
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Apr 10, 2018

A MATLAB Script for Solving 2D/3D Minimum Compliance Problems using Anisotropic
Mesh Adaptation

Jensen, Kristian Ejlebjærg

Published in:
Procedia Engineering

Link to article, DOI:
10.1016/j.proeng.2017.09.792

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Jensen, K. E. (2017). A MATLAB Script for Solving 2D/3D Minimum Compliance Problems using Anisotropic
Mesh Adaptation. Procedia Engineering, 203, 102-114. DOI: 10.1016/j.proeng.2017.09.792

http://dx.doi.org/10.1016/j.proeng.2017.09.792
http://orbit.dtu.dk/en/publications/a-matlab-script-for-solving-2d3d-minimum-compliance-problems-using-anisotropic-mesh-adaptation(f12d5d37-6260-4b2a-9969-13eeb5546305).html


ScienceDirect

Available online at www.sciencedirect.com

Procedia Engineering 203 (2017) 102–114

1877-7058 © 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the scientific committee of the 26th International Meshing Roundtable.
10.1016/j.proeng.2017.09.792

10.1016/j.proeng.2017.09.792

© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the scientific committee of the 26th International Meshing Roundtable.

1877-7058

Available online at www.sciencedirect.com

Procedia Engineering 00 (2017) 000–000
www.elsevier.com/locate/procedia

26th International Meshing Roundtable, IMR26, 18-21 September 2017, Barcelona, Spain

A MATLAB Script for Solving 2D/3D Minimum Compliance
Problems using Anisotropic Mesh Adaptation

Kristian Ejlebjerg Jensena,∗

aDepartment of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs. Lyngby, Denmark

Abstract

We present a pure MATLAB implementation for solving 2D/3D compliance minimization problems using the density method. A
filtered design variable with a minimum length is computed using a Helmholtz-type differential equation. The optimality criteria
is used as optimizer and to avoid local minima we apply continuation of an exponent that controls the stiffness associated with
intermediate design variables. We constrain the volume from above and use the implementation to show that optimizations with
dynamic meshes can save significant amounts of computational time compared to fixed meshes without introducing mesh depen-
dence for the mesh topology. This is despite the fact that the dynamic meshes cause oscillations of the objective function, particular
for coarse meshes in 3D. The meshes are generated using anisotropic mesh adaptation based on local mesh modifications and we
extent these modifications to preserve the information required for interpolating the design variables between meshes. We exploit
symmetry boundaries in 3D, but not in 2D. Dirichlet boundary conditions are used to prevent non-zero filtered design variables
on free boundaries. Mesh adaptation involves substantial book keeping, so the implementation totals some 5,000 lines of MAT-
LAB code, but the functions associated with the forward analysis, geometry/mesh setup and optimization are concise and well
documented, so the implementation can be used as a starting point for research on related topics.
© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the scientific committee of the 26th International Meshing Roundtable.

Keywords: MATLAB ; adaptation; elasticity; compliance; optimization

1. Introduction

1.1. Topology optimization

Compliance minimization using the density method is a decades old technology for saving weight in structural
members without sacrificing stiffness [1]. It is a free form optimization method that allows topologically different
designs to arise, i.e. it is a topology optimization method. The density method has been widely used outside structural
optimization [2,3] and it remains the most popular topology optimization method, but many other techniques exist, see
[4] and references therein. Structured meshes remain the norm despite the prevalence of unstructured meshes within

∗ Corresponding author. Tel.: +45 4525 5770.
E-mail address: kristian.jensen@nanotech.dtu.dk

1877-7058© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the scientific committee of the 26th International Meshing Roundtable.

Available online at www.sciencedirect.com

Procedia Engineering 00 (2017) 000–000
www.elsevier.com/locate/procedia

26th International Meshing Roundtable, IMR26, 18-21 September 2017, Barcelona, Spain

A MATLAB Script for Solving 2D/3D Minimum Compliance
Problems using Anisotropic Mesh Adaptation

Kristian Ejlebjerg Jensena,∗

aDepartment of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs. Lyngby, Denmark

Abstract

We present a pure MATLAB implementation for solving 2D/3D compliance minimization problems using the density method. A
filtered design variable with a minimum length is computed using a Helmholtz-type differential equation. The optimality criteria
is used as optimizer and to avoid local minima we apply continuation of an exponent that controls the stiffness associated with
intermediate design variables. We constrain the volume from above and use the implementation to show that optimizations with
dynamic meshes can save significant amounts of computational time compared to fixed meshes without introducing mesh depen-
dence for the mesh topology. This is despite the fact that the dynamic meshes cause oscillations of the objective function, particular
for coarse meshes in 3D. The meshes are generated using anisotropic mesh adaptation based on local mesh modifications and we
extent these modifications to preserve the information required for interpolating the design variables between meshes. We exploit
symmetry boundaries in 3D, but not in 2D. Dirichlet boundary conditions are used to prevent non-zero filtered design variables
on free boundaries. Mesh adaptation involves substantial book keeping, so the implementation totals some 5,000 lines of MAT-
LAB code, but the functions associated with the forward analysis, geometry/mesh setup and optimization are concise and well
documented, so the implementation can be used as a starting point for research on related topics.
© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the scientific committee of the 26th International Meshing Roundtable.

Keywords: MATLAB ; adaptation; elasticity; compliance; optimization

1. Introduction

1.1. Topology optimization

Compliance minimization using the density method is a decades old technology for saving weight in structural
members without sacrificing stiffness [1]. It is a free form optimization method that allows topologically different
designs to arise, i.e. it is a topology optimization method. The density method has been widely used outside structural
optimization [2,3] and it remains the most popular topology optimization method, but many other techniques exist, see
[4] and references therein. Structured meshes remain the norm despite the prevalence of unstructured meshes within

∗ Corresponding author. Tel.: +45 4525 5770.
E-mail address: kristian.jensen@nanotech.dtu.dk

1877-7058© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the scientific committee of the 26th International Meshing Roundtable.

2 Kristian Ejlebjerg Jensen / Procedia Engineering 00 (2017) 000–000

computationally aided engineering in industry, lately dynamic unstructured meshes are, however, starting to become
more popular [5,6] 1.

Nomenclature

u displacement vector
σ stress tensor
ε deformation tensor
E young’s modulus
P SIMP exponent
Lmin filter length
ρ design variable
ρ̃ filtered design variable
G shear modulus
H hessian
abs absolute tensor in principal frame (i.e. take positive value of eigenvalues)
λ Lamé’s first parameter
Ω domain
I identity tensor
M metric tensor
q norm in which to minimize interpolation error
η scaling factor
n̂ unit normal vector
V f rac volume fraction
Nt mesh complexity
imax number of optimization iterations to use
Lchar characteristic length
L1 length associated with load area
Lx length in x-direction
Lz length in z-direction
i iteration number
κ adjoint scalar (orthogonal to variations in ρ)
ũ adjoint vector (orthogonal to variations in ρ̃)
d dimensionality
ν Poisson ratio

1.2. Anisotropic mesh adaptation

Simulations where the solution has discontinuities are best accelerated using h-type mesh adaptation and when the
solutions has anisotropic features, it can be advantageous to elongate the elements accordingly. The continuous mesh
framework is the most popular setting for anisotropic mesh adaptation [8,9], because it is an excellent way to address
the issue of which mesh to generate, without having to worry about how to generate it. Local mesh modification
operations (as shown in figure 1) constitute the most robust and popular method for generating good discrete meshes
[10], but more recently it has been shown that methods based on advancing fronts can be superior in terms of mesh
quality [11]. One issue is the significant amount of book keeping associated with dynamic mesh adaptation software
and the scarcity of open source implementations [12–14].

1 The published MATLAB script shares implementation details with a WCSMO12 conference paper on heat optimization (ID 62) [7]

http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2017.09.792&domain=pdf


 Kristian Ejlebjerg Jensen et al. / Procedia Engineering 203 (2017) 102–114 103Available online at www.sciencedirect.com

Procedia Engineering 00 (2017) 000–000
www.elsevier.com/locate/procedia

26th International Meshing Roundtable, IMR26, 18-21 September 2017, Barcelona, Spain

A MATLAB Script for Solving 2D/3D Minimum Compliance
Problems using Anisotropic Mesh Adaptation

Kristian Ejlebjerg Jensena,∗

aDepartment of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs. Lyngby, Denmark

Abstract

We present a pure MATLAB implementation for solving 2D/3D compliance minimization problems using the density method. A
filtered design variable with a minimum length is computed using a Helmholtz-type differential equation. The optimality criteria
is used as optimizer and to avoid local minima we apply continuation of an exponent that controls the stiffness associated with
intermediate design variables. We constrain the volume from above and use the implementation to show that optimizations with
dynamic meshes can save significant amounts of computational time compared to fixed meshes without introducing mesh depen-
dence for the mesh topology. This is despite the fact that the dynamic meshes cause oscillations of the objective function, particular
for coarse meshes in 3D. The meshes are generated using anisotropic mesh adaptation based on local mesh modifications and we
extent these modifications to preserve the information required for interpolating the design variables between meshes. We exploit
symmetry boundaries in 3D, but not in 2D. Dirichlet boundary conditions are used to prevent non-zero filtered design variables
on free boundaries. Mesh adaptation involves substantial book keeping, so the implementation totals some 5,000 lines of MAT-
LAB code, but the functions associated with the forward analysis, geometry/mesh setup and optimization are concise and well
documented, so the implementation can be used as a starting point for research on related topics.
© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the scientific committee of the 26th International Meshing Roundtable.

Keywords: MATLAB ; adaptation; elasticity; compliance; optimization

1. Introduction

1.1. Topology optimization

Compliance minimization using the density method is a decades old technology for saving weight in structural
members without sacrificing stiffness [1]. It is a free form optimization method that allows topologically different
designs to arise, i.e. it is a topology optimization method. The density method has been widely used outside structural
optimization [2,3] and it remains the most popular topology optimization method, but many other techniques exist, see
[4] and references therein. Structured meshes remain the norm despite the prevalence of unstructured meshes within

∗ Corresponding author. Tel.: +45 4525 5770.
E-mail address: kristian.jensen@nanotech.dtu.dk

1877-7058© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the scientific committee of the 26th International Meshing Roundtable.

Available online at www.sciencedirect.com

Procedia Engineering 00 (2017) 000–000
www.elsevier.com/locate/procedia

26th International Meshing Roundtable, IMR26, 18-21 September 2017, Barcelona, Spain

A MATLAB Script for Solving 2D/3D Minimum Compliance
Problems using Anisotropic Mesh Adaptation

Kristian Ejlebjerg Jensena,∗

aDepartment of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs. Lyngby, Denmark

Abstract

We present a pure MATLAB implementation for solving 2D/3D compliance minimization problems using the density method. A
filtered design variable with a minimum length is computed using a Helmholtz-type differential equation. The optimality criteria
is used as optimizer and to avoid local minima we apply continuation of an exponent that controls the stiffness associated with
intermediate design variables. We constrain the volume from above and use the implementation to show that optimizations with
dynamic meshes can save significant amounts of computational time compared to fixed meshes without introducing mesh depen-
dence for the mesh topology. This is despite the fact that the dynamic meshes cause oscillations of the objective function, particular
for coarse meshes in 3D. The meshes are generated using anisotropic mesh adaptation based on local mesh modifications and we
extent these modifications to preserve the information required for interpolating the design variables between meshes. We exploit
symmetry boundaries in 3D, but not in 2D. Dirichlet boundary conditions are used to prevent non-zero filtered design variables
on free boundaries. Mesh adaptation involves substantial book keeping, so the implementation totals some 5,000 lines of MAT-
LAB code, but the functions associated with the forward analysis, geometry/mesh setup and optimization are concise and well
documented, so the implementation can be used as a starting point for research on related topics.
© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the scientific committee of the 26th International Meshing Roundtable.

Keywords: MATLAB ; adaptation; elasticity; compliance; optimization

1. Introduction

1.1. Topology optimization

Compliance minimization using the density method is a decades old technology for saving weight in structural
members without sacrificing stiffness [1]. It is a free form optimization method that allows topologically different
designs to arise, i.e. it is a topology optimization method. The density method has been widely used outside structural
optimization [2,3] and it remains the most popular topology optimization method, but many other techniques exist, see
[4] and references therein. Structured meshes remain the norm despite the prevalence of unstructured meshes within

∗ Corresponding author. Tel.: +45 4525 5770.
E-mail address: kristian.jensen@nanotech.dtu.dk

1877-7058© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the scientific committee of the 26th International Meshing Roundtable.

2 Kristian Ejlebjerg Jensen / Procedia Engineering 00 (2017) 000–000

computationally aided engineering in industry, lately dynamic unstructured meshes are, however, starting to become
more popular [5,6] 1.

Nomenclature

u displacement vector
σ stress tensor
ε deformation tensor
E young’s modulus
P SIMP exponent
Lmin filter length
ρ design variable
ρ̃ filtered design variable
G shear modulus
H hessian
abs absolute tensor in principal frame (i.e. take positive value of eigenvalues)
λ Lamé’s first parameter
Ω domain
I identity tensor
M metric tensor
q norm in which to minimize interpolation error
η scaling factor
n̂ unit normal vector
V f rac volume fraction
Nt mesh complexity
imax number of optimization iterations to use
Lchar characteristic length
L1 length associated with load area
Lx length in x-direction
Lz length in z-direction
i iteration number
κ adjoint scalar (orthogonal to variations in ρ)
ũ adjoint vector (orthogonal to variations in ρ̃)
d dimensionality
ν Poisson ratio

1.2. Anisotropic mesh adaptation

Simulations where the solution has discontinuities are best accelerated using h-type mesh adaptation and when the
solutions has anisotropic features, it can be advantageous to elongate the elements accordingly. The continuous mesh
framework is the most popular setting for anisotropic mesh adaptation [8,9], because it is an excellent way to address
the issue of which mesh to generate, without having to worry about how to generate it. Local mesh modification
operations (as shown in figure 1) constitute the most robust and popular method for generating good discrete meshes
[10], but more recently it has been shown that methods based on advancing fronts can be superior in terms of mesh
quality [11]. One issue is the significant amount of book keeping associated with dynamic mesh adaptation software
and the scarcity of open source implementations [12–14].

1 The published MATLAB script shares implementation details with a WCSMO12 conference paper on heat optimization (ID 62) [7]



104 Kristian Ejlebjerg Jensen et al. / Procedia Engineering 203 (2017) 102–114
Kristian Ejlebjerg Jensen / Procedia Engineering 00 (2017) 000–000 3

Fig. 1. Four local mesh modification operations are sketched. None of the operations are allowed to decrease worst local element quality associ-
ated with the operation, except for coarsening in 3D. The operations are implemented in the adapt rmnd, adapt flipedg, adapt add nd and
adapt mvnd functions. Note that we do not apply 3D face swapping (also called 2-to-3 swapping), because the applied implementation has been
found [13] to generate equally good meshes without it.

Fig. 2. The information required for interpolating a nodal field is preserved during the mesh adaptation by relying on the fact that we can guess
an element (red) close to the element containing the old node. By dividing the domain in 3 (4 in 3D), we can make a decision as to which of
the neighboring elements is the better candidate. We continue this process until the correct element is found (dashed black). This functionality is
implemented in the elem interp and elem find functions.

It has been shown [15] that the interpolation error of a function, f , is minimized, if the mesh on which the interpo-
lation is represented satisfies the metric

M = 1
η

[
det(H)

]− 1
2q+3

H where H = abs
(
H( f )

)
. (1)

Here q is the norm of the error to be minimized, det is the determinant, H is the Hessian and abs is the absolute value
in the principal frame. Finally, η is a scaling factor, which can be eliminated by introducing a desired mesh complexity
[9], Nt, where

Nt =

∫
Ω

√
det(M)dΩ (2)

It is important to note that the metric is symmetric and positive definite, which means that one can think of it is a field
of ellipses (ellipsoids in 3D) that describe the optimal size and orientation of elements in a continuous way. The func-
tionality for calculating the metric using equations (1) and (2) is available in the metric pnorm and metric scale

functions. Note that the former takes a nodal scalar as input and applies Galerkin projections for derivative recovery,
so that a nodal Hessian can be computed, i.e.

0 =
∫
Ω

(grad( f ) − ∇ f ) · VtestdΩ

0 =
∫
Ω

(H( f ) − ∇grad( f )) : V
test

dΩ,

whereVtest andV
test

are 1st order nodal vector and tensor test functions, respectively.
We use an open source MATLAB implementation of anisotropic mesh adaptation [13], which has been extended

with this functionality for metric computation. Furthermore, we need interpolation of nodal fields between meshes
and we handle this as part of the local operations, see figure 2.

2. Setup

The density method is a popular heuristic for solving integer optimization problems by replacing the discrete
variables with continuous ones. The design variable, ρ, can thus take on any value between between zero and one,



 Kristian Ejlebjerg Jensen et al. / Procedia Engineering 203 (2017) 102–114 105
Kristian Ejlebjerg Jensen / Procedia Engineering 00 (2017) 000–000 3

Fig. 1. Four local mesh modification operations are sketched. None of the operations are allowed to decrease worst local element quality associ-
ated with the operation, except for coarsening in 3D. The operations are implemented in the adapt rmnd, adapt flipedg, adapt add nd and
adapt mvnd functions. Note that we do not apply 3D face swapping (also called 2-to-3 swapping), because the applied implementation has been
found [13] to generate equally good meshes without it.

Fig. 2. The information required for interpolating a nodal field is preserved during the mesh adaptation by relying on the fact that we can guess
an element (red) close to the element containing the old node. By dividing the domain in 3 (4 in 3D), we can make a decision as to which of
the neighboring elements is the better candidate. We continue this process until the correct element is found (dashed black). This functionality is
implemented in the elem interp and elem find functions.

It has been shown [15] that the interpolation error of a function, f , is minimized, if the mesh on which the interpo-
lation is represented satisfies the metric

M = 1
η

[
det(H)

]− 1
2q+3

H where H = abs
(
H( f )

)
. (1)

Here q is the norm of the error to be minimized, det is the determinant, H is the Hessian and abs is the absolute value
in the principal frame. Finally, η is a scaling factor, which can be eliminated by introducing a desired mesh complexity
[9], Nt, where

Nt =

∫
Ω

√
det(M)dΩ (2)

It is important to note that the metric is symmetric and positive definite, which means that one can think of it is a field
of ellipses (ellipsoids in 3D) that describe the optimal size and orientation of elements in a continuous way. The func-
tionality for calculating the metric using equations (1) and (2) is available in the metric pnorm and metric scale

functions. Note that the former takes a nodal scalar as input and applies Galerkin projections for derivative recovery,
so that a nodal Hessian can be computed, i.e.

0 =
∫
Ω

(grad( f ) − ∇ f ) · VtestdΩ

0 =
∫
Ω

(H( f ) − ∇grad( f )) : V
test

dΩ,

whereVtest andV
test

are 1st order nodal vector and tensor test functions, respectively.
We use an open source MATLAB implementation of anisotropic mesh adaptation [13], which has been extended

with this functionality for metric computation. Furthermore, we need interpolation of nodal fields between meshes
and we handle this as part of the local operations, see figure 2.

2. Setup

The density method is a popular heuristic for solving integer optimization problems by replacing the discrete
variables with continuous ones. The design variable, ρ, can thus take on any value between between zero and one,

4 Kristian Ejlebjerg Jensen / Procedia Engineering 00 (2017) 000–000

but the problem is stated such as to discourage intermediate design variables. Therefore the Young’s modulus, E is
interpolated in the design variable using the following relation [1]

E(ρ) = Emin + (Emax − Emin)ρP.

That is to say that we approximate void (ρ = 0) with a material having a low modulus Emin relative to solid (ρ =
1), where the modulus is Emax. The SIMP exponent, P, controls the stiffness associated with intermediate design
variables. It is well-known that P = 1 gives rise to a convex problem with a lot of intermediate design, but we want a
0-1 solution and thus apply an exponential continuation [16] in the exponent for the first half of the optimizations

Pi = min
(
(1 + d)

2i
imax , 1 + d

)
,

where imax is the total number of iterations, i is the iterations number and d is the dimensionality. To quantify the
amount of non-discreteness the following functional can be computed [17]

ND =
∫
Ω

4ρ(1 − ρ)dΩ
/ ∫
Ω

dΩ. (3)

The functional is computed in the get ND function. For a fully non-dicrete design (ρ = 0.5) the functional evaluates
to 100 %, while it evaluates to 0 % for a perfect 0-1 design. The stiffest design will always be ρ = 1, so we impose a
volume constraint,

0 >
∫
Ω

ρdΩ
/ ∫
Ω

dΩ − Vfrac. (4)

In order to form a well-posed problem we filter the design using a Helmholtz-type PDE [18], so that we get a filtered
design ρ̃ with a minimum length scale, Lmin. We then use this to calculate the Young’s modulus, E(ρ̃) for the linear
elasticity analysis. The governing equations thus become

0 = ∇ · σ with σ = σ
load

on ∂Ωload and u = 0 on ∂Ωsupport, where

σ = 2Gε + λITr(ε) and ε =
1
2 (∇u + [∇u]T )

G =
E(ρ̃)

2(1 + ν)
, λ =

E(ρ̃)ν
(1 + ν)(1 − 2ν)

ρ̃ = L2
min∇2ρ̃ + ρ and ∇ρ̃ · n̂ = 0 on ∂Ωunfree and ρ̃ = 0 on ∂Ωfree (5)

where σ, ε and I are the stress, deformation and identity tensor. u is the displacement vector, G is the shear modulus,
λ is the Lamé’s first parameter and ν is the Poisson ratio. We use the compliance as objective function

φ =

∫
Ω

ε : σdΩ (6)

It can be shown (see appendix) that this objective function makes the problem self-adjoint, so that the continuous
sensitivity becomes

∂φ

∂ρ
= κ, where κ = L2

min∇2κ +
∂φ

∂ρ̃
, ∇κ · n̂ = 0 on ∂Ωunfree, κ = 0 on Ωfree and

∂φ

∂ρ̃
= −ε :

(
2
∂G
∂ρ̃
ε +
∂λ

∂ρ̃
ITr(ε)

)
(7)

In other words we can compute the sensitivity with respect to the filtered design variable explicitly, but in order to get
the sensitivity with respect to the design variable itself, we have to apply the PDE filter again. By doing this we arrive
at a consistent sensitivity, which sets this work apart from [6].

We use the sensitivity to drive the mesh adaptation by requiring that the mesh minimizes the 2-norm of the inter-
polation error, see equation (1). The discrete nodal sensitivity can be calculated by multiplying the nodal values of the
continuous sensitivity with the design variable volumes associated with the nodes, see figure 3. This is done when the



106 Kristian Ejlebjerg Jensen et al. / Procedia Engineering 203 (2017) 102–114
Kristian Ejlebjerg Jensen / Procedia Engineering 00 (2017) 000–000 5

Fig. 3. The continuous sensitivity to the left is related to the discrete sensitivty to the right by way of the volumes associated with the elements. In
the interest of clarity this figure shows element wise sensitivities, but we use nodal sensitivities.

Fig. 4. The 2D and 3D cantilever problems are plotted with the support to the left and the load to the right. The initial volume and boundary mesh
for these problems are generated in the mesh cant and mesh cant3D functions.

mesh has been adapted and the design variable as well as the continuous sensitivity have been interpolated on to the
new mesh. That is to say that the mesh is adapted, before the design variables are updated.

We find that it is advantageous to use nodal design variables and we discretize the forward problem as well as the
filters with linear simplex finite elements. To avoid problems with negative filtered design variables and to simplify
assembly of the linear system associated with the forward problem, we compute a corrected filtered design variable,
which is defined element-wise as the interpolated value in the center of the element with values smaller than 0 set to
0 and values larger than 1 set to 1. In other words we solve equation (5) using the a finite element method, which is
not monotonous and therefore we choose to correct the extreme values explicitly.

The code uses the optimality criteria (optC) as optimizer and the snippet is taken directly from [19], which also
describes the simple principle on which it relies.

The complete MATLAB code is released as an open source script2. We use a direct solver for all linear system,
including the Galerkin projections associated with the derivative recovery requried for metric computations. The
linear systems are assembled and solved in the fem tri2xy, fem filter and fem hooke functions.

We consider the 2D and 3D cantilever benchmark problems as sketched in figure 4. In all cases we use the maxi-
mum Young’s modulus as characteristic stress. We use the length of the domain in the y-dimension as characteristic
length scale, and set Lx = 2Lchar, L1 = 0.1Lchar and ν = 0.3. For the 2D problem we consider plane stress only, so that

σ = 2Gε + λI
(
Tr(ε) + ∂zuz

)
, where ∂zuz = −

ν

1 − ν∇ · u in 2D

Note that the correction ∂zuz is also incorporated into equation (7).
For the 3D problem we fix Lz = 0.5Lchar and make use of symmetry so that only a quarter of the computational

domain has to be simulated. We consider the case of a single as well as two load cases. The two load cases are
combined by taking the mean of their respective objective functions.

σ
load
=

[
0 1
1 0

]
in 2D

2 https://github.com/kristianE86/trullekrul



 Kristian Ejlebjerg Jensen et al. / Procedia Engineering 203 (2017) 102–114 107
Kristian Ejlebjerg Jensen / Procedia Engineering 00 (2017) 000–000 5

Fig. 3. The continuous sensitivity to the left is related to the discrete sensitivty to the right by way of the volumes associated with the elements. In
the interest of clarity this figure shows element wise sensitivities, but we use nodal sensitivities.

Fig. 4. The 2D and 3D cantilever problems are plotted with the support to the left and the load to the right. The initial volume and boundary mesh
for these problems are generated in the mesh cant and mesh cant3D functions.

mesh has been adapted and the design variable as well as the continuous sensitivity have been interpolated on to the
new mesh. That is to say that the mesh is adapted, before the design variables are updated.

We find that it is advantageous to use nodal design variables and we discretize the forward problem as well as the
filters with linear simplex finite elements. To avoid problems with negative filtered design variables and to simplify
assembly of the linear system associated with the forward problem, we compute a corrected filtered design variable,
which is defined element-wise as the interpolated value in the center of the element with values smaller than 0 set to
0 and values larger than 1 set to 1. In other words we solve equation (5) using the a finite element method, which is
not monotonous and therefore we choose to correct the extreme values explicitly.

The code uses the optimality criteria (optC) as optimizer and the snippet is taken directly from [19], which also
describes the simple principle on which it relies.

The complete MATLAB code is released as an open source script2. We use a direct solver for all linear system,
including the Galerkin projections associated with the derivative recovery requried for metric computations. The
linear systems are assembled and solved in the fem tri2xy, fem filter and fem hooke functions.

We consider the 2D and 3D cantilever benchmark problems as sketched in figure 4. In all cases we use the maxi-
mum Young’s modulus as characteristic stress. We use the length of the domain in the y-dimension as characteristic
length scale, and set Lx = 2Lchar, L1 = 0.1Lchar and ν = 0.3. For the 2D problem we consider plane stress only, so that

σ = 2Gε + λI
(
Tr(ε) + ∂zuz

)
, where ∂zuz = −

ν

1 − ν∇ · u in 2D

Note that the correction ∂zuz is also incorporated into equation (7).
For the 3D problem we fix Lz = 0.5Lchar and make use of symmetry so that only a quarter of the computational

domain has to be simulated. We consider the case of a single as well as two load cases. The two load cases are
combined by taking the mean of their respective objective functions.

σ
load
=

[
0 1
1 0

]
in 2D

2 https://github.com/kristianE86/trullekrul

6 Kristian Ejlebjerg Jensen / Procedia Engineering 00 (2017) 000–000

σ
load
=


0 1 0
1 0 0
0 0 0

 or σ
load
=


0 0 0.5
0 0 0

0.5 0 0

 in 3D

We also vary, the target node number, the total number of iterations, the filter length and the volume fraction as listed
in table 1.

Table 1. The table shows tested parameters, where Nt is the desired mesh complexity (NA for fixed meshes), imax is the iterations count, Lmin is
the filter length and Vfrac is the volume fraction, d is the dimension and hi is the initial element size. Symmetry is exploited in 3D, but not in 2D.
The tests can be reproduced using the instructions in appendix Appendix C. The objective function value, node count, computational time and
non-discreteness measure is written in the titles of the figures in section 3.

No Nt imax Lmin Vfrac Ẽmin d hi load cases

1 NA 566 0.02 0.5 0.001 2 0.01 1
2 750 400 0.02 0.5 0.001 2 0.05 1
3 1500 566 0.02 0.5 0.001 2 0.05 1
4 3000 800 0.02 0.5 0.001 2 0.05 1

5 NA 566 0.01 0.2 0.001 3 0.02 1
6 1500 400 0.01 0.2 0.001 3 0.1 1
7 4243 566 0.01 0.2 0.001 3 0.1 1
8 12000 800 0.01 0.2 0.001 3 0.1 1

9 NA 566 0.02 0.1 0.001 3 0.02 2
10 2000 400 0.02 0.1 0.001 3 0.1 2
11 5657 566 0.02 0.1 0.001 3 0.1 2
12 16000 800 0.02 0.1 0.001 3 0.1 2

13 40000 800 0.002 0.01 0.0001 3 0.1 2

Dirichlet boundary conditions are imposed for ρ̃ and κ on boundaries, where there is neither load, support or
symmetry conditions. Finally, it is important to note that we chose to reduce the relative computational cost of mesh
adaptation by only adapting the mesh every 5th optimization iteration.

3. Results and discussion

The iteration count, objective value, number of nodes, computational time3 and non-discreteness measure (see
equation (3)) is written in the title of figures 5, 7, 8 and 9.

The 2D designs are shown in figure 5 and their objective functions are plotted in figure 6. The design topology
is independent of the mesh, but the optimizations with dynamic meshes tend to produce similar objective functions
with less computational cost. The objective function decreases with mesh refinement, which could be caused by the
areas between solid-void transitions where the design variable has to take on intermediate values. This hypothesis is
consistent with the tendency of the non-discreteness measure to decrease with mesh refinement.

The results of the 3D optimization for one and two load case are shown in figure 7 and 8, respectively, while the
corresponding optimizations with fixed meshes are shown in figure 9. Besides iso-surfaces and slices, we also show
a wireframe mesh on the boundary of the computational domain. Finally, the objective functions are plotted in figure
10. We also ran optimizations with Vfrac = 0.1 and Lmin = 0.005 (see appendix Appendix B), but the fixed meshes
(hi = 0.02) cannot resolve this filter length.

The optimizations with a single load case all give an I-beam design, which is in agreement with previous work
[6,20,21] and although the objective function oscillates significantly in 3D, the oscillations still decrease with mesh
refinement and do not prevent the dynamic meshes from providing significant computational savings compared to the
fixed mesh. The results for the problem with two load cases confirm these observations. Figure 9(right) shows the
result of optimization No 13 with Lmin = 2 · 10−3 and a 1 % volume fraction. It is thus possible to get designs with

3 on a Intel Xeon E5-2680 (2.80 GHz).



108 Kristian Ejlebjerg Jensen et al. / Procedia Engineering 203 (2017) 102–114
Kristian Ejlebjerg Jensen / Procedia Engineering 00 (2017) 000–000 7

Fig. 5. The results of optimizations No 1-4 (see table 1) indicate that the dynamic meshes give rise to the same topology with less computational
effort.

Fig. 6. The objective functions for the 2D optimizations are plotted versus the normalized iteration number. The dynamic meshes tend to produce
some oscillations, particularly for the coarse meshes, but the dynamic meshes consistently gives better objective functions than the fixed mesh.

low volume fractions using this method, but we have been unable to show mesh independence for such optimizations
and the topology seems suboptimal in the sense that connections are curved and misaligned. The oscillations are
significantly smaller in [6] and [7], which might be due to the use of coarse meshes.

Finally, figure 11 shows that the computation of the displacement field take up more than half of the computational
time for problem No 12, while the mesh adaptation and metric calculation take up a combined 30 %. If the mesh was
adapted every iteration instead of every 5th, one would thus expect it to dominate the cost. This is partly due to the
bandwidth limited nature of the vectorized MATLAB implementation [13], but on the other hand the computation of
the forward problem could also be optimized by making use of previous iterations [22] and for the fixed meshes, one
could use a structured mesh taking advantage of the speed-up that this facilitates [23]. In terms of absolute speed, the
volume fractions are important, because smaller values indicate larger weight savings. The 3D optimizations with a
single load case in figure 9 and appendix Appendix B take at least 0.6 h and 1.2 h for Vfrac = 0.2 and Vfrac = 0.1,

8 Kristian Ejlebjerg Jensen / Procedia Engineering 00 (2017) 000–000

Fig. 7. The result of optimizing for a single load case is shown by means of an iso-surface and slices orthogonal to the x-direction. All optimizations
give an I-beam design, but there are large variatios in the objective functions. The corresponding optimization with a fixed mesh is shown in figure
9 (left).

Fig. 8. Optimizing for two load cases leads to truss-structure, which appers to be mesh independent, but there are some variation in slice 3, 4 and
5, which we attribute to minor differences between the designs. Figure 9(right) shows the corresponding optimization with a fixed mesh.

respectively, while [6] take at least 2.8 h for Vfrac = 0.1 even though it uses the same mesh adaptation code and only
half the number of iterations, so the fact that the mesh is only adapted every 5th iteration is critical for achieving
efficiency. A much older work [2] used 16 CPUs to solve a similar problem with Vfrac = 0.5 in 3.9 h. on a structured
mesh.



 Kristian Ejlebjerg Jensen et al. / Procedia Engineering 203 (2017) 102–114 109
Kristian Ejlebjerg Jensen / Procedia Engineering 00 (2017) 000–000 7

Fig. 5. The results of optimizations No 1-4 (see table 1) indicate that the dynamic meshes give rise to the same topology with less computational
effort.

Fig. 6. The objective functions for the 2D optimizations are plotted versus the normalized iteration number. The dynamic meshes tend to produce
some oscillations, particularly for the coarse meshes, but the dynamic meshes consistently gives better objective functions than the fixed mesh.

low volume fractions using this method, but we have been unable to show mesh independence for such optimizations
and the topology seems suboptimal in the sense that connections are curved and misaligned. The oscillations are
significantly smaller in [6] and [7], which might be due to the use of coarse meshes.

Finally, figure 11 shows that the computation of the displacement field take up more than half of the computational
time for problem No 12, while the mesh adaptation and metric calculation take up a combined 30 %. If the mesh was
adapted every iteration instead of every 5th, one would thus expect it to dominate the cost. This is partly due to the
bandwidth limited nature of the vectorized MATLAB implementation [13], but on the other hand the computation of
the forward problem could also be optimized by making use of previous iterations [22] and for the fixed meshes, one
could use a structured mesh taking advantage of the speed-up that this facilitates [23]. In terms of absolute speed, the
volume fractions are important, because smaller values indicate larger weight savings. The 3D optimizations with a
single load case in figure 9 and appendix Appendix B take at least 0.6 h and 1.2 h for Vfrac = 0.2 and Vfrac = 0.1,

8 Kristian Ejlebjerg Jensen / Procedia Engineering 00 (2017) 000–000

Fig. 7. The result of optimizing for a single load case is shown by means of an iso-surface and slices orthogonal to the x-direction. All optimizations
give an I-beam design, but there are large variatios in the objective functions. The corresponding optimization with a fixed mesh is shown in figure
9 (left).

Fig. 8. Optimizing for two load cases leads to truss-structure, which appers to be mesh independent, but there are some variation in slice 3, 4 and
5, which we attribute to minor differences between the designs. Figure 9(right) shows the corresponding optimization with a fixed mesh.

respectively, while [6] take at least 2.8 h for Vfrac = 0.1 even though it uses the same mesh adaptation code and only
half the number of iterations, so the fact that the mesh is only adapted every 5th iteration is critical for achieving
efficiency. A much older work [2] used 16 CPUs to solve a similar problem with Vfrac = 0.5 in 3.9 h. on a structured
mesh.



110 Kristian Ejlebjerg Jensen et al. / Procedia Engineering 203 (2017) 102–114

Kristian Ejlebjerg Jensen / Procedia Engineering 00 (2017) 000–000 9

Fig. 9. The results of the 3D optimizations with fixed meshes (No 5 and 9) are shown for one (left) and two load cases (center). The corresponding
optimization with fixed meshes are shown in figures 7 and 8. Note that the large linear systems associated with these optimizations require
significant amounts of memory. Finally, the result of optimization No 13 is shown to the right.

Fig. 10. The dynamic meshes give rise to large oscillations in 3D, but they still outperform the fixed meshes.

4. Conclusion

We have demonstrated a pure MATLAB implementation for solving volume constrained minimum compliance
problems using the density method and anisotropic mesh adaptation. The mesh adaptation relies on local mesh
modifications and in performing these we make sure to preserve the information required for interpolating the nodal
design variables and sensitivities between meshes. We are able to demonstrate mesh independence for a 2D/3D
cantilever problems and in 3D we even achieve this for two load cases. There are issues with oscillating objective
functions in 3D, but these appear to decrease with mesh refinement and so does the degree of non-discreteness.

Despite the tendency of the MATLAB implementation mesh adaptation to require substantial computational effort,
the dynamic meshes still tend to provide better objective functions than the fixed meshes – and for a fraction of the
computational effort.

The published code facilitates reproducibility, but we also hope that it can serve to increase the use of dynamic
meshes within the field of topology optimization and research on computationally aided engineering in general.

10 Kristian Ejlebjerg Jensen / Procedia Engineering 00 (2017) 000–000

Fig. 11. Optimization No 12 with an average node count of 18576 is analyzed with respect to the relative amount of computational time spent in
various segments of the code. Calculation of the displacement field dominates, but the mesh adaptation and the related metric computation also
take up a significant proportion of the computational time.

Acknowledgements

This work is supported by the Villum Foundation (Grant No. 9301) and the Danish Council for Independent
Research (DNRF122).

Appendix A. Continuous sensitivity analysis

The objective function and governing equations are

φ =

∫
Ω

ε : σdΩ (A.1)

0 = ∇ · σ with σ = σ
load

on ∂Ωload and u = 0 on ∂Ωsupport

σ = 2Gε + λITr(ε) and ε =
1
2 (∇u + [∇u]T )

G =
E

2(1 + ν)
, λ =

Eν
(1 + ν)(1 − 2ν)

, E = Emin + (Emax − Emin)ρ̃P,

ρ̃ = L2
min∇2ρ̃ + ρ and ρ̃ = 0 on Ωfree, ∇ρ̃ · n̂ = 0 on Ωunfree

We now introduce the adjoint displacement field, ũ, which is invariant with respect to perturbations in the filtered
design variable field.

0 =
∫
Ω

ũ · ∇ · σdΩ

=

∫
∂Ω

ũ · σ · n̂ds −
∫
Ω

∇ũ : σdΩ

=

∫
∂Ω

ũ · σ · n̂ds −
∫
Ω

ε̃ : σdΩ where ε̃ =
1
2 (∇ũ + [∇ũ]T )

The variation with respect to the filtered design variable, ρ̃ becomes

0 =
∫
∂Ω

ũ ·
∂σ

∂ρ̃
· n̂δρ̃ds −

∫
Ω


∂ε̃

∂ρ̃
: σ + ε̃ :

∂σ

∂ρ̃

 δρ̃dΩ

=

∫
∂Ω

ũ ·
∂σ

∂ρ̃
· n̂δρ̃ds −

∫
Ω

ε̃ :

2
∂G
∂ρ̃
ε + 2G

∂ε

∂ρ̃
+
∂λ

∂ρ̃
ITr(ε) + λI

[
I :
∂ε

∂ρ̃

]
 δρ̃dΩ

=

∫
∂Ω

ũ ·
∂σ

∂ρ̃
· n̂δρ̃ds −

∫
Ω

ε̃ :

2
∂G
∂ρ̃
ε + 2G

∂ε

∂ρ̃

 +
∂λ

∂ρ̃
ε : ITr(ε̃) +

∂ε

∂ρ̃
: λITr(ε̃)

 δρ̃dΩ (A.2)



 Kristian Ejlebjerg Jensen et al. / Procedia Engineering 203 (2017) 102–114 111

Kristian Ejlebjerg Jensen / Procedia Engineering 00 (2017) 000–000 9

Fig. 9. The results of the 3D optimizations with fixed meshes (No 5 and 9) are shown for one (left) and two load cases (center). The corresponding
optimization with fixed meshes are shown in figures 7 and 8. Note that the large linear systems associated with these optimizations require
significant amounts of memory. Finally, the result of optimization No 13 is shown to the right.

Fig. 10. The dynamic meshes give rise to large oscillations in 3D, but they still outperform the fixed meshes.

4. Conclusion

We have demonstrated a pure MATLAB implementation for solving volume constrained minimum compliance
problems using the density method and anisotropic mesh adaptation. The mesh adaptation relies on local mesh
modifications and in performing these we make sure to preserve the information required for interpolating the nodal
design variables and sensitivities between meshes. We are able to demonstrate mesh independence for a 2D/3D
cantilever problems and in 3D we even achieve this for two load cases. There are issues with oscillating objective
functions in 3D, but these appear to decrease with mesh refinement and so does the degree of non-discreteness.

Despite the tendency of the MATLAB implementation mesh adaptation to require substantial computational effort,
the dynamic meshes still tend to provide better objective functions than the fixed meshes – and for a fraction of the
computational effort.

The published code facilitates reproducibility, but we also hope that it can serve to increase the use of dynamic
meshes within the field of topology optimization and research on computationally aided engineering in general.

10 Kristian Ejlebjerg Jensen / Procedia Engineering 00 (2017) 000–000

Fig. 11. Optimization No 12 with an average node count of 18576 is analyzed with respect to the relative amount of computational time spent in
various segments of the code. Calculation of the displacement field dominates, but the mesh adaptation and the related metric computation also
take up a significant proportion of the computational time.

Acknowledgements

This work is supported by the Villum Foundation (Grant No. 9301) and the Danish Council for Independent
Research (DNRF122).

Appendix A. Continuous sensitivity analysis

The objective function and governing equations are

φ =

∫
Ω

ε : σdΩ (A.1)

0 = ∇ · σ with σ = σ
load

on ∂Ωload and u = 0 on ∂Ωsupport

σ = 2Gε + λITr(ε) and ε =
1
2 (∇u + [∇u]T )

G =
E

2(1 + ν)
, λ =

Eν
(1 + ν)(1 − 2ν)

, E = Emin + (Emax − Emin)ρ̃P,

ρ̃ = L2
min∇2ρ̃ + ρ and ρ̃ = 0 on Ωfree, ∇ρ̃ · n̂ = 0 on Ωunfree

We now introduce the adjoint displacement field, ũ, which is invariant with respect to perturbations in the filtered
design variable field.

0 =
∫
Ω

ũ · ∇ · σdΩ

=

∫
∂Ω

ũ · σ · n̂ds −
∫
Ω

∇ũ : σdΩ

=

∫
∂Ω

ũ · σ · n̂ds −
∫
Ω

ε̃ : σdΩ where ε̃ =
1
2 (∇ũ + [∇ũ]T )

The variation with respect to the filtered design variable, ρ̃ becomes

0 =
∫
∂Ω

ũ ·
∂σ

∂ρ̃
· n̂δρ̃ds −

∫
Ω


∂ε̃

∂ρ̃
: σ + ε̃ :

∂σ

∂ρ̃

 δρ̃dΩ

=

∫
∂Ω

ũ ·
∂σ

∂ρ̃
· n̂δρ̃ds −

∫
Ω

ε̃ :

2
∂G
∂ρ̃
ε + 2G

∂ε

∂ρ̃
+
∂λ

∂ρ̃
ITr(ε) + λI

[
I :
∂ε

∂ρ̃

]
 δρ̃dΩ

=

∫
∂Ω

ũ ·
∂σ

∂ρ̃
· n̂δρ̃ds −

∫
Ω

ε̃ :

2
∂G
∂ρ̃
ε + 2G

∂ε

∂ρ̃

 +
∂λ

∂ρ̃
ε : ITr(ε̃) +

∂ε

∂ρ̃
: λITr(ε̃)

 δρ̃dΩ (A.2)



112 Kristian Ejlebjerg Jensen et al. / Procedia Engineering 203 (2017) 102–114
Kristian Ejlebjerg Jensen / Procedia Engineering 00 (2017) 000–000 11

where we have used that

ε̃ : λI
[
I :
∂ε

∂ρ̃

]
=
∂ε

∂ρ̃
: λITr(ε̃) (A.3)

The variation of the objective function with respect to ρ̃ becomes

δφ =

∫
Ω


∂ε

∂ρ̃
: σ + ε :

∂σ

∂ρ̃

 δρ̃dΩ

=

∫
Ω


∂ε

∂ρ̃
:
[
2Gε + λITr(ε)

]
+ ε :

2
∂G
∂ρ̃
ε + 2G

∂ε

∂ρ̃
+
∂λ

∂ρ̃
λITr(ε) + λI

I :
∂ε

∂ρ̃



 δρ̃dΩ

=

∫
Ω


∂ε

∂ρ̃
:
[
4Gε + 2λITr(ε)

]
+ ε :

[
2
∂G
∂ρ̃
ε +
∂λ

∂ρ̃
ITr(ε)

] δρ̃dΩ, (A.4)

Where we once again made use of equation (A.3)4. Adding two times equation (A.2) to (A.4) yields

δφ = 2
∫
∂Ω

ũ ·
∂σ

∂ρ̃
· n̂δρ̃ds

+

∫
Ω

∂ε

∂ρ̃
:
(
4G(ε − ε̃) + 2λI

[
Tr(ε) − Tr(ε̃)

])
δρ̃dΩ

+

∫
Ω

ε :
(
2
∂G
∂ρ̃

(ε − 2ε̃) +
∂λ

∂ρ̃
I
[
Tr(ε) − 2Tr(ε̃)

])
δρ̃dΩ, (A.5)

so the derivative of ε with respect to ρ̃ drops out, when ε = ε̃, i.e. the problem is self-adjoint. Furthermore the boundary
term drops out, if only fixed load and support (u = ũ = 0) boundary conditions are used. Thus the sensitivity becomes

∂φ

∂ρ̃
= −ε :

(
2
∂G
∂ρ̃
ε +
∂λ

∂ρ̃
ITr(ε)

)

We now introduce an adjoint field, κ, which is invariant with respect to perturbations in the design variable.

0 =
∫
Ω

κ
(
ρ − ρ̃ + L2

min∇2ρ̃
)

dΩ

=

∫
∂Ω

κL2
min

︷︸︸︷
∇ρ̃ · n̂ 0ds +

∫
Ω

(
κ(ρ − ρ̃) − L2

min∇ ˜rho · ∇κ
)

dΩ

=

∫
∂Ω

L2
min (κ∇ρ̃ − ρ̃∇κ) · n̂ds +

∫
Ω

(
κ(ρ − ρ̃) + ρ̃L2

min∇2κ
)

dΩ

The variation with respect to the design variable thus becomes

0 =
∫
∂Ω

L2
min

(
κ∇∂ρ̃
∂ρ
− ∂ρ̃
∂ρ
∇κ
)
· n̂δρds +

∫
Ω

(
κ

(
1 − ∂ρ̃
∂ρ

)
+
∂ρ̃

∂ρ
L2

min∇2κ

)
δρdΩ (A.6)

The variation of the objective function can be expressed as

δφ =

∫
Ω

∂φ

∂ρ̃

∂ρ̃

∂ρ
δρdΩ

Adding equation (A.6) yields

δφ =

∫
Ω

(
∂φ

∂ρ̃

∂ρ̃

∂ρ
+ κ

(
1 − ∂ρ̃
∂ρ

)
+
∂ρ̃

∂ρ
L2

min∇2κ

)
δρdΩ

4 with ε̃ = ε

12 Kristian Ejlebjerg Jensen / Procedia Engineering 00 (2017) 000–000

Fig. B.12. The result of optimizing for a single load case with Vfrac=0.1 is shown. The design is topologically independent, but there is a slight
variation in the gap size for slice # 2.

−
∫
∂Ω

L2
min (κ∇ρ̃ − ρ̃∇κ) · n̂ds +

∫
Ω

(
κ(ρ − ρ̃) + ρ̃L2

min∇2κ
)
· n̂δρds

=

∫
Ω

(
∂ρ̃

∂ρ

[
∂φ

∂ρ̃
− κ + L2

min∇2κ

]
+ κ

)
δρdΩ

+

∫
∂Ω

L2
min (κ∇ρ̃ − ρ̃∇κ) · n̂ds +

∫
Ω

(
κ(ρ − ρ̃) + ρ̃L2

min∇2κ
)
· n̂δρds

I.e.

∂φ

∂ρ
= κ, where κ = L2

min∇2κ +
∂φ

∂ρ̃
, ∇κ · n̂ = 0 on ∂Ωunfree and κ = 0 on Ωfree

Appendix B. One load case with Vfrac = 0.1

Setting Vfrac = 0.1 and Lmin = 0.005 with Nt = 3000, Nt = 8485 and Nt = 24000 for itmax = 400, itmax = 566 and
itmax = 800 yields the results in figure B.12

Appendix C. Reproduction

The results can be reproduced using the top5001.m script (available at
https://github.com/kristianE86/trullekrul):

top5001(nan,2e-2,0.5,0.3,false,2,1, [],1/50,400,1e-2,'fig5a',1.025,5,false);
top5001(7.5e2,2e-2,0.5,0.3,false,2,1, [],1/20,400,1e-2,'fig5b',1.025,5,false);
top5001(1.5e3,2e-2,0.5,0.3,false,2,1, [],1/20,566,1e-2,'fig5c',1.025,5,false);
top5001(3e3 ,2e-2,0.5,0.3,false,2,1, [],1/20,800,1e-2,'fig5d',1.025,5,false);
top5001(nan ,2e-2 ,0.2,0.3,true ,2,0.5,0.25,1/50,566,1e-3,'fig9a',1.025,false,2);
top5001(1.5e3 ,2e-2 ,0.2,0.3,true ,2,0.5,0.25,1/10,400,1e-3,'fig7a',1.025,5,2);
top5001(round(3e3*sqrt(2)) ,2e-2 ,0.2,0.3,true ,2,0.5,0.25,1/10,566,1e-3,'fig7b',1.025,5,2);
top5001(1.2e4 ,2e-2 ,0.2,0.3,true ,2,0.5,0.25,1/10,800,1e-3,'fig7c',1.025,5,2);
top5001(nan ,2e-2 ,0.1,0.3,2 ,2,0.5,0.25,1/50,566,1e-3,'fig9b',1.025,false,2);
top5001(2e3 ,2e-2 ,0.1,0.3,2 ,2,0.5,0.25,1/10,400,1e-3,'fig8a',1.025,5,2);
top5001(round(4e3*sqrt(2)) ,2e-2,0.1,0.3,2 ,2,0.5,0.25,1/10,566,1e-3,'fig8b',1.025,5,2);



 Kristian Ejlebjerg Jensen et al. / Procedia Engineering 203 (2017) 102–114 113
Kristian Ejlebjerg Jensen / Procedia Engineering 00 (2017) 000–000 11

where we have used that

ε̃ : λI
[
I :
∂ε

∂ρ̃

]
=
∂ε

∂ρ̃
: λITr(ε̃) (A.3)

The variation of the objective function with respect to ρ̃ becomes

δφ =

∫
Ω


∂ε

∂ρ̃
: σ + ε :

∂σ

∂ρ̃

 δρ̃dΩ

=

∫
Ω


∂ε

∂ρ̃
:
[
2Gε + λITr(ε)

]
+ ε :

2
∂G
∂ρ̃
ε + 2G

∂ε

∂ρ̃
+
∂λ

∂ρ̃
λITr(ε) + λI

I :
∂ε

∂ρ̃



 δρ̃dΩ

=

∫
Ω


∂ε

∂ρ̃
:
[
4Gε + 2λITr(ε)

]
+ ε :

[
2
∂G
∂ρ̃
ε +
∂λ

∂ρ̃
ITr(ε)

] δρ̃dΩ, (A.4)

Where we once again made use of equation (A.3)4. Adding two times equation (A.2) to (A.4) yields

δφ = 2
∫
∂Ω

ũ ·
∂σ

∂ρ̃
· n̂δρ̃ds

+

∫
Ω

∂ε

∂ρ̃
:
(
4G(ε − ε̃) + 2λI

[
Tr(ε) − Tr(ε̃)

])
δρ̃dΩ

+

∫
Ω

ε :
(
2
∂G
∂ρ̃

(ε − 2ε̃) +
∂λ

∂ρ̃
I
[
Tr(ε) − 2Tr(ε̃)

])
δρ̃dΩ, (A.5)

so the derivative of ε with respect to ρ̃ drops out, when ε = ε̃, i.e. the problem is self-adjoint. Furthermore the boundary
term drops out, if only fixed load and support (u = ũ = 0) boundary conditions are used. Thus the sensitivity becomes

∂φ

∂ρ̃
= −ε :

(
2
∂G
∂ρ̃
ε +
∂λ

∂ρ̃
ITr(ε)

)

We now introduce an adjoint field, κ, which is invariant with respect to perturbations in the design variable.

0 =
∫
Ω

κ
(
ρ − ρ̃ + L2

min∇2ρ̃
)

dΩ

=

∫
∂Ω

κL2
min

︷︸︸︷
∇ρ̃ · n̂ 0ds +

∫
Ω

(
κ(ρ − ρ̃) − L2

min∇ ˜rho · ∇κ
)

dΩ

=

∫
∂Ω

L2
min (κ∇ρ̃ − ρ̃∇κ) · n̂ds +

∫
Ω

(
κ(ρ − ρ̃) + ρ̃L2

min∇2κ
)

dΩ

The variation with respect to the design variable thus becomes

0 =
∫
∂Ω

L2
min

(
κ∇∂ρ̃
∂ρ
− ∂ρ̃
∂ρ
∇κ
)
· n̂δρds +

∫
Ω

(
κ

(
1 − ∂ρ̃
∂ρ

)
+
∂ρ̃

∂ρ
L2

min∇2κ

)
δρdΩ (A.6)

The variation of the objective function can be expressed as

δφ =

∫
Ω

∂φ

∂ρ̃

∂ρ̃

∂ρ
δρdΩ

Adding equation (A.6) yields

δφ =

∫
Ω

(
∂φ

∂ρ̃

∂ρ̃

∂ρ
+ κ

(
1 − ∂ρ̃
∂ρ

)
+
∂ρ̃

∂ρ
L2

min∇2κ

)
δρdΩ

4 with ε̃ = ε

12 Kristian Ejlebjerg Jensen / Procedia Engineering 00 (2017) 000–000

Fig. B.12. The result of optimizing for a single load case with Vfrac=0.1 is shown. The design is topologically independent, but there is a slight
variation in the gap size for slice # 2.

−
∫
∂Ω

L2
min (κ∇ρ̃ − ρ̃∇κ) · n̂ds +

∫
Ω

(
κ(ρ − ρ̃) + ρ̃L2

min∇2κ
)
· n̂δρds

=

∫
Ω

(
∂ρ̃

∂ρ

[
∂φ

∂ρ̃
− κ + L2

min∇2κ

]
+ κ

)
δρdΩ

+

∫
∂Ω

L2
min (κ∇ρ̃ − ρ̃∇κ) · n̂ds +

∫
Ω

(
κ(ρ − ρ̃) + ρ̃L2

min∇2κ
)
· n̂δρds

I.e.

∂φ

∂ρ
= κ, where κ = L2

min∇2κ +
∂φ

∂ρ̃
, ∇κ · n̂ = 0 on ∂Ωunfree and κ = 0 on Ωfree

Appendix B. One load case with Vfrac = 0.1

Setting Vfrac = 0.1 and Lmin = 0.005 with Nt = 3000, Nt = 8485 and Nt = 24000 for itmax = 400, itmax = 566 and
itmax = 800 yields the results in figure B.12

Appendix C. Reproduction

The results can be reproduced using the top5001.m script (available at
https://github.com/kristianE86/trullekrul):

top5001(nan,2e-2,0.5,0.3,false,2,1, [],1/50,400,1e-2,'fig5a',1.025,5,false);
top5001(7.5e2,2e-2,0.5,0.3,false,2,1, [],1/20,400,1e-2,'fig5b',1.025,5,false);
top5001(1.5e3,2e-2,0.5,0.3,false,2,1, [],1/20,566,1e-2,'fig5c',1.025,5,false);
top5001(3e3 ,2e-2,0.5,0.3,false,2,1, [],1/20,800,1e-2,'fig5d',1.025,5,false);
top5001(nan ,2e-2 ,0.2,0.3,true ,2,0.5,0.25,1/50,566,1e-3,'fig9a',1.025,false,2);
top5001(1.5e3 ,2e-2 ,0.2,0.3,true ,2,0.5,0.25,1/10,400,1e-3,'fig7a',1.025,5,2);
top5001(round(3e3*sqrt(2)) ,2e-2 ,0.2,0.3,true ,2,0.5,0.25,1/10,566,1e-3,'fig7b',1.025,5,2);
top5001(1.2e4 ,2e-2 ,0.2,0.3,true ,2,0.5,0.25,1/10,800,1e-3,'fig7c',1.025,5,2);
top5001(nan ,2e-2 ,0.1,0.3,2 ,2,0.5,0.25,1/50,566,1e-3,'fig9b',1.025,false,2);
top5001(2e3 ,2e-2 ,0.1,0.3,2 ,2,0.5,0.25,1/10,400,1e-3,'fig8a',1.025,5,2);
top5001(round(4e3*sqrt(2)) ,2e-2,0.1,0.3,2 ,2,0.5,0.25,1/10,566,1e-3,'fig8b',1.025,5,2);



114 Kristian Ejlebjerg Jensen et al. / Procedia Engineering 203 (2017) 102–114
Kristian Ejlebjerg Jensen / Procedia Engineering 00 (2017) 000–000 13

top5001(1.6e4 ,2e-2 ,0.1,0.3,2 ,2,0.5,0.25,1/10,800,1e-3,'fig8c',1.025,5,2);
top5001(4e4 ,2e-3 ,0.01,0.3,2 ,2,0.5,0.25,1/10,800,1e-4,'fig9c',1.025,5,2);
top5001(3e3 ,5e-3 ,0.1,0.3,true ,2,0.5,0.25,1/10,400,1e-3,'fig12a',1.025,5,2);
top5001(round(6e3*sqrt(2)) ,5e-3 ,0.1,0.3,true ,2,0.5,0.25,1/10,566,1e-3,'fig12b',1.025,5,2);
top5001(2.4e3 ,5e-3 ,0.1,0.3,true ,2,0.5,0.25,1/10,800,1e-3,'fig12c',1.025,5,2);

References

[1] M. P. Bendsøe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Computer methods in applied
mechanics and engineering 71 (1988) 197–224.

[2] T. Borrvall, J. Petersson, Topology optimization of fluids in stokes flow, International journal for numerical methods in fluids 41 (2003) 77–107.
[3] A. Gersborg-Hansen, M. P. Bendsøe, O. Sigmund, Topology optimization of heat conduction problems using the finite volume method,

Structural and multidisciplinary optimization 31 (2006) 251–259.
[4] O. Sigmund, K. Maute, Topology optimization approaches, Structural and Multidisciplinary Optimization 48 (2013) 1031–1055.
[5] A. N. Christiansen, J. A. Bærentzen, M. Nobel-Jørgensen, N. Aage, O. Sigmund, Combined shape and topology optimization of 3d structures,

Computers & Graphics 46 (2015) 25–35.
[6] K. E. Jensen, Anisotropic mesh adaptation and topology optimization in three dimensions, Journal of Mechanical Design 138 (2016) 061401.
[7] K. E. Jensen, Combining anisotropic mesh adaptation, heat conduction and topology optimization, in: 12th World Congress on Structural and

Multidisciplinary Optimization, Springer, 2017.
[8] C. Pain, A. Umpleby, C. De Oliveira, A. Goddard, Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element

calculations, Computer Methods in Applied Mechanics and Engineering 190 (2001) 3771–3796.
[9] A. Loseille, F. Alauzet, Continuous mesh framework part i: well-posed continuous interpolation error, SIAM Journal on Numerical Analysis

49 (2011) 38–60.
[10] L. A. Freitag, C. Ollivier-Gooch, Tetrahedral mesh improvement using swapping and smoothing, International Journal for Numerical Methods

in Engineering 40 (1997) 3979–4002.
[11] A. Loseille, Metric-orthogonal anisotropic mesh generation, Procedia Engineering 82 (2014) 403–415.
[12] Y. Vassilevski, Advanced numerical methods in mesh generation and mesh adaptation a. agouzal [1] a. danilov [2] k. lipnikov [3], Computa-

tional Mathematics and Mathematical Physics 50 (2010) 139–156.
[13] K. E. Jensen, G. Gorman, Details of tetrahedral anisotropic mesh adaptation, Computer Physics Communications 201 (2016) 135–143.
[14] G. Rokos, G. J. Gorman, K. E. Jensen, P. H. Kelly, Thread parallelism for highly irregular computation in anisotropic mesh adaptation, in:

Proceedings of the 3rd International Conference on Exascale Applications and Software, University of Edinburgh, 2015, pp. 103–108.
[15] L. Chen, P. Sun, J. Xu, Optimal anisotropic meshes for minimizing interpolation errors in Lp-norm, Mathematics of Computation 76 (2007)

179–204.
[16] A. A. Groenwold, L. Etman, A quadratic approximation for structural topology optimization, International Journal for Numerical Methods in

Engineering 82 (2010) 505–524.
[17] O. Sigmund, Morphology-based black and white filters for topology optimization, Structural and Multidisciplinary Optimization 33 (2007)

401–424.
[18] B. S. Lazarov, O. Sigmund, Filters in topology optimization based on helmholtz-type differential equations, International Journal for Numerical

Methods in Engineering 86 (2011) 765–781.
[19] E. Andreassen, A. Clausen, M. Schevenels, B. S. Lazarov, O. Sigmund, Efficient topology optimization in matlab using 88 lines of code,

Structural and Multidisciplinary Optimization 43 (2011) 1–16.
[20] S. Wang, E. d. Sturler, G. H. Paulino, Large-scale topology optimization using preconditioned krylov subspace methods with recycling,

International Journal for Numerical Methods in Engineering 69 (2007) 2441–2468.
[21] T. Borrvall, J. Petersson, Large-scale topology optimization in 3d using parallel computing, Computer methods in applied mechanics and

engineering 190 (2001) 6201–6229.
[22] O. Amir, M. Stolpe, O. Sigmund, Efficient use of iterative solvers in nested topology optimization, Structural and Multidisciplinary Optimiza-

tion 42 (2010) 55–72.
[23] G.-T. Bercea, A. T. McRae, D. A. Ham, L. Mitchell, F. Rathgeber, L. Nardi, F. Luporini, P. H. Kelly, A structure-exploiting numbering

algorithm for finite elements on extruded meshes, and its performance evaluation in firedrake, arXiv preprint arXiv:1604.05937 (2016).


