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Abstract—Thanks to the huge amount of sequenced data that
is becoming available, building scalable solutions for supporting
query processing and data analysis over genomics datasets is
increasingly important. This paper presents GDMS, a scalable
Genomic Data Management System for querying region-based
genomic datasets; the focus of the paper is on the deployment of
the system on a cluster hosted by CINECA.
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I. INTRODUCTION

Thanks to Next Generation Sequencing, a recent tech-
nological revolution to read the DNA, a huge number of
genomic datasets have become available within large reserach
centers and hospitals; several collections of biological data,
generated by large consortia, are available for public use [1],
[2], [3]. Many laboratories worldwide are currently focused
on building computationally expensive pipelines to extract
genomic signals (e.g. revealing DNA mutations, expressions or
regulation) from raw data at the end of sequencing machines;
this is regarded as primary and secondary data analysis for
genomics. In the GeCo Project1 we are instead interested in
the integration of heterogeneous signals involving thousands
of biological conditions and millions of regions, to answer
relevant biological and clinical questions. This problem is
called tertiary data analysis for genomics and is becoming
hot, with few other systems being developed very recently;
among them, FireCloud [18], SciDB [9] and DeepBlue [4].

So far, we have defined GenoMetric Query Language
(GMQL), a language for querying and analysing genomic
datasets [8]. We have also developed two engines that support
GMQL implementations; the first engine, described in [6], is
based on Hadoop 1 and targeted to the Pig language [14], the
second engine, described in [7], is based on Hadoop 2 [16] and
targeted to Flink [13] and Spark [17]. This paper is focused on
the description of the ongoing deployment of the latter engine
to a cluster architecture hosted at CINECA 2 which uses the
Spark implementation. Prior to do so, we provide minimal
information about what is a query within our system and how
a query is translated to code that is executed on a cloud; we
also describe our public and private repository structure.

1Data-Driven Genomic Computing, ERC Adv. Grant, 2016-2021
2CINECA is a not-for-profit Consortium whose members include 70 Italian

Universities, 6 national research consortia, and the Ministry of Education,
Universities and Research of Italy (MIUR).

A. GMQL Query

GenoMetric Query Language (GMQL) is a
bioinformaticians-focused query language enabling queries
over heterogeneous datasets, each consisting of thousands
of samples; we provide several interfaces to submit queries,
including a Web interface and a command-line interface (we
are currently working on provisioning Python and R interfaces
to GMQL). We next show a simple GMQL query:

GENES = SELECT() ANNOTATIONS;
PEAKS = SELECT() BED_PEAKS;
MAPPED = MAP() PEAKS GENES;
SELECTED = SELECT(Count_PEAKS_GENES>0) MAPPED;
RELEVANT = COVER(1,2) SELECTED;
MATERIALIZE RELEVANT INTO OUTPUT;

The query consists of 5 operations which returns into Output
regions responding to a specific biological problem. The query
performs both classic relational operations and domain-specific
ones.

B. Query Translation

In the example above, BED_PEAKS used in the first
operation is a dataset which includes thousands of samples,
each one representing a signal extracted from the reading of
DNA in a specific biological or clinical condition; each GMQL
operation is implicitly mapped to all the samples of a dataset.
Each sample, in turn, includes both genomic regions (typically
in the orders of thousands to millions) and metadata (typically
in the order of hundreds to thousands); therefore, each GMQL
operation applies to two distinct data structures, one for
metadata and one for regions. A syntax-directed translator
produces a description of the query as operator DAG, i.e. a
directed acyclic graph whose nodes represent operations to be
performed on the data and arcs represent precedences among
the operations; the operator DAG corresponding to the above
query is show in Fig. 1. The process of translation is discussed
elsewhere [7]; for the purpose of this paper, it is important
to understand that GMQL programs are mapped to low-level
operations over two kinds of data structures, called regions
(RD, represented in red) and metadata (MD, represented in
blue). Low-level operations are similar to relational operations
(e.g. select, join, combine, collapse) or instead are domain-
specific (e.g. map, cover).
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Fig. 1. Example of operator DAG for a GMQL query

II. SOFTWARE ARCHITECTURE

We next briefly describe the software architecture of Ge-
nomic Data Management System (GDMS), a scalable data
manager for genomic data; the architecture, described as well
in [7], includes the engine and the repository. GeCo software
is available at https://github.com/DEIB-GECO/GMQL.

A. Engine

The engine is organized according to a four layer architec-
ture, as shown in figure 2:

• The Access Layer, supporting:

◦ Intermediate Representation APIs.
◦ Shell command line interface.
◦ Web Services.
◦ A user-friendly Web Interface.

• The Engine Components, including:

◦ GMQL Compiler, for compiling a GMQL
query into a DAG (which embodies execution
plans).

◦ DAG Manager, for supporting the creation
and dispatching of DAG operations to other
components.

◦ Server Manager, for managing multi-user exe-
cution and their access capabilities.

◦ Repository Manager, for managing the access
to the repository.

◦ Launches Manager, for launching the execu-
tions of implementations. Currently, we have
five launchers; Local Launcher, Yarn Launcher,
Remote Launcher, and SciDB Launcher.

• The Implementation Components (or executors), in-
cluding the three implementations currently supported.
Each package contains the implementation of the
operations (abstract classes) of the DAG nodes.

Fig. 2. GDMS Architecture.

◦ Spark Implementation (the default option, and
the most stable of the current implementations,
based on [17]).

◦ Flink Implementation (based on [13])
◦ SciDB Implementation (based on [9]).

• The Repository Implementations, including:

◦ Local File System (LFS) repository, used when
the installation is for a single machine.

◦ HDFS repository, used when Hadoop Dis-
tributed File System [16] is selected as the
storage.

◦ Remote File System (RFS), used in the cluster-
based architecture as discussed next.

B. Repository

The Repository Manager is the system component in
charge of storing and managing the datasets imported from
external repositories or generated by an user as result of a
query execution. We support a private repository for each user
and a public, read-only repository shared by all the users,
which contains datasets from open public collections, such as
ENCODE [2], TCGA [3] and others.

Table I lists some of our public datasets and their size in
GB. The complexity of the operations performed by GMQL on
this data and the size of intermediate results that are computed
during processing is remarkable. Therefore, it is fundamental
to design an efficient and scalable solution for our engine,
capable of distributing data and parallelizing computations
appropriately; a solution adopting a cluster of machines is
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TABLE I. PUBLIC DATASETS SIZE

Dataset Samples Size[GB]

HG19 TCGA cnv 22632 756.8

HG19 ENCODE CHIPSEQ BEDGRAPH 159 571.3

HG19 ENCODE BEDGRAPH 812 435.9

HG19 TCGA dnaseq 6914 271,6

HG19 TCGA dnamethylation 12552 207,6

... ... ...

Total 138,725 2,843

highly required, as discussed also in [11]. Such deployment
is discussed in Section 4.

III. GDMS ON A SINGLE NODE

We briefly describe GDMS deployment on a single node;
this was our first installation at CINECA, and has been opera-
tional for one year (April 2016 - April 2017). The system uses
a one-machine configuration, deployed as a Virtual Machine
consisting of 40 cores and 128 GB of RAM. The software
architecture of GDMS on a single machine is shown in Fig.
3. We include the following modules from the conceptual
architecture mentioned in Figure 2, starting from top to bottom:

• Web interface.

• Web services.

• Sever manager.

• Launcher manager (Local Launcher implementation).

• Spark Implementation.

• HDFS repository implementation.

The Server Manager in this case includes the compiler and
the DAG abstractions. The Spark code is executed either from
a Spark Shell Submit command - in this case a ready JAR
(Java Archive) is launched - or by invoking the programmatic
API of Spark. In the latter case, there is no need for Spark
installation, and the execution is performed as multi-thread
system, using the Spark Local mode. GDMS Local Launcher’s
implementation does not use Spark submit for execution; we
use instead the Spark programmatic API to run Spark, using
its native parallelism.

IV. GDMS DEPLOYMENT ON THE CINECA CLUSTER

We next describe the deployment of our engine to the
CINECA BigInsights cluster; it consists of four nodes in which
we use 16 cores per node and 46 GB of RAM per core. Thus,
the distributed computing environment consists of a total of
64 cores and 184 GB of RAM.

We opted for a deployment strategy based on an application
server and a cluster of machines for execution. Fig. 4 shows
how the GMQL Engine deployment is split between the
application server and the cluster of machines. The GMQL
engine receives a GMQL script from the web service/web
interface and compiles the script producing a DAG of the
operations. The DAG is then serialized and sent from the
GMQL application server to the cluster for processing. The
application runs on a Virtual Machine equipped with 16 cores
and 128 GB of RAM.

Fig. 3. GDMS single node installation.

A. Supporting Technologies

We use Knox [15] and Livy [19] to control GMQL on the
cluster from the remote application server.

Apache Knox provides a REST API for the Apache
Hadoop ecosystem. Apache Knox Gateway is designed as a
reverse proxy to manage the authentication and the integration
to several Hadoop related services. In the scope of this paper,
we used Apache Knox to access the Hadoop Distributed File
System (HDFS [16], [10]) through an authenticated RESTful
web service.

The Repository Manager uses a local representation of the
distributed repository containing references to the real dataset
location. Moreover, compact representations of meta files and
of the dataset schemas are replicated locally to provide fast
access to the web interface. The Apache Knox package [15]
is used to connect to the remote HDFS. This is suitable when
we have Application server for GMQL web interface, and a
remote Hadoop cluster for execution and data storage.

Livy [19], an open source project, is a REST interface that
allows to interact with Spark, submitting batch jobs or running
interactive shells. Livy also provides a mechanism to track the
execution of submitted jobs through a log that describes the
state of their execution.

B. GMQL Application Server

The GMQL Application server is responsible for:

• Opening GMQL to the world by exposing a set of
RESTful web services and a web interface. Web
Services allow to submit new GMQL jobs, track their
executions and provide a set of operations for datasets
management. The total number of web services is
43. The web interface uses the web services for
performing all GMQL operations and to allow users
to manage their datasets.
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Fig. 4. CINECA installation.

• Compiling GMQL scripts. The GMQL compiler,
which is imported in the server manager, compiles
the provided GMQL script and generates a DAG
representation both for region and meta operations
defined in the script.

• Serializing the DAG and using the Livy Client to
connect to the Livy web services and submit the job,
passing the serialized DAG as parameter. Livy Client
is a GMQL component used to communicate with
Livy web services, providing the following function-
alities:

◦ Run a job.
◦ Kill a job.
◦ Get job status.
◦ Get application name, that is the job applica-

tion ID running on Yarn.
◦ Retrieve Livy log and Yarn log.

• Managing users’ authentication. GMQL is a multi-
user system , supporting a local repository where each
user can download her datasets and a read-only, global
repository storing information from open data (TCGA,
ENCODE, RoadMap Epigenomics).

• Managing the GMQL repository. Metadata are stored

on the application machine (for web interface access)
while the dataset data (region, meta and schema)
are stored on the remote cluster for processing. The
repository manager allows the addition, deletion, and
update of datasets and samples and supports the
uploading and downloading between the HDFS and
the user’s local system, by streaming data to/from
the remote HDFS from/to the user. The repository
manager controls the quota for each user and limits
the access to public datasets.

• Keeping history of the execution. In particular, when
the execution is invoked from the Web interface, log-
ging information is returned to the interactive window,
tracing the progression of the execution.

C. GMQL submission

The server manager, shown in Figure 4, is responsible for
the GMQL script execution cycle. The script is submitted by
a web service to the server manager specifying the user name;
the associated GMQL job is created and registered in the
server manager. Then, the server manager compiles the script
producing the DAG and uses Livy client to submit the GMQL
job to the remote server, performing a Livy batch submission
operation with the following parameters:

• Spark parameters:

◦ The GMQL Spark Implementation JAR (Java
ARchive) location on the remote cluster.

◦ The name of the main class of the JAR.
◦ Number of Spark executors to run this job.
◦ Memory size for each executor.
◦ Memory size of the Spark Driver instance.

• GMQL JAR parameters:

◦ The job serialized DAG.
◦ Logging mode (verbose or info).
◦ JobID, that is the GMQL job id for this job

being executed.

The server manager monitors the execution of GMQL jobs
through the Livy client and passively reports the execution
status to the web services. When a job finishes its execution
the server manager alerts the repository Manager to create a
local dataset description of the new datasets in the repository.
The repository manager connects to the HDFS on the remote
cluster using Apache Knox and lists all the generated files to
add their names to the new dataset description.

D. GMQL Cluster

Two sets of operations are performed on CINECA Cluster.

1) GMQL Execution: GMQL Jobs are submitted by Livy
server. Livy executes the fat JAR mentioned in the parameters
of the Livy call, which contains the library of GMQL Spark
implementation along with all the dependencies. Livy uses the
Command Line Interface of GMQL to submit the DAG and
the job configurations to the job (GMQL parameters).

2) Data Storage: Input and result datasets are stored in the
GMQL repository structure. GMQL repository is structured in
a directory structure on Hadoop Distributed File System. A
folder is added for each user of GMQL under the repository
home directory.

61



E. Spark Implementation

In the Spark implementation, every operation of the DAG is
mapped to several operations on Resilient Distributed Datasets
(RDDs) [12], as discussed in [7]. This results in highly
complex Spark dataflows. For example, the map and cover
operations are mapped to the Spark dataflows illustrated in
Figures 5 and 6.

Spark provides efficient parallel processing and the ability
to run on a cluster on top of the Hadoop Distributed File Sys-
tem. Parallelism is achieved by running the same application in
several independent processes (called executors), each running
on a separate Java Virtual Machine (JVM) and using multiple
threads.

In cluster mode, executors are allocated to different nodes
and coordinated by a coordinator program (called driver pro-
gram). Spark allows also to set the level of parallelism for each
submitted application (e.g. setting the number of executors and
the memory of both the driver and the executors).

F. Efficient Resource Allocation

Running on a cluster introduces additional latency that may
become remarkable in some situations. For example, many
Spark tasks, such as the join task, require data shuffling across
the cluster. Depending on the network speed and on the amount
of data that has to be moved, shuffling time may become
the execution bottleneck, resulting in a loss of efficiency that
hampers the increased efficiency due to parallelism. Trade-offs
between data shuffling and parallelism relative to the Amazon
Web Services (AWS) cloud are discussed in [7].

Resources must be allocated to each executor depending
on the needs of each computation step, and such needs
can be computed statically but in a query-specific way. By
dimensioning resource allocation depending on the submitted
job, we may allow more jobs in the cluster to be executed
in parallel without lowering the cluster performance. For next
releases of our GDMS, we are studying a way to provide a
dynamic query-dependent Spark resource allocation. We will
define a set of heuristics capable to predict the computational
effort and the volume of data that the cluster must tolerate,
starting from the GMQL query submitted by the user to the
system.

V. PERFORMANCE TESTING

We are currently completing the cluster installation at
CINECA, so we have not yet a full set of performance figures.
However, in [5] we have deployed the architecture discussed
in this section on the Amazon Web Services (AWS) cloud,
using a configuration with m3.2xlarge machines, each with
8 virtual CPUs, 30GB of memory, and 2 x80 GB of SSD
storage. The testing setup contained one driver node and three
configurations of slave nodes, set at 10, 15, and 19 nodes
respectively.

Table II summarizes the dimension of four datasets that we
used in the testing. Note that DS4 includes 2.5 billion regions
over 5000 samples.

Tables III and IV show the performances of the system with
a configuration using 15 nodes. Note that the map operation

Dataset Size (GByte) Regions Samples

DS1 4.1GB 100,947.792 200

DS2 21GB 509,237,187 1000

DS3 43GB 1,034,186,018 2000

DS4 105GB 2,556,236,090 5000
TABLE II. SIZES OF THE DATASETS USED IN THE PERFORMANCE

EVALUATION.

(similar to a join) over 1 billion regions and 2000 samples
requires requires about 30 minutes; a similar execution time
is required by the cover operation over 2.5 billion regions and
5000 samples.

Time(sec) DS1 DS2 DS3 DS4

Spark exec. 136 377 935 2154
TABLE III. EXECUTION TIMES (IN SECONDS) FOR THE MAP

OPERATION OVER 15 AWS NODES.

Time(sec) DS1 DS2 DS3 DS3

Spark exec. 101 277 554 1957
TABLE IV. EXECUTION TIMES (IN SECONDS) FOR THE COVER

OPERATION ON 15 AWS NODES.

Table V applies to the cover operation and the DS2 dataset,
and shows the scale-up of the system, whose performance
improves with the rising of execution nodes, from 10 to 15
to 19; execution time reduces from 6 minutes to 3.5 minutes.

AWS Nodes 10 15 19

Spark Exec. 360 277 210
TABLE V. SCALING OF EXECUTION TIMES (IN SECONDS) FOR THE

COVER OPERATION AND DS2 DATASET.

VI. CONCLUSION

A single node based GMQL installation has been in use
for about one year on a virtual machine (since April 2016);
we used it mainly for research projects conducted by GeCo
researchers in cooperation with their partners, including Euro-
pean Institute of Oncology (IEO), Harvard University (IACS)
and National University of Singapore (NUS). This installation
is tuned at best to support coordinated use of the server:
when heavy computations are required, e.g. complex queries
involving the integration of thousands of samples, users do not
interfere with each other.

We are in these days completing the installation of our sys-
tem in the cluster, where we will have access to more resources
and we will also have control over them. By assigning query-
specific resources we will be able to support multiple users
at best, giving them adequate resources, so as to enable more
substantial use of our integrated repository of open data, that is
already available on CINECA server. This interaction will be
based on a careful and cooperative management of computing
resources (number of nodes and limitations on execution time
for each user.)
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Fig. 5. Map operation in Spark.

Fig. 6. Cover operation in Spark.
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