, D. Cantoni, N. Casamassima, L. Mottola,
and K. Whitehouse. Reactive control of autonomous
drones. In MOBISYS, 2016.

[8] B. Broekman and E. Notenboom. Testing embedded
software. Pearson Education, 2003.

[9] A. Cimatti et al. Nusmv 2: An opensource tool for
symbolic model checking. In Computer Aided
Verification. Springer, 2002.

[10] Cleanflight. Home. goo.gl/uCGmr4.

[11] A. En-Nouaary et al. Timed Wp-method: Testing
real-time systems. Software Engineering, IEEE
Transactions on, 28(11), 2002.

[12] R. L. Glass. Real-time: The ”lost world” of software
debugging and testing. Comm. of the ACM, 23(5),
1980.

[13] A. Hessel et al. Testing real-time systems using
UPPAAL. In Formal methods and testing. Springer,
2008.

[14] R. C. Martin. Agile software development: principles,
patterns, and practices. Prentice Hall PTR, 2003.

[15] M. Musuvathi et al. Finding and reproducing
heisenbugs in concurrent programs. In OSDI, 2008.

[16] F. Nex and F. Remondino. UAV for 3D mapping
applications: A review. Applied Geomatics, 2003.

[17] OpenPilot. Home. goo.gl/D89lkb.

[18] PixHawk.org. PX4 autopilot. goo.gl/wU4fmk.

[19] Scientific American. 5 epic drone flying failures—and
what the FAA is doing to prevent future mishaps.
goo.gl/tIXfHH.

[20] SciTools. Code analysis with Understand.
goo.gl/0VZGAc.

[21] J. Souyris et al. Formal verification of avionics
software products. In FM 2009:Formal Methods.
Springer.

[22] S. Thesing et al. An abstract interpretation-based
timing validation of hard real-time avionics software.
In DSN, 2003.

[23] J. Tukey. Exploratory data analysis. Reading, Mass.,
1977.

[24] P. Wardle. Personal submersible drone for aquatic
exploration. goo.gl/XTVgQF, 2015. US Patent App.
14/143,713.

[25] W. Yi et al. Automatic verification of real-time
communicating systems by constraint-solving. In
Formal Description Techniques VII. Springer, 1995.

goo.gl/sBoH6
goo.gl/x2CHyM
goo.gl/tIXfHH
goo.gl/6efliV
goo.gl/uCGmr4
goo.gl/D89lkb
goo.gl/wU4fmk
goo.gl/tIXfHH
goo.gl/0VZGAc
goo.gl/XTVgQF

	Introduction
	Background
	Ardupilot
	Related Work

	Ardupilot Model-based Testing
	Model Construction
	State Machine
	Execution Times

	Model Reduction
	Testing Outcome
	Discussion and Outlook
	References

