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Abstract. Many repositories of open data for genomics, collected by
world-wide consortia, are important enablers of biological research; more-
over, all experimental datasets leading to publications in genomics must
be deposited to public repositories and made available to the research
community. These datasets are typically used by biologists for validating
or enriching their experiments; their content is documented by metadata.
However, emphasis on data sharing is not matched by accuracy in data
documentation; metadata are not standardized across the sources and
often unstructured and incomplete.
In this paper, we propose a conceptual model of genomic metadata,
whose purpose is to query the underlying data sources for locating rel-
evant experimental datasets. First, we analyze the most typical meta-
data attributes of genomic sources and define their semantic properties.
Then, we use a top-down method for building a global-as-view integrated
schema, by abstracting the most important conceptual properties of ge-
nomic sources. Finally, we describe the validation of the conceptual model
by mapping it to three well-known data sources: TCGA, ENCODE, and
Gene Expression Omnibus.

Keywords: Conceptual model · Data integration · Genomics · Next
Generation Sequencing · Open data

1 Introduction

Thanks to Next Generation Sequencing, a recent technological revolution for
reading the DNA, a huge number of genomic datasets have become available. Se-
quencing machines perform the primary data analysis and produce raw datasets
(a single human genome requires about 200GB). Computationally expensive
pipelines, collectively regarded as secondary data analysis [30], are then applied
to raw data for extracting signals from the genome (such as: mutations, ex-
pression levels, peaks of binding enrichment, chromatin states, etc.), thereby
producing processed genomic data, which are much smaller in size.

Processed datasets are collected by worldwide consortia, such as TCGA (The
Cancer Genome Atlas) [36], ENCODE (the Encyclopedia of DNA Elements) [28],
Roadmap Epigenomics [19], and 1000 Genomes [27]; moreover, it is customary
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for authors of biological articles to publish their processed datasets on reposito-
ries such as GEO (the Gene Expression Omnibus) [4]. These datasets constitute
a wealth of information, as they are open and can be used for secondary research.
Processed datasets are used in tertiary data analysis for giving a global sense to
heterogeneous genomic and epigenomic signals, thereby answering complex bio-
logical queries. Several systems are dedicated to tertiary data analysis, including
FireCloud1, SciDB-Paradigm4 [26], and BLUEPRINT [1]. In the context of the
GeCo Project2, we developed GMQL [23,17], a high-level query language for
genomics; we also proposed GDM [24], a unifying model for processed data for-
mats.

While a lot of efforts are made for the production of genomic datasets, much
less emphasis is given to the structured description of their content. Such descrip-
tions, collectively regarded as metadata, are fundamental for understanding how
each biological sample was processed, to which biological or clinical condition it
is associated, which technological process has been used for its production, and
so on. There is no standard for metadata, thus each source/consortium enforces
some rules autonomously; a conceptual design for metadata is either missing or,
when present, overly complex and useless3. In summary, in spite of a growing
interest on tertiary data analysis and of the availability of many valuable data
sources, genomic metadata are lacking a conceptual model for understanding
which sources and datasets are most suitable for answering a genomic question.

One of the far-reaching goals of the GeCo project is the development of an
integrated repository of open processed data, supporting both structured and
search queries; the GMQL prototype4 already integrates data from three reposi-
tories (TCGA, ENCODE, and Roadmap Epigenomics) and structured methods
for periodically loading and keeping updated their contents. To overcome the
lack of standards, metadata are stored in GMQL as generic attribute-value pairs;
with such format, metadata are used for the initial selection of relevant datasets.
However, we are aware of the fact that attribute-value pairs are just providing
a viable solution, but do not carry enough semantics.

In this paper, we present the Genomic Conceptual Model (GCM), a
conceptual model for describing metadata of genomic data sources. GCM is
centered on the notion of the experiment item, typically a file containing genomic
regions and their properties, which is analyzed from three points of view:

– The technology used in the experiment, including information about item
containers and their formats.

1 https://software.broadinstitute.org/firecloud/
2 Data-Driven Genomic Computing, http://www.bioinformatics.deib.polimi.it/
geco/, ERC Advanced Grant, 2016-2021.

3 At https://www.encodeproject.org/profiles/graph.svg see the conceptual
model of ENCODE, an ER schema with tens of entities and hundreds of relation-
ships, which is neither readable nor supported by metadata for most concepts.

4 http://www.bioinformatics.deib.polimi.it/GMQL/interfaces/

https://software.broadinstitute.org/firecloud/
http://www.bioinformatics.deib.polimi.it/geco/
http://www.bioinformatics.deib.polimi.it/geco/
https://www.encodeproject.org/profiles/graph.svg
http://www.bioinformatics.deib.polimi.it/GMQL/interfaces/
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– The biological process observed in the experiment, in particular the sample
being sequenced (derived from a tissue or a cell culture) and its preparation,
including its donor.

– The management of the experiment, describing the organizations/projects
which are behind the production of each experiment.

The conceptual schema is constructed top-down, based on a systematic analysis
of metadata attributes and of their properties in many genomic sources, and then
verified bottom-up, on TCGA, ENCODE, and GEO; we show that ER schemas
describing these sources can be constructed as subsets of GCM. Arbitrary queries
on GCM can be propagated to sources, using the global-as-view approach [20].
We also show that GCM provides the skeleton to a simple query interface, similar
to the one provided by DeepBlue [2]. Driven by GCM, we will add many more
data sources to our integrated repository of open data for genomics.

2 Design of GCM

2.1 Analysis of Metadata Attributes

Most data sources provide interfaces for metadata extraction; these are based
on simple query templates or application programming interfaces (APIs), and
enable the selection of experimental data. Some sources also provide tabular
descriptions of the metadata that can be more systematically queried, or enable
the extraction of matching metadata in semistructured format (XML or JSON
files).

Taxonomy of Metadata Attributes. As a first step in developing GCM,
we defined a taxonomy of the main properties of metadata attributes; we then
systematically applied the taxonomy to each considered source, so as to better
characterize its content. According to our taxonomy, attributes are:

– contextual (C) when they are present (or absent) only within specific con-
texts, typically because another attribute takes a specific value. In such cases,
there is an existence dependency between the two attributes.

– dependent (D) when the domain of their possible values is restricted, typ-
ically because another attribute takes a specific value. In such cases, there
is a value dependency between the two attributes.

– restricted (R) when their value must be chosen from a controlled vocabu-
lary.

– single-valued (S) when they assume at most one value for each specific
experiment.

– mandatory (M) when they must have a value, either for all experiments
or within a specific context.

The resulting taxonomy is shown in Table 1; it includes orthogonal features,
and we targeted both completeness and minimality. By default (and in most
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Table 1. Taxonomy of features for metadata attributes

Level Symbol Feature Default
Source C Contextual Non-contextual

D Dependent Independent
R Restricted Free
S Single-valued Multi-valued
M Mandatory Optional

Integrated H Human Curated Extracted
Repository O Ontological Ordinary

cases), attributes do not have any of the above properties. Very few attributes
are mandatory and unfortunately sources do not always agree on them; in many
cases they are named and typed somehow differently.

We use these five categories to describe the attributes that are included in the
conceptual model, as explained in the next section; we label the attributes with a
feature vector, e.g. Type[RSM ] denotes Type as an attribute which is mandatory,
restricted and single-valued, while Pipeline[D(Technique)S] denotes Pipeline as a
single-valued attribute with a value dependency from the attribute Technique.

Source Analysis. We examined several sources; among them TCGA and EN-
CODE provide the most comprehensive collection of metadata attributes.

– TCGA reports many experiment pipeline-specific metadata attributes; out
of them we selected 22 attributes, common to all pipelines, which are the
most interesting from a biological point of view (Table 2).

– ENCODE includes both a succinct and an expanded list of metadata at-
tributes; while the expanded list has over 2000 attributes, the succinct list
has 49 attributes for experiments, 44 attributes for biosamples, and 28 at-
tributes for file descriptions.

Other Properties. We next define properties that we could not observe in
the sources, but will be used for characterizing the metadata attributes of our
integrated repository (they are also included in Table 1). Accordingly, attributes
are:

– human curated (H) when their value is provided by a curator of the
repository (and not extracted from the underlying data source).

– ontological (O) when an interface supports similarity-based matches based
upon semantic properties, e.g. through the connection to external ontologies.

Rules. Rules may be used for expressing existence and value dependencies.

– The existence dependency Technique = “Chip-seq” → M(Target) indi-
cates that Target is a mandatory attribute if Technique takes the value
“Chip-seq”, while Technique 6= “Chip-seq” → NULL(Target) indicates that
Technique is not specified otherwise.

– The following value dependency connects the DataType and Format at-
tributes: DataType = “raw data” → Format = “fastq”.
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Table 2. TCGA metadata attributes analysis

C D R S M Dependency Attribute
× × clinical.demographic.id
× clinical.demographic.year of birth

× × × clinical.demographic.gender
× × × clinical.demographic.ethnicity
× × × clinical.demographic.race
× × biospecimen.sample.id

× × × biospecimen.sample.sample type
× × × sample type biospecimen.sample.tissue type

× × generated data files.data file.〈type〉.id
× × × generated data files.data file.〈type〉.data type

× × × × data type generated data files.data file.〈type〉.data format
× × generated data files.data file.〈type〉.file size

× × × × data type generated data files.data file.〈type〉.experimental strategy
× × × data type generated data files.data file.〈type〉.platform
× × × × data type analysis.〈workflow〉.workflow type

× × analysis.〈workflow〉.workflow link
× × case.case.id
× case.case.primary site

× × primary site case.case.disease type
× × administrative.program.name
× × administrative.project.name
× administrative.tissue source site.name

In the next section we show examples of both existence and value dependencies,
that complement the conceptual model specification; when the dependencies
are specified for attributes belonging to different entities, they hold for all the
instance pairs connected with an arbitrary join path connecting the two entities
(this is not ambiguous because the conceptual model is acyclic).

2.2 Genomic Conceptual Model

We next designed the Genomic Conceptual Model top-down, inclusive of the
most relevant metadata attributes as scouted from the various sources, build-
ing the entity-relationship schema represented in Fig. 1. The schema includes
the principal concepts; other source-specific concepts can be made available in
semi-structured form aside from this schema (e.g. all clinical diagnosis condi-
tions available for the donor in TCGA). The model is centered on the Item
entity, which represents an elementary experimental unit. Three sub-schemata
(or views) depart from the central entity, recalling a classic star-schema organi-
zation that is typical of data warehouses; they respectively describe biological,
technological, and management aspects.

Central Entity. We next describe the attributes of the Item entity and asso-
ciate each of them with their feature vector. The SourceId[SM ] and DataType[RSM ]

respectively denote the item identifier within the source and the item’s data type,
and must always be included; DataType denotes the specific content of the Item,
e.g. “peak”. Format[D(DataType)RSM ] denotes the Item data file format (e.g.
[“fastq”, “bam”, “wiggle”, “bed”, “tsv”, “vcf”, “maf”, “xml”]) and depends on
DataType (e.g. “bed” format is compatible with “peak” and not compatible with
“read”). Other attributes are: Size[SM ], SourceUrl[M ], LocalUri[C(Format)SM ],
and Pipeline[D(Technique)S].
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Fig. 1. Genomic Conceptual Model

The use of the last three attributes requires some discussion. Recall that we
intend to build an integrated repository that contains only processed data, while
in many cases the sources include also the raw data. In our metadata repository
we include items relative to both raw and processed data with a reference to
the related file in the original source within the SourceUrl attribute, that can
be multi-valued in case the same data file is derived from different sources. In
addition, items relative to processed files also exhibit an attribute LocalUri (see
rule 1 in Listing 1, at the end of this section) indicating their physical location in
our data repository. Pipeline is a descriptor of the specific parameters adopted in
the pipeline used for producing the processed data. The descriptor is interpreted
in the general context of the Technique used for producing several items of the
same type and format; hence, the feature vector notation for Pipeline. Providing
parameters and references to the raw data is relevant in the case of processed
data, as sometimes biologists resort to original raw data for reprocessing; how-
ever, in the data sources such attributes may be missing or hidden within textual
attributes.

Biological View. This view consists of a chain of entities: Item-Replicate-
BioSample-Donor describing the biological process leading to the production
of the Item. All relationships are many-to-one, hence an Item is associated with
a given Replicate, each associated with a given BioSample, each associated
with a Donor.

Donor represents the individual of a specific organism from which the bio-
logical material is derived. It has attributes SourceId[S] (donor identifier relative
to a source) and Species[RSM ]; Age[S], Gender[RS], and Ethnicity[RS] are other
optional attributes of interest.

BioSample describes the material sample taken from a biological entity and
used for the experiment. Its SourceId[M ] is an identifier of the bio-sample within a
source, mandatory but also multi-valued (when the same sample is linked to dif-
ferent sources). Type[RSM ] is restricted to the values [“cell line”,“tissue”]. Based
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on the value of this attribute, either Tissue[CSMO] or CellLine[CSMO] becomes
mandatory, but not both of them; this dependency is expressed by rules 2-3.
IsHealthy[RS] is Boolean and Disease[C(IsHealthy)D(Tissue)O] contextually depends
on IsHeathy, as expressed by rule 4, and can be multi-valued; moreover, its val-
ues depend on Tissue because given diseases can only be related to given tissues.
We marked Tissue, CellLine and Disease as ontological5, as we intend to extend
the values of these attributes with their synonyms and generalizations/special-
izations, so as to ease their search; for example, the Tissue “blood vessel” will
match the terms “vessel”, “arteries” and “veins”. Preliminary work for giving an
extended ontological interpretation to ENCODE metadata is reported in [11].

Replicate is used when multiple material samples are generated from the
same BioSample, giving rise to items that are replica for the same experiment.
This entity is relevant in some epigenomic data sources (such as ENCODE), that
differentiate between technical and biological replication; such distinction is not
present in most of the other sources.

Technology View. This view consists of a chain of entities: Item-Container-
ExperimentType describing the used technology leading to the production of
the Item. Through this chain, an Item is associated by means of (1:N) relation-
ships to a given Container of a given ExperimentType.

Container is used to describe common properties of homogeneous items -
sharing the same data structure and produced by the same experiment type. Its
attributes include Name[SM ] and Assembly[C(DataType)D(Species)RSM ]; Assembly
is only present for items of particular types (see rule 5) and is restricted to
a smaller vocabulary according to the Species (e.g. see rule 16 and 17). The
Boolean attribute IsAnn[RSM ] is used for distinguishing experimental items
from known annotations (i.e., regarding known genomic regions): when true,
Annotation[C(IsAnn)RSM ] exists (see rules 6-7); annotations have a restricted vo-
cabulary, including: [“Gene”, “Exon”, “TSS”, “Promoter”, “Enhancer”, “Cpg-
Island”].

ExperimentType refers to the specific methods used for producing each
item. It includes the mandatory attribute Technique[RSM ] (e.g., [“Chip-seq”,
“Dnase-seq”, “RRBS”, . . . ]). Feature[D(Technique)RSMH] is a mandatory manu-
ally curated attribute that we add to denote the specific feature described by
the experiment (e.g., “Copy Number Variation”, “Histone Modification”, “Tran-
scription Factor”). The value of Platform[C(DataType)RSM ] illustrates the NGS
platform used for sequencing and depends on the DataType of the item (see rule
8). When the Technique is “Chip-seq”, the two attributes Target[C(Technique)RSM ]

and Antibody[C(Technique)D(Target)RSM ] are present (see rules 9-12). The Target
value is usually aligned to the vocabulary of UniProtKB6. The Antibody value
depends on the Target since it is specific against that antigen.

5 We will use the BRENDA Tissue and Enzyme Source Ontology [32] for tissues,
the Cell Line Ontology [31] for cell lines, and the Human Disease Ontology [33] for
human diseases.

6 http://www.uniprot.org/uniprot/

http://www.uniprot.org/uniprot/
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Management View. This view consists of a chain of entities: Item-Case-
Project describing the organizational process for the production of each item
and the way in which items are grouped together to form a case.

Case represents a set of items that are gathered together, because they
participate to a same research objective.

Project represents the project or program, occurred at a given institution
(e.g., individual laboratory or consortium) that was responsible of the production
of the item. ProjectName[S] and ProgramName[S] may be present, but none of
them is mandatory.

Dependencies Rules 1-12 of Listing 1 exhaustively describe the existence de-
pendencies of the global schema. Rules 13-17 show some examples of value de-
pendencies. Note that an attribute can be contextual but not mandatory (such
as Disease, rule 4), contextual and mandatory (such as Target, rules 9-10), and
also mandatory but not contextual (such as Technique). Note also that, when an
attribute is marked as mandatory and the related information is missing from
the source, then either human curation or rule-based management are needed.

1Item.Format=“bed” → M(Item.LocalUri)
2BioSample.Type=“tissue” → M(BioSample.Tissue)
3BioSample.Type=“cell line” → M(BioSample.CellLine)
4BioSample.IsHealthy → NULL(BioSample.Disease)
5Item.DataType in [“aligned read”,“peak”,“signal”] → M(Container.Assembly)
6Container.IsAnn → M(Container.Annotation)
7NOT(Container.IsAnn) → NULL(Container.Annotation)
8Item.DataType=“raw data” → M(ExperimentType.Platform)
9ExperimentType.Technique=“Chip-seq” → M(ExperimentType.Target)
10ExperimentType.Technique 6=“Chip-seq” → NULL(ExperimentType.Target)
11ExperimentType.Technique=“Chip-seq” → M(ExperimentType.Antibody)
12ExperimentType.Technique 6=“Chip-seq” → NULL(ExperimentType.Antibody)

——————————————————————————————————————————
13Item.DataType=“raw data” → Item.Format=“fastq”
14BioSample.Tissue=“liver” → BioSample.Disease ∈ [“viral hepatitis”,“liver lymphoma”,. . . ]
15BioSample.Tissue=“liver” → BioSample.Disease 6∈ [“acute leukemia”,“pilorus cancer”,. . . ]
16Donor.Species=“Homo sapiens” → Container.Assembly ∈ [“GRCh38”, “hg19”, “hs37d5”]
17Donor.Species=“Mus musculus” → Container.Assembly ∈ [“mm9”, “mm10”, “GRCm38”]

Listing 1. Examples of existence and value dependencies

2.3 Source-Specific Views of GCM

We verify that the global-as-view approach really captures the three data sources
considered, by showing them as views of GCM in Fig. 2; we use the following
notation:

– We place the attributes of each source in the same position as in GCM,
but we use for them the name that we found in the documentation of each
source; missing attributes correspond to white circles.

– We cluster the conceptual entities corresponding to a single concept in the
original source by encircling them within grey shapes. The entity names
corresponding to the original source are reported with a bold bigger font on
the clustered shape (e.g. Series in GEO) or directly on the new entity (e.g.,
Case in TCGA) when this corresponds to the name given in our GCM.
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– We indicate specific relationship cardinalities where GCM differs from the
source, using a bold font (e.g., see (1,1) from Item to Case in ENCODE).

– We enclose fixed human curated values in inverted commas and use the
functions notation tr, comb, and curated to describe a transformation of
a source field, a combination of multiple source fields, and curated fields,
respectively.

(1,1)(1,1)

(1,1)

(1,1) (1,1)

(1,1)

(1,N)

(0,N)

(0,N) (1,1) (0,N) (0,N)

(0,N)

(0,N)
tr(year_of_birth)

tissue_source_site
“Homo sapiens”

gender

id

experimental_strategy

“tissue”

“GRCh38”
IsAnn=false

id
data_format

size

id

curated(api-request)

name

BioSample Replicate Container
Experiment

Type

Case

Project

Donor

primary_site
tr(sample_type,tissue_type)

platform_id

id

comb(ethnicity,race)

disease_type
data_type

comb(workflow_type,link)

program

Clinical
Demographic

Biospecimen
Sample

DataFile-
BiospecimenReadGroup-
AnalysisWorkflow

Item

TCGA

(1,1)

(1,1)

(1,1) (1,1)

(1,1)

(1,1)

(0,N)

(0,N) (0,N) (0,N)

(0,N)

(0,N)
age

lab
organism_scientific_name

sex

id

assay_term_name

biosample_type

assembly
“false”

id
file_type
file_size

id

curated(api-request)

BioSample Replicate Container
Experiment
Type

Case

Project

Donor

tr(biosample_term_name)
tr(health_status)

platform

id

ethnicity

output_type

comb(pipeline_title,accession)

award_project

tr(biosample_term_name)
tr(health_status)

biological_replicate_num
technical_replicate_num

target
antibodyExperiment

Item

ENCODE

File

(1,1)(1,1)

(1,1)

(1,1) (1,1)

(1,1)

(1,N)

(0,N)

(0,N) (1,1) (0,N) (0,N)

(0,N)

(0,N)

age

comb(contact,organizazion_name)
organism

gender

gsm_id

tr(experiment_type)

tr(source_name)

genome_built
“false”

id
file_type

size

gse_id

download

bioproject

BioSample Replicate Container
Experiment
Type

Case

Project

Donor

tr(source_name)
tr(source_name)
tr(disease_state)

tr(instrument_model)
Series

Samples

Files

tr(disease_state)

Item

GEO

Fig. 2. Source-specific views of GCM for TCGA, ENCODE, and GEO

Note that the Gene Expression Omnibus (GEO) source is at the same time
a very rich public repository of genomic data (as most research publications
include links to experimental data uploaded to GEO), but is also a very poor
source of metadata, which are not well structured and often lack information;
hence our mapping effort is harder and less precise for GEO than for the more
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organized TCGA and ENCODE sources7. The mapping to GEO captures as well
the mapping to Roadmap Epigenomics, another relevant source of public data.

2.4 User-Friendly Interface

An important side effect of providing a global and integrated view of data sources
is the ability to build user-friendly query interfaces for selecting items from mul-
tiple data sources. We show a mock-up of an interface that supports conjunctive
queries over our entities, very similar to the user interface currently provided
by DeepBlue [2] (Fig. 3); attributes are rendered by pop-up lists and values are
then entered by users, with autocomplete support.

Item ContainerDonor BioSample Replicate
Experiment

Type
Case Project

Technology view Management view

Species
Homo 
sapiens

CellLine

H1-hESC

- Format

bed

DataType

peak

-Technique
Chip-seq

SourceSite

Michael 
Snyder, 
Stanford

-

Biological view

Fig. 3. Retrieval interface mock-up

3 Building the Integrated Repository

In this section, we describe high level rules for loading the content of the inte-
grated repository from the original data sources, with a global-as-view approach.
These transformations drive our approach.

3.1 Available Repositories at the Sources

Most genomic repositories offer Web interfaces for accessing their metadata. In
addition, some of them offer Web APIs for querying the metadata, used for
accessing storage structures for metadata (typically relational tables). Table 3
describes the schemas of the tables available at TCGA8, ENCODE, and GEO9.
TCGA and ENCODE tables result from the translation of a hierarchical json
format representation (the only one provided by the sources) into a relational
representation that has required several normalization steps and simplifications
for illustration purposes. GEO tables result from a selection of a small subset of
attributes used for mapping GEO to GCM.

7 Textual analysis to extract semantic information from the GEO repository is re-
ported in [12]; we plan to reuse their library.

8 The metadata is provided in the NCI Genomic Data Commons portal, https://

docs.gdc.cancer.gov/Data_Dictionary/viewer/.
9 GEO information can be retrieved through the R package GEOmetadb [37].

https://docs.gdc.cancer.gov/Data_Dictionary/viewer/
https://docs.gdc.cancer.gov/Data_Dictionary/viewer/
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Table 3. Relational schema of TCGA(T), ENCODE(E), and GEO(G) repositories

T.Case(id,project id,disease type,primary site,tissue source site)
T.Project(id,name,program)
T.ClinicalDemographic(id,case id,year of birth,gender,ethnicity,race)
T.BiospecimenSample(id,case id,sample type,tissue type)
T.BiospecimenReadGroup(id,sample id,platform id)
T.DataFile(id,readgroup id,workflow id,data type,data format,size,experimental strategy)
T.AnalysisWorkflow(id,workflow type,workflow link)
E.Donor(id,organism scientific name,age,sex,ethnicity)
E.Biosample(id,donor id,biosample type,biosample term name,health status)
E.Replicate(id,biosample id,experiment id,biological replicate num,technical replicate num)
E.Experiment(id,assembly,assay term name,target,antibody,lab,award project,platform)
E.File(id,experiment id,output type,file type,file size,pipeline title,pipeline accession)
G.File(id,gsm id,file type,size,download)
G.Gse(id,organization name,contact,bioproject,experiment type)
G.Gsm(id,gse id,organism,age,gender,source name,disease state,genome built,instrument model)

3.2 Mapping Rules

Mapping rules are used to describe how data are loaded from the sources into
the integrated repository; for illustration purposes, in Table 4 we provide some
of the mappings, related to the Donor, BioSample, Case, and Experiment-
Type entities. Each mapping rule is a logic formula with variables in its left end
side (LHS) which are computed from the variables in its right end side (RHS).
The order of the LHS variables is the same reported in our global schema in
Fig. 1 and the order of the RHS variables is the same reported in Table 3 for
each source. As an example, the entity ExperimentType of the global schema
is filled with data from ENCODE’s entity Experiment, together with data from
TCGA’s BiospecimenReadGroup and DataFile (joined on the readgroup id at-
tribute), and data from GEO’s Gse and Gsm (joined on the gse id attribute).

As we already discussed in Section 2.3, the values of some of the attributes are
acquired exactly as they are in the original source, others need the application of
simple manually provided functions for textual transformation (denoted as tr),
others are computed as textual combination of multiple source fields (denoted as
comb, and finally others need manual curation (values are enclosed in inverted
commas). As an example, Donor.Ethnicity corresponds to a combination of
the attributes race and ethnicity of the ClinicalDemographic table, taken from
TCGA source. Tissue and CellLine attributes of the BioSample are both pro-
duced by biosample term name of ENCODE which uses this attribute for both
of them - the content of this attribute depends on the value of biosample type
(either “cell line” or “tissue”). Relevant integration efforts are addressed towards
defining a shared set of homogenized values for each attribute. The values of the
global attributes, given to the LHS variables, are to be intended as already ho-
mogenized to the reference ontologies (as indicated in Section 2.2), or to the
chosen finite restricted dictionaries. Notice that all the mappings preliminarily
perform a value homogenization step, implicit in the integration process.

4 Related Works

A long stream of research tackled the problem of providing integrated access
to multiple, heterogeneous sources. A survey of very preliminary works is [14].
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Table 4. Examples of mapping rules for building the integrated repository from the
sources

Donor(SID,SP,AGE,G,E) ⊇ E.Donor(SID,SP,AGE,G,E)
Donor(SID,“Homo S.”,tr(Y ),G,comb(ET,R)) ⊇ T.ClinicalDemographic(SID, ,Y,G,EY,R)
Donor( ,SP,AGE,G, ) ⊇ G.Gsm( , ,SP,AGE,G, , , , )
BioSample(SID,T,tr(BT),tr(BT),tr(HS),tr(HS)) ⊇ E.Biosample(SID, ,T,BT,HS)
BioSample(SID,“tissue”,PS, ,tr(ST,TT),DIS) ⊇ T.BiospecimenSample(SID,CID,ST,TT),

T.Case(CID, ,DIS,PS, )
BioSample(SID,tr(SN ),tr(SN ),tr(SN ),tr(D),tr(D)) ⊇ G.Gsm(SID, , , , ,SN,D, , )
Case(SID,SS) ⊇ E.Experiment(SID, , , , , ,SS, )
Case(SID,SS) ⊇ T.Case(SID, , , ,SS)
Case(SID,tr(O,C )) ⊇ G.Gse(SID,O,C, , , )
ExperimentType(TE,comb(TE,T),P,T,A) ⊇ E.Experiment( , ,TE,T,A, , ,P)
ExperimentType(TE,tr(TE),P, , ) ⊇ T.BiospecimenReadGroup(RGID, ,P),

T.DataFile( ,RGID, , , , ,TE)
ExperimentType(tr(TE),tr(TE),tr(P), , ) ⊇ G.Gse(EID, , , ,TE),

G.Gsm( ,EID, , , , , , ,P)

Buneman et al. [6] described the problem of querying and transforming scientific
data residing in structured files of different formats. Along that work, BioK-
leisli [8] and K2 [9] describe early systems supporting queries across multiple
sources. BioKleisli was a federated database offering an object-oriented model;
its main limitation was the lack of a global schema, imposing users to know the
structure of underlying sources. To improve this aspect, K2 included GUS (Ge-
nomics Unified Schema), an extensive relational database schema supporting a
wide range of functional genomics data types. The BioProject [3] database was
recently established to facilitate the organization and classification of project
metadata submitted to NCBI, EBI and DDBJ databases.

A common approach in integrated data management is data warehousing,
consisting of a-priori integration and reconciliation of data extracted from mul-
tiple sources, such as in EnsMart/BioMart [13,34]. Along this direction, [22]
describes a warehouse for integrating genomic and proteomic information using
generalization hierarchies and a modular, multilevel global schema to overcome
differences among data sources. ER modeling (and UML class diagrams) were
used in [5]; models describe protein structures and genomic sequences, with
rather complex concepts aiming at completely representing the underlying biol-
ogy. [35] is a biomedical data warehouse supporting a data model (called BioStar)
capturing the semantics of biomedical data and providing some extensibility to
cope with the evolution of biological research methodologies.

Many other works [29,16,25,10,15,18,21] present conceptual models for ex-
plaining biological entities and their interactions in terms of conceptual data
structures. With our approach, similar to DeepBlue [2], we instead use concep-
tual modeling for driving the continuous process of metadata integration and for
offering high-level query interfaces on metadata for locating relevant datasets,
under the assumption that users will then manage these datasets for solving
biological or clinical questions. Similarly to DeepBlue, we hide the data source
differences so as to provide easy-to-use interfaces, but differently from them we
disclose the semantic properties of the underlying sources and the metadata in-
tegration process; moreover, we cover a broader spectrum of sources and provide
a richer set of concepts, including the management view.
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5 Conclusions

The interest on an integrated repository for genomics stems from the huge
amount of resources that are becoming available. In this paper we provide GCM,
a genomic conceptual model capable of capturing the metadata of heterogeneous
sources with a global-as-view approach. The model is supported by a method for
conceptually designing global metadata through source attribute analysis and is
validated by using three data sources: TCGA, ENCODE, and GEO.

Our GMQL system already provides access to datasets from TCGA, EN-
CODE, and Roadmap Epigenomics, that were identified as the most relevant in
the course of collaborative projects with many biologists; we already developed
some tools for automatically importing such datasets and for converting them
to an integrated format, e.g., TCGA2BED [7]. Thanks to GCM, we can also
provide a coherent semantics to the metadata of integrated sources; throughout
the GeCo project we plan to add more sources, according to needs of biologists,
and to continuously integrate their metadata within GCM.
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project GeCo (Data-Driven Genomic Computing), 2016-2021.
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