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Abstract

In this paper we propose Universal trace co-kriging (UTrCoK), a novel
methodology for interpolation of multivariate Hilbert space valued func-
tional data. Such data commonly arises in multi-fidelity numerical modeling
of the subsurface and it is a part of many modern uncertainty quantification
studies. Besides theoretical developments we also present methodological
evaluation and comparisons with the recently published projection based
approach by Bohorquez et al. [2016]. Our evaluations and analyses were
performed on synthetic (oil reservoir) and real field (Uranium contamina-
tion) subsurface uncertainty quantification case studies. Monte Carlo anal-
yses were conducted to draw important conclusions and to provide practical
guidelines for all future practitioners.

Keywords: Co-kriging of functions, Hilbert Space, computer code emulation

1 Introduction

Numerical reservoir modeling is an irreplaceable component of all modern sub-
surface uncertainty quantification studies. The reservoir models used in these
studies are featured by high dimensional inputs and they often produce mul-
tiple outputs that come as any combination of scalars, time series, images or
3D surfaces. Uncertainty quantification, conducted through numerical reservoir
models, entails exploration of high dimensional input spaces and production of
statistical summaries on the produced outputs. Computational and temporal re-
quirements of uncertainty quantification studies vary depending on the amount
of modeled physics. In the reservoir modeling community, there is a general
agreement that more modeled physics is better, since it increases the fidelity
of the model. However, the higher the amount of modeled physics the higher
the computational time, which is often unfavorable in practice due to usually
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tight temporal constraints. For these reasons, modelers often build statistical
emulators or meta-models as fast replacements for computationally expensive
numerical models, or they construct faster numerical models by dropping certain
physical aspects of the modeled system.

The idea of statistical emulators is very simple. First statistical design of
experiments is used on the input space, then a high fidelity numerical model
is employed to compute a set of outputs and finally a regression model is fitted
aiming to predict the numerical models output from a given set of inputs. One of
the most commonly used statistical emulators for numerical models with scalar
outputs is kriging for computer experiments [Sacks et al., 1989, Rasmussen and
Williams, 2006, Roustant et al., 2012]. This emulator generalizes the concept of
universal kriging [Chiles and Delfiner, 1999] to high dimensional input spaces.
Kriging is very convenient in this kind of application because it exactly repro-
duces the scalar outputs of the training set (i.e., it is an interpolator). Kriging-
based emulation of computer experiments that produce functional outputs (time
series) is a very active area of research. The recently published meta-modeling
methodology by Bottazzi and Della Rossa [2017] utilizes ordinary co-kriging of
basis coefficients by Nerini et al. [2010] to construct a functional meta-model. In
the same vein, one can also generalize the state-of-the-art non-stationary meth-
ods, such as universal trace-kriging (UTrK) by Menafoglio et al. [2013] and uni-
versal co-kriging of functional principal component scores (UCoK) by Menafoglio
et al. [2016], to construct non-stationary functional meta models. To the best of
our knowledge this application has not yet been explored and evaluated in the
literature.

Numerical models of lower fidelity are rarely used as a stand-alone replace-
ment for their high-fidelity counterparts. Instead, modelers often use the low
fidelity numerical solution in conjunction with the statistical emulators to con-
struct the so-called error models. The idea of error modeling is analogous to the
idea of statistical emulation of high fidelity models. One also starts from a train-
ing set that is in this case simulated with both high and low fidelity solutions,
then proceeds to model the discrepancies (“errors”) between the two solutions
with some form of regression. Uncertainty quantification then proceeds to ex-
plore the input space with the low fidelity solution, and the statistical error model
corrects its outputs to best resemble the unevaluated high fidelity counterpart.
There are many applications and expansions of this concept up to date. Some of
the most notable ones for computer models that produce scalar outputs [Scheidt
et al., 2011, Ginsbourger et al., 2013, among others], and for computer models
that produce functional outputs [Josset et al., 2015, Trehan et al., 2017, Pagani
et al., 2017].

An interesting alternative to error models, that tries to jointly utilize both
high and low fidelity models for input space exploration, comes from Kennedy
and O’Hagan [2000], who generalized the concept of universal co-kriging [Chiles
and Delfiner, 1999] to high dimensional input spaces. The idea underlying the
method consists in treating the high-fidelity solution as the “primary” variable,
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and the low fidelity solution as the “secondary” variable in a co-kriging setting.
This emulator exactly reproduces the high-fidelity training data as the kriging
for computer experiments we mentioned previously. The method is advantageous
over error models since it can incorporate information from multiple models of
different levels of fidelity. In addition, unlike error models, it does not require
simulation of all training points with all levels of fidelity. Instead, it allows for
completely non-coincident training sets, one for each level of fidelity. Due to its
ability to incorporate several numerical solutions of different degrees of fidelity,
the method is commonly referred to as “multi-fidelity” meta-modeling. The orig-
inal work by Kennedy and O’Hagan [2000] considered a subsurface reservoir
modeling application with scalar outputs, later Le Gratiet [2012] expanded the
method and applied it to multi-fidelity modeling of aeromechanical numerical
experiments. Co-kriging for functional data, as well as multi-fidelity modeling
for computer experiments that produce functional data, are both very active re-
search areas. Recently, Bohorquez et al. [2016] developed a co-kriging method
for multivariate functional data based upon a dimensionality reduction of the
data (functional principal component analysis). [Thenon et al., 2016] constructs
a multi-fidelity functional meta model with similar, although simplified, ideas as
Bohorquez et al. [2016].

In this work, we propose a novel method called “Universal Trace co-Kriging”
for interpolation of multivariate functional data. Unlike existing co-kriging meth-
ods Bohorquez et al. [2016], Thenon et al. [2016] that are based on prior dimen-
sionality reductions of the data, the method we proposed is fully functional,
and developed around the assumption that functional data takes values in an
infinite dimensional separable Hilbert space. These developments extend the
concepts presented in Menafoglio et al. [2013] to the functional multivariate set-
ting. Although for our application we focus on square-integrable data (i.e., on
the embedding into the Hilbert space L2), our method is entirely general, and
allows dealing with different kinds of data. For instance, it allows accounting
for differential properties of the data if the considered Hilbert space is a Sobolev
space, or to consider distributional data in the form of probability density func-
tions, through the embedding in a Bayes space (see van den Boogaart et al.
[2014], Hron et al. [2016], Menafoglio et al. [2014]). Our findings enables one
to predict primary observations by jointly using the entire information content
embedded in both the primary and the secondary data. The model we propose
also allows considering non-stationary response variables, modeled in a universal
kriging setting. Although the method is new and of general application is di-
verse environmental settings, we here consider its development and application
in continuity with the concepts originally developed by Kennedy and O’Hagan
[2000].

We develop two case studies and three extensive Monte Carlo analyses to
compare the performance of our multi-fidelity functional meta models with the
multi-fidelity functional meta models constructed with the methodology of Bo-
horquez et al. [2016]. Here, we also investigate the performances of the functional
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meta models that do not account for secondary data, constructed with UTrK by
Menafoglio et al. [2013] and UCoK by Menafoglio et al. [2016]. To the best
of the authors’ knowledge, the conducted case studies are the first contribution
that extensively applies and evaluates universal kriging and co-kriging methods
for Hilbert data in the context of functional meta-modeling. The important
conclusions drawn from the case studies provide valuable guidelines for future
practitioners and identify new avenues for future research.

The remaining part of the paper is organized as follows. In Section 2, we
present detailed theoretical derivations of universal trace co-kriging. In Section
3 we provide a brief overview of universal co-kriging of functional principal com-
ponent scores by Bohorquez et al. [2016]. Section 4 investigates the performances
of kriging and co-kriging method on simulated data, whereas Section 5 illustrates
the application of the method to a case study dealing with a numerical model
of uranium bio-remediation experiment in Rifle Colorado. Section 6 summarizes
the paper and outlines the opportunities for future work.

2 A Trace-Cokriging predictor for multivariate Hilbert
data

We here consider the problem of optimal spatial prediction for multivariate func-
tional random fields, and develop a Universal Trace-Cokriging method which
represent the first novel contribution of this work.

In the following developments, we will always consider as ambient space for
the analysis a Hilbert space. The use of a Hilbert-space embedding for functional
geostatistics is well-documented in the literature (see e.g., [Menafoglio and Secchi,
2017] for a review). Its mathematical and application-oriented convenience is
twofold: (i) it allows working by analogy with the scalar setting, providing strong
intuitions and interpretations to the concepts involved (e.g., for the concepts of
variogram); and (ii) it allows working in a very general setting, which may even
involve functional constrained data (e.g., PDFs, [Menafoglio et al., 2014]).

We thus denote by Hk, k = 1, ...,K, a separable Hilbert space endowed with
the inner product 〈·, ·〉Hk

, and call D a Euclidean spatial domain in Rd, d ≥ 1.
Given a probability space (Ω,F,P), we indicate by X (k) (possibly with a spatial
index s ∈ D) a random element on (Ω,F,P) in Hk.

We here consider multivariate random fields: we denote by {X s, s ∈ D} a
multivariate random process on (Ω,F,P), that is valued in the Cartesian space
HK = H1 ×H2 × · · · ×HK : each element X s is a vector of K random elements
X (1)
s1 , ...,X

(K)
sn in H1, ...,HK , respectively:

X s =
(
X (1)
s , ...,X (K)

s

)T
.

To define the first and second order properties of the field, we proceed by analogy
with the classical framework and define multivariate spatial mean and covari-
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ogram structure. We call ms ∈ HK the spatial mean of the process at s in D,
that is

ms = E[X s] =
(
m

(1)
s , ...,m

(K)
s

)T
, m

(k)
s = E[X (k)

s ].

To define a measure of multivariate spatial dependence, we generalize to the
multivariate setting the concept of trace-covariogram previously introduced by
Giraldo [2009], Menafoglio et al. [2013]. Hereafter, we assume that the spaces
H1, ...,HK coincide, and thus omit the subscript Hk in the notation of the inner
product. In case they actually do not coincide, one can apply the trace-kriging
strategy of Menafoglio et al. [2013] in the Cartesian space HK , endowed with
the inner product 〈x,y〉HK

=
∑K

k=1〈x(k), y(k)〉Hk . This case is not considered
further here.

We thus consider the map C : D ×D → RK×K , that determines the trace-
covariograms and cross-trace-covariograms of the field as follows

(s,u) 7→ C(s,u) ∈ RK×K

Ckl(s,u) = E[〈X (k)
s −m(k)

s ,X (l)
u −m(l)

u 〉].

Note that this quantity cannot be defined in case of non-coincident H1, ...,HK ,
as the inner product between elements of different spaces is not defined.

In this work, we assume that every element X (k)
s of the multivariate process

X s is non stationary, and that it can be represented by a sum of deterministic
mean (drift) and zero-mean globally second order stationary residual:

X (k)
s = m

(k)
s + δ

(k)
s . (1)

Here, the drift is assumed to be non-constant in space D and, analogously to
Menafoglio et al. [2013], modeled as a functional linear model

m
(k)
s =

L∑
l=0

a
(k)
l fl(s) (2)

where a(k)l are coefficients in Hk, and fl(.) are scalar regressors known over the
entire domain D. Further, the residual is assumed to be globally second order
stationary in the sense of Menafoglio et al. [2013]. That is, we assume that the
multivariate trace-covariogram structure depends only on the increment between
locations, i.e., there exists C̃ such that C̃(s−u) = C(s,u), for all s,u ∈ D. For
ease of notation, hereafter we denote C̃ simply by C.

We call s1, ..., sNj (j = 1, ...,K) the measurement locations (or design of
experiment), and X (j)

s1 , ...,X
(j)
sNj

the partial observation of the j-th element of the
multivariate process at these locations. Within the former assumptions, we aim
to predict the k-th element X (k)

s0 of X s0 at a target location s0 in D. To this
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end, we consider the Trace-Cokriging predictor, that is the best linear unbiased
predictor within the class of linear predictors

X (k)λ
s0 =

K∑
j=1

Nj∑
i=1

λjiX (j)
si (3)

To find the optimal weights, λ∗ji, j = 1, ...,K, i = 1, ..., Nj , we minimize the
mean squared error of prediction under the unbiasedness constraint, that is

min
λji∈R,

j=1,...,K,i=1,...,Nj

E
[
‖X (k)λ

s0 −X (k)
s0 ‖2

]
(4)

subject to E[X (k)λ
s0 ] = m

(k)
s0 .

It is straightforward to see that the unbiasedness constraint reads as

Nk∑
i=1

λkifl(si) = fl(s0), ∀l;

Nj∑
i=1

λjifl(si) = 0, for j 6= k, ∀l;

(5)

Indeed,

E[X (k)λ
s0 ] =

K∑
j=1

Nj∑
i=1

λjim
(j)
si

and the latter quantity is equal to m(j)
s0 if and only if condition (5) is fulfilled.

Developing the functional in the first line of Eq. 4 yields:

E
[
‖X (k)λ

s −X (k)
s ‖2

]
= Ckk(0)+

K∑
j=1

Nj∑
i=1

K∑
j′=1

Nj′∑
i′=1

λjiλj′i′Cjj′(si − si′)−

2
K∑
j=1

Nj∑
i=1

λjiCjk(si − s0)

(6)

Introducing Kx(L+ 1) Lagrange multipliers to account for the unbiasedness
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constraints in Eq. (5) leads to the following objective functional

Φ(λ) = Ckk(0) +
K∑
j=1

Nj∑
i=1

K∑
j′=1

Nj′∑
i′=1

λjiλj′i′Cjj′(si − si′)−

2
K∑
j=1

Nj∑
i=1

λjiCjk(si − s0)+

2
L∑
l=0

µkl

(
Nk∑
i=1

λkifl(si)− fl(s0)

)
+

2

L∑
l=0

K∑
j=1
j 6=k

µjl

 Nj∑
i=1

λjifl(si)



(7)

After taking partial derivatives of equation (7) with respect to λ’s and µ’s we
obtain the following system of linear equations:

K∑
j=1

Nj∑
i=1

λjiCjj′(si − si′) +
L∑
l=0

µj′lfl(si) = Cj′k(si′ − s0),

(j′ = 1, ...,K; i′ = 1, ..., Nj′ ; );
Nk∑
i=1

λkifl(si) = fl(s0), ∀l;

Nj∑
i=1

λjifl(si) = 0, j 6= k, ∀l;

(8)

The trace-variance associated with predictor X (k)∗
s0 =

∑K
j=1

∑Nj

i=1 λ
∗
jiX

(j)
si is

given by

σ2k(s0) = Ckk(0)−
K∑
j=1

Nj∑
i=1

λjiCjk(si − s0) +
L∑
l=0

µklfl(s0).

System (8) can be expressed in a matrix form as follows (for k = 1):

C11 C12 · · · C1K F 1 0 · · · 0
C21 C22 · · · C2K 0 F 2 · · · 0
...

...
. . .

...
...

...
. . .

...
CK1 CK2 · · · CKK 0 0 · · · FK

F1
T 0 · · · 0 0 0 · · · 0

0 F T
2 · · · 0 0 0 · · · 0

0 0 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · F T

K 0 0 · · · 0





λ1

λ2
...
λK
µ1

µ2

µ3
...
µK


=



c10
c20
...
cK0

f01

0
0
...
0


(9)
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where:
[Cmn]ij = Cov

(
X (m)
si ,X (n)

sj

)
= Cmn(si − sj)

cj0 =


Cjk(s1 − s0)
Cjk(s2 − s0)

...
Cjk(sNj − s0)

,λj =


λj1
λj2
...

λjNj

 ,µj =


µj0
µj1
...
µjd

 ,

F j =


f0(s1) f1(s1) · · · fL(s1)
f0(s2) f1(s2) · · · fL(s2)

...
...

...
...

f0(sNj ) f1(sNj ) · · · fL(sNj )

 ,f0j =


f0(s0)
f1(s0)

...
fL(s0)

 .
The system given in equation (9) is analogous to the system of universal

co-kriging equations outlined in Chiles and Delfiner [1999].
Parameter inference. The strategy for parameter inference can be anal-

ogous to that performed in conventional co-kriging. First functional regression
(Ramsay and Silverman [2005]) is used to estimate the functional drift of each of
the elements of the multivariate functional data, e.g., via ordinary least squares.
Then, the estimates of the trace-auto and trace-cross covariances are computed
on the estimated functional residuals and admissible covariance structures are
fitted with the linear model of coregionalization (LMC, Goovaerts [1997]). Im-
proved estimates of the drift and of the residuals can be obtained by using a gen-
eralized least square approach. However, the latter is associated with the need to
use iterative algorithms to jointly estimate the drift and the spatial dependence
(see Menafoglio et al. [2013]). In all these cases, note that regression-based drift
estimates yields biased estimates of the variogram, due to the use of estimated
residuals in place of the true ones, similarly as in the scalar geostatistical case.
Menafoglio et al. [2013] discuss the point and show via simulation that such bias
does not have a strong influence on the results.

For the purpose of our work we here focus on the procedure to estimate the
dependence structure in the stationary case, the non-stationary setting being
obtained by replacing to the observations the estimated residuals of model (1).
In this case, the auto-covariance estimation can be performed simply by means
of trace-variography, introduced by Giraldo [2009], Menafoglio et al. [2013]. The
trace variogram estimator is formulated as follows

γk,k(h) =
1

2|N(h)|
∑

(i,j)∈N(h)

‖X (k)
si −X

(k)
sj ‖2 (10)

whereN(h) denotes the set of pairs (i, j) approximately separated by a vector
h, i.e., such that si−sj ∼ h. To find the cross-covariance estimators we proceed
analogously to the multivariate case by generalizing the very well known cross-
variogram (Goovaerts [1997]) and pseudo cross-variogram (Clark et al. [1987])
estimators:
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1. The trace cross-variogram estimator:

γk,l(h) =
1

2|N(h)|
∑

(i,j)∈N(h)

〈X (k)
si −X

(k)
sj ,X

(l)
si −X

(l)
sj 〉 (11)

2. The pseudo trace-cross-variogram estimator:

γk,l(h) =
1

2|N(h)|
∑

(i,j)∈N(h)

‖X (k)
si −X

(l)
sj ‖2 (12)

The properties of the trace cross-variograms are the same as their scalar coun-
terparts. Pseudo trace cross-variogram is always positive and applicable to both
isotopic and heterotopic data sampling, while the trace cross-variogram is only
applicable in the case of isotopic data sampling (Wackernagel [2010]). In prac-
tice, inference and fitting of trace variograms over high dimensional input spaces
is limited to omni-directional variograms due to difficulties with unidirectional
(marginal) variogram estimation in high dimension (i.e., curse of dimensionality
De Cesare et al. [2001]).

It should be noted that, when considering formulas (11) and (12), all ele-
ments of multivariate functional data need to be in the same units and scale.
In scalar geostatistics a simple rescaling or normalization is often employed to
overcome this problem (Goovaerts [1997]). However, for functional data there is
no general consensus on what should be consider as the most appropriate rescal-
ing method. For instance, a possible generalization of scalar standardization is
a point-wise standardization (i.e., point-wise subtraction of a sample mean, fol-
lowed by a point-wise division by sample standard deviation, both mean and
standard deviation estimated point-wise). However, this kind of standardization
may have detrimental effects on the functional form of the data, besides being
not well-defined from the mathematical viewpoint. Instead, a sensible notion of
standardization of the element X (j)

sl , j = 1, ...,K, l = 1, ..., Nj , is

X (j)
sl −X

(j)

1
Nj

∑Nj

i=1

∥∥∥X (j)
si −X

(j)
∥∥∥ .

Here, X (j)
= 1

Nj

∑Nj

i=1X
(j)
si denotes the sample mean of the data, which is

subtracted to the observation prior to the normalization with respect to the
(trace-)standard deviation of the data.

Note that, currently, the method of moments and least squares fitting ap-
proaches appear as the most viable procedures, as the concept of density for
functional data is not mathematically well-defined (Delaigle and Hall [2010]),
preventing the use of automated maximum likelihood based parameter inference
procedure.

The range of applicability. As mentioned previously, the Hilbert spaces
within which the element of vector X s are embedded must be coincident in
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order to compute the cross covariances. In multi-fidelity modeling this is almost
always the case since low fidelity simulations produce the same type of output
data as their high fidelity counterparts. Another requirement for this modeling
strategy to work is that discrepancies between functional data be in amplitude
rather than in phase. Phase shifted interpolation is more complex and it would
require modeling with warping functions (Ramsay and Li [1998]) that is beyond
the scope of this work. Nonetheless, both the former and the latter requirements
could be overcome through extensions of the proposed setting.

3 Projection based co-kriging for multivariate Hilbert
data

An alternative approach to interpolation of multivariate functional data was
recently proposed by Bohorquez et al. [2016] as an extension of the method
introduced by Nerini et al. [2010] to non-stationary multivariate functional data.
The method relies on a functional principal component decomposition (FPCA,
Ramsay and Silverman [2005]) of each element X (j) of the multivariate functional
vectorsX , followed by modeling and prediction of functional principal component
scores, in a co-kriging setting. For sake of clarity, we recall the method by
extending the notation of Bohorquez et al. [2016], valid for square-integrable data
in L2 only, to the more general setting of Hilbert-space data here considered.

For simplicity, consider a sample of bi-variate (2-levels) functional dataX si =(
X (1)
si ,X

(2)
si

)T
fully observed over a set of design points si where i = 1, 2, ..., N

and where s is a vector in Rd. Let e(1) = {φ(1)1 , φ
(1)
2 , ..., φ

(1)
P } and e(2) =

{φ(2)1 , φ
(2)
2 , ..., φ

(2)
Q } be ortho-normal sets of functional principal components of

X (1)
si ’s and X (2)

si ’s, respectively, and let ξ(k)p (si) be a principal component score of
X (k)
si on φ(k)p . By definition, every function in the ensemble can be reconstructed

from its mean, its principal component scores and its functional principal com-
ponents. For a new design point s0, the predictions of X (k)

s0 are thus sought in
the following form

X (k)
s0 = µ(k) +

P∑
p=1

ξ(k)p (s0)φ
(k)
p , (13)

where µ(k) is the mean function of k-th level.
The only unknowns in equation (13) are the principal component scores

ξ
(k)
p (s0)’s that are assumed to be non-stationary

ξ(k)p (s) = m(k)(s) + r(k)(s);

m(k)(s) =

d∑
l=0

βlfl(s), βl ∈ R.
(14)
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and sought as the best linear unbiased combination of the principal compo-
nent scores of all the observed curves:

ξ(k)p (s0) =

N∑
i=1

P∑
p=1

λ
(1)
i,p ξ

(1)
p (si) +

N∑
i=1

Q∑
q=1

λ
(2)
i,q ξ

(2)
q (si). (15)

The weights λ(k)p,q are found by solving the well known system of universal co-
kriging equations (Chiles and Delfiner [1999], pg. 300):



C11
11 C11

12 C12
11 C12

12 F 1
1 0 0 0

C11
21 C11

22 C12
21 C12

22 0 F 1
2 0 0

C21
11 C21

12 C22
11 C22

12 0 0 F 1
2 0

C21
21 C21

22 C22
21 C22

22 0 0 0 F 2
2

(F 1
1)T 0 0 0 0 0 0 0

0 (F 1
2)T 0 0 0 0 0 0

0 0 (F 2
1)T 0 0 0 0 0

0 0 0 (F 2
2)T 0 0 0 0





λ1
1

λ1
2

λ2
1

λ2
2

σ1

σ2

σ3

σ4


=



c110
c210
c120
c220
1
0
0
0


Where [C lm

pq ]ij = Cov(ξlp(si), ξ
m
q (sj)) = C lmpq (|si − sk|), and where F l

p(i, .) =
{f0(si), f1(si), ..., fL(si, )}.

Parameter inference. Given that this approach effectively transforms a
multivariate functional interpolation problem into a multivariate (vector) inter-
polation problem, many parameter inference procedures developed in multivari-
ate geostatistics are available. Both variogram fitting procedures with the linear
model of co-regionalization (LMC, Goovaerts [1997]), as well as automated max-
imum likelihood approaches are applicable (Gelfand et al. [2004], Fricker et al.
[2013], Zhang [2007]). The size of the model depends on the size of the train-
ing dataset and the number of kept functional principal components on every
level of multivariate functional data. Bohorquez et al. [2016] reported numerical
difficulties with the linear model of co-regionalization for large numbers of kept
principal components.

The range of applicability. The projection based approach is applicable
to a variety of modeling situations. The method may not be limited to ampli-
tude shifted curves; indeed, it may also account for phase variability if at least
one principal component captures a shift in phase. This may have an impact
on the complexity required to represent the functional data, hence may entail
the increase of the dimensionality of the model that ultimately affects parameter
inference. One attractive feature of this approach is that it does not require that
Hilbert spaces of functional data are coincident; for instance, the secondary data
does not even need to be functional. This opens perspectives to more advanced
multi-fidelity emulation approaches by combining information from low fidelity
responses that are not necessarily functional. One example of such low fidelity
models are flow diagnostics proxies (Shahvali et al. [2012]) that produce one di-
mensional summaries of flow characteristics of Earth models. With projection
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based approaches, flow diagnostics responses can be combined with other func-
tional low fidelity models (i.e. upscaled models) to construct an emulator that
predicts high fidelity flow responses.

4 Performance analysis on synthetic data-sets

In this section we set out to explore and assess the performance of the previously
presented emulation techniques on a purely synthetic numerical model of the
subsurface. For this purpose we developed a homogeneous 3D oil-water reservoir
model with 4 producer wells at the top of the reservoir structure, and an aquifer
connected at the bottom left corner for pressure support (Figure 1 left). The
four wells produce two types of fluid, oil and water. Initially, the reservoir is
saturated with oil and wells do not produce any water until the reservoir pressure
becomes low enough to allow water encroachment from the aquifer. The speed
of encroachment is dependent on the reservoir properties and the viscosity of the
present fluids. One typical field water production rate (FWPR) response is given
in Figure 1 right, while the model parameters that are the most influential on
FWPR are summarized in Table 1.

Given that all of the presented computer code emulation techniques aim to
make use of both computationally expensive (high fidelity), and computationally
cheap (low fidelity) simulations two levels of numerical abstractions were consid-
ered. High fidelity flow simulations were computed on a finely gridded reservoir
volume (150x100x25), while the low fidelity flow simulations were computed on
a coarsely gridded reservoir volume (150x100x13). In both cases we used Eclipse
E100 black oil reservoir simulator to simulate subsurface flow. The two solutions
produced somewhat different, but highly correlated (ρ = 0.91) flow responses
(Figure 1 - right). The discrepancies between the responses are a consequence
of numerical dispersion caused by coarser vertical discretization of the reservoir
volume.

We used the reservoir model to develop two datasets for methodological com-
parisons and assessment. The first dataset considered only two input parameters,
PERMZm and PORVm (Table 1). The second dataset considered three input
parameters: PERMZm, PORVm, and PERM (Table 1). Both datasets consist
of training and testing subsets. The training subsets were produced by latin
hypercube sampling and were evaluated with both high and low fidelity flow
simulations. The test sets were produced with uniform sampling and were evalu-
ated only with the high fidelity flow solution. The two datasets are summarized
in Table 2.

Output data pre-processing The training ensemble of FWPR curves of
the two parameter dataset is given in Figure 3 - right. Graphical inspection of
the figure clearly suggests that the data are shifted in both phase and amplitude.
Embedding the data in the space L2 of square-integrable functions (i.e., setting
H = L2 in the notation of Section 2) and applying trace based co-kriging is not
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Figure 1: Left - 3D reservoir model with four producer wells. Cells are colored
by vertical depth in feet. Model dimensions are: X=500 ft, Y=750 ft, Z=150
ft. Right - An example of discrepancies between proxy and full physics flow
simulations.

Table 1: Simulation parameters

Parameter Value Description

PORVm (-) 1-1000 Aquifer Strength
PERMZm (-) 0-1 Vertical Perm. (K mult.)

K (md) 25 Reservoir permeability
φ (frac) 0.2 Reservoir porosity
µo (cp) 0.0002 Oil Viscosity
µw (cp) 0.00001 Water viscosity

appropriate in this case, since the L2 geometry is only suitable for unconstrained
data with amplitude shift. However, the ensemble of phase-amplitude shifted
FWPR curves can be transformed into an ensemble of amplitude shifted curves
with a simple ad-hoc procedure. For one curve, the procedure consists of iden-
tification of the water breakthrough time, followed by a simple regression fit to
the early post water breakthrough rates and substitution of the zero production
rates with regressions solution. This procedure is explained visually in Figure 2.

Table 2: Summary of the produced datasets

Dataset type # Proxy # Full # Test

2 parameter 189 176 400
3 parameter 466 462 400
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Figure 2: Curve transformation procedure. Left - Original curve with a straight
line fitted through the early breakthrough rates. Right - The resulting

"transformed" curve.

4.1 Analysis: Computer experiment with 2 parameters

Our first analysis focuses on the two parameter dataset. In this exercise, only
a portion of the available training data was used, namely 50 high fidelity flow
(fine) simulations and 150 low fidelity simulations (proxy). The sub-sampled
training dataset was used to fit the following models: (i) Universal Trace Kriging
(UTrK) by Menafoglio et al. [2013], (ii) Universal Trace Co-Kriging (UTrCoK)
introduced in this work, (iii) projection based Universal co-kriging for functional
data (UCoK) by Menafoglio et al. [2016], and (iv) projection based Universal
co-kriging with secondary functional data (UCoK2) by Bohorquez et al. [2016]
(described in Section 3). We recall that UTrK corresponds to the univariate
version of the method proposed in Section 2 (i.e., setting K = 1). Similarly,
method UCoK is the univariate counterpart of UCoK2; it was developed by
Menafoglio et al. [2016] as an extension to the non-stationary setting of Nerini
et al. [2010]. Hence, models (i) and (iii) represent the situation in which no
secondary data is available together with the target response; however, they
pursue different approaches, the former following a trace-approach, the latter a
projection-based approach. Note that UCoK and UTrK were thus fitted only on
the full physics responses (i.e., without considering the low-fidelity model) since
they are univariate functional interpolation methods.

Given that the projection based methods UCoK and UCoK2 can be fitted
with a variable number of principal components, we produced models with two
(suffix: ".K2"), and three (suffix: ".K3") leading principal components. For pa-
rameter inference we used variogram fitting and linear model of coregionalization
(LMC, Goovaerts [1997]) on omni-directional variograms computed over the unit
cube of re-scaled input parameters, as proposed by Sacks et al. [1989].

The produced statistical models were then used to predict the test set (400
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Figure 3: Raw and transformed FWPR curves from 2 parameter dataset. Left -
Raw curves colored by PERMZm, Right - Transformed curves colored by

PORVm

curves) and summarize the predictions by computing the sum of squared errors
(SSE) of each prediction.

SSEi = ‖X (k)
i − X̂ (k)

i ‖
2. (16)

To better appreciate the magnitude of the error all SSE’s were normalized by
the average squared norm of the entire test set (400 simulations).

SSEni =
SSEi

1
400

∑400
i=1‖X

(k)T
i − µ(k)T ‖2

(17)

where µ(k)T is the mean of the test set.
Empirical variograms of the trace based co-kriging and universal co-kriging

with secondary data are given in Figures 4 and 5 along with the fits produced
with LMC.

Test sets error summary is given in Table 3, and visually in Figure 7. We
observe that trace based methods performed slightly better than projection based
approaches, and we also observe that incorporation of the secondary data in a
form of proxy solution improved the overall SSE.

4.2 Monte Carlo Analysis

To assess the performance under variable training set sizes and different ratios
of full physics to proxy simulations we set up a Monte Carlo study. For variable
numbers of proxy and full physics simulations we repeated the previous forecast-
ing study one hundred times, and at each step we computed the mean and the
median of the test sets SSE’s. Distribution of the mean and the median of SSE

15



Figure 4: Empirical omni-directional trace variograms and models fitted with
the LMC (Sph( d

0.85)). Left - trace-cross-variogram, middle and right auto trace-
variograms

Table 3: 2D dataset - Error Summary Table (normalized SSEs computed with
eq (17))

min p0.25 p0.5 p0.75 max mean
Projection Methods

UcoK.K2 0.0019 0.0080 0.0205 0.0535 2.3807 0.0739
UcoK.K3 0.0004 0.0026 0.0052 0.0112 2.2712 0.0483
UcoK2.K2 0.0018 0.0088 0.0181 0.0486 0.9568 0.0482
UcoK2.K3 0.0005 0.0027 0.0049 0.0086 1.0661 0.0239

Trace Methods
UTrCoK 0.0000 0.0001 0.0005 0.0034 0.4143 0.0175

UTrK 0.0000 0.0001 0.0007 0.0045 2.2030 0.0416

for each fitting method on the two parameter dataset is shown in Figure 8. The
same analysis was performed on the three parameter dataset and its results are
shown in Figure 9.

We observe that the median of the SSE was consistently lower for trace
based methods compared to projection based methods. We also observe that all
methods have similar SSE with a large number of full physics simulations.

5 Case Study: Uranium contamination dataset

In this section, we apply and illustrate the presented computer code emulation
techniques on a real case study. The case study considers a numerical model of
uranium bio-remediation experiment in Rifle Colorado (Yabusaki et al. [2007],
Li et al. [2011], Kowalsky et al. [2012]). The experiment consists of acetate and
tracer injection into eleven injection wells and monitoring their concentrations
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Figure 5: UCoK2: Empirical auto and cross omni-directional variograms and
models fitted with the LMC for K=2. (Sph(d/0.94)).

at twelve monitoring wells (Figure 10 left). The presence of acetate in the sub-
surface is known to stimulate biochemical reactions between in-situ bacteria and
mobile Uranium U(VI) ions (Williams et al. [2011]), whose product are immo-
bile Uranium U(IV) ions. Since there is no direct way of inferring the volumes of
immobilized uranium, indirect inference by means of numerical simulation and
inversion is necessary. In particular, spatial distributions of immobilized uranium
from the numerical models that match the measured data at monitoring wells
can be used to estimate the immobilized volumes of U(VI).

Numerical modeling of bio-remediation is difficult and computationally ex-
pensive. One has to consider both geological and geochemical uncertainties and
complex physics need to be simulated with advanced reactive transport numer-
ical simulators. Simulation models used in this case study were developed with
Crunchflow (Steefel et al. [2015]) a reactive transport simulator. The contami-
nated site is an unconfined aquifer in alluvial floodplane that was modeled as a
single layer with 64x68x1 grid blocks with thickness of about 2.5 meters. We used
latin hypercube sampling to vary five input parameters: three geological and two
geochemical. Geological parameters are: mean log permeability (meanLogK) of
the reservoir, correlation length (CorrL) of reservoir permeability and the vari-
ance of reservoir permeability (varK), while geochemical parameters are kinetic
rates of microbial reactions: ferric rate (FerricRate) and microbial sulfate reduc-
tion rate (SRBrate). The parameters and their ranges are summarized in Table
4. Geological properties were modeled with sequential gaussian co-simulation
(coSGS, Verly [1992]), and a total of 500 geological models were developed.
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Figure 6: Two parameter dataset: An example of forecasts produced with each
meta model at four randomly selected design points.

While this model is fairly small, one simulation run took around 2 hours due
to the fact that the modeled physics are very complex. To demonstrate and
evaluate our computer code emulation methodology we upscaled/upgridded the
models to produce proxy flow simulations. Upgridded models contained 32x34x1
grid blocks and this simplification reduced simulation time to just 10 minutes.

In our analysis we considered simulated acetate concentration curves from
monitoring well number 11 (Figure 11). With this data we conducted the same
type of Monte Carlo study as we did before on the synthetic reservoir model. The
only difference was that in this case we did not have a fixed test set, instead at
every iteration we randomly sample for variable numbers of proxy and full physics
reservoir models and a non overlapping test set of size 100. In all models we use
variogram fitting procedure for parameter inference, and in the case of projection
based methods we consider five and six principal components since they capture
the most of the variance in this data (98%). A few forecasts produced with the
trace based methods on this dataset are given in Figure 12, while the results of
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Figure 7: Normalized SSE distribution of each forecasting approach. Note: SSE
= sum of squared errors, a dimensionless quantity computed with equation (16)

.

Table 4: Uranium contamination model parameters

Parameter Range

meanLogK -10.5 to -10
CorL 3 m - 7 m
varK 0.2 - 0.7
FerricRate 1 - 2
SRBRate 0 - 2

the Monte Carlo study are given in Figure 13.
We observe that the results of the uranium case study are very similar to

the results we obtained on synthetic datasets. Trace based approach slightly
outperformed the projection based approaches, and in this case there was not
much difference between single variate projection based approach (UCoK) and
multivariate projection based approach (UCoK2).

6 Conclusions

This paper introduced and analyzed trace co-kriging (UTrCoK), a novel and orig-
inal method for interpolation of multivariate functional data. The method is use-
ful for emulation of functional variables produced by computer codes of variable
degrees of fidelity and numerical speed. The need for multifidelity modeling often
arises in uncertainty quantification studies throughout various fields of Earth sci-
ence, where quick exploration of high dimensional input spaces is necessary. The
proposed method is applicable to situations where all computer codes produce
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Figure 8: Error analysis of Monte Carlo results on 2 parameter dataset.
(Note: SSE = sum of squared errors, a dimensionless quantity computed with

equation (16))
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Figure 9: Error analysis of Monte Carlo results on 3 parameter dataset.
(Note: SSE = sum of squared errors, a dimensionless quantity computed with

equation (16))
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Figure 10: Uranium contamination model. Left - spatial setup (modified from
Kowalsky et al. [2012]). Right - A map of immobilized uranium at the end of

simulation time

Figure 11: Uranium Dataset: Acetate concentration curves over time computed
with full physics and approximate physics simulation.

the same type of functional outputs (i.e. rate vs. time), and where discrepan-
cies between the functions are in amplitude rather than in phase. Nonetheless,
the generality of the proposed Hilbert-space approach opens new venues for the
meta-modeling and computer emulations of more complex responses, such as
distributional responses in the form of PDFs of a target variable. This has the
clear potential to offer innovative and groundbreaking perspectives to efficiently
and effectively approximate entire distributions, thus avoiding expensive Monte
Carlo simulations or restrictive parametric assumptions.

In addition we also introduced a recently developed projection based method
for interpolation of multivariate functional data (UCoK2: Bohorquez et al. [2016]),
into the context of multifidelity computer code emulation. The two methods were
applied to real and synthetic subsurface flow modeling case studies and their solu-
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Figure 12: Uranium Dataset: UTrK and UTrCoK forecasts of eight randomly
selected design points.
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Figure 13: Error analysis of Monte Carlo results on Uranium contamination
dataset.

(Note: SSE = Sum of squared errors, a dimensionless quantity computed with
equation (16))
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tions were then compared to the solutions of another two single variate functional
interpolation methods: universal trace kriging (UTrK: Menafoglio et al. [2013])
and universal co-kriging for functional data by (UCoK: Menafoglio et al. [2016],
Nerini et al. [2010]). To gain deeper understanding about the ranges of applica-
bility of each method we set up three Monte Carlo studies in which we varied the
size of the training sets and the ratios between proxy and full physics simulation
runs. Based on the results of our analyses we draw the following conclusions:

• In general UTrCoK performed best out of all considered methods, and par-
ticularly better in cases when the number of high fidelity flow simulations
was low. This is due to the fact that proxy flow simulations in combination
with the linear model of coregionalization (LMC) helped produce better
variogram fits.

• UTrCoK requires a much lower modeling effort. Trace variography required
LMC fitting over three empirical variograms for two levels of computer
code, while projection based method on the same data and with only two
principal components on each level of computer code required computing
and fitting ten variograms. Automated parameter inference procedures in
the context of UCoK2 were not attempted in this work.

• All methods, single and multivariate, converged to the same solution for
larger numbers of high fidelity flow simulations. This result suggests that
proxy flow simulations become unimportant in the presence of enough full
physics simulations, in which case one can approximate the true solution
just by means of single variate functional interpolation. This result raises
an important practical question of how to estimate this critical number of
full physics simulations, or when to stop sampling with the proxy, which
will be the scope of future work.

• Projection based methods performed worse than trace based methods for
low numbers of high fidelity flow simulations. This poor performance is
due to difficulties with estimation of the functional principal components
with very low number of training functions.

In our analyses we relied on variogram fitting for parameter inference which
was our only option in the case of trace based methods. However, we do recognize
the need for the development of an automated procedure for parameter inference
of trace based methods. This subject will be in the focus of our future work.

An R package that implements all of the methods discussed in this paper is
freely available online at the following location: www.github.com/ogru/fdagstat.

Acknowledgements

The authors thank Alexandre Boucher and Herve Gross from Ar2Tech for valu-
able suggestions and discussions in early stages of this project. This research

25



was financially supported by Stanford Center for Reservoir Forecasting (SCRF)
research consortia 2015/2016.

References

M. Bohorquez, R. Giraldo, and J. Mateu. Multivariate functional random fields:
prediction and optimal sampling. Stochastic Environmental Research and
Risk Assessment, 31(1):53–70, June 2016. ISSN 1436-3259. doi: 10.1007/
s00477-016-1266-y. URL http://dx.doi.org/10.1007/s00477-016-1266-y.

Francesca Bottazzi and Ernesto Della Rossa. A functional data analysis ap-
proach to surrogate modeling in reservoir and geomechanics uncertainty
quantification. Mathematical Geosciences, 49(4):517–540, 2017. ISSN 1874-
8953. doi: 10.1007/s11004-017-9685-y. URL http://dx.doi.org/10.1007/
s11004-017-9685-y.

Jean-Paul Chiles and Pierre Delfiner. Geostatistics - Modeling Spatial Uncer-
tainty. Wiley, 1999.

Isobel Clark, Karen Basinger, and William Harper. Muck, a novel approach to co-
kriging. In Bruce Buxton, editor, 87 Conference on Geostatistical, Sensitivity
and Uncertainty Methods for Ground-water Flow and Radionuclide Transport
Modeling, 1987. URL http://drisobelclark.kriging.com/publications/
Battelle1987.pdf.

L. De Cesare, D. E. Myers, and D. Posa. Estimating and modeling space-time
correlation structures. Statistics and Probability Letters, 51:9–14, January
2001. URL http://www.u.arizona.edu/~donaldm/homepage/my_papers/
StProbltrs-1.pdf.

Aurore Delaigle and Peter Hall. Defining probability density for a distribution
of random functions. The Annals of Statistics, 38(2):1171–1193, April 2010.
URL https://projecteuclid.org/euclid.aos/1266586626.

Thomas Fricker, Jeremy Oakley, and Nathan Urban. Multivariate gaussian
process emulators with nonseparable covariance structures. Technometrics,
55(1):47–56, 2013. doi: 10.1080/00401706.2012.715835. URL http://www.
tandfonline.com/doi/abs/10.1080/00401706.2012.715835.

Alan Gelfand, Alexandra Schmidt, Sudipto Banerjee, and C.F. Sirmans. Non-
stationary multivariate process modeling through spatially varying coregional-
ization. Sociedad de Estadistica e Investigacion Operativa Test, 13(2):263–312,
2004. URL https://link.springer.com/article/10.1007/BF02595775.

David Ginsbourger, Bastien Rosspopoff, Guillaume Pirot, Nicolas Durrande, and
Philippe Renard. Distance-based kriging relying on proxy simulations for in-
verse conditioning. Advances in Water Resources, 52:275 – 291, 2013. ISSN

26

http://dx.doi.org/10.1007/s00477-016-1266-y
http://dx.doi.org/10.1007/s11004-017-9685-y
http://dx.doi.org/10.1007/s11004-017-9685-y
http://drisobelclark.kriging.com/publications/Battelle1987.pdf
http://drisobelclark.kriging.com/publications/Battelle1987.pdf
http://www.u.arizona.edu/~donaldm/homepage/my_papers/StProbltrs-1.pdf
http://www.u.arizona.edu/~donaldm/homepage/my_papers/StProbltrs-1.pdf
https://projecteuclid.org/euclid.aos/1266586626
http://www.tandfonline.com/doi/abs/10.1080/00401706.2012.715835
http://www.tandfonline.com/doi/abs/10.1080/00401706.2012.715835
https://link.springer.com/article/10.1007/BF02595775


0309-1708. doi: https://doi.org/10.1016/j.advwatres.2012.11.019. URL http:
//www.sciencedirect.com/science/article/pii/S0309170812003016.

Ramon Giraldo. Geostatistical Analysis of Functional Data. PhD thesis, Univer-
sity of Barcelona, 2009.

Pierre Goovaerts. Geostatistics for Natural Resources Evaluation. Oxford Uni-
versity Press, 1997.

K. Hron, A. Menafoglio, M. Templ, K. Hrůzová, and P. Filzmoser. Simplicial
principal component analysis for density functions in bayes spaces. Computa-
tional Statistics & Data Analysis, 94:330 – 350, 2016.

L. Josset, D. Ginsbourger, and I. Lunati. Functional error modeling for un-
certainty quantification in hydrogeology. Water Resources Research, 51(2):
1050–1068, February 2015. URL http://onlinelibrary.wiley.com/doi/10.
1002/2014WR016028/abstract.

M. C. Kennedy and A. O’Hagan. Predicting the output from a complex computer
code when fast approximations are available. Biometrika, 87(1):1–13, 2000.
URL https://www.jstor.org/stable/2673557.

M. B. Kowalsky, S. Finsterle, K. H. Williams, C. Murray, D. Commer, M. New-
comer, A. Englert, C. I. Steefel, and S. S. Hubbard. On parameterization of
the inverse problem for estimating aquifer properties using tracer data. Wa-
ter Resources Research, 48(6):1–25, June 2012. doi: 10.1029/2011WR011203.
URL http://onlinelibrary.wiley.com/doi/10.1029/2011WR011203/full.

L. Le Gratiet. Recursive co-kriging model for Design of Computer experiments
with multiple levels of fidelity with an application to hydrodynamic. ArXiv
e-prints, October 2012.

Li Li, Nitin Gawande, Michael B. Kowalsky, Carl I. Steefel, and Susan S. Hub-
bard. Physicochemical heterogeneity controls on uranium bioreduction rates
at the field scale. Environmental Science and Technology, 45(23):9959–9966,
October 2011. doi: 10.1021/es201111y. URL https://www.ncbi.nlm.nih.
gov/pubmed/21988116.

A. Menafoglio and P. Secchi. Statistical analysis of complex and spatially depen-
dent data: a review of object oriented spatial statistics. European Journal of
Operational Research, 258(2):401–410, 2017.

A. Menafoglio, A. Guadagnini, and P. Secchi. A Kriging approach based on
Aitchison geometry for the characterization of particle-size curves in heteroge-
neous aquifers. Stochastic Environmental Research and Risk Assessment, 28
(7):1835–1851, 2014.

27

http://www.sciencedirect.com/science/article/pii/S0309170812003016
http://www.sciencedirect.com/science/article/pii/S0309170812003016
http://onlinelibrary.wiley.com/doi/10.1002/2014WR016028/abstract
http://onlinelibrary.wiley.com/doi/10.1002/2014WR016028/abstract
https://www.jstor.org/stable/2673557
http://onlinelibrary.wiley.com/doi/10.1029/2011WR011203/full
https://www.ncbi.nlm.nih.gov/pubmed/21988116
https://www.ncbi.nlm.nih.gov/pubmed/21988116


Alessandra Menafoglio, Piercesare Secchi, and Matilde Dalla Rosa. A universal
kriging predictor for spatially dependent functional data of a hilbert space.
Electronic Journal of Statistics, 7(0):2209–2240, 2013. ISSN 1935-7524. doi:
10.1214/13-ejs843. URL http://dx.doi.org/10.1214/13-EJS843.

Alessandra Menafoglio, Ognjen Grujic, and Jef Caers. Universal kriging of func-
tional data: Trace-variography vs cross-variography? application to gas fore-
casting in unconventional shales. Spatial Statistics, 15:39 – 55, 2016. ISSN
2211-6753. doi: http://dx.doi.org/10.1016/j.spasta.2015.12.003. URL http:
//www.sciencedirect.com/science/article/pii/S2211675315001141.

David Nerini, Pascal Monestiez, and Claude Manté. Cokriging for spatial func-
tional data. Journal of Multivariate Analysis, 101(2):409–418, Feb 2010. ISSN
0047-259X. doi: 10.1016/j.jmva.2009.03.005. URL http://dx.doi.org/10.
1016/j.jmva.2009.03.005.

Stefano Pagani, Andrea Manzoni, and Alfio Quarteroni. Efficient state/parame-
ter estimation in nonlinear unsteady pdes by a reduced basis ensemble kalman
filter. SIAM/ASA J. Uncertainty Quantification, 5(1):890–921, 2017.

J. Ramsay and B. Silverman. Functional Data Analysis. Springer, 2005.

J.O. Ramsay and Xiaochun Li. Curve registration. Journal of Statistical Society,
60:351–363, April 1998. URL http://onlinelibrary.wiley.com/doi/10.
1111/1467-9868.00129/abstract.

C.E. Rasmussen and C.K.I. Williams. Gaussian Process for Machine Learning.
MIT Press, 2006. URL http://www.gaussianprocess.org.

Olivier Roustant, David Ginsbourger, and Yves Deville. Dicekriging, diceoptim:
Two r packages for the analysis of computer experiments by kriging-based
metamodeling and optimization. Journal of Statistical Software, Articles, 51
(1):1–55, 2012. ISSN 1548-7660. doi: 10.18637/jss.v051.i01. URL https:
//www.jstatsoft.org/v051/i01.

Jerome Sacks, William Welch, Toby Mitchell, and Henry Wynn. Design and
analysis of computer experiments. Statistical Science, 4(4):409–423, 1989. URL
https://projecteuclid.org/euclid.ss/1177012413.

Céline Scheidt, Jef Caers, Yuguang Chen, and Louis J. Durlofsky. A multi-
resolution workflow to generate high-resolution models constrained to dy-
namic data. Computational Geosciences, 15(3):545–563, 2011. ISSN 1573-
1499. doi: 10.1007/s10596-011-9223-9. URL http://dx.doi.org/10.1007/
s10596-011-9223-9.

Mohammad Shahvali, Bradley Mallison, Kaihong Wei, and Herve Gross. An
alternative to streamlines for flow diagnostics on structured and unstructured

28

http://dx.doi.org/10.1214/13-EJS843
http://www.sciencedirect.com/science/article/pii/S2211675315001141
http://www.sciencedirect.com/science/article/pii/S2211675315001141
http://dx.doi.org/10.1016/j.jmva.2009.03.005
http://dx.doi.org/10.1016/j.jmva.2009.03.005
http://onlinelibrary.wiley.com/doi/10.1111/1467-9868.00129/abstract
http://onlinelibrary.wiley.com/doi/10.1111/1467-9868.00129/abstract
http://www.gaussianprocess.org
https://www.jstatsoft.org/v051/i01
https://www.jstatsoft.org/v051/i01
https://projecteuclid.org/euclid.ss/1177012413
http://dx.doi.org/10.1007/s10596-011-9223-9
http://dx.doi.org/10.1007/s10596-011-9223-9


grids. SPE journal, 17, September 2012. doi: 10.2118/146446-PA. URL
https://www.onepetro.org/journal-paper/SPE-146446-PA.

C.I. Steefel, C.A.J. Appelo, B. Arora, D. Jacques, T. Kalbacher, O. Kolditz,
V. Lagneau, P.C. Lichtner, K.U. Mayer, J.C.L. Meeussen, S. Molins, D. Moul-
ton, H. Shao, J. Šimůnek, N. Spycher, S.B. Yabusaki, and G.T. Yeh. Reactive
transport codes for subsurface environmental simulation. Computational Geo-
sciences, 19(3):445–478, Jun 2015. doi: 10.1007/s10596-014-9443-x. URL
https://link.springer.com/article/10.1007/s10596-014-9443-x.

Arthur Thenon, Véronique Gervais, and Mickaële Le Ravalec. Multi-fidelity
meta-modeling for reservoir engineering - application to history match-
ing. Computational Geosciences, 20(6):1231–1250, 2016. ISSN 1573-
1499. doi: 10.1007/s10596-016-9587-y. URL http://dx.doi.org/10.1007/
s10596-016-9587-y.

Sumeet Trehan, Kevin Carlberg, and Louis J. Durlofsky. Error modeling for
surrogates of dynamical systems using machine learning. International Journal
for Numerical Methods in Engineering, July 2017. ISSN 1097-0207. doi: 10.
1002/nme.5583. URL http://dx.doi.org/10.1002/nme.5583.

K. G. van den Boogaart, J. J. Egozcue, and V. Pawlowsky-Glahn. Bayes Hilbert
spaces. Australian & New Zealand Journal of Statistics, 56:171–194, 2014.

G. W. Verly. Sequential gaussian cosimulation: A simulation method inte-
grating several types of information. In Amilcar Soares, editor, Geostatis-
tics Troia 92, 1992. URL https://link.springer.com/chapter/10.1007/
978-94-011-1739-5_42.

Hans Wackernagel. Multivariate Geostatistics. Wiley, 2010.

Kenneth Williams, Philip E. Long, James Davis, Michael Wilkins, A. Lu-
cie N’Guessan, Carl Steefel, Li Yang, Darrell Newcomer, Frank Spane, Lee
Kerkhof, Lora McGuinness, Richard D. Dayvault, and Derek Lovley. Ac-
etate availability and its influence on sustainable bioremediation of uranium
contaminated groundwater. Geomicrobiology Journal, 28(5-6):519–539, July
2011. doi: 10.1080/01490451.2010.520074. URL http://dx.doi.org/10.
1080/01490451.2010.520074.

Steven B. Yabusaki, Yilin Fang, Philip E. Long, Charles T. Resch, Aaron D.
Peacock, John Komlos, Peter R. Jaffe, Stan J. Morrison, Richard D. Day-
vault, David C. White, and et al. Uranium removal from groundwater via
in situ biostimulation: Field-scale modeling of transport and biological pro-
cesses. Journal of Contaminant Hydrology, 93(1-4):216–235, Aug 2007. ISSN
0169-7722. doi: 10.1016/j.jconhyd.2007.02.005. URL http://dx.doi.org/10.
1016/j.jconhyd.2007.02.005.

29

https://www.onepetro.org/journal-paper/SPE-146446-PA
https://link.springer.com/article/10.1007/s10596-014-9443-x
http://dx.doi.org/10.1007/s10596-016-9587-y
http://dx.doi.org/10.1007/s10596-016-9587-y
http://dx.doi.org/10.1002/nme.5583
https://link.springer.com/chapter/10.1007/978-94-011-1739-5_42
https://link.springer.com/chapter/10.1007/978-94-011-1739-5_42
http://dx.doi.org/10.1080/01490451.2010.520074
http://dx.doi.org/10.1080/01490451.2010.520074
http://dx.doi.org/10.1016/j.jconhyd.2007.02.005
http://dx.doi.org/10.1016/j.jconhyd.2007.02.005


Hao Zhang. Maximum-likelihood estimation for multivariate spatial linear core-
gionalization models. Environmetrics, 18(2):125–139, 2007. ISSN 1099-095X.
doi: 10.1002/env.807. URL http://dx.doi.org/10.1002/env.807.

30

http://dx.doi.org/10.1002/env.807

	Introduction
	A Trace-Cokriging predictor for multivariate Hilbert data
	Projection based co-kriging for multivariate Hilbert data
	Performance analysis on synthetic data-sets
	Analysis: Computer experiment with 2 parameters
	Monte Carlo Analysis

	Case Study: Uranium contamination dataset
	Conclusions

