Formalization of Bachmair and Ganzinger's Ordered Resolution Prover

Schlichtkrull, Anders; Blanchette, Jasmin Christian; Traytel, Dmitriy; Waldmann, Uwe
Published in:
Archive of Formal Proofs

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Schlichtkrull, A., Blanchette, J. C., Traytel, D., \& Waldmann, U. (2018). Formalization of Bachmair and Ganzinger's Ordered Resolution Prover. Archive of Formal Proofs.

DTU Library

Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Formalization of Bachmair and Ganzinger's Ordered Resolution Prover

Anders Schlichtkrull, Jasmin Christian Blanchette, Dmitriy Traytel, and Uwe Waldmann

January 22, 2018

Abstract

This Isabelle/HOL formalization covers Sections 2 to 4 of Bachmair and Ganzinger's "Resolution Theorem Proving" chapter in the Handbook of Automated Reasoning. This includes soundness and completeness of unordered and ordered variants of ground resolution with and without literal selection, the standard redundancy criterion, a general framework for refutational theorem proving, and soundness and completeness of an abstract first-order prover.

Contents

1 Introduction 2
2 Map Function on Two Parallel Lists 2
3 Liminf of Lazy Lists 4
4 Relational Chains over Lazy Lists 6
4.1 Chains 7
4.2 Full Chains 16
5 Clausal Logic 17
5.1 Literals 17
5.2 Clauses 20
6 Herbrand Intepretation 22
7 Abstract Substitutions 23
7.1 Library 24
7.2 Substitution Operators 24
7.3 Substitution Lemmas 27
7.3.1 Identity Substitution 27
7.3.2 Associativity of Composition 28
7.3.3 Compatibility of Substitution and Composition 28
7.3.4 "Commutativity" of Membership and Substitution 29
7.3.5 Signs and Substitutions 29
7.3.6 Substitution on Literal(s) 29
7.3.7 Substitution on Empty 29
7.3.8 Substitution on a Union 31
7.3.9 Substitution on a Singleton 31
7.3.10 Substitution on op \# 31
7.3.11 Substitution on $t l$ 32
7.3.12 Substitution on op ! 32
7.3.13 Substitution on Various Other Functions 32
7.3.14 Renamings 33
7.3.15 Monotonicity 34
7.3.16 Size after Substitution 34
7.3.17 Variable Disjointness 34
7.3.18 Ground Expressions and Substitutions 35
7.3.19 Subsumption 37
7.3.20 Unifiers 37
7.3.21 Most General Unifier 37
7.3.22 Generalization and Subsumption 37
7.4 Most General Unifiers 40
8 Refutational Inference Systems 41
8.1 Preliminaries 41
8.2 Refutational Completeness 42
8.3 Compactness 43
9 Candidate Models for Ground Resolution 45
10 Ground Unordered Resolution Calculus 51
10.1 Inference Rule 51
10.2 Inference System 53
11 Ground Ordered Resolution Calculus with Selection 53
11.1 Inference Rule 53
11.2 Inference System 60
12 Theorem Proving Processes 60
13 The Standard Redundancy Criterion 65
14 First-Order Ordered Resolution Calculus with Selection 70
14.1 Library 71
14.2 First-Order Logic 71
14.3 Calculus 72
14.4 Soundness 72
14.5 Other Basic Properties 75
14.6 Inference System 75
14.7 Lifting 78
15 An Ordered Resolution Prover for First-Order Clauses 90

1 Introduction

Bachmair and Ganzinger's "Resolution Theorem Proving" chapter in the Handbook of Automated Reasoning is the standard reference on the topic. It defines a general framework for propositional and first-order resolution-based theorem proving. Resolution forms the basis for superposition, the calculus implemented in many popular automatic theorem provers.

This Isabelle/HOL formalization covers Sections 2.1, 2.2, 2.4, 2.5, 3, 4.1, 4.2, and 4.3 of Bachmair and Ganzinger's chapter. Section 2 focuses on preliminaries. Section 3 introduces unordered and ordered variants of ground resolution with and without literal selection and proves them refutationally complete. Section 4.1 presents a framework for theorem provers based on refutation and saturation. Finally, Section 4.2 generalizes the refutational completeness argument and introduces the standard redundancy criterion, which can be used in conjunction with ordered resolution. Section 4.3 lifts the result to a first-order prover, specified as a calculus. Figure 1 shows the corresponding Isabelle theory structure.

2 Map Function on Two Parallel Lists

```
theory Map2
    imports Main
begin
```

This theory defines a map function that applies a (curried) binary function elementwise to two parallel lists.

Figure 1: Theory dependency graph

The definition is taken from https://www.isa-afp.org/browser_info/current/AFP/Jinja/Listn.html.

```
abbreviation map2 \(::\left({ }^{\prime} a \Rightarrow{ }^{\prime} b \Rightarrow^{\prime} c\right) \Rightarrow{ }^{\prime} a\) list \(\Rightarrow{ }^{\prime} b\) list \(\Rightarrow^{\prime} c\) list where
    map2 f xs ys \(\equiv\) map (case_prod \(f)(\) zip xs ys)
```

lemma map2_empty_iff $[s i m p]:$ map2 f xs $y s=[] \longleftrightarrow x s=[] \vee y s=[]$
by (metis Nil_is_map_conv list.exhaust list.simps(3) zip.simps(1) zip_Cons_Cons zip_Nil)
lemma image_map2: length $t=$ length $s \Longrightarrow g ' \operatorname{set}($ map2 $f t s)=\operatorname{set}(\operatorname{map2}(\lambda a b \cdot g(f a b)) t s)$
by auto
lemma map2_tl: length $t=$ length $s \Longrightarrow$ map2 $f(t l t)(t l s)=t l($ map2 $f t s)$
by (metis (no_types, lifting) hd_Cons_tl list.sel(3) map2_empty_iff map_tl tl_Nil zip_Cons_Cons)
lemma map_zip_assoc:
$\operatorname{map} f($ zip $(z i p x s y s) z s)=\operatorname{map}(\lambda(x, y, z) . f((x, y), z))(z i p x s(z i p y s z s))$
by (induct zs arbitrary: xs ys) (auto simp add: zip.simps(2) split: list.splits)
lemma set_map2_ex:
assumes length $t=$ length s

proof (rule; rule)
fix x
assume $x \in \operatorname{set}(\operatorname{map} 2 f s t)$
then obtain i where $i_{\text {_ }}: 1<$ length $($ map2 $f s t) \wedge x=\operatorname{map2f} s t!i$
by (metis in_set_conv_nth)
from $i_{-} p$ have $i<$ length t
by auto
moreover from this $i_{-} p$ have $x=f(s!i)(t!i)$
using assms by auto
ultimately show $x \in\{x . \exists i<$ length $t . x=f(s!i)(t!i)\}$
using assms by auto
next
fix x
assume $x \in\{x . \exists i<$ length $t . x=f(s!i)(t!i)\}$
then obtain i where $i_{-} p: i<$ length $t \wedge x=f(s!i)(t!i)$
by auto
then have $i<$ length (map2 $f s t$)
using assms by auto
moreover from $i_{-} p$ have $x=\operatorname{map} 2 f s t!i$
using assms by auto
ultimately show $x \in \operatorname{set}($ map $2 f s t$)
by (metis in_set_conv_nth)
qed
end

3 Liminf of Lazy Lists

```
theory Lazy_List_Liminf
    imports Coinductive.Coinductive_List
begin
```

Lazy lists, as defined in the Archive of Formal Proofs, provide finite and infinite lists in one type, defined coinductively. The present theory introduces the concept of the union of all elements of a lazy list of sets and the limit of such a lazy list. The definitions are stated more generally in terms of lattices. The basis for this theory is Section 4.1 ("Theorem Proving Processes") of Bachmair and Ganzinger's chapter.

```
definition Sup_llist :: 'a set llist \(\Rightarrow\) 'a set where
    Sup_llist Xs \(=(\bigcup i \in\{i\). enat \(i<l l e n g t h X s\}\). Inth \(X s i)\)
lemma lnth_subset_Sup_llist: enat \(i<\) llength \(x s \Longrightarrow\) lnth xs \(i \subseteq\) Sup_llist xs
    unfolding Sup_llist_def by auto
```

```
lemma Sup_llist_LNil[simp]: Sup_llist LNil = {}
    unfolding Sup_llist_def by auto
lemma Sup_llist_LCons[simp]: Sup_llist (LCons X Xs) = X \cup Sup_llist Xs
    unfolding Sup_llist_def
proof (intro subset_antisym subsetI)
    fix }
    assume }x\in(\bigcup}i\in{i. enat i<llength (LCons X Xs)}.lnth (LCons X Xs) i)
    then obtain i where len: enat i<llength (LCons XXs) and nth: x flnth (LCons X Xs) i
        by blast
```



```
        by (metis lnth_LCons' neq0_conv)
    then have }x\inX\vee(\existsi. enat i<llength Xs \wedge x\inlnth Xs i
        by (metis len Suc_pred' eSuc_enat iless_Suc_eq less_irrefl llength_LCons not_less order_trans)
    then show }x\inX\cup(\bigcupi\in{i. enat i<llength Xs}. lnth Xs i
        by blast
qed ((auto)[], metis i0_lb lnth_0 zero_enat_def, metis Suc_ile_eq lnth_Suc_LCons)
lemma lhd_subset_Sup_llist: ᄀ lnull Xs \Longrightarrowlhd Xs\subseteq Sup_llist Xs
    by (cases Xs) simp_all
definition Sup_upto_llist :: 'a set llist => nat => ' 'a set where
    Sup_upto_llist Xs j = (Ui\in{i. enat i <llength Xs ^i\leqj}.lnth Xs i)
lemma Sup_upto_llist_mono: j \leq k\Longrightarrow Sup_upto_llist Xs j\subseteq Sup_upto_llist Xs k
    unfolding Sup_upto_llist_def by auto
lemma Sup_upto_llist_subset_Sup_llist: j \leq k\Longrightarrow Sup_upto_llist Xs j\subseteq Sup_llist Xs
    unfolding Sup_llist_def Sup_upto_llist_def by auto
lemma elem_Sup_llist_imp_Sup_upto_llist: x \in Sup_llist Xs \Longrightarrow \existsj. x \in Sup_upto_llist Xs j
    unfolding Sup_llist_def Sup_upto_llist_def by blast
lemma finite_Sup_llist_imp_Sup_upto_llist:
    assumes finite X and X \subseteqSup_llist Xs
    shows \existsk. X\subseteq Sup_upto_llist Xs k
    using assms
proof induct
    case (insert x X)
    then have x: x\in Sup_llist Xs and X:X\subseteq Sup_llist Xs
        by simp+
    from x obtain k where k: x \in Sup_upto_llist Xs k
        using elem_Sup_llist_imp_Sup_upto_llist by fast
    from X obtain k' where k': X\subseteq Sup_upto_llist Xs k
        using insert.hyps(3) by fast
    have insert x X\subseteq Sup_upto_llist Xs (max k k')
        using }k\mp@subsup{k}{}{\prime
        by (metis insert_absorb insert_subset Sup_upto_llist_mono max.cobounded2 max.commute
            order.trans)
    then show ?case
        by fast
qed simp
definition Liminf_llist :: 'a set llist }=>\mathrm{ ' 'a set where
    Liminf_llist Xs =
        (\bigcupi\in{i. enat i<llength Xs}. \bigcapj\in{j.i\leqj^enat j<llength Xs}. lnth Xs j)
lemma Liminf_llist_subset_Sup_llist: Liminf_llist Xs \subseteq Sup_llist Xs
    unfolding Liminf_llist_def Sup_llist_def by fast
lemma Liminf_llist_LNil[simp]:Liminf_llist LNil = {}
    unfolding Liminf_llist_def by simp
```

```
lemma Liminf_llist_LCons:
    Liminf_llist (LCons X Xs) = (if lnull Xs then X else Liminf_llist Xs) (is ?lhs = ?rhs)
proof (cases lnull Xs)
    case nnull: False
    show ?thesis
    proof
        {
            fix }
            assume }\existsi\mathrm{ . enat i}\leqllength X
                \wedge(\forallj.i\leqj^ enat j\leqllength Xs }\longrightarrowx\inlnth(LCons X Xs) j)
            then have }\existsi\mathrm{ i. enat (Suc i) }\leq\mathrm{ llength Xs
                \wedge(\forallj.Suc i\leqj^ enat j\leqllength Xs \longrightarrowx lnth(LCons X Xs) j)
                by (cases llength Xs,
                    metis not_lnull_conv[THEN iffD1, OF nnull] Suc_le_D eSuc_enat eSuc_ile_mono
                    llength_LCons not_less_eq_eq zero_enat_def zero_le,
                    metis Suc_leD enat_ord_code(3))
            then have }\existsi.\mathrm{ enat }i<llength Xs ^(\forallj.i\leqj^ enat j<llength Xs \longrightarrowx l lnth Xs j)
            by (metis Suc_ile_eq Suc_n_not_le_n lift_Suc_mono_le lnth_Suc_LCons nat_le_linear)
        }
        then show ?lhs \subseteq?rhs
            by (simp add: Liminf_llist_def nnull) (rule subsetI, simp)
        {
            fix }
            assume \existsi. enat i<llength Xs \wedge(\forallj.i\leqj^ enat j<llength Xs \longrightarrow 
            then obtain i where
                i: enat i< llength Xs and
                j:\forallj.i\leqj^ enat j < llength Xs \longrightarrow x <lnth Xs j
                by blast
            have enat (Suc i) \leqllength Xs
                using i by (simp add: Suc_ile_eq)
            moreover have \forallj. Suc i\leqj^ enat j\leqllength Xs \longrightarrowx lelnth(LCons X Xs) j
                using Suc_ile_eq Suc_le_D j by force
            ultimately have }\existsi\mathrm{ . enat }i\leqllength Xs ^(\forallj.i\leqj^ enat j\leqllength Xs \longrightarrow
                x\inlnth (LCons X Xs) j)
                by blast
    }
    then show ?rhs \subseteq?lhs
            by (simp add: Liminf_llist_def nnull) (rule subsetI, simp)
    qed
qed (simp add: Liminf_llist_def enat_0_iff(1))
lemma lfinite_Liminf_llist:lfinite Xs \Longrightarrow Liminf_llist Xs = (if lnull Xs then {} else llast Xs)
proof (induction rule: lfinite_induct)
    case (LCons xs)
    then obtain y ys where
        xs:xs=LCons y ys
        by (meson not_lnull_conv)
    show ?case
            unfolding xs by (simp add: Liminf_llist_LCons LCons.IH[unfolded xs, simplified] llast_LCons)
qed (simp add: Liminf_llist_def)
lemma Liminf_llist_ltt: \neg lnull (ltl Xs) \Longrightarrow Liminf_llist Xs=Liminf_llist (ltl Xs)
    by (metis Liminf_llist_LCons lhd_LCons_ltl lnull_ltlI)
end
```


4 Relational Chains over Lazy Lists

```
theory Lazy_List_Chain
    imports HOL-Library.BNF_Corec Lazy_List_Liminf
begin
```

A chain is a lazy lists of elements such that all pairs of consecutive elements are related by a given relation. A full chain is either an infinite chain or a finite chain that cannot be extended. The inspiration for this theory is Section 4.1 ("Theorem Proving Processes") of Bachmair and Ganzinger's chapter.

4.1 Chains

coinductive chain $::\left({ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow\right.$ bool $) \Rightarrow{ }^{\prime} a$ llist \Rightarrow bool for $R::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow$ bool where
chain_singleton: chain R (LCons x LNil)
\mid chain_cons: chain $R x s \Longrightarrow R x$ (lhd $x s) \Longrightarrow$ chain $R($ LCons $x x s)$

lemma

chain_LNil[simp]: \neg chain R LNil and
chain_not_lnull: chain R xs $\Longrightarrow \neg$ lnull $x s$
by (auto elim: chain.cases)
lemma chain_lappend:
assumes
$r_{-} x s$: chain R xs and $r_{\text {_ }}$ ys: chain R ys and mid: R (llast xs) (lhd ys)
shows chain R (lappend xs ys)
proof (cases lfinite xs)
case True
then show ?thesis
using $r_{-} x s$ mid
proof (induct rule: linite.induct)
case (lfinite_LConsI xs x)
note fin $=$ this(1) and ih $=$ this(2) and $r_{-} x x s=$ this(3) and mid $=$ this(4)
show ?case
proof (cases xs $=L N i l$)
case True
then show ?thesis
using r_ys mid by simp (rule chain_cons)
next
case xs_nnil: False
have r _xs: chain R xs
by (metis chain.simps ltl_simps(2) r_xxs xs_nnil)
have mid': R (llast xs) (lhd ys)
by (metis llast_LCons lnull_def mid xs_nnil)
have start: $R x$ (lhd (lappend xs ys))
by (metis (no_types) chain.simps lhd_LCons lhd_lappend chain_not_lnull ltl_simps(2) r_xxs xs_nnil)
show ?thesis
unfolding lappend_code(2) using ih[OF r_xs mid'] start by (rule chain_cons) qed
qed simp
qed (simp add: r_xs lappend_inf)
lemma chain_length_pos: chain $R x s \Longrightarrow$ llength $x s>0$
by (cases xs) simp+
lemma chain_ldropn:
assumes chain R xs and enat $n<$ llength xs
shows chain R (ldropn nxs)
using assms
by (induct n arbitrary: xs, simp,
metis chain.cases ldrop_eSuc_ltl ldropn_LNil ldropn_eq_LNil ltl_simps(2) not_less)
lemma chain_lnth_rel:

assumes

chain: chain R xs and len: enat (Suc j) < llength xs
shows $R($ lnth $x s j)($ lnth $x s$ (Suc $j))$

```
proof -
    define ys where ys = ldropn j xs
    have llength ys > 1
        unfolding ys_def using len
        by (metis One_nat_def funpow_swap1 ldropn_0 ldropn_def ldropn_eq_LNil ldropn_ltl not_less
            one_enat_def)
    obtain y0 y1 ys' where
        ys:ys = LCons y0 (LCons y1 ys')
        unfolding ys_def by (metis Suc_ile_eq ldropn_Suc_conv_ldropn len less_imp_not_less not_less)
    have chain R ys
        unfolding ys_def using Suc_ile_eq chain chain_ldropn len less_imp_le by blast
    then have R y0 y1
        unfolding ys by (auto elim: chain.cases)
    then show ?thesis
        using ys_def unfolding ys by (metis ldropn_Suc_conv_ldropn ldropn_eq_LConsD llist.inject)
qed
lemma infinite_chain_lnth_rel:
    assumes }\neg\mathrm{ lfinite c and chain r c
    shows r (lnth c i) (lnth c (Suc i))
    using assms chain_lnth_rel lfinite_conv_llength_enat by force
lemma lnth_rel_chain:
    assumes
        \imath lnull xs and
        |. enat (j+1)<llength xs \longrightarrowR (lnth xs j) (lnth xs (j+1))
    shows chain R xs
    using assms
proof (coinduction arbitrary: xs rule: chain.coinduct)
    case chain
    note nnul = this(1) and nth_chain = this(2)
    show ?case
    proof (cases lnull (ltl xs))
        case True
        have xs = LCons (lhd xs) LNil
            using nnul True by (simp add: llist.expand)
        then show ?thesis
            by blast
    next
        case nnul': False
        moreover have xs = LCons (lhd xs) (ltl xs)
            using nnul by simp
        moreover have
            \forall. enat (j + 1) <llength (ltl xs) \longrightarrowR (lnth (ltl xs) j) (lnth (ltl xs) (j + 1))
            using nnul nth_chain
            by (metis Suc_eq_plus1 ldrop_eSuc_ltl ldropn_Suc_conv_ldropn ldropn_eq_LConsD lnth_ltl)
        moreover have R (lhd xs) (lld (ltl xs))
            using nnul' nnul nth_chain[rule_format, of 0, simplified]
            by (metis ldropn_0 ldropn_Suc_conv_ldropn ldropn_eq_LConsD lhd_LCons_ltl lhd_conv_lnth
                    lnth_Suc_LCons ltl_simps(2))
        ultimately show?thesis
            by blast
    qed
qed
lemma chain_lmap:
    assumes }\forallxy.Rxy\longrightarrow\mp@subsup{R}{}{\prime}(fx)(fy)\mathrm{ and chain R xs
    shows chain R'(lmap fxs)
    using assms
proof (coinduction arbitrary: xs)
    case chain
    then have (\existsy.xs=LCons y LNil ) \vee (\existsysx.xs=LCons x ys ^chain R ys ^R x (lhd ys))
```

```
    using chain.simps[of R xs] by auto
    then show ?case
    proof
        assume \existsys x. xs =LCons x ys ^chain R ys }\wedgeRx(lhd ys
        then have \existsys x.lmap fxs =LCons x ys }
            (\existsxs.ys=lmap fxs}\wedge(\forallxy.Rxy\longrightarrow\mp@subsup{R}{}{\prime}(fx)(fy))\wedge\mathrm{ chain R xs)^ R' x (lhd ys)
            using chain
            by (metis (no_types) lhd_LCons llist.distinct(1) llist.exhaust_sel llist.map_sel(1)
                lmap_eq_LNil chain_not_lnull ltl_lmap ltl_simps(2))
    then show ?thesis
            by auto
    qed auto
qed
lemma chain_mono:
    assumes }\forallxy.Rxy\longrightarrow\mp@subsup{R}{}{\prime}xy\mathrm{ and chain R xs
    shows chain R' xs
    using assms by (rule chain_lmap[of _ _ \lambdax. x, unfolded llist.map_ident])
lemma lfinite_chain_imp_rtranclp_lhd_llast:lfinite xs \Longrightarrow chain R xs \Longrightarrow R** (lhd xs) (llast xs)
proof (induct rule: lfinite.induct)
    case (lfinite_LConsI xs x)
    note fin_xs = this(1) and ih = this(2) and r_x_xs = this(3)
    show ?case
    proof (cases xs = LNil)
        case xs_nnil: False
        then have r_xs: chain R xs
            using r_x_xs by (blast elim: chain.cases)
    then show ?thesis
        using ih[OF r_xs] xs_nnil r_x_xs
        by (metis chain.cases converse_rtranclp_into_rtranclp lhd_LCons llast_LCons chain_not_lnull
            ltl_simps(2))
    qed simp
qed simp
lemma tranclp_imp_exists_finite_chain_list:
    R++}xy\Longrightarrow\existsxs.xs\not=[]^tl xs \not=[]^ chain R (llist_of xs) \ hd xs = x ^ last xs = y
proof (induct rule: tranclp.induct)
    case (r_into_trancl x y)
    note r_xy = this
    define xs where
        xs = [x,y]
    have xs \not=[] and tl xs \not=[] and chain R (llist_of xs) and hd xs=x and last xs = y
        unfolding xs_def using r_xy by (auto intro: chain.intros)
    then show ?case
        by blast
next
    case (trancl_into_trancl x y z)
    note rstar_xy = this(1) and ih = this(2) and r_yz = this(3)
    obtain xs where
        xs:xs\not=[] tl xs \not=[] chain R (llist_of xs) hd xs=x last xs = y
        using ih by blast
    define ys where
        ys=xs@[z]
```

 have \(y s \neq[]\) and \(t l y s \neq[]\) and chain \(R\) (llist_of ys) and \(h d y s=x\) and last \(y s=z\)
 unfolding ys_def using xs r_yz
 by (auto simp: lappend_llist_of_llist_of[symmetric] intro: chain_singleton chain_lappend)
 then show ?case
 by blast
    ```
qed
inductive-cases chain_consE: chain R (LCons x xs)
inductive-cases chain_nontrivE: chain R (LCons x (LCons y xs))
primrec prepend where
    prepend [] ys = ys
| prepend (x # xs) ys =LCons x (prepend xs ys)
lemma prepend_butlast:
    xs }=[]\Longrightarrow\neg\mathrm{ lnull ys C last xs = lhd ys C prepend (butlast xs) ys = prepend xs (ltl ys)
    by (induct xs) auto
lemma lnull_prepend[simp]: lnull (prepend xs ys) = (xs = []^ lnull ys)
    by (induct xs) auto
lemma lhd_prepend[simp]:lhd (prepend xs ys) = (if xs #= [] then hd xs else lhd ys)
    by (induct xs) auto
lemma prepend_LNil[simp]: prepend xs LNil = llist_of xs
    by (induct xs) auto
lemma lfinite_prepend[simp]: lfinite (prepend xs ys)\longleftrightarrowlfinite ys
    by (induct xs) auto
lemma llength_prepend[simp]: llength (prepend xs ys) = length xs + llength ys
    by (induct xs) (auto simp: enat_0 iadd_Suc eSuc_enat[symmetric])
lemma llast_prepend[simp]: ᄀ lnull ys \Longrightarrow llast (prepend xs ys) = llast ys
    by (induct xs) (auto simp: llast_LCons)
lemma prepend_prepend: prepend xs (prepend ys zs) = prepend (xs @ ys)zs
    by (induct xs) auto
lemma chain_prepend:
    chain R (llist_of zs) \Longrightarrow last zs = lhd xs \Longrightarrow chain R xs \Longrightarrowchain R (prepend zs (ltl xs))
    by (induct zs; cases xs)
    (auto split: if_splits simp:lnull_def[symmetric] intro!: chain_cons elim!: chain_consE)
lemma lmap_prepend[simp]: lmap f (prepend xs ys) = prepend (map fxs) (lmap fys)
    by (induct xs) auto
lemma lset_prepend[simp]: lset (prepend xs ys) = set xs U lset ys
    by (induct xs) auto
lemma prepend_LCons: prepend xs (LCons y ys)= prepend (xs @ [y]) ys
    by (induct xs) auto
lemma lnth_prepend:
    lnth (prepend xs ys) i= (if i< length xs then nth xs i else lnth ys (i - length xs))
    by (induct xs arbitrary: i) (auto simp:lnth_LCons' nth_Cons')
theorem lfinite_less_induct[consumes 1, case_names less]:
    assumes fin: lfinite xs
        and step: \xs.lfinite xs \Longrightarrow(\zs.llength zs < llength xs \LongrightarrowPzs)\LongrightarrowPxs
    shows P xs
using fin proof (induct the_enat (llength xs) arbitrary: xs rule: less_induct)
    case (less xs)
    show ?case
        using less(2) by (intro step[OF less(2)] less(1))
            (auto dest!: lfinite_llength_enat simp: eSuc_enat elim!: less_enatE llength_eq_enat_lfiniteD)
qed
```

```
theorem lfinite_prepend_induct[consumes 1, case_names LNil prepend]:
    assumes lfinite xs
        and LNil: P LNil
        and prepend: \xs.lfinite xs \Longrightarrow(\zs. (\existsys.xs = prepend ys zs \ ys }\not=[])\LongrightarrowPzs)\LongrightarrowPx
    shows P xs
using assms(1) proof (induct xs rule: lfinite_less_induct)
    case (less xs)
    from less(1) show ?case
        by (cases xs)
            (force simp: LNil neq_Nil_conv dest:lfinite_llength_enat intro!: prepend[of LCons _ _] intro:less)+
qed
coinductive emb :: 'a llist => 'a llist }=>\mathrm{ bool where
    emb LNil xs
| emb xs ys \Longrightarrowemb (LCons x xs) (prepend zs (LCons x ys))
inductive prepend_cong1 for \(X\) where
    prepend_cong1_base: X xs \Longrightarrow prepend_cong1 X xs
| prepend_cong1_prepend: prepend_cong1 X ys \Longrightarrow prepend_cong1 X (prepend xs ys)
lemma emb_prepend_coinduct[rotated, case_names emb]:
    assumes (\x1 x2. X x1 x2 \Longrightarrow
        (\existsxs. x1 = LNil ^ x2 = xs)
        \vee ( \exists x s y s x z s . x 1 = L C o n s ~ x ~ x s ~ \wedge ~ x 2 ~ = ~ p r e p e n d ~ z s ~ ( L C o n s ~ x ~ y s ) ~
            \wedge(prepend_cong1 (X xs) ys \vee emb xs ys)))(is \x1 x2. X x1 x2 \Longrightarrow ?bisim x1 x2)
    shows X x1 x2 \Longrightarrowemb x1 x2
proof (erule emb.coinduct[OF prepend_cong1_base])
    fix xs zs
    assume prepend_cong1 (X xs)zs
    then show ?bisim xs zs
        by (induct zs rule: prepend_cong1.induct) (erule assms, force simp: prepend_prepend)
qed
context
begin
private coinductive chain' for R where
    chain' R (LCons x LNil)
| chain R (llist_of zs)\Longrightarrowzs\not=[]\Longrightarrowtl zs =[]\Longrightarrow\neglnull xs \Longrightarrow last zs = lhd xs \Longrightarrow
        ys=ltl xs \Longrightarrow chain' R xs \Longrightarrow chain' R (prepend zs ys)
private lemma chain_imp_chain': chain R xs \Longrightarrowchain' R xs
proof (coinduction arbitrary: xs rule: chain'.coinduct)
    case chain'
    then show ?case
    proof (cases rule: chain.cases)
        case (chain_cons zs z)
        then show ?thesis
            by (intro disjI2) (force intro: chain.intros exI[of - [z,lhd zs]] exI[of _ zs]
                    elim: chain.cases)
    qed simp
qed
private inductive-cases chain'_LConsE: chain' R (LCons x xs)
private lemma chain'_stepD1:
    assumes chain' R (LCons x (LCons y xs))
    shows chain' R (LCons y xs)
proof (cases xs)
    case [simp]:(LCons z zs)
    with assms show ?thesis
    proof (cases rule: chain'.cases)
        case (2 as ys xs)
```

```
    then show ?thesis
    proof (cases tl (tl as))
        case Nil
        with 2 show ?thesis by (auto simp: neq_Nil_conv)
    next
        case (Cons b bs)
        with 2 have chain' R (prepend ( }y#b|bs)xs
            by (intro chain'.intros)
            (auto simp: chain_cons not_lnull_conv neq_Nil_conv elim: chain_nontrivE)
        with 2 Cons show ?thesis
        by (auto simp: neq_Nil_conv)
    qed
    qed
qed (simp only: chain'.intros(1))
private lemma chain'_stepD2: chain' R (LCons x (LCons y xs)) \LongrightarrowR x y
    by (erule chain'.cases) (auto simp: neq_Nil_conv elim!: chain_nontrivE split: if_splits)
private lemma chain'_imp_chain: chain' R xs \Longrightarrow chain R xs
proof (coinduction arbitrary: xs rule: chain.coinduct)
    case chain
    then show ?case
    proof (cases rule: chain'.cases)
        case (2 ys zs xs)
        then show ?thesis
        proof (cases ltl zs)
        case LNil
        with chain 2 show ?thesis
            by (auto 04 simp: neq_Nil_conv not_lnull_conv elim: chain'_stepD1 chain'_stepD2)
        next
        case (LCons b bs)
        with chain 2 show ?thesis
            unfolding neq_Nil_conv not_lnull_conv
            by (elim exE) (auto elim: chain'_stepD1 chain_nontrivE)
        qed
    qed simp
qed
private lemma chain_chain': chain = chain'
    unfolding fun_eq_iff by (metis chain_imp_chain' chain'_imp_chain)
lemma chain_prepend_coinduct[case_names chain]:
    X x \Longrightarrow (\x. X x \Longrightarrow
        (\existsz. x=LCons z LNil)}
        (\existsxszs. x = prepend zs (ltl xs) ^ zs # []^ tl zs # []^\neg lnull xs ^ last zs =lhd xs ^
            (X xs \vee chain R xs) ^ chain R (llist_of zs))) \Longrightarrow chain R x
    by (subst chain_chain', erule chain'.coinduct) (auto simp: chain_chain')
end
context
    fixes R :: 'a > ' }a=>\mathrm{ bool
begin
private definition pick where
```



```
private lemma pick[simp]:
    assumes }\mp@subsup{R}{}{++}x
    shows pick x y \not=[] tl (pick x y) \not=[] chain R (llist_of (pick x y))
        hd}(\mathrm{ pick x y) = x last (pick x y) = y
    unfolding pick_def using tranclp_imp_exists_finite_chain_list[THEN someI_ex,OF assms] by auto
```

```
private lemma butlast_pick[simp]: R++ x y \Longrightarrow butlast (pick x y) # []
    by (cases pick x y; cases tl (pick x y)) (auto dest: pick(2))
private friend-of-corec prepend where
    prepend xs ys = (case xs of [] }
        (case ys of LNil =>LNil |LCons x xs m LCons x xs) | x # xs' }=>\mathrm{ LCons x (prepend xs' ys))
    by (simp split:list.splits llist.splits) transfer_prover
private corec wit where
    wit xs = (case xs of LCons x (LCons y xs) =>
        let zs = pick x y in LCons (hd zs) (prepend (butlast (tl zs)) (wit (LCons y xs))) | _ = xs)
```


private lemma

```
wit_LNil[simp]: wit LNil = LNil and
    wit_lsingleton[simp]: wit (LCons x LNil) = LCons x LNil and
    wit_LCons2: wit (LCons x (LCons y xs)) =
            (let zs = pick x y in LCons (hd zs) (prepend (butlast (tl zs)) (wit (LCons y xs))))
    by (subst wit.code; auto)+
private lemma wit_LCons: wit (LCons x xs) = (case xs of LNil # LCons x LNil | LCons y xs }
            (let zs = pick x y in LCons (hdzs) (prepend (butlast (tl zs)) (wit (LCons y xs)))))
    by (subst wit.code; auto split: llist.splits)+
private lemma lnull_wit[simp]: lnull (wit xs) \longleftrightarrow lnull xs
    by (subst wit.code) (auto split: llist.splits simp: Let_def)
private lemma lhd_wit[simp]: chain R }\mp@subsup{R}{}{++}xs\Longrightarrowlhd (wit xs)=lhd xs
    by (erule chain.cases; subst wit.code) (auto split: llist.splits simp: Let_def)
private lemma butlast_alt: butlast xs = (if tl xs = [] then [] else hd xs # butlast (tl xs))
    by (cases xs) auto
private lemma wit_alt:
    chain R}\mp@subsup{R}{}{++}xs\Longrightarrow\mathrm{ wit xs = (case xs of LCons x (LCons y xs) }
        prepend (pick x y) (ltl (wit (LCons y xs))) | - = xs)
    by (auto split: llist.splits simp: prepend_butlast[symmetric] wit_LCons2 Let_def
        prepend.simps(2)[symmetric] butlast_alt[of pick _ _]
        simp del: prepend.simps elim!: chain_nontrivE)
private lemma wit_alt2:
    chain R }\mp@subsup{}{}{++}xs\Longrightarrow\mathrm{ wit xs = (case xs of LCons x (LCons y xs) }
        prepend (butlast (pick x y)) (wit (LCons y xs))| - = xs)
    by (auto split: llist.splits simp: wit_LCons2 Let_def
        prepend.simps(2)[symmetric] butlast_alt[of pick _ -]
        simp del: prepend.simps elim!: chain_nontrivE)
private lemma LNil_eq_iff_lnull: LNil = xs \longleftrightarrowlnull xs
    by (cases xs) auto
private lemma lfinite_wit[simp]:
    assumes chain R }\mp@subsup{}{}{++}\mathrm{ xs
    shows lfinite (wit xs) \longleftrightarrow lfinite xs
proof
    assume lfinite (wit xs)
    from this assms show lfinite xs
    proof (induct wit xs arbitrary: xs rule: lfinite_prepend_induct)
        case (prepend zs)
        then show ?case
        proof (cases zs)
            case [simp]:(LCons x xs)
            then show ?thesis
            proof (cases xs)
            case [simp]: LCons
```

```
            with prepend show ?thesis
                by (subst (asm) (2) wit_alt2) (force split: llist.splits elim!: chain_nontrivE)+
        qed simp
        qed simp
    qed (simp add: LNil_eq_iff_lnull)
next
    assume lfinite xs
    then show lfinite (wit xs)
    proof (induct xs rule: lfinite.induct)
        case (lfinite_LConsI xs x)
        then show ?case
        by (cases xs) (auto simp: wit_LCons Let_def)
    qed simp
qed
private lemma llast_wit[simp]:
    assumes chain R }\mp@subsup{R}{}{++}x
    shows llast (wit xs) = llast xs
proof (cases lfinite xs)
    case True
    from this assms show ?thesis
    proof (induct rule: lfinite.induct)
        case (lfinite_LConsI xs x)
        then show ?case
            by (cases xs) (auto simp: wit_LCons2 llast_LCons elim: chain_nontrivE)
    qed auto
qed (auto simp: llast_linfinite assms)
lemma emb_wit[simp]: chain R }\mp@subsup{R}{}{++}xs\Longrightarrowemb xs (wit xs
proof (coinduction arbitrary: xs rule: emb_prepend_coinduct)
    case (emb xs)
    then show ?case
    proof (cases rule: chain.cases)
        case (chain_cons zs z)
        then show ?thesis
            by (subst (2) wit.code)
            (auto split:llist.splits intro!: exI[of _ []] exI[of _ _ :: _ llist]
                prepend_cong1_prepend[OF prepend_cong1_base])
    qed (auto intro!: exI[of _ LNil] exI[of _ []] emb.intros)
qed
lemma chain_tranclp_imp_exists_chain:
    chain R }\mp@subsup{}{}{++}\mathrm{ xs }
    \existsys.chain R ys ^ emb xs ys ^(lfinite ys \longleftrightarrowlfinite xs) ^lhd ys = lhd xs
        \wedge ~ l l a s t ~ y s ~ = ~ l l a s t ~ x s ~
proof (intro exI[of _ wit xs] conjI, coinduction arbitrary: xs rule: chain_prepend_coinduct)
    case chain
    then show ?case
        by (subst (1 2) wit_alt; assumption?) (erule chain.cases; force split: llist.splits)
qed auto
inductive-cases emb_LConsE: emb (LCons z zs) ys
inductive-cases emb_LNil2E: emb xs LNil
lemma emb_lset_mono[rotated]: x \in lset xs \Longrightarrowemb xs ys \Longrightarrowx \in lset ys
    by (induct x xs arbitrary: ys rule: llist.set_induct) (auto elim!: emb_LConsE)
lemma emb_Ball_lset_antimono:
    assumes emb Xs Ys
    shows }\forallY\inlset Ys. x\inY\Longrightarrow\forallX\inlset Xs. x \inX
    using emb_lset_mono[OF assms] by blast
lemma emb_lfinite_antimono[rotated]: lfinite ys \Longrightarrowemb xs ys \Longrightarrowlfinite xs
```

```
    by (induct ys arbitrary: xs rule: lfinite_prepend_induct)
    (force elim!: emb_LNil2E simp: LNil_eq_iff_lnull prepend_LCons elim: emb.cases)+
lemma emb_Liminf_llist_mono_aux:
    assumes emb Xs Ys and }\neg\mathrm{ lfinite Xs and }\neg\mathrm{ lfinite Ys and }\forallj\geqi.x\in\operatorname{lnth}Ys
    shows }\forallj\geqi. x lnth Xs 
using assms proof (induct i arbitrary: Xs Ys rule: less_induct)
    case (less i)
    then show ?case
    proof (cases i)
        case 0
        then show ?thesis
            using emb_Ball_lset_antimono[OF less(2), of x] less(5)
            unfolding Ball_def in_lset_conv_lnth simp_thms
                not_lfinite_llength[OF less(3)] not_lfinite_llength[OF less(4)] enat_ord_code subset_eq
            by blast
    next
        case [simp]: (Suc nat)
        from less(2,3) obtain xs as b bs where
            [simp]: Xs=LCons b xs Ys= prepend as (LCons b bs) and emb xs bs
            by (auto elim: emb.cases)
        have IH:\forallk\geqj.x\in lnth xs k if }\forallk\geqj.x\inlnth bs kj<i for 
            using that less(1)[OF _ <emb xs bs`] less(3,4) by auto
        from less(5) have }\forallk\geqi - length as - 1. x < lnth xs 
            by (intro IH allI)
            (drule spec[of _ _ + length as + 1], auto simp: lnth_prepend lnth_LCons')
        then show ?thesis
        by (auto simp: lnth_LCons')
    qed
qed
lemma emb_Liminf_llist_infinite:
    assumes emb Xs Ys and \neglfinite Xs
    shows Liminf_llist Ys\subseteq Liminf_llist Xs
proof -
    from assms have \neglfinite Ys
        using emb_lfinite_antimono by blast
    with assms show ?thesis
        unfolding Liminf_llist_def by (auto simp: not_lfinite_llength dest: emb_Liminf_llist_mono_aux)
qed
lemma emb_lmap: emb xs ys \Longrightarrowemb (lmap f xs) (lmap f ys)
proof (coinduction arbitrary: xs ys rule: emb.coinduct)
    case emb
    show ?case
    proof (cases xs)
        case xs:(LCons x xs')
        obtain ysa0 and zs0 where
            ys:ys = prepend zs0 (LCons x ysa0) and
            emb': emb xs' ysa0
            using emb_LConsE[OF emb[unfolded xs]] by metis
        let ? }xa=f
        let ?xsa=lmap f xs'
        let ?zs = map fzs0
    let ?ysa=lmap f ysa0
        have lmap f xs = LCons ?xa ?xsa
        unfolding xs by simp
        moreover have lmap f ys = prepend ?zs (LCons ?xa ?ysa)
            unfolding ys by simp
    moreover have \existsxsa ysa. ?xsa=lmap fxsa ^ ?ysa=lmap f ysa ^emb xsa ysa
```

```
        using emb' by blast
    ultimately show ?thesis
        by blast
    qed simp
qed
end
lemma chain_inf_llist_if_infinite_chain_function:
    assumes }\foralli.r(f(Suci))(fi
    shows \neg lfinite (inf_llist f) ^ chain r r 
    using assms by (simp add: lnth_rel_chain)
lemma infinite_chain_function_iff_infinite_chain_llist:
    (\existsf.\foralli.r (f (Suc i)) (fi)) \longleftrightarrow(\existsc.\neg lfinite c ^ chain r 
    using chain_inf_llist_if_infinite_chain_function infinite_chain_lnth_rel by blast
lemma wfP_iff_no_infinite_down_chain_llist:wfPr r \longleftrightarrow(#c.\neglfinite c ^ chain r r }\mp@subsup{r}{}{-1-1}c
proof -
    have wfPr \longleftrightarrow wf {(x,y).r x y}
        unfolding wfP_def by auto
    also have ...\longleftrightarrow(\not\existsf.\foralli. (f (Suc i), fi)\in{(x,y).r x y})
        using wf_iff_no_infinite_down_chain by blast
    also have ...\longleftrightarrow(\not\existsf.\foralli.r(f(Suci))(fi))
        by auto
    also have ...\longleftrightarrow(#c.\neglfinite c ^ chain r remerem
        using infinite_chain_function_iff_infinite_chain_llist by blast
    finally show ?thesis
        by auto
qed
```


4.2 Full Chains

coinductive full_chain $::\left({ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow\right.$ bool $) \Rightarrow$ ' a llist \Rightarrow bool for $R::$ ' $a \Rightarrow{ }^{\prime} a \Rightarrow$ bool where
full_chain_singleton: $(\forall y . \neg R x y) \Longrightarrow$ full_chain R (LCons x LNil)
\mid full_chain_cons: full_chain $R x s \Longrightarrow R x$ (lhd $x s) \Longrightarrow$ full_chain R (LCons x xs)

lemma

full_chain_LNil[simp]: \neg full_chain R LNil and
full_chain_not_lnull: full_chain $R x s \Longrightarrow \neg$ lnull $x s$
by (auto elim: full_chain.cases)
lemma full_chain_ldropn:
assumes full: full_chain $R x s$ and enat $n<$ llength $x s$
shows full_chain R (ldropn n xs)
using assms
by (induct n arbitrary: $x s$, simp,
metis full_chain.cases ldrop_eSuc_ltl ldropn_LNil ldropn_eq_LNil ltl_simps(2) not_less)
lemma full_chain_iff_chain:
full_chain $R x s \longleftrightarrow$ chain $R x s \wedge$ (lfinite $x s \longrightarrow(\forall y . \neg R$ (llast $x s) y)$)
proof (intro iffI conjI impI allI; (elim conjE)?)
assume full: full_chain R xs
show chain: chain R xs
using full by (coinduction arbitrary: xs) (auto elim: full_chain.cases)
\{
fix y
assume lfinite $x s$
then obtain n where
suc_n: Suc $n=$ llength xs
by (metis chain chain_length_pos lessE less_enatE lfinite_conv_llength_enat)

```
    have full_chain R (ldropn n xs)
        by (rule full_chain_ldropn[OF full]) (use suc_n Suc_ile_eq in force)
    moreover have ldropn nxs=LCons (llast xs) LNil
        using suc_n by (metis enat_le_plus_same(2) enat_ord_simps(2) gen_llength_def
            ldropn_Suc_conv_ldropn ldropn_all lessI llast_ldropn llast_singleton llength_code)
    ultimately show }\negR\mathrm{ (llast xs) y
        by (auto elim: full_chain.cases)
    }
next
    assume
        chain R xs and
        lfinite xs \longrightarrow( }\forally.\negR(\mathrm{ llast xs) y)
    then show full_chain R xs
    by (coinduction arbitrary: xs) (erule chain.cases, simp, metis lfinite_LConsI llast_LCons)
qed
lemma full_chain_imp_chain: full_chain R xs \Longrightarrow chain R xs
    using full_chain_iff_chain by blast
lemma full_chain_length_pos: full_chain R xs \Longrightarrowllength xs > 0
    by (fact chain_length_pos[OF full_chain_imp_chain])
lemma full_chain_lnth_rel:
    full_chain R xs \Longrightarrow enat (Suc j) < llength xs \Longrightarrow (lnth xs j) (lnth xs (Suc j))
    by (fact chain_lnth_rel[OF full_chain_imp_chain])
inductive-cases full_chain_consE: full_chain R (LCons x xs)
inductive-cases full_chain_nontrivE: full_chain R (LCons x (LCons y xs))
lemma full_chain_tranclp_imp_exists_full_chain:
    assumes full: full_chain R R++ xs
    shows \existsys.full_chain R ys ^emb xs ys ^lfinite ys =lfinite xs ^lhd ys =lhd xs
        llast ys = llast xs
proof -
    obtain ys where ys:
        chain R ys emb xs ys lfinite ys = lfinite xs lhd ys = lhd xs llast ys = llast xs
        using full_chain_imp_chain[OF full] chain_tranclp_imp_exists_chain by blast
    have full_chain R ys
        using ys(1,3,5) full unfolding full_chain_iff_chain by auto
    then show ?thesis
        using ys(2-5) by auto
qed
end
```


5 Clausal Logic

theory Clausal_Logic
imports Nested_Multisets_Ordinals.Multiset_More
\section*{begin}

Resolution operates of clauses, which are disjunctions of literals. The material formalized here corresponds roughly to Sections 2.1 ("Formulas and Clauses") of Bachmair and Ganzinger, excluding the formula and term syntax.

5.1 Literals

Literals consist of a polarity (positive or negative) and an atom, of type ' a.

```
datatype 'a literal =
    is_pos: Pos(atm_of: 'a)
| Neg (atm_of:' 'a)
```

```
abbreviation is_neg :: 'a literal }=>\mathrm{ bool where
    is_neg L \equiv\neg is_pos L
lemma Pos_atm_of_iff [simp]: Pos (atm_of L)=L\longleftrightarrow \is_pos L
    by (cases L) simp+
lemma Neg_atm_of_iff[simp]: Neg (atm_of L)=L\longleftrightarrow \ is_neg L
    by (cases L) simp+
lemma set_literal_atm_of: set_literal L = {atm_of L}
    by (cases L) simp+
lemma ex_lit_cases: (\existsL.P L)\longleftrightarrow(\existsA.P(Pos A)\vee P (Neg A))
    by (metis literal.exhaust)
instantiation literal :: (type) uminus
begin
definition uminus_literal :: 'a literal # 'a literal where
    uminus L = (if is_pos L then Neg else Pos)(atm_of L)
instance ..
end
lemma
    uminus_Pos[simp]: - Pos A = Neg A and
    uminus_Neg[simp]: - Neg A = Pos A
    unfolding uminus_literal_def by simp_all
lemma atm_of_uminus[simp]: atm_of (-L) = atm_of L
    by (case_tac L, auto)
lemma uminus_of_uminus_id[simp]: - (- (x :: 'v literal ) ) = x
    by (simp add: uminus_literal_def)
lemma uminus_not_id[simp]: x = - (x:: 'v literal)
    by (case_tac x) auto
lemma uminus_not_id'[simp]: - x = (x:: 'v literal)
    by (case_tac x, auto)
lemma uminus_eq_inj[iff]: - (a::'v literal) = - b \longleftrightarrowa=b
    by (case_tac a; case_tac b) auto+
lemma uminus_lit_swap:(a::'a literal) = - b \longleftrightarrow-a=b
    by auto
```



```
    by (cases L) auto
instantiation literal :: (preorder) preorder
begin
definition less_literal :: 'a literal => 'a literal }=>\mathrm{ bool where
    less_literal L M \longleftrightarrowatm_of L<atm_of M V atm_of L \leqatm_of M ^ is_neg L < is_neg M
definition less_eq_literal :: 'a literal }=>\mp@subsup{}{}{\prime}\mathrm{ 'a literal }=>\mathrm{ bool where
    less_eq_literal L M \longleftrightarrow atm_of L < atm_of M V atm_of L \leqatm_of M ^ is_neg L \leqis_neg M
instance
    apply intro_classes
    unfolding less_literal_def less_eq_literal_def by (auto intro: order_trans simp:less_le_not_le)
```

end
instantiation literal :: (order) order
begin

instance

by intro_classes (auto simp: less_eq_literal_def intro: literal.expand)
end
lemma pos_less_neg[simp]: Pos $A<\operatorname{Neg} A$
unfolding less_literal_def by simp
lemma pos_less_pos_iff[simp]: Pos $A<\operatorname{Pos} B \longleftrightarrow A<B$ unfolding less_literal_def by simp
lemma pos_less_neg_iff[simp]: Pos $A<$ Neg $B \longleftrightarrow A \leq B$ unfolding less_literal_def by (auto simp: less_le_not_le)
lemma neg_less_pos_iff[simp]: Neg $A<\operatorname{Pos} B \longleftrightarrow A<B$ unfolding less_literal_def by simp
lemma neg_less_neg_iff[simp]: Neg $A<N e g B \longleftrightarrow A<B$ unfolding less_literal_def by simp
lemma pos_le_neg[simp]: Pos $A \leq N e g A$
unfolding less_eq_literal_def by simp
lemma pos_le_pos_iff [simp]: Pos $A \leq \operatorname{Pos} B \longleftrightarrow A \leq B$ unfolding less_eq_literal_def by (auto simp: less_le_not_le)
lemma pos_le_neg_iff [simp]: Pos $A \leq N e g B \longleftrightarrow A \leq B$ unfolding less_eq_literal_def by (auto simp: less_imp_le)
lemma neg_le_pos_iff [simp]: Neg $A \leq$ Pos $B \longleftrightarrow A<B$ unfolding less_eq_literal_def by simp
lemma neg_le_neg_iff [simp]: $N e g A \leq N e g B \longleftrightarrow A \leq B$ unfolding less_eq_literal_def by (auto simp: less_imp_le)
lemma leq_imp_less_eq_atm_of: $L \leq M \Longrightarrow$ atm_of $L \leq a t m_{-}$of M unfolding less_eq_literal_def using less_imp_le by blast
instantiation literal :: (linorder) linorder
begin

instance

apply intro_classes
unfolding less_eq_literal_def less_literal_def by auto
end
instantiation literal :: (wellorder) wellorder
begin

instance

proof intro_classes
fix P :: 'a literal \Rightarrow bool and L :: 'a literal
assume $i h: \wedge L .(\bigwedge M . M<L \Longrightarrow P M) \Longrightarrow P L$
have $\wedge x .(\bigwedge y . y<x \Longrightarrow P(\operatorname{Pos} y) \wedge P($ Neg $y)) \Longrightarrow P($ Pos $x) \wedge P($ Neg $x)$ by (rule conjI[$O F$ ih ih])
(auto simp: less_literal_def atm_of_def split: literal.splits intro: ih)

```
    then have }\A.P(Pos A)\wedgeP(Neg A
    by (rule less_induct) blast
    then show P L
    by (cases L) simp+
qed
end
```


5.2 Clauses

Clauses are (finite) multisets of literals.

```
type-synonym 'a clause = 'a literal multiset
```

abbreviation map_clause :: ($\left.\quad a \Rightarrow{ }^{\prime} b\right) \Rightarrow$ ' a clause \Rightarrow ' b clause where
map_clause $f \equiv$ image_mset (map_literal f)
abbreviation rel_clause :: $\left({ }^{\prime} a \Rightarrow{ }^{\prime} b \Rightarrow\right.$ bool $) \Rightarrow{ }^{\prime} a$ clause $\Rightarrow{ }^{\prime} b$ clause \Rightarrow bool where
rel_clause $R \equiv$ rel_mset (rel_literal R)
abbreviation poss :: 'a multiset \Rightarrow 'a clause where poss $A A \equiv\{\# \operatorname{Pos} A . A \in \# A A \#\}$
abbreviation negs $::$ 'a multiset \Rightarrow 'a clause where negs $A A \equiv\{\#$ Neg $A . A \in \# A A \#\}$
lemma Max_in_lits: $C \neq\{\#\} \Longrightarrow$ Max_mset $C \in \# C$
by simp
lemma Max_atm_of_set_mset_commute: $C \neq\{\#\} \Longrightarrow \operatorname{Max}($ atm_of 'set_mset $C)=$ atm_of (Max_mset C)
by (rule mono_Max_commute[symmetric]) (auto simp: mono_def less_eq_literal_def)
lemma Max_pos_neg_less_multiset:
assumes max: Max_mset $C=P o s A$ and neg: Neg $A \in \# D$
shows $C<D$
proof -
have Max_mset $C<$ Neg A
using max by simp
then show ?thesis
using neg by (metis (no_types) Max_less_iff empty_iff ex_gt_imp_less_multiset finite_set_mset)
qed
lemma pos_Max_imp_neg_notin: Max_mset $C=\operatorname{Pos} A \Longrightarrow$ Neg $A \notin \# C$
using Max_pos_neg_less_multiset by blast
lemma less_eq_Max_lit: $C \neq\{\#\} \Longrightarrow C \leq D \Longrightarrow$ Max_mset $C \leq$ Max_mset D
proof (unfold less_eq_multiset ${ }_{H O}$)
assume
$n e: C \neq\{\#\}$ and
ex_gt: $\forall x$. count $D x<$ count $C x \longrightarrow(\exists y>x$. count $C y<$ count $D y)$
from ne have Max_mset $C \in \# C$
by (fast intro: Max_in_lits)
then have $\exists l . l \in \# D \wedge \neg l<$ Max_mset C
using ex_gt by (metis count_greater_zero_iff count_inI less_not_sym)
then have \neg Max_mset $D<$ Max_mset C
by (metis Max.coboundedI[OF finite_set_mset] le_less_trans)
then show ?thesis
by simp
qed
definition atms_of :: 'a clause \Rightarrow 'a set where
atms_of $C=$ atm_of ' set_mset C
lemma atms_of_empty[simp]: atms_of $\{\#\}=\{ \}$
unfolding atms_of_def by simp
lemma atms_of_singleton[simp]: atms_of $\{\# L \#\}=\left\{a t m _o f ~ L\right\}$

```
unfolding atms_of_def by auto
lemma atms_of_add_mset[simp]: atms_of (add_mset a A) = insert (atm_of a)(atms_of A)
    unfolding atms_of_def by auto
lemma atms_of_union_mset[simp]: atms_of ( }A\cup#B)=atms_of A U atms_of B
    unfolding atms_of_def by auto
lemma finite_atms_of[iff]: finite (atms_of C)
    by (simp add: atms_of_def)
lemma atm_of_lit_in_atms_of: L \in# C\Longrightarrowatm_of L E atms_of C
    by (simp add: atms_of_def)
lemma atms_of_plus[simp]:atms_of (C+D)=atms_of C U atms_of D
    unfolding atms_of_def by auto
lemma in_atms_of_minusD: x\inatms_of (A-B)\Longrightarrowx\inatms_of A
    by (auto simp: atms_of_def dest: in_diffD)
lemma pos_lit_in_atms_of: Pos A\in#C\LongrightarrowA\inatms_of C
    unfolding atms_of_def by force
lemma neg_lit_in_atms_of:Neg A E#C\LongrightarrowA\inatms_of C
    unfolding atms_of_def by force
lemma atm_imp_pos_or_neg_lit: A A atms_of C\LongrightarrowPos A C#C\vee Neg A \in# C
    unfolding atms_of_def image_def mem_Collect_eq by (metis Neg_atm_of_iff Pos_atm_of_iff)
lemma atm_iff_pos_or_neg_lit: }A\in\mathrm{ atms_of L}\longleftrightarrow\longleftrightarrowPos A\in# L\vee Neg A\in# L
    by (auto intro: pos_lit_in_atms_of neg_lit_in_atms_of dest: atm_imp_pos_or_neg_lit)
lemma atm_of_eq_atm_of: atm_of L=atm_of L'}\mp@subsup{L}{}{\prime}\longleftrightarrow(L=\mp@subsup{L}{}{\prime}\veeL=-\mp@subsup{L}{}{\prime}
    by (cases L; cases L') auto
lemma atm_of_in_atm_of_set_iff_in_set_or_uminus_in_set:atm_of L L atm_of' I }\longleftrightarrow(L\inI\vee-L\inI
    by (auto intro: rev_image_eqI simp: atm_of_eq_atm_of)
lemma lits_subseteq_imp_atms_subseteq: set_mset C}\subseteq\mathrm{ set_mset D \atms_of C }\subseteqatms_of 
    unfolding atms_of_def by blast
lemma atms_empty_iff_empty[iff]: atms_of C={}\longleftrightarrow}\longleftrightarrowC={#
    unfolding atms_of_def image_def Collect_empty_eq by auto
lemma
    atms_of_poss[simp]: atms_of (poss AA) = set_mset AA and
    atms_of_negs[simp]: atms_of (negs AA) = set_mset AA
    unfolding atms_of_def image_def by auto
lemma less_eq_Max_atms_of:C\not={#}\LongrightarrowC\leqD\LongrightarrowMax(atms_of C) \leqMax (atms_of D)
    unfolding atms_of_def
    by (metis Max_atm_of_set_mset_commute leq_imp_less_eq_atm_of less_eq_Max_lit
        less_eq_multiset_empty_right)
lemma le_multiset_Max_in_imp_Max:
    Max (atms_of D) = A\LongrightarrowC\leqD\LongrightarrowA\inatms_of C\LongrightarrowMax (atms_of C) = A
    by (metis Max.coboundedI[OF finite_atms_of] atms_of_def empty_iff eq_iff image_subsetI
        less_eq_Max_atms_of set_mset_empty subset_Compl_self_eq)
lemma atm_of_Max_lit[simp]: C \not={#} \Longrightarrowatm_of (Max_mset C) = Max (atms_of C)
    unfolding atms_of_def Max_atm_of_set_mset_commute ..
lemma Max_lit_eq_pos_or_neg_Max_atm:
```

```
C\not={#} \Longrightarrow Max_mset C = Pos (Max (atms_of C)) \vee Max_mset C = Neg(Max (atms_of C))
```

by (metis Neg_atm_of_iff Pos_atm_of_iff atm_of_Max_lit)
lemma atms_less_imp_lit_less_pos: $(\bigwedge B . B \in$ atms_of $C \Longrightarrow B<A) \Longrightarrow L \in \# C \Longrightarrow L<$ Pos A unfolding atms_of_def less_literal_def by force
lemma atms_less_eq_imp_lit_less_eq_neg: $(\backslash B . B \in$ atms_of $C \Longrightarrow B \leq A) \Longrightarrow L \in \# \Longrightarrow L \leq N e g A$ unfolding less_eq_literal_def by (simp add: atm_of_lit_in_atms_of)
end

6 Herbrand Intepretation

theory Herbrand_Interpretation imports Clausal_Logic
begin

The material formalized here corresponds roughly to Sections 2.2 ("Herbrand Interpretations") of Bachmair and Ganzinger, excluding the formula and term syntax.
A Herbrand interpretation is a set of ground atoms that are to be considered true.

```
type-synonym 'a interp = 'a set
definition true_lit :: 'a interp }=>\mp@subsup{|}{}{\prime}\mathrm{ 'a literal }=>\mathrm{ bool (infix }\modelsl 50) where
    I}=lL\longleftrightarrow(if is_pos L then (\lambdaP.P) else Not) (atm_of L L I)
```

lemma true_lit_simps[simp]:
$I \equiv l \operatorname{Pos} A \longleftrightarrow A \in I$
$I \equiv l$ Neg $A \longleftrightarrow A \notin I$
unfolding true_lit_def by auto
lemma true_lit_iff [iff]: $I \models l L \longleftrightarrow(\exists A . L=\operatorname{Pos} A \wedge A \in I \vee L=N e g A \wedge A \notin I)$
by (cases L) simp +
definition true_cls :: 'a interp \Rightarrow 'a clause \Rightarrow bool (infix $\models 50$) where
$I \vDash C \longleftrightarrow(\exists L \in \# C . I \models l L)$
lemma true_cls_empty[iff]: $\neg \models\{\#\}$
unfolding true_cls_def by simp
lemma true_cls_singleton[iff]: $I \models\{\# L \#\} \longleftrightarrow I \models l L$
unfolding true_cls_def by simp
lemma true_cls_add_mset[iff]: $I \models$ add_mset $C D \longleftrightarrow I \models l C \vee I \models D$
unfolding true_cls_def by auto
lemma true_cls_union[iff]: $I \models C+D \longleftrightarrow I \models C \vee I \models D$
unfolding true_cls_def by auto
lemma true_cls_mono: set_mset $C \subseteq$ set_mset $D \Longrightarrow I \models C \Longrightarrow I \models D$
unfolding true_cls_def subset_eq by metis
lemma
assumes $I \subseteq J$
shows
false_to_true_imp_ex_pos: $\neg I \models C \Longrightarrow J \models C \Longrightarrow \exists A \in J$. Pos $A \in \# C$ and
true_to_false_imp_ex_neg: $I \models C \Longrightarrow \neg J \models C \Longrightarrow \exists A \in J$. Neg $A \in \# C$
using assms unfolding subset_iff true_cls_def by (metis literal.collapse true_lit_simps)+
lemma true_cls_replicate_mset[iff]: $I \models$ replicate_mset $n L \longleftrightarrow n \neq 0 \wedge I \models l L$
by (simp add: true_cls_def)
lemma pos_literal_in_imp_true_cls[intro]: Pos $A \in \# C \Longrightarrow A \in I \Longrightarrow I \models C$

```
using true_cls_def by blast
lemma neg_literal_notin_imp_true_cls[intro]: Neg A\in#C\LongrightarrowA\not=I\LongrightarrowI\modelsC
    using true_cls_def by blast
lemma pos_neg_in_imp_true: Pos A ##C Neg A ##C C I\modelsC
    using true_cls_def by blast
definition true_clss :: 'a interp }=>\mp@subsup{|}{}{\prime}\mathrm{ 'a clause set }=>\mathrm{ bool (infix }|=s 50) wher
    I\modelss CC\longleftrightarrow(\forallC\inCC.I\modelsC)
lemma true_clss_empty[iff]: I =s {}
    by (simp add: true_clss_def)
lemma true_clss_singleton[iff]: I\modelss{C}\longleftrightarrow \longleftrightarrow =C
    unfolding true_clss_def by blast
lemma true_clss_insert[iff]: I =s insert C DD \longleftrightarrowI\modelsC^I\modelss DD
    unfolding true_clss_def by blast
lemma true_clss_union[iff]:I\modelssCC\cupDD\longleftrightarrowI\modelssCC^I\modelss DD
    unfolding true_clss_def by blast
lemma true_clss_mono: DD\subseteqCC\LongrightarrowI\modelss CC\LongrightarrowI\modelss DD
    by (simp add: set_mp true_clss_def)
abbreviation satisfiable :: 'a clause set }=>\mathrm{ bool where
    satisfiable CC\equiv\existsI.I\modelss CC
definition true_cls_mset :: 'a interp => ' a clause multiset }=>\mathrm{ bool (infix }=m\mathrm{ 50) where
    I}=mCC\longleftrightarrow(\forallC\in#CC.I\modelsC
lemma true_cls_mset_empty[iff]:I }\=m{#
    unfolding true_cls_mset_def by auto
lemma true_cls_mset_singleton[iff]: I\modelsm {#C#} \longleftrightarrowI\modelsC
    by (simp add: true_cls_mset_def)
lemma true_cls_mset_union[iff]: I\modelsm CC + DD \longleftrightarrowI\modelsmCC^I\modelsm DD
    unfolding true_cls_mset_def by auto
lemma true_cls_mset_add_mset[iff]: I\modelsm add_mset C CC \longleftrightarrowI\modelsC^I\modelsmCC
    unfolding true_cls_mset_def by auto
lemma true_cls_mset_image_mset[iff]: I =m image_mset f A\longleftrightarrow(\forallx\in# A.I\modelsfx)
    unfolding true_cls_mset_def by auto
lemma true_cls_mset_mono: set_mset DD\subseteq set_mset CC\LongrightarrowI\modelsmCC\LongrightarrowI\modelsmDD
    unfolding true_cls_mset_def subset_iff by auto
lemma true_clss_set_mset[iff]:I\modelss set_mset CC \longleftrightarrowI\modelsmCC
    unfolding true_clss_def true_cls_mset_def by auto
lemma true_cls_mset_true_cls: }I\modelsmCC\LongrightarrowC\in#CC\LongrightarrowI\models
    using true_cls_mset_def by auto
end
```


$7 \quad$ Abstract Substitutions

```
theory Abstract_Substitution
    imports Clausal_Logic Map2
begin
```

Atoms and substitutions are abstracted away behind some locales, to avoid having a direct dependency on the IsaFoR library.
Conventions: ' s substitutions, ' a atoms.

7.1 Library

```
lemma \(f_{-}\)Suc_decr_eventually_const:
    fixes \(f::\) nat \(\Rightarrow\) nat
    assumes leq: \(\forall i . f(\) Suc \(i) \leq f i\)
    shows \(\exists l . \forall l^{\prime} \geq l . f l^{\prime}=f\left(S u c l^{\prime}\right)\)
proof (rule ccontr)
    assume \(a\) : \(\ddagger l . \forall l^{\prime} \geq l . f l^{\prime}=f\left(S u c l^{\prime}\right)\)
    have \(\forall i . \exists i^{\prime} . i^{\prime}>i \wedge f i^{\prime}<f i\)
    proof
        fix \(i\)
        from \(a\) have \(\exists l^{\prime} \geq i . f l^{\prime} \neq f\left(\right.\) Suc \(\left.l^{\prime}\right)\)
        by auto
        then obtain \(l^{\prime}\) where
            \(l^{\prime}-p: l^{\prime} \geq i \wedge f l^{\prime} \neq f\left(\right.\) Suc \(\left.l^{\prime}\right)\)
            by metis
        then have \(f l^{\prime}>f\left(\right.\) Suc \(\left.l^{\prime}\right)\)
            using leq le_eq_less_or_eq by auto
        moreover have \(f i \geq f l^{\prime}\)
            using leq \(l^{\prime}{ }_{-} p\) by (induction \(l^{\prime}\) arbitrary: \(i\) ) (blast intro: lift_Suc_antimono_le)+
        ultimately show \(\exists i^{\prime}>i . f i^{\prime}<f i\)
            using \(l^{\prime}\) _p less_le_trans by blast
    qed
    then obtain g_sm :: nat \(\Rightarrow\) nat where
        \(g_{\text {_sm_p }} \forall i . g_{-} s m i>i \wedge f\left(g_{-} s m i\right)<f i\)
        by metis
    define \(c::\) nat \(\Rightarrow\) nat where
        \n. \(c n=\left(g_{-} s m{ }^{\wedge} n\right) 0\)
    have \(f(c i)>f(c(\) Suc \(i))\) for \(i\)
        by (induction i) (auto simp: c_def g_sm_p)
    then have \(\forall i .(f \circ c) i>(f \circ c)(\) Suc \(i)\)
        by auto
    then have \(\exists f c::\) nat \(\Rightarrow\) nat. \(\forall i . f c i>f c(S u c i)\)
        by metis
    then show False
        using wf_less_than by (simp add: wf_iff_no_infinite_down_chain)
qed
```


7.2 Substitution Operators

```
locale substitution_ops =
    fixes
        subst_atm :: ' }a=>\mp@subsup{|}{}{\prime}s=>\mp@subsup{}{}{\prime}a\mathrm{ and
        id_subst :: 's and
        comp_subst :: 's = 's }=>\mathrm{ 's
begin
```

abbreviation subst_atm_abbrev :: ' $a \Rightarrow{ }^{\prime} s \Rightarrow{ }^{\prime} a$ (infixl $\cdot a 67$) where
subst_atm_abbrev \equiv subst_atm
abbreviation comp_subst_abbrev :: 's \Rightarrow ' $s \Rightarrow$'s (infixl $\odot 67$) where
comp_subst_abbrev \equiv comp_subst
definition comp_substs :: 's list \Rightarrow 's list \Rightarrow 's list (infixl \odot s 67) where
$\sigma s \odot s \tau s=$ map 2 comp_subst $\sigma s \tau s$
definition subst_atms :: 'a set $\Rightarrow{ }^{\prime} s \Rightarrow{ }^{\prime} a$ set (infixl $\cdot a s$ 67) where

```
AA\cdotas \sigma = (\lambdaA.A a \sigma)'AA
definition subst_atmss :: 'a set set }=>\mp@subsup{}{}{\prime}'s=>''a set set (infixl ·ass 67) wher
    AAA ass \sigma = (\lambdaAA. AA as \sigma)'AAA
definition subst_atm_list :: 'a list }=>\mp@subsup{}{}{\prime}s=>'a list (infixl - al 67) wher
    As\cdotal \sigma = map (\lambdaA.A\cdota\sigma)As
definition subst_atm_mset :: 'a multiset }=>\mp@subsup{}{}{\prime}'s=>' 'a multiset (infixl ·am 67) wher
    AA\cdotam \sigma = image_mset ( }\lambdaA.A\cdota\sigma)A
definition
    subst_atm_mset_list :: 'a multiset list }=>\mp@subsup{}{}{\prime}'s=>\mp@subsup{}{}{\prime}a\mathrm{ multiset list (infixl ·aml 67)
where
    AAA\cdotaml \sigma = map (\lambdaAA.AA\cdotam \sigma) AAA
definition
    subst_atm_mset_lists :: 'a multiset list }=>\mp@subsup{}{}{\prime}'slist |> 'a multiset list (infixl ..aml 67)
where
    AAs \cdotaml \sigmas = map2 (op \cdotam) AAs \sigmas
definition subst_lit :: 'a literal }=>\mathrm{ ' 's }=>\mathrm{ ' 'a literal (infixl }\cdotl 67) where
    L\cdotl\sigma=map_literal (\lambdaA.A\cdota\sigma)L
lemma atm_of_subst_lit[simp]: atm_of (L\cdotl \sigma)=atm_of L La \sigma
    unfolding subst_lit_def by (cases L) simp+
definition subst_cls :: 'a clause }=>\mp@subsup{}{}{\prime}'s=' 'a clause (infixl - 67) where
    AA\cdot\sigma = image_mset ( }\lambdaA.A\cdotl\sigma)A
definition subst_clss :: 'a clause set }=>\mathrm{ ' 's }=>\mathrm{ ' 'a clause set (infixl cs 67) where
    AA\cdotcs \sigma=(\lambdaA.A\cdot\sigma)'AA
definition subst_cls_list :: 'a clause list }=>\mathrm{ ' 's # 'a clause list (infixl ·l 67) where
    Cs.cl \sigma = map (\lambdaA.A.\sigma) Cs
definition subst_cls_lists :: 'a clause list }=>\mathrm{ ' 's list }=>\mathrm{ ' 'a clause list (infixl *cl 67) where
    Cs ..cl \sigmas = map2 (op \cdot) Cs \sigmas
definition subst_cls_mset :: 'a clause multiset }=>\mp@subsup{}{}{\prime}'s=\mp@subsup{|}{}{\prime}a clause multiset (infixl cm 67) where
    CC}\cdot\textrm{cm}\sigma=\mathrm{ image_mset ( }\lambdaA.A\cdot\sigma)C
lemma subst_cls_add_mset[simp]: add_mset L C \cdot \sigma = add_mset (L l \sigma ) (C | \sigma)
    unfolding subst_cls_def by simp
lemma subst_cls_mset_add_mset[simp]: add_mset C CC cm \sigma = add_mset (C C \sigma) (CC .cm \sigma)
    unfolding subst_cls_mset_def by simp
definition generalizes_atm :: ' }a>>'' 'a=>bool where
    generalizes_atm A B \longleftrightarrow(\exists\sigma.A\cdota\sigma=B)
definition strictly_generalizes_atm :: ' }a>\mp@subsup{|}{}{\prime}a=>\mathrm{ bool where
    strictly_generalizes_atm A B \longleftrightarrow generalizes_atm A B ^ ᄀgeneralizes_atm B A
definition generalizes_lit :: 'a literal }=>\mathrm{ ' a literal }=>\mathrm{ bool where
    generalizes_lit L M \longleftrightarrow(\exists\sigma.L\cdotl\sigma=M)
definition strictly_generalizes_lit :: 'a literal }=>\mathrm{ ' 'a literal }=>\mathrm{ bool where
    strictly_generalizes_lit L M \longleftrightarrow generalizes_lit L M ^\neg generalizes_lit M L
definition generalizes_cls :: 'a clause = 'a clause }=>\mathrm{ bool where
    generalizes_cls C D \longleftrightarrow(\exists\sigma.C}\cdot\sigma=D
```

```
definition strictly_generalizes_cls :: 'a clause => 'a clause }=>\mathrm{ bool where
    strictly_generalizes_cls C D \longleftrightarrow generalizes_cls C D ^ ᄀ generalizes_cls D C
definition subsumes :: 'a clause => 'a clause }=>\mathrm{ bool where
    subsumes C D \longleftrightarrow(\exists\sigma.C C \sigma\subseteq#D)
definition strictly_subsumes :: 'a clause = ' 'a clause }=>\mathrm{ bool where
    strictly_subsumes C D subsumes C D ^ ᄀ subsumes D C
definition variants :: 'a clause }=>\mathrm{ ' 'a clause }=>\mathrm{ bool where
    variants CD \longleftrightarrowgeneralizes_cls C D ^ generalizes_cls D C
definition is_renaming :: 's => bool where
    is_renaming }\sigma\longleftrightarrow(\exists\tau.\sigma\odot\tau=id_subst
definition is_renaming_list :: 's list }=>\mathrm{ bool where
    is_renaming_list }\sigmas\longleftrightarrow(\forall\sigma\in\mathrm{ set }\sigma\mathrm{ s. is_renaming }\sigma
definition inv_renaming :: 's }=>\mathrm{ 's where
    inv_renaming \sigma=(SOME \tau.\sigma\odot\tau=id_subst)
definition is_ground_atm :: ' }a=>\mathrm{ bool where
    is_ground_atm }A\longleftrightarrow(\forall\sigma.A=A\cdota\sigma
definition is_ground_atms :: ' a set => bool where
    is_ground_atms AA =( }\forallA\inAA\mathrm{ . is_ground_atm A)
definition is_ground_atm_list :: 'a list }=>\mathrm{ bool where
    is_ground_atm_list As \longleftrightarrow(\forallA\in set As. is_ground_atm A)
definition is_ground_atm_mset :: 'a multiset }=>\mathrm{ bool where
    is_ground_atm_mset AA \longleftrightarrow(\forallA.A\in# AA \longrightarrow is_ground_atm A)
definition is_ground_lit :: 'a literal }=>\mathrm{ bool where
    is_ground_lit L}\longleftrightarrow is_ground_atm (atm_of L
definition is_ground_cls :: 'a clause }=>\mathrm{ bool where
    is_ground_cls }C\longleftrightarrow(\forallL.L\in#C\longrightarrow is_ground_lit L)
definition is_ground_clss :: 'a clause set }=>\mathrm{ bool where
    is_ground_clss }CC\longleftrightarrow(\forallC\inCC. is_ground_cls C
definition is_ground_cls_list :: 'a clause list => bool where
    is_ground_cls_list CC \longleftrightarrow(\forallC\in set CC. is_ground_cls C)
definition is_ground_subst :: 's }=>\mathrm{ bool where
    is_ground_subst }\sigma\longleftrightarrow(\forallA.is_ground_atm (A\cdota \sigma)
definition is_ground_subst_list :: 's list }=>\mathrm{ bool where
    is_ground_subst_list }\sigmas\longleftrightarrow(\forall\sigma\in\mathrm{ set }\sigmas.is_ground_subst \sigma
definition grounding_of_cls :: 'a clause = ' 'a clause set where
    grounding_of_cls C = {C\cdot\sigma|\sigma. is_ground_subst \sigma}
definition grounding_of_clss :: 'a clause set }=>\mp@subsup{|}{}{\prime
    grounding_of_clss CC =( \bigcupC\inCC.grounding_of_cls C)
definition is_unifier :: 's # 'a set }=>\mathrm{ bool where
    is_unifier }\sigmaAA\longleftrightarrow\mathrm{ card (AA as }\sigma)\leq
definition is_unifiers :: 's }=>\mathrm{ ' 'a set set }=>\mathrm{ bool where
    is_unifiers }\sigmaAAA\longleftrightarrow(\forallAA\inAAA. is_unifier \sigmaAA
```

```
definition is_mgu :: 's \(\Rightarrow\) ' \(a\) set set \(\Rightarrow\) bool where
    is_mgu \(\sigma A A A \longleftrightarrow\) is_unifiers \(\sigma A A A \wedge(\forall \tau\). is_unifiers \(\tau A A A \longrightarrow(\exists \gamma . \tau=\sigma \odot \gamma))\)
definition var_disjoint :: 'a clause list \(\Rightarrow\) bool where
    var_disjoint Cs \(\longleftrightarrow\)
    \((\forall \sigma s\). length \(\sigma s=\) length \(C s \longrightarrow(\exists \tau . \forall i<\) length Cs. \(\forall S . S \subseteq \# C s!i \longrightarrow S \cdot \sigma s!i=S \cdot \tau))\)
```

end

7.3 Substitution Lemmas

```
locale substitution = substitution_ops subst_atm id_subst comp_subst
    for
        subst_atm :: ' \(a \Rightarrow\) ' \(s \Rightarrow{ }^{\prime} a\) and
        id_subst :: 's and
        comp_subst : : 's \(\Rightarrow\) 's \(\Rightarrow\) 's +
    fixes
        atm_of_atms :: 'a list \(\Rightarrow{ }^{\prime} a\) and
        renamings_apart :: 'a clause list \(\Rightarrow\) 's list
    assumes
        subst_atm_id_subst \([\) simp \(]: A \cdot a\) id_subst \(=A\) and
        subst_atm_comp_subst[simp]: \(A \cdot a(\tau \odot \sigma)=(A \cdot a \tau) \cdot a \sigma\) and
        subst_ext: \((\bigwedge A \cdot A \cdot a \sigma=A \cdot a \tau) \Longrightarrow \sigma=\tau\) and
        make_ground_subst: is_ground_cls \((C \cdot \sigma) \Longrightarrow \exists \tau\). is_ground_subst \(\tau \wedge C \cdot \tau=C \cdot \sigma\) and
        renames_apart:
            ^Cs. length (renamings_apart Cs) \(=\) length \(C s \wedge\)
            \((\forall \varrho \in\) set (renamings_apart Cs). is_renaming \(\varrho) \wedge\)
            var_disjoint (Cs ..cl (renamings_apart Cs)) and
        atm_of_atms_subst:
            \(\bigwedge A s\) Bs. atm_of_atms \(A s \cdot a \sigma=a t m_{-} o f_{-} a t m s B s \longleftrightarrow \operatorname{map}(\lambda A . A \cdot a \sigma) A s=B s\) and
        wf_strictly_generalizes_atm: wfP strictly_generalizes_atm
begin
lemma subst_ext_iff: \(\sigma=\tau \longleftrightarrow(\forall A \cdot A \cdot a \sigma=A \cdot a \tau)\)
    by (blast intro: subst_ext)
```


7.3.1 Identity Substitution

lemma id_subst_comp_subst $[$ simp $]$: id_subst $\odot \sigma=\sigma$ by (rule subst_ext) simp
lemma comp_subst_id_subst $[$ simp $]: \sigma \odot i d _s u b s t=\sigma$ by (rule subst_ext) simp
lemma id_subst_comp_substs[simp]: replicate (length σs) id_subst $\odot s \sigma s=\sigma s$ using comp_substs_def by (induction σs) auto
lemma comp_substs_id_subst $[\operatorname{simp}]: \sigma s \odot s$ replicate $(l e n g t h ~ \sigma s) ~ i d _s u b s t=\sigma s$ using comp_substs_def by (induction σs) auto
lemma subst_atms_id_subst[simp]: AA as id_subst $=A A$ unfolding subst_atms_def by simp
lemma subst_atmss_id_subst $[$ simp $]: A A A \cdot a s s ~ i d _s u b s t=A A$ unfolding subst_atmss_def by simp
lemma subst_atm_list_id_subst[simp]: As \cdot al id_subst $=A s$ unfolding subst_atm_list_def by auto
lemma subst_atm_mset_id_subst $[$ simp $]: A A \cdot a m$ id_subst $=A A$ unfolding subst_atm_mset_def by simp
lemma subst_atm_mset_list_id_subst[simp]: AAs $\cdot a m l i d _s u b s t=A A s$
unfolding subst_atm_mset_list_def by simp
lemma subst_atm_mset_lists_id_subst[simp]: AAs $\cdot \cdot a m l$ replicate $($ length $A A s)$ $)$ id_subst $=A A s$ unfolding subst_atm_mset_lists_def by (induct AAs) auto
lemma subst_lit_id_subst[simp]: $L \cdot l$ id_subst $=L$
unfolding subst_lit_def by (simp add: literal.map_ident)
lemma subst_cls_id_subst[simp]: $C \cdot$ id_subst $=C$
unfolding subst_cls_def by simp
lemma subst_clss_id_subst $[$ simp $]: C C \cdot c s$ id_subst $=C C$
unfolding subst_clss_def by simp
lemma subst_cls_list_id_subst[simp]: Cs \cdot cl id_subst $=C s$ unfolding subst_cls_list_def by simp
lemma subst_cls_lists_id_subst[simp]: Cs ..cl replicate (length Cs) id_subst $=C s$ unfolding subst_cls_lists_def by (induct Cs) auto
lemma subst_cls_mset_id_subst[simp]: CC $\cdot \mathrm{cm}$ id_subst $=C C$ unfolding subst_cls_mset_def by simp

7.3.2 Associativity of Composition

lemma comp_subst_assoc[simp]: $\sigma \odot(\tau \odot \gamma)=\sigma \odot \tau \odot \gamma$ by (rule subst_ext) simp

7.3.3 Compatibility of Substitution and Composition

lemma subst_atms_comp_subst[simp]: AA as $(\tau \odot \sigma)=A A \cdot$ as $\tau \cdot$ as σ unfolding subst_atms_def by auto
lemma subst_atmss_comp_subst[simp]:AAA •ass $(\tau \odot \sigma)=A A A \cdot$ ass $\tau \cdot$ ass σ unfolding subst_atmss_def by auto
lemma subst_atm_list_comp_subst[simp]: As $\cdot a l(\tau \odot \sigma)=A s \cdot a l \tau \cdot a l \sigma$ unfolding subst_atm_list_def by auto
lemma subst_atm_mset_comp_subst $[$ simp $]: A A \cdot a m(\tau \odot \sigma)=A A \cdot a m \tau \cdot a m \sigma$ unfolding subst_atm_mset_def by auto
lemma subst_atm_mset_list_comp_subst[simp]: AAs $\cdot a m l(\tau \odot \sigma)=(A A s \cdot a m l \tau) \cdot a m l \sigma$ unfolding subst_atm_mset_list_def by auto
lemma subst_atm_mset_lists_comp_substs[simp]: AAs $\cdot \cdot a m l(\tau s \odot s \sigma s)=A A s \cdot a m l \tau s \cdot a m l ~ \sigma s$ unfolding subst_atm_mset_lists_def comp_substs_def map_zip_map map_zip_map2 map_zip_assoc by (simp add: split_def)
lemma subst_lit_comp_subst[simp]: $L \cdot l(\tau \odot \sigma)=L \cdot l \tau \cdot l \sigma$ unfolding subst_lit_def by (auto simp: literal.map_comp o_def)
lemma subst_cls_comp_subst[simp]: $C \cdot(\tau \odot \sigma)=C \cdot \tau \cdot \sigma$
unfolding subst_cls_def by auto
lemma subst_clsscomp_subst[simp]: CC \cdot cs $(\tau \odot \sigma)=C C \cdot c s \tau \cdot c s \sigma$ unfolding subst_clss_def by auto
lemma subst_cls_list_comp_subst[simp]: $\mathrm{Cs} \cdot \mathrm{cl}(\tau \odot \sigma)=C s \cdot c l \tau \cdot c l \sigma$ unfolding subst_cls_list_def by auto
lemma subst_cls_lists_comp_substs[simp]: Cs ..cl $(\tau s \odot s \sigma s)=C s . \cdot c l ~ \tau s . . c l ~ \sigma s$ unfolding subst_cls_lists_def comp_substs_def map_zip_map map_zip_map2 map_zip_assoc by (simp add: split_def)
lemma subst_cls_mset_comp_subst[simp]: $C C \cdot \mathrm{~cm}(\tau \odot \sigma)=C C \cdot c m \tau \cdot c m \sigma$ unfolding subst_cls_mset_def by auto

7.3.4 "Commutativity" of Membership and Substitution

lemma Melem_subst_atm_mset[simp]: $A \in \# A A \cdot a m \sigma \longleftrightarrow(\exists B \cdot B \in \# A A \wedge A=B \cdot a \sigma)$
unfolding subst_atm_mset_def by auto
lemma Melem_subst_cls[simp]: $L \in \# C \cdot \sigma \longleftrightarrow(\exists M . M \in \# C \wedge L=M \cdot l \sigma)$
unfolding subst_cls_def by auto
lemma Melem_subst_cls_mset $[s i m p]: A A \in \# C C \cdot c m \sigma \longleftrightarrow(\exists B B \cdot B B \in \# C C \wedge A A=B B \cdot \sigma)$ unfolding subst_cls_mset_def by auto

7.3.5 Signs and Substitutions

lemma subst_lit_is_neg[simp]: is_neg $(L \cdot l \sigma)=i s _n e g ~ L$
unfolding subst_lit_def by auto
lemma subst_lit_is_pos[simp]: is_pos $(L \cdot l \sigma)=i s _p o s L$
unfolding subst_lit_def by auto
lemma subst_minus $[$ simp $]:(-L) \cdot l \mu=-(L \cdot l \mu)$
by (simp add: literal.map_sel subst_lit_def uminus_literal_def)

7.3.6 Substitution on Literal(s)

lemma eql_neg_lit_eql_atm $[\operatorname{simp}]:\left(N e g A^{\prime} \cdot l \eta\right)=N e g A \longleftrightarrow A^{\prime} \cdot a \eta=A$ by (simp add: subst_lit_def)
lemma eql_pos_lit_eql_atm $[\operatorname{simp}]:\left(\operatorname{Pos} A^{\prime} \cdot l \eta\right)=\operatorname{Pos} A \longleftrightarrow A^{\prime} \cdot a \eta=A$ by (simp add: subst_lit_def)
lemma subst_cls_negs $[$ simp $]:($ negs $A A) \cdot \sigma=$ negs $(A A \cdot a m \sigma)$ unfolding subst_cls_def subst_lit_def subst_atm_mset_def by auto
lemma subst_cls_poss $[$ simp $]:($ poss $A A) \cdot \sigma=\operatorname{poss}(A A \cdot a m \sigma)$ unfolding subst_cls_def subst_lit_def subst_atm_mset_def by auto
lemma $a t m s_{-} o f_{-} s u b s t_{-} a t m s: ~ a t m s_{-} o f ~ C \cdot a s ~ \sigma=a t m s_{-} o f(C \cdot \sigma)$
proof -
have $a t m s _o f(C \cdot \sigma)=$ set_mset $($ image_mset atm_of $($ image_mset $($ map_literal $(\lambda A \cdot A \cdot a \sigma)) C))$ unfolding subst_cls_def subst_atms_def subst_lit_def atms_of_def by auto
also have $\ldots=$ set_mset (image_mset $(\lambda A . A \cdot a \sigma)($ image_mset atm_of $C)$) by simp (meson literal.map_sel)
finally show atms_of $C \cdot$ as $\sigma=$ atms_of $(C \cdot \sigma)$ unfolding subst_atms_def atms_of_def by auto
qed
lemma in_image_Neg_is_neg[simp]: $L \cdot l \sigma \in N e g$ ' $A A \Longrightarrow$ is_neg L by (metis bex_imageD literal.disc(2) literal.map_disc_iff subst_lit_def)
lemma subst_lit_in_negs_subst_is_neg: $L \cdot l \sigma \in \#(n e g s ~ A A) \cdot \tau \Longrightarrow$ is_neg L by simp
lemma subst_lit_in_negs_is_neg: $L \cdot l \sigma \in \#$ negs $A A \Longrightarrow$ is_neg L by simp

7.3.7 Substitution on Empty

lemma subst_atms_empty[simp]: \{\} \cdot as $\sigma=\{ \}$ unfolding subst_atms_def by auto
lemma subst_atmss_empty[simp]: \{\} •ass $\sigma=\{ \}$

```
unfolding subst_atmss_def by auto
lemma comp_substs_empty_iff [simp]: \sigmas \odots \etas=[]\longleftrightarrow < <s=[]\vee\etas=[]
    using comp_substs_def map2_empty_iff by auto
lemma subst_atm_list_empty[simp]: [] al \sigma = []
    unfolding subst_atm_list_def by auto
```



```
    unfolding subst_atm_mset_def by auto
lemma subst_atm_mset_list_empty[simp]: [] :aml \sigma = []
    unfolding subst_atm_mset_list_def by auto
lemma subst_atm_mset_lists_empty[simp]: [] ..aml \sigmas = []
    unfolding subst_atm_mset_lists_def by auto
```



```
    unfolding subst_cls_def by auto
lemma subst_clss_empty[simp]:{} cs \sigma={}
    unfolding subst_clss_def by auto
lemma subst_cls_list_empty[simp]: [] .cl \sigma = []
    unfolding subst_cls_list_def by auto
lemma subst_cls_lists_empty[simp]: [] ..cl \sigmas = []
    unfolding subst_cls_lists_def by auto
lemma subst_scls_mset_empty[simp]: {#} cm \sigma = {#}
    unfolding subst_cls_mset_def by auto
lemma subst_atms_empty_iff [simp]:AA as \eta={}\longleftrightarrow}\longleftrightarrow4A={
    unfolding subst_atms_def by auto
lemma subst_atmss_empty_iff[simp]: AAA ass \eta={}\longleftrightarrow \AAA={}
    unfolding subst_atmss_def by auto
lemma subst_atm_list_empty_iff [simp]:As al \eta=[]\longleftrightarrowAs=[]
    unfolding subst_atm_list_def by auto
lemma subst_atm_mset_empty_iff [simp]:AA\cdotam \eta ={#}\longleftrightarrow < AA={#}
    unfolding subst_atm_mset_def by auto
lemma subst_atm_mset_list_empty_iff [simp]:AAs aml \eta=[]\longleftrightarrowAAs=[]
        unfolding subst_atm_mset_list_def by auto
lemma subst_atm_mset_lists_empty_iff [simp]:AAs .aml \etas=[]\longleftrightarrow < AAs=[]\vee \etas=[])
        using map2_empty_iff subst_atm_mset_lists_def by auto
lemma subst_cls_empty_iff [simp]: C | \eta={#}\longleftrightarrowC={#}
        unfolding subst_cls_def by auto
lemma subst_clss_empty_iff [simp]:CC cs \eta={}\longleftrightarrowCC={}
        unfolding subst_clss_def by auto
lemma subst_cls_list_empty_iff [simp]: Cs cl \eta=[]\longleftrightarrowCs=[]
    unfolding subst_cls_list_def by auto
lemma subst_cls_lists_empty_iff [simp]:Cs ..cl \etas=[]\longleftrightarrow(Cs=[]\vee \etas=[])
    using map2_empty_iff subst_cls_lists_def by auto
lemma subst_cls_mset_empty_iff [simp]:CC cm \eta={#}\longleftrightarrowCC={#}
```

unfolding subst_cls_mset_def by auto

7.3.8 Substitution on a Union

lemma subst_atms_union[simp]: $(A A \cup B B) \cdot$ as $\sigma=A A \cdot$ as $\sigma \cup B B \cdot$ as σ unfolding subst_atms_def by auto
lemma subst_atmss_union[simp]: $(A A A \cup B B B) \cdot$ ass $\sigma=A A A \cdot$ ass $\sigma \cup B B B \cdot$ ass σ unfolding subst_atmss_def by auto
lemma subst_atm_list_append[simp]: (As@Bs)•al $\sigma=A s \cdot a l \sigma$ @ Bs \cdot al σ unfolding subst_atm_list_def by auto
lemma subst_atm_mset_union[simp]: $(A A+B B) \cdot a m \sigma=A A \cdot a m \sigma+B B \cdot a m \sigma$ unfolding subst_atm_mset_def by auto
lemma subst_atm_mset_list_append[simp]: (AAs @ BBs) •aml $\sigma=A A s \cdot a m l ~ \sigma$ @ BBs $\cdot a m l \sigma$ unfolding subst_atm_mset_list_def by auto
lemma subst_cls_union[simp]: $(C+D) \cdot \sigma=C \cdot \sigma+D \cdot \sigma$ unfolding subst_cls_def by auto
lemma subst_clss_union[simp]: $(C C \cup D D) \cdot$ cs $\sigma=C C \cdot c s \sigma \cup D D \cdot c s \sigma$ unfolding subst_clss_def by auto
lemma subst_cls_list_append[simp]: (Cs @ Ds) \cdot cl $\sigma=C s \cdot c l ~ \sigma @ D s \cdot c l ~ \sigma$ unfolding subst_cls_list_def by auto
lemma subst_cls_mset_union[simp]: $(C C+D D) \cdot c m \sigma=C C \cdot c m \sigma+D D \cdot c m \sigma$ unfolding subst_cls_mset_def by auto

7.3.9 Substitution on a Singleton

lemma subst_atms_single[simp]: $\{A\} \cdot$ as $\sigma=\{A \cdot a \sigma\}$ unfolding subst_atms_def by auto
lemma subst_atmss_single[simp]: $\{A A\} \cdot$ ass $\sigma=\{A A \cdot a s \sigma\}$
unfolding subst_atmss_def by auto
lemma subst_atm_list_single $[$ simp $]:[A] \cdot a l ~ \sigma=[A \cdot a \sigma]$ unfolding subst_atm_list_def by auto
lemma subst_atm_mset_single $[$ simp $]:\{\# A \#\} \cdot a m \sigma=\{\# A \cdot a \sigma \#\}$ unfolding subst_atm_mset_def by auto
lemma subst_atm_mset_list[simp]: $[A A] \cdot a m l \sigma=[A A \cdot a m \sigma]$ unfolding subst_atm_mset_list_def by auto
lemma subst_cls_single $[$ simp $]:\{\# L \#\} \cdot \sigma=\{\# L \cdot l \sigma \#\}$ by simp
lemma subst_clss_single[simp]: $\{C\} \cdot c s \sigma=\{C \cdot \sigma\}$
unfolding subst_clss_def by auto
lemma subst_cls_list_single $[$ simp $]:[C] \cdot c l ~ \sigma=[C \cdot \sigma]$
unfolding subst_cls_list_def by auto
lemma subst_cls_mset_single[simp]: $\{\# C \#\} \cdot c m \sigma=\{\# C \cdot \sigma \#\}$
by simp

7.3.10 Substitution on op \#

lemma subst_atm_list_Cons[simp]: $(A \# A s) \cdot a l ~ \sigma=A \cdot a \sigma \#$ As $\cdot a l \sigma$ unfolding subst_atm_list_def by auto
lemma subst_atm_mset_list_Cons $[\operatorname{simp}]:(A \# A s) \cdot a m l \sigma=A \cdot a m \sigma \# A s \cdot a m l \sigma$ unfolding subst_atm_mset_list_def by auto
lemma subst_atm_mset_lists_Cons $[\operatorname{simp}]:(C \# C s) \cdot a m l(\sigma \# \sigma s)=C \cdot a m \sigma \# C s \cdot a m l \sigma s$ unfolding subst_atm_mset_lists_def by auto
lemma subst_cls_list_Cons[simp]: $(C \# C s) \cdot c l \sigma=C \cdot \sigma \# C s \cdot c l \sigma$ unfolding subst_cls_list_def by auto
lemma subst_cls_lists_Cons[simp]: $(C \# C s) \cdot c l(\sigma \# \sigma s)=C \cdot \sigma \# C s \cdot c l \sigma s$ unfolding subst_cls_lists_def by auto

7.3.11 Substitution on $t l$

lemma subst_atm_list_tl[simp]: $t l(A s \cdot a l \eta)=t l A s \cdot a l \eta$ by (induction As) auto
lemma subst_atm_mset_list_tl[simp]: tl $(A A s \cdot a m l \eta)=t l A A s \cdot a m l \eta$ by (induction AAs) auto

7.3.12 Substitution on $o p$!

```
lemma comp_substs_nth[simp]:
    length \(\tau s=\) length \(\sigma s \Longrightarrow i<\) length \(\tau s \Longrightarrow(\tau s \odot s \sigma s)!i=(\tau s!i) \odot(\sigma s!i)\)
    by (simp add: comp_substs_def)
lemma subst_atm_list_nth \([\) simp \(]: i<l e n g t h ~ A s \Longrightarrow(A s \cdot a l \tau)!i=A s!i \cdot a \tau\)
    unfolding subst_atm_list_def using less_Suc_eq_0_disj nth_map by force
lemma subst_atm_mset_list_nth \([\) simp \(]: i<l e n g t h ~ A A s \Longrightarrow(A A s \cdot a m l \eta)!i=(A A s!i) \cdot a m \eta\)
    unfolding subst_atm_mset_list_def by auto
lemma subst_atm_mset_lists_nth[simp]:
    length \(A A s=\) length \(\sigma s \Longrightarrow i<\) length \(A A s \Longrightarrow(A A s \cdot \cdot a m l \sigma s)!i=(A A s!i) \cdot a m(\sigma s!i)\)
    unfolding subst_atm_mset_lists_def by auto
lemma subst_cls_list_nth \([\) simp \(]: i<l e n g t h ~ C s \Longrightarrow(C s \cdot c l ~ \tau)!i=(C s!i) \cdot \tau\)
    unfolding subst_cls_list_def using less_Suc_eq_0_disj nth_map by (induction Cs) auto
lemma subst_cls_lists_nth \([\) simp \(]\) :
    length \(C s=\) length \(\sigma s \Longrightarrow i<\) length \(C s \Longrightarrow(C s \cdots c l \sigma s)!i=(C s!i) \cdot(\sigma s!i)\)
    unfolding subst_cls_lists_def by auto
```


7.3.13 Substitution on Various Other Functions

lemma subst_clss_image $[$ simp $]$: image $f X \cdot$ cs $\sigma=\{f x \cdot \sigma \mid x . x \in X\}$
unfolding subst_clss_def by auto
lemma subst_cls_mset_image_mset[simp]: image_mset $f X \cdot c m \sigma=\{\# f x \cdot \sigma \cdot x \in \# X \#\}$ unfolding subst_cls_mset_def by auto
lemma mset_subst_atm_list_subst_atm_mset $[\operatorname{simp}]: \operatorname{mset}(A s \cdot a l \sigma)=\operatorname{mset}(A s) \cdot a m \sigma$ unfolding subst_atm_list_def subst_atm_mset_def by auto
lemma mset_subst_cls_list_subst_cls_mset: $m s e t(C s \cdot c l ~ \sigma)=($ mset Cs) $) \cdot \mathrm{cm} \sigma$ unfolding subst_cls_mset_def subst_cls_list_def by auto
lemma sum_list_subst_cls_list_subst_cls[simp]: sum_list $(C s \cdot c l \eta)=$ sum_list $C s \cdot \eta$ unfolding subst_cls_list_def by (induction Cs) auto
lemma set_mset_subst_cls_mset_subst_clss: set_mset $(C C \cdot c m \mu)=($ set_mset $C C) \cdot c s \mu$ by (simp add: subst_cls_mset_def subst_clss_def)
lemma Neg_Melem_subst_atm_subst_cls[simp]: Neg $A \in \# C \Longrightarrow N e g(A \cdot a \sigma) \in \# C \cdot \sigma$ by (metis Melem_subst_cls eql_neg_lit_eql_atm)
lemma Pos_Melem_subst_atm_subst_cls[simp]: Pos $A \in \# C \Longrightarrow \operatorname{Pos}(A \cdot a \sigma) \in \# C \cdot \sigma$ by (metis Melem_subst_cls eql_pos_lit_eql_atm)
lemma in_atms_of_subst $[$ simp $]: B \in$ atms_of $C \Longrightarrow B \cdot a \sigma \in$ atms_of $(C \cdot \sigma)$ by (metis atms_of_subst_atms image_iff subst_atms_def)

7.3.14 Renamings

lemma is_renaming_id_subst[simp]: is_renaming id_subst unfolding is_renaming_def by simp
lemma is_renaming $D:$ is_renaming $\sigma \Longrightarrow(\forall A 1 A 2 . A 1 \cdot a \sigma=A 2 \cdot a \sigma \longleftrightarrow A 1=A 2)$ by (metis is_renaming_def subst_atm_comp_subst subst_atm_id_subst)
lemma inv_renaming_cancel_r[simp]: is_renaming $r \Longrightarrow r \odot i n v _r e n a m i n g ~ r=i d _s u b s t$ unfolding inv_renaming_def is_renaming_def by (metis (mono_tags) someI_ex)
lemma inv_renaming_cancel_r_list[simp]: is_renaming_list $r s \Longrightarrow r s \odot s$ map inv_renaming rs = replicate (length rs) id_subst unfolding is_renaming_list_def by (induction rs) (auto simp add: comp_substs_def)
lemma Nil_comp_substs[simp]: [] $\odot s s=[]$ unfolding comp_substs_def by auto
lemma comp_substs_Nil $[\operatorname{simp}]: s \odot s[]=[]$ unfolding comp_substs_def by auto
lemma is_renaming_idempotent_id_subst: is_renaming $r \Longrightarrow r \odot r=r \Longrightarrow r=i d _s u b s t$ by (metis comp_subst_assoc comp_subst_id_subst inv_renaming_cancel_r)
lemma is_renaming_left_id_subst_right_id_subst: is_renaming $r \Longrightarrow s \odot r=i d _s u b s t \Longrightarrow r \odot s=i d _s u b s t$ by (metis comp_subst_assoc comp_subst_id_subst is_renaming_def)
lemma is_renaming_closure: is_renaming $r 1 \Longrightarrow$ is_renaming r2 \Longrightarrow is_renaming $(r 1 \odot r \mathcal{Z})$ unfolding is_renaming_def by (metis comp_subst_assoc comp_subst_id_subst)
lemma is_renaming_inv_renaming_cancel_atm $[\operatorname{simp}]:$ is_renaming $\varrho \Longrightarrow A \cdot a \varrho \cdot a$ inv_renaming $\varrho=A$ by (metis inv_renaming_cancel_r subst_atm_comp_subst subst_atm_id_subst)
lemma is_renaming_inv_renaming_cancel_atms[simp]: is_renaming $\varrho \Longrightarrow A A \cdot a s \varrho \cdot a s$ inv_renaming $\varrho=A A$ by (metis inv_renaming_cancel_r subst_atms_comp_subst subst_atms_id_subst)
lemma is_renaming_inv_renaming_cancel_atmss[simp]: is_renaming $\varrho \Longrightarrow A A A \cdot a s s ~ \varrho \cdot a s s$ inv_renaming $\varrho=A A A$ by (metis inv_renaming_cancel_r subst_atmss_comp_subst subst_atmss_id_subst)
lemma is_renaming_inv_renaming_cancel_atm_list[simp]: is_renaming $\varrho \Longrightarrow A s \cdot a l \varrho \cdot a l$ inv_renaming $\varrho=A s$ by (metis inv_renaming_cancel_r subst_atm_list_comp_subst subst_atm_list_id_subst)
lemma is_renaming_inv_renaming_cancel_atm_mset $[\operatorname{simp}]:$ is_renaming $\varrho \Longrightarrow A A \cdot a m \varrho \cdot a m$ inv_renaming $\varrho=A A$ by (metis inv_renaming_cancel_r subst_atm_mset_comp_subst subst_atm_mset_id_subst)
lemma is_renaming_inv_renaming_cancel_atm_mset_list $[\operatorname{simp}]:$ is_renaming $\varrho \Longrightarrow(A A s \cdot a m l \varrho) \cdot a m l$ inv_renaming ϱ $=A A s$
by (metis inv_renaming_cancel_r subst_atm_mset_list_comp_subst subst_atm_mset_list_id_subst)
lemma is_renaming_list_inv_renaming_cancel_atm_mset_lists[simp]:
length $A A s=$ length $\varrho s \Longrightarrow$ is_renaming_list $\varrho s \Longrightarrow A A s . . a m l$ @s $\cdot a m l$ map inv_renaming $\varrho s=A A s$ by (metis inv_renaming_cancel_r_list subst_atm_mset_lists_comp_substs subst_atm_mset_lists_id_subst)
lemma is_renaming_inv_renaming_cancel_lit[simp]: is_renaming $\varrho \Longrightarrow(L \cdot l \varrho) \cdot l$ inv_renaming $\varrho=L$
by (metis inv_renaming_cancel_r subst_lit_comp_subst subst_lit_id_subst)
lemma is_renaming_inv_renaming_cancel_cls[simp]: is_renaming $\varrho \Longrightarrow C \cdot \varrho \cdot$ inv_renaming $\varrho=C$ by (metis inv_renaming_cancel_r subst_cls_comp_subst subst_cls_id_subst)
lemma is_renaming_inv_renaming_cancel_clss[simp]: is_renaming $\varrho \Longrightarrow C C \cdot c s \varrho \cdot c s$ inv_renaming $\varrho=C C$ by (metis inv_renaming_cancel_r subst_clss_id_subst subst_clsscomp_subst)
lemma is_renaming_inv_renaming_cancel_cls_list[simp]: is_renaming $\varrho \Longrightarrow C s \cdot c l \varrho \cdot c l$ inv_renaming $\varrho=C s$ by (metis inv_renaming_cancel_r subst_cls_list_comp_subst subst_cls_list_id_subst)
lemma is_renaming_list_inv_renaming_cancel_cls_list[simp]:
length $C s=$ length $\varrho s \Longrightarrow$ is_renaming_list $\varrho s \Longrightarrow C s \cdot c l$ @s \cdot cl map inv_renaming $\varrho s=C s$
by (metis inv_renaming_cancel_r_list subst_cls_lists_comp_substs subst_cls_lists_id_subst)
lemma is_renaming_inv_renaming_cancel_cls_mset[simp]: is_renaming $\varrho \Longrightarrow C C \cdot c m \varrho \cdot c m$ inv_renaming $\varrho=C C$ by (metis inv_renaming_cancel_r subst_cls_mset_comp_subst subst_cls_mset_id_subst)

7.3.15 Monotonicity

lemma subst_cls_mono: set_mset $C \subseteq$ set_mset $D \Longrightarrow \operatorname{set} m s e t(C \cdot \sigma) \subseteq$ set_mset $(D \cdot \sigma)$ by force
lemma subst_cls_mono_mset: $C \subseteq \# D \Longrightarrow C \cdot \sigma \subseteq \# D \cdot \sigma$
unfolding subst_clss_def by (metis mset_subset_eq_exists_conv subst_cls_union)
lemma subst_subset_mono: $D \subset \# C \Longrightarrow D \cdot \sigma \subset \# C \cdot \sigma$
unfolding subst_cls_def by (simp add: image_mset_subset_mono)

7.3.16 Size after Substitution

lemma size_subst $[$ simp $]$: size $(D \cdot \sigma)=\operatorname{size} D$
unfolding subst_cls_def by auto
lemma subst_atm_list_length $[\operatorname{simp}]$: length $(A s \cdot a l ~ \sigma)=$ length $A s$
unfolding subst_atm_list_def by auto
lemma length_subst_atm_mset_list[simp]: length $(A A s \cdot a m l ~ \eta)=$ length $A A s$ unfolding subst_atm_mset_list_def by auto
lemma subst_atm_mset_lists_length $[\operatorname{simp}]:$ length $(A A s \cdot a m l \sigma s)=\min (l e n g t h A A s)(l e n g t h ~ \sigma s)$
unfolding subst_atm_mset_lists_def by auto
lemma subst_cls_list_length $[$ simp $]$: length $(C s \cdot c l ~ \sigma)=$ length $C s$
unfolding subst_cls_list_def by auto
lemma comp_substs_length $[\operatorname{simp}]:$ length $(\tau s \odot s \sigma s)=\min (l e n g t h \tau s)($ length $\sigma s)$
unfolding comp_substs_def by auto
lemma subst_cls_lists_length $[\operatorname{simp}]:$ length $(C s . \cdot c l ~ \sigma s)=\min (l e n g t h ~ C s)(l e n g t h ~ \sigma s)$
unfolding subst_cls_lists_def by auto

7.3.17 Variable Disjointness

```
lemma var_disjoint_clauses:
    assumes var_disjoint Cs
    shows \(\forall \sigma s\). length \(\sigma s=\) length \(C s \longrightarrow(\exists \tau . C s \cdot c l \sigma s=C s \cdot c l \tau)\)
proof clarify
    fix \(\sigma s\) :: 's list
    assume \(a\) : length \(\sigma s=\) length \(C s\)
    then obtain \(\tau\) where \(\forall i<\) length \(C s . \forall S . S \subseteq \# C s!i \longrightarrow S \cdot \sigma s!i=S \cdot \tau\)
        using assms unfolding var_disjoint_def by blast
    then have \(\forall i<l e n g t h C s .(C s!i) \cdot \sigma s!i=(C s!i) \cdot \tau\)
        by auto
```

```
    then have Cs ..cl \sigmas=Cs.cl \tau
    using a by (simp add: nth_equalityI)
    then show }\exists\tau.Cs ..cl \sigmas=Cs.cl 
    by auto
qed
```


7.3.18 Ground Expressions and Substitutions

```
lemma ex_ground_subst: \exists\sigma. is_ground_subst \sigma
    using make_ground_subst[of {#}]
    by (simp add: is_ground_cls_def)
lemma is_ground_cls_list_Cons[simp]:
    is_ground_cls_list (C # Cs) = (is_ground_cls C ^ is_ground_cls_list Cs)
    unfolding is_ground_cls_list_def by auto
```

Ground union lemma is_ground_atms_union[simp]: is_ground_atms $(A A \cup B B) \longleftrightarrow$ is_ground_atms $A A \wedge$
is_ground_atms $B B$
unfolding is_ground_atms_def by auto
lemma is_ground_atm_mset_union[simp]:
is_ground_atm_mset $(A A+B B) \longleftrightarrow$ is_ground_atm_mset $A A \wedge$ is_ground_atm_mset $B B$
unfolding is_ground_atm_mset_def by auto
lemma is_ground_cls_union[simp]: is_ground_cls $(C+D) \longleftrightarrow$ is_ground_cls $C \wedge$ is_ground_cls D
unfolding is_ground_cls_def by auto
lemma is_ground_clss_union[simp]:
is_ground_clss $(C C \cup D D) \longleftrightarrow$ is_ground_clss $C C \wedge$ is_ground_clss $D D$
unfolding is_ground_clss_def by auto
lemma is_ground_cls_list_is_ground_cls_sum_list[simp]:
is_ground_cls_list Cs \Longrightarrow is_ground_cls (sum_list Cs)
by (meson in_mset_sum_list2 is_ground_cls_def is_ground_cls_list_def)
Ground mono lemma is_ground_cls_mono: $C \subseteq \# D \Longrightarrow$ is_ground_cls $D \Longrightarrow$ is_ground_cls C
unfolding is_ground_cls_def by (metis set_mset_mono subsetD)
lemma is_ground_clss_mono: $C C \subseteq D D \Longrightarrow$ is_ground_clss $D D \Longrightarrow$ is_ground_clss $C C$
unfolding is_ground_clss_def by blast
lemma grounding_of_clss_mono: $C C \subseteq D D \Longrightarrow$ grounding_of_clss $C C \subseteq$ grounding_of_clss $D D$
using grounding_of_clss_def by auto
lemma sum_list_subseteq_mset_is_ground_cls_list[simp]:
sum_list Cs \subseteq \# sum_list Ds \Longrightarrow is_ground_cls_list Ds \Longrightarrow is_ground_cls_list Cs
by (meson in_mset_sum_list is_ground_cls_def is_ground_cls_list_is_ground_cls_sum_list
is_ground_cls_mono is_ground_cls_list_def)

Substituting on ground expression preserves ground lemma is_ground_comp_subst[simp]: is_ground_subst $\sigma \Longrightarrow$ is_ground_subst ($\tau \odot \sigma$) unfolding is_ground_subst_def is_ground_atm_def by auto
lemma ground_subst_ground_atm $[$ simp $]$: is_ground_subst $\sigma \Longrightarrow$ is_ground_atm $(A \cdot a \sigma)$ by (simp add: is_ground_subst_def)
lemma ground_subst_ground_lit[simp]: is_ground_subst $\sigma \Longrightarrow$ is_ground_lit ($L \cdot l \sigma$) unfolding is_ground_lit_def subst_lit_def by (cases L) auto
lemma ground_subst_ground_cls[simp]: is_ground_subst $\sigma \Longrightarrow$ is_ground_cls $(C \cdot \sigma)$ unfolding is_ground_cls_def by auto
lemma ground_subst_ground_clss[simp]: is_ground_subst $\sigma \Longrightarrow$ is_ground_clss (CC cs σ)
unfolding is_ground_clss_def subst_clss_def by auto
lemma ground_subst_ground_cls_list[simp]: is_ground_subst $\sigma \Longrightarrow$ is_ground_cls_list $(C s \cdot c l ~ \sigma)$
unfolding is_ground_cls_list_def subst_cls_list_def by auto
lemma ground_subst_ground_cls_lists[simp]:
$\forall \sigma \in$ set σ s. is_ground_subst $\sigma \Longrightarrow$ is_ground_cls_list $(C s \cdots c l \sigma s)$
unfolding is_ground_cls_list_def subst_cls_lists_def by (auto simp: set_zip)
Substituting on ground expression has no effect lemma is_ground_subst_atm[simp]: is_ground_atm A $\Longrightarrow A \cdot a \sigma=A$
unfolding is_ground_atm_def by simp
lemma is_ground_subst_atms[simp]: is_ground_atms $A A \Longrightarrow A A \cdot a s \sigma=A A$
unfolding is_ground_atms_def subst_atms_def image_def by auto
lemma is_ground_subst_atm_mset[simp]: is_ground_atm_mset $A A \Longrightarrow A A \cdot a m \sigma=A A$
unfolding is_ground_atm_mset_def subst_atm_mset_def by auto
lemma is_ground_subst_atm_list[simp]: is_ground_atm_list $A s \Longrightarrow A s \cdot a l \sigma=A s$
unfolding is_ground_atm_list_def subst_atm_list_def by (auto intro: nth_equalityI)
lemma is_ground_subst_atm_list_member[simp]:
is_ground_atm_list $A s \Longrightarrow i<$ length $A s \Longrightarrow A s!i \cdot a \sigma=A s!i$
unfolding is_ground_atm_list_def by auto
lemma is_ground_subst_lit[simp]: is_ground_lit $L \Longrightarrow L \cdot l \sigma=L$
unfolding is_ground_lit_def subst_lit_def by (cases L) simp_all
lemma is_ground_subst_cls[simp]: is_ground_cls $C \Longrightarrow C \cdot \sigma=C$ unfolding is_ground_cls_def subst_cls_def by simp
lemma is_ground_subst_clss[simp]: is_ground_clss $C C \Longrightarrow C C \cdot c s \sigma=C C$ unfolding is_ground_clss_def subst_clss_def image_def by auto
lemma is_ground_subst_cls_lists[simp]:
assumes length $P=$ length $C s$ and is_ground_cls_list Cs
shows $C s \cdot c l P=C s$
using assms by (metis is_ground_cls_list_def is_ground_subst_cls min.idem nth_equalityI nth_mem subst_cls_lists_nth subst_cls_lists_length)
lemma is_ground_subst_lit_iff: is_ground_lit $L \longleftrightarrow(\forall \sigma . L=L \cdot l \sigma)$
using is_ground_atm_def is_ground_lit_def subst_lit_def by (cases L) auto
lemma is_ground_subst_cls_iff: is_ground_cls $C \longleftrightarrow(\forall \sigma . C=C \cdot \sigma)$
by (metis ex_ground_subst ground_subst_ground_cls is_ground_subst_cls)

Members of ground expressions are ground lemma is_ground_cls_as_atms: is_ground_cls $C \longleftrightarrow(\forall A \in$ atms_of C. is_ground_atm A)

```
by (auto simp: atms_of_def is_ground_cls_def is_ground_lit_def)
```

lemma is_ground_cls_imp_is_ground_lit: $L \in \# C \Longrightarrow i s_{-} g r o u n d _c l s C \Longrightarrow i s_{-} g r o u n d _l i t ~ L$
by (simp add: is_ground_cls_def)
lemma is_ground_cls_imp_is_ground_atm: $A \in$ atms_of $C \Longrightarrow$ is_ground_cls $C \Longrightarrow$ is_ground_atm A
by (simp add: is_ground_cls_as_atms)
lemma is_ground_cls_is_ground_atms_atms_of [simp]: is_ground_cls $C \Longrightarrow i s_{-} g r o u n d _a t m s$ (atms_of C) by (simp add: is_ground_cls_imp_is_ground_atm is_ground_atms_def)
lemma grounding_ground: $C \in$ grounding_of_clss $M \Longrightarrow$ is_ground_cls C
unfolding grounding_of_clss_def grounding_of_cls_def by auto
lemma in_subset_eq_grounding_of_clss_is_ground_cls[simp]:
$C \in C C \Longrightarrow C C \subseteq$ grounding_of_clss $D D \Longrightarrow$ is_ground_cls C
unfolding grounding_of_clss_def grounding_of_cls_def by auto
lemma is_ground_cls_empty[simp]: is_ground_cls \{\#\}
unfolding is_ground_cls_def by simp
lemma grounding_of_cls_ground: is_ground_cls $C \Longrightarrow$ grounding_of_cls $C=\{C\}$
unfolding grounding_of_cls_def by (simp add: ex_ground_subst)
lemma grounding_of_cls_empty[simp]: grounding_of_cls $\{\#\}=\{\{\#\}\}$
by (simp add: grounding_of_cls_ground)

7.3.19 Subsumption

lemma subsumes_empty_left[simp]: subsumes $\{\#\} C$
unfolding subsumes_def subst_cls_def by simp
lemma strictly_subsumes_empty_left[simp]: strictly_subsumes $\{\#\} C \longleftrightarrow C \neq\{\#\}$ unfolding strictly_subsumes_def subsumes_def subst_cls_def by simp

7.3.20 Unifiers

lemma card_le_one_alt: finite $X \Longrightarrow$ card $X \leq 1 \longleftrightarrow X=\{ \} \vee(\exists x . X=\{x\})$ by (induct rule: finite_induct) auto
lemma is_unifier_subst_atm_eqI: assumes finite $A A$ shows is_unifier $\sigma A A \Longrightarrow A \in A A \Longrightarrow B \in A A \Longrightarrow A \cdot a \sigma=B \cdot a \sigma$ unfolding is_unifier_def subst_atms_def card_le_one_alt[OF finite_imageI[OF assms]] by (metis equals0D imageI insert_iff)
lemma is_unifier_alt: assumes finite $A A$ shows is_unifier $\sigma A A \longleftrightarrow(\forall A \in A A . \forall B \in A A . A \cdot a \sigma=B \cdot a \sigma)$ unfolding is_unifier_def subst_atms_def card_le_one_alt[OF finite_imageI[OF assms(1)]] by (rule iffI, metis empty_iff insert_iff insert_image, blast)
lemma is_unifiers_subst_atm_eqI:
assumes finite $A A$ is_unifiers $\sigma A A A A \in A A A A \in A A B \in A A$
shows $A \cdot a \sigma=B \cdot a \sigma$
by (metis assms is_unifiers_def is_unifier_subst_atm_eqI)
theorem is_unifiers_comp:
is_unifiers σ (set_mset'set (map2 add_mset As Bs) •ass $\eta) \longleftrightarrow$ is_unifiers $(\eta \odot \sigma)$ (set_mset'set (map2 add_mset As Bs))
unfolding is_unifiers_def is_unifier_def subst_atmss_def by auto

7.3.21 Most General Unifier

lemma is_mgu_is_unifiers: is_mgu $\sigma A A A \Longrightarrow$ is_unifiers $\sigma A A A$ using is_mgu_def by blast
lemma is_mgu_is_most_general: is_mgu $\sigma A A A \Longrightarrow$ is_unifiers $\tau A A A \Longrightarrow \exists \gamma \cdot \tau=\sigma \odot \gamma$ using is_mgu_def by blast
lemma is_unifiers_is_unifier: is_unifiers $\sigma A A A \Longrightarrow A A \in A A A \Longrightarrow$ is_unifier $\sigma A A$ using is_unifiers_def by simp

7.3.22 Generalization and Subsumption

lemma variants_iff_subsumes: variants $C D \longleftrightarrow$ subsumes $C D \wedge$ subsumes $D C$

proof

assume variants $C D$
then show subsumes $C D \wedge$ subsumes $D C$
unfolding variants_def generalizes_cls_def subsumes_def by (metis subset_mset.order.refl) next
assume sub: subsumes $C D \wedge$ subsumes $D C$
then have size $C=$ size D
unfolding subsumes_def by (metis antisym size_mset_mono size_subst)
then show variants $C D$
using sub unfolding subsumes_def variants_def generalizes_cls_def
by (metis leD mset_subset_size size_mset_mono size_subst
subset_mset.order.not_eq_order_implies_strict)
qed
lemma wf_strictly_generalizes_cls: wfP strictly_generalizes_cls
proof -
\{
assume $\exists C_{-} a t . \forall i$. strictly_generalizes_cls (C_{-}at (Suc i)) ($\left.C_{-} a t i\right)$
then obtain C_{-}at $::$nat $\Rightarrow{ }^{\prime} a$ clause where
sg_C: \i. strictly_generalizes_cls (C_at (Suc i)) (C_at i)
by blast
define $n::$ nat where $n=$ size (C_{-}at 0)
have $s z_{-} C$: size $\left(C_{-} a t i\right)=n$ for i
proof (induct i)
case (Suc i)
then show ?case
using sg_C[of i] unfolding strictly_generalizes_cls_def generalizes_cls_def subst_cls_def by (metis size_image_mset)
qed (simp add: n_def)
obtain $\sigma_{-} a t::$ nat \Rightarrow 's where $C_{-} \sigma: \bigwedge i$. image_mset $\left(\lambda L . L \cdot l \sigma_{-} a t i\right)\left(C_{-} a t(S u c i)\right)=C_{-} a t i$ using sg_C[unfolded strictly_generalizes_cls_def generalizes_cls_def subst_cls_def] by metis
define Ls_at :: nat \Rightarrow 'a literal list where Ls_at $=$ rec_nat (SOME Ls. mset Ls = C_at 0)
($\left.\lambda i \operatorname{Lsi} . S O M E L s . m s e t L s=C_{-} a t(S u c i) \wedge \operatorname{map}\left(\lambda L . L \cdot l \sigma_{-} a t i\right) L s=L s i\right)$
have
Ls_at_0: Ls_at $0=($ SOME Ls. mset $L s=C$ _at 0) and Ls_at_Suc: \i. Ls_at (Suc i) = (SOME Ls. mset Ls $\left.=C_{-} a t(S u c i) \wedge \operatorname{map}\left(\lambda L . L \cdot l \sigma_{-} a t i\right) L s=L s _a t i\right)$ unfolding Ls_at_def by simp+
 unfolding Ls_at_0 by (rule someI_ex) (metis list_of_mset_exi)
have mset $($ Ls_at $($ Suc $i))=C_{-} a t(S u c i) \wedge \operatorname{map}\left(\lambda L . L \cdot l \sigma_{-} a t i\right)($ Ls_at $(S u c i))=$ Ls_at i for i
proof (induct i)
case 0
then show ?case
by (simp add: Ls_at_Suc, rule someI_ex, metis $C_{-} \sigma$ image_mset_of_subset_list mset_Lt_at_0)
next
case Suc
then show? case
by (subst (1 2) Ls_at_Suc) (rule someI_ex, metis C_ σ image_mset_of_subset_list)
qed
note mset_Ls $=$ this[THEN conjunct1] and Ls_ $\sigma=$ this[THEN conjunct2]
have len_Ls: $\bigwedge i$. length $\left(L s_{-} a t i\right)=n$
by (metis mset_Ls mset_Lt_at_0 not0_implies_Suc size_mset sz_C)

```
    have is_pos_Ls: \bigwedgeij.j< n\Longrightarrow is_pos (Ls_at (Suc i)!j) \longleftrightarrow is_pos (Ls_at i!j)
        using Ls_\sigma len_Ls by (metis literal.map_disc_iff nth_map subst_lit_def)
    have Ls_\tau_strict_lit: \bigwedgei \tau. map (\lambdaL.L ll \tau) (Ls_at i) = Ls_at (Suc i)
    by (metis C_\sigma mset_Ls Ls_\sigma mset_map sg_C generalizes_cls_def strictly_generalizes_cls_def
        subst_cls_def)
    have Ls_\tau_strict_tm:
    map ((\lambdat. t \cdota \tau) ○ atm_of) (Ls_at i) f= map atm_of (Ls_at (Suc i)) for i \tau
    proof -
    obtain j :: nat where
        j_lt: j<n and
        j_\tau:Ls_at i ! j ·l \tau #= Ls_at (Suc i)!j
        using Ls_\tau_strict_lit[of \tau i] len_Ls
        by (metis (no_types, lifting) length_map list_eq_iff_nth_eq nth_map)
        have atm_of (Ls_at i!j) \cdota \tau F=atm_of (Ls_at (Suc i)!j)
        using j_\tau is_pos_Ls[OF j_lt]
        by (metis (mono_guards) literal.expand literal.map_disc_iff literal.map_sel subst_lit_def)
        then show ?thesis
        using j_lt len_Ls by (metis nth_map o_apply)
    qed
    define tm_at :: nat }=>\mp@subsup{}{}{\prime}a\mathrm{ where
        \i.tm_at i = atm_of_atms (map atm_of (Ls_at i))
    have \i. generalizes_atm (tm_at (Suc i)) (tm_at i)
        unfolding tm_at_def generalizes_atm_def atm_of_atms_subst
        using Ls_\sigma[THEN arg_cong, of map atm_of] by (auto simp: comp_def)
    moreover have \i. ᄀ generalizes_atm (tm_at i) (tm_at (Suc i))
        unfolding tm_at_def generalizes_atm_def atm_of_atms_subst by (simp add: Ls_\tau_strict_tm)
    ultimately have \i. strictly_generalizes_atm (tm_at (Suc i)) (tm_at i)
        unfolding strictly_generalizes_atm_def by blast
    then have False
        using wf_strictly_generalizes_atm[unfolded wfP_def wf_iff_no_infinite_down_chain] by blast
    }
    then show wfP (strictly_generalizes_cls :: 'a clause # _ # _)
    unfolding wfP_def by (blast intro:wf_iff_no_infinite_down_chain[THEN iffD2])
qed
lemma strict_subset_subst_strictly_subsumes:
    assumes c\eta_sub: C \cdot \eta\subset# D
    shows strictly_subsumes C D
    by (metis c\eta_sub leD mset_subset_size size_mset_mono size_subst strictly_subsumes_def
    subset_mset.dual_order.strict_implies_order substitution_ops.subsumes_def)
lemma subsumes_trans: subsumes C D \ subsumes D E > subsumes C E
    unfolding subsumes_def
    by (metis (no_types) subset_mset.order.trans subst_cls_comp_subst subst_cls_mono_mset)
lemma subset_strictly_subsumes: C \subset# D \Longrightarrow strictly_subsumes C D
    using strict_subset_subst_strictly_subsumes[of C id_subst] by auto
lemma strictly_subsumes_neq: strictly_subsumes D' D \Longrightarrow D'}=\mp@subsup{D}{}{\prime
    unfolding strictly_subsumes_def subsumes_def by blast
lemma strictly_subsumes_has_minimum:
    assumes CC\not={}
    shows \existsC\inCC.}\forallD\inCC.\neg strictly_subsumes D C
proof (rule ccontr)
    assume \neg (\existsC\inCC.\forallD\inCC. ᄀ strictly_subsumes D C)
    then have }\forallC\inCC.\existsD\inCC. strictly_subsumes D C
```

by blast
then obtain f where
$f_{-} p: \forall C \in C C . f C \in C C \wedge$ strictly_subsumes (f C) C
by metis
from assms obtain C where
$C _p: C \in C C$
by auto
define $c::$ nat \Rightarrow 'a clause where
$\wedge n . c n=\left(f^{\wedge} n\right) C$
have incc: $c i \in C C$ for i
by (induction i) (auto simp: c_def f_p C_p)
have ps: $\forall i$. strictly_subsumes (c (Suc i)) (c i)
using incc $f_{-} p$ unfolding c_{-}def by auto
have $\forall i$. size ($c i$) \geq size (c (Suc i))
using ps unfolding strictly_subsumes_def subsumes_def by (metis size_mset_mono size_subst)
then have lte: $\forall i$. $($ size $\circ c) i \geq($ size $\circ c)(S u c i)$
unfolding comp_def.
then have $\exists l . \forall l^{\prime} \geq l$. size $\left(c l^{\prime}\right)=\operatorname{size}\left(c\left(\right.\right.$ Suc $\left.\left.l^{\prime}\right)\right)$
using f_{-}Suc_decr_eventually_const comp_def by auto
then obtain l where
$l_{-p} p: \forall l^{\prime} \geq l$. size $\left(c l^{\prime}\right)=\operatorname{size}\left(c\left(S u c l^{\prime}\right)\right)$
by metis
then have $\forall l^{\prime} \geq l$. strictly_generalizes_cls ($\left.c\left(S u c l^{\prime}\right)\right)\left(c l^{\prime}\right)$
using $p s$ unfolding strictly_generalizes_cls_def generalizes_cls_def
by (metis size_subst less_irrefl strictly_subsumes_def mset_subset_size
subset_mset_def subsumes_def strictly_subsumes_neq)
then have $\forall i$. strictly_generalizes_cls $(c($ Suc $i+l))(c(i+l))$
unfolding strictly_generalizes_cls_def generalizes_cls_def by auto
then have $\exists f$. $\forall i$. strictly_generalizes_cls (f (Suc i)) ($f i$ i)
by (rule exI[of - $\lambda x . c(x+l)])$
then show False
using wf_strictly_generalizes_cls wf_iff_no_infinite_down_chain[of $\{(x, y)$.strictly_generalizes_cls $x y\}]$
unfolding $w f P_{-} d e f$ by auto
qed
end

7.4 Most General Unifiers

locale mgu = substitution subst_atm id_subst comp_subst atm_of_atms renamings_apart
for
subst_atm :: ' $a \Rightarrow$ ' $s \Rightarrow{ }^{\prime} a$ and
id_subst :: 's and
comp_subst $::$ ' $s \Rightarrow$'s \Rightarrow 's and
atm_of_atms :: 'a list $\Rightarrow{ }^{\prime} a$ and
renamings_apart $::$ 'a literal multiset list \Rightarrow 's list +

fixes

$m g u::$ 'a set set \Rightarrow 's option
assumes
mgu_sound: finite $A A A \Longrightarrow(\forall A A \in A A A$. finite $A A) \Longrightarrow m g u A A A=$ Some $\sigma \Longrightarrow i s_{-} m g u \quad \sigma A A$ and mgu_complete: finite $A A A \Longrightarrow(\forall A A \in A A A$. finite $A A) \Longrightarrow$ is_unifiers $\sigma A A A \Longrightarrow \exists \tau$. mgu $A A A=$ Some τ
begin
lemmas is_unifiers_mgu = mgu_sound[unfolded is_mgu_def, THEN conjunct1]
lemmas is_mgu_most_general $=$ mgu_sound[unfolded is_mgu_def, THEN conjunct2]
lemma mgu_unifier:
assumes
aslen: length $A s=n$ and
aaslen: length $A A s=n$ and

```
    mgu: Some \sigma = mgu (set_mset ' set (map2 add_mset As AAs)) and
    i_lt: i<n and
    a_in:A E# AAs!i
    shows A\cdota\sigma=As!i\cdota\sigma
proof -
    from mgu have is_mgu \sigma (set_mset'set (map2 add_mset As AAs))
        using mgu_sound by auto
    then have is_unifiers \sigma (set_mset ' set (map2 add_mset As AAs))
        using is_mgu_is_unifiers by auto
    then have is_unifier \sigma (set_mset (add_mset (As!i) (AAs!i)))
        using i_lt aslen aaslen unfolding is_unifiers_def is_unifier_def
        by simp (metis length_zip min.idem nth_mem nth_zip prod.case set_mset_add_mset_insert)
    then show ?thesis
    using aslen aaslen a_in is_unifier_subst_atm_eqI
    by (metis finite_set_mset insertCI set_mset_add_mset_insert)
qed
end
end
```


8 Refutational Inference Systems

```
theory Inference_System
    imports Herbrand_Interpretation
begin
```

This theory gathers results from Section 2.4 ("Refutational Theorem Proving"), 3 ("Standard Resolution"), and 4.2 ("Counterexample-Reducing Inference Systems") of Bachmair and Ganzinger's chapter.

8.1 Preliminaries

Inferences have one distinguished main premise, any number of side premises, and a conclusion.

```
datatype 'a inference =
    Infer (side_prems_of: 'a clause multiset) (main_prem_of: 'a clause) (concl_of: 'a clause)
abbreviation prems_of :: ' a inference }=>\mathrm{ ' 'a clause multiset where
    prems_of }\gamma\equiv\mathrm{ side_prems_of }\gamma+{#main_prem_of \gamma#
abbreviation concls_of :: 'a inference set }=>\mathrm{ ' 'a clause set where
    concls_of \Gamma \equivconcl_of ' }
definition infer_from :: 'a clause set }=>\mathrm{ ' 'a inference }=>\mathrm{ bool where
    infer_from CC \gamma\longleftrightarrow set_mset (prems_of \gamma)\subseteqCC
locale inference_system =
    fixes \Gamma :: 'a inference set
begin
definition inferences_from :: 'a clause set }=>\mathrm{ ' 'a inference set where
    inferences_from CC ={\gamma.\gamma\in\Gamma^ infer_from CC \gamma}
definition inferences_between :: 'a clause set }=>\mathrm{ ' 'a clause }=>\mathrm{ ' 'a inference set where
    inferences_between CC C = {\gamma.\gamma\in\Gamma ^ infer_from (CC\cup{C})\gamma^C\in# prems_of \gamma}
lemma inferences_from_mono: CC\subseteqDD\Longrightarrow inferences_from CC \subseteqinferences_from DD
    unfolding inferences_from_def infer_from_def by fast
definition saturated :: 'a clause set }=>\mathrm{ bool where
    saturated N}\longleftrightarrow\mathrm{ concls_of (inferences_from N)}\subseteq
```

```
lemma saturatedD:
    assumes
        satur: saturated N and
        inf: Infer CC D E \in \Gamma and
        cc_subs_n: set_mset CC\subseteqN and
        d_in_n: D \inN
    shows E \inN
proof -
    have Infer CC D E \in inferences_from N
        unfolding inferences_from_def infer_from_def using inf cc_subs_n d_in_n by simp
    then have E\in concls_of (inferences_from N)
        unfolding image_iff by (metis inference.sel(3))
    then show }E\in
        using satur unfolding saturated_def by blast
qed
end
```

Satisfiability preservation is a weaker requirement than soundness.

```
locale sat_preserving_inference_system = inference_system +
    assumes \Gamma_sat_preserving: satisfiable N\Longrightarrow satisfiable ( }N\cup\mathrm{ concls_of (inferences_from N))
locale sound_inference_system = inference_system +
    assumes \Gamma_sound: Infer CC D E \in Г\LongrightarrowI\modelsmCC\LongrightarrowI\modelsD D\LongrightarrowI\modelsE
begin
lemma \Gamma_sat_preserving:
    assumes sat_n: satisfiable N
    shows satisfiable ( }N\cup\mathrm{ concls_of (inferences_from N))
proof -
    obtain I where i:I}=s
        using sat_n by blast
    then have \CCD E. Infer CC D E\in\Gamma\Longrightarrow set_mset CC\subseteqN\LongrightarrowD\inN\LongrightarrowI\modelsE
        using \Gamma_sound unfolding true_clss_def true_cls_mset_def by (simp add: subset_eq)
    then have }\\gamma.\gamma\in\Gamma\Longrightarrow\mathrm{ infer_from N 
        unfolding infer_from_def by (case_tac \gamma) clarsimp
    then have I =s concls_of (inferences_from N)
        unfolding inferences_from_def image_def true_clss_def infer_from_def by blast
    then have I}=sN\cup\mathrm{ concls_of (inferences_from N)
        using i by simp
    then show ?thesis
        by blast
qed
sublocale sat_preserving_inference_system
    by unfold_locales (erule \Gamma_sat_preserving)
end
```

locale reductive_inference_system $=$ inference_system Γ for Γ :: ('a :: wellorder) inference set +
assumes Γ _reductive: $\gamma \in \Gamma \Longrightarrow$ concl_of $\gamma<$ main_prem_of γ

8.2 Refutational Completeness

Refutational completeness can be established once and for all for counterexample-reducing inference systems. The material formalized here draws from both the general framework of Section 4.2 and the concrete instances of Section 3.
locale counterex_reducing_inference_system $=$
inference_system Γ for Γ :: ('a :: wellorder) inference set +
fixes I_{-}of :: 'a clause set $\Rightarrow{ }^{\prime} a$ interp
assumes Γ _counterex_reducing:
$\{\#\} \notin N \Longrightarrow D \in N \Longrightarrow \neg I_{\text {_of }} N \models D \Longrightarrow\left(\bigwedge C . C \in N \Longrightarrow \neg I_{\text {_of }} N \models C \Longrightarrow D \leq C\right) \Longrightarrow$
$\exists C C E$. set_mset $C C \subseteq N \wedge I_{-}$of $N \models m C C \wedge$ Infer $C C D E \in \Gamma \wedge \neg I_{-}$of $N \models E \wedge E<D$

```
begin
lemma ex_min_counterex:
    fixes N :: (' }a\mathrm{ :: wellorder) clause set
    assumes }\negI|s
    shows }\existsC\inN.\negI\modelsC\wedge(\forallD\inN.D<C\longrightarrowI\modelsD
proof -
    obtain C where C }\inN\mathrm{ and }\negI\models
        using assms unfolding true_clss_def by auto
    then have c_in:C\in{C\inN.\negI\modelsC}
        by blast
    show ?thesis
        using wf_eq_minimal[THEN iffD1, rule_format, OF wf_less_multiset c_in] by blast
qed
```

theorem saturated_model:
assumes
satur: saturated N and
ec_ni_n: $\{\#\} \notin N$
shows I_of $N \models s N$
proof -
have ec_ni_n: $\{\#\} \notin N$
using ec_ni_n by auto
\{
assume $\neg I$ _of $N \models s N$
then obtain D where
d_in_n: $D \in N$ and
d_cex: $\neg I_{\text {_of }} N \models D$ and
d_min: $\Lambda C . C \in N \Longrightarrow C<D \Longrightarrow$ I_of $N \models C$
by (meson ex_min_counterex)
then obtain $C C E$ where
cc_subs_n: set_mset $C C \subseteq N$ and
inf_e: Infer $C C D E \in \Gamma$ and
e_cex: $\neg I_{-}$of $N \models E$ and
$e_{-} l t _d: E<D$
using Γ_{-}counterex_reducing[OF ec_ni_n] not_less by metis
from cc_subs_n inf_e have $E \in N$
using d_in_n satur by (blast dest: saturatedD)
then have False
using e_cex e_lt_d d_min not_less by blast
\}
then show?thesis
by satx
qed

Cf. Corollary 3.10:
corollary saturated_complete: saturated $N \Longrightarrow \neg$ satisfiable $N \Longrightarrow\{\#\} \in N$
using saturated_model by blast
end

8.3 Compactness

Bachmair and Ganzinger claim that compactness follows from refutational completeness but leave the proof to the readers' imagination. Our proof relies on an inductive definition of saturation in terms of a base set of clauses.

```
context inference_system
```

begin
inductive-set saturate :: ' a clause set \Rightarrow ' a clause set for $C C$:: ' a clause set where

```
    base: C }\inCC\LongrightarrowC\in\mathrm{ saturate CC
| step:Infer CC' D E \in \Gamma\Longrightarrow(\C'. C' }##C\mp@subsup{C}{}{\prime}\Longrightarrow\mp@subsup{C}{}{\prime}\in\mathrm{ saturate CC) }\LongrightarrowD\in\mathrm{ saturate CC }
    E\in saturate CC
lemma saturate_mono: C \in saturate CC\LongrightarrowCC\subseteqDD\LongrightarrowC\in saturate DD
    by (induct rule: saturate.induct) (auto intro: saturate.intros)
lemma saturated_saturate[simp, intro]: saturated (saturate N)
    unfolding saturated_def inferences_from_def infer_from_def image_def
    by clarify (rename_tac x, case_tac x, auto elim!: saturate.step)
lemma saturate_finite: C saturate CC\Longrightarrow\existsDD. DD\subseteqCC^ finite DD\wedgeC\in saturate DD
proof (induct rule: saturate.induct)
    case (base C)
    then have {C}\subseteqCC and finite {C} and C\in saturate {C}
        by (auto intro: saturate.intros)
    then show ?case
        by blast
next
    case (step CC' D E)
    obtain DD_of where
        \C.C &#CC' \LongrightarrowDD_of C\subseteqCC^ finite (DD_of C) ^C\in saturate (DD_of C)
        using step(3) by metis
    then have
        (UC \in set_mset CC'. DD_of C)\subseteqCC
        finite ( UC E set_mset CC'. DD_of C) ^ set_mset CC'\subseteq saturate ( }\cupC\in\mathrm{ set_mset CC'. DD_of C)
        by (auto intro: saturate_mono)
    then obtain }DD\mathrm{ where
        d_sub: DD\subseteqCC and d_fin: finite DD and in_sat_d: set_mset CC'\subseteq saturate DD
        by blast
    obtain EE where
        e_sub: EE \subseteqCC and e_fin: finite EE and in_sat_ee: D \in saturate EE
        using step(5) by blast
    have DD\cupEE\subseteqCC
        using d_sub e_sub step(1) by fast
    moreover have finite ( }DD\cupEE\mathrm{ )
        using d_fin e_fin by fast
    moreover have E \in saturate ( }DD\cupEE\mathrm{ )
        using in_sat_d in_sat_ee step.hyps(1)
        by (blast intro: inference_system.saturate.step saturate_mono)
    ultimately show ?case
        by blast
qed
end
context sound_inference_system
begin
theorem saturate_sound: C E saturate CC\LongrightarrowI =s CC\LongrightarrowI\modelsC
    by (induct rule: saturate.induct) (auto simp: true_cls_mset_def true_clss_def \Gamma_sound)
end
context sat_preserving_inference_system
begin
```

This result surely holds, but we have yet to prove it. The challenge is: Every time a new clause is introduced, we also get a new interpretation (by the definition of sat_preserving_inference_system). But the interpretation we want here is then the one that exists "at the limit". Maybe we can use compactness to prove it.

```
theorem saturate_sat_preserving: satisfiable CC \Longrightarrow satisfiable (saturate CC)
    oops
```


end

```
locale sound_counterex_reducing_inference_system \(=\)
    counterex_reducing_inference_system + sound_inference_system
begin
```

Compactness of clausal logic is stated as Theorem 3.12 for the case of unordered ground resolution. The proof below is a generalization to any sound counterexample-reducing inference system. The actual theorem will become available once the locale has been instantiated with a concrete inference system.

```
theorem clausal_logic_compact:
    fixes }N::(') a :: wellorder) clause se
    shows }\neg\mathrm{ satisfiable }N\longleftrightarrow(\existsDD\subseteqN. finite DD ^\neg satisfiable DD
proof
    assume \neg satisfiable N
    then have {#} \in saturate N
        using saturated_complete saturated_saturate saturate.base unfolding true_clss_def by meson
    then have }\existsDD\subseteqN. finite DD\wedge{#}\in saturate D
        using saturate_finite by fastforce
    then show }\existsDD\subseteqN\mathrm{ . finite DD ^ᄀ satisfiable DD
        using saturate_sound by auto
next
    assume }\existsDD\subseteqN. finite DD ^\neg satisfiable DD
    then show }\neg\mathrm{ satisfiable N
        by (blast intro: true_clss_mono)
qed
end
end
```


9 Candidate Models for Ground Resolution

```
theory Ground_Resolution_Model
    imports Herbrand_Interpretation
begin
```

The proofs of refutational completeness for the two resolution inference systems presented in Section 3 ("Standard Resolution") of Bachmair and Ganzinger's chapter share mostly the same candidate model construction. The literal selection capability needed for the second system is ignored by the first one, by taking $\lambda_{-}\{ \}$as instantiation for the S parameter.

```
locale selection \(=\)
    fixes \(S\) :: 'a clause \(\Rightarrow\) ' \(a\) clause
    assumes
        S_selects_subseteq: S C \(\subseteq\) \# \(C\) and
        S_selects_neg_lits: \(L \in \# S C \Longrightarrow\) is_neg \(L\)
```

locale ground_resolution_with_selection $=$ selection S
for $S::\left({ }^{\prime} a\right.$:: wellorder) clause $\Rightarrow{ }^{\prime} a$ clause
begin

The following commands corresponds to Definition 3.14, which generalizes Definition 3.1. production C is denoted ε_{C} in the chapter; interp C is denoted I_{C}; Interp C is denoted I^{C}; and Interp_ N is denoted I_{N}. The mutually recursive definition from the chapter is massaged to simplify the termination argument. The production_unfold lemma below gives the intended characterization.

context

fixes N :: 'a clause set
begin
function production :: 'a clause \Rightarrow ' a interp where
production $C=$
$\{A . C \in N \wedge C \neq\{\#\} \wedge$ Max_mset $C=P o s A \wedge \neg(\bigcup D \in\{D . D<C\}$. production $D) \vDash C \wedge S C=\{\#\}\}$
by auto
termination by (rule termination[OF wf, simplified])
declare production.simps [simp del]
definition interp $::$ ' a clause \Rightarrow 'a interp where interp $C=(\bigcup D \in\{D . D<C\}$. production $D)$
lemma production_unfold:
production $C=\{A . C \in N \wedge C \neq\{\#\} \wedge$ Max_mset $C=\operatorname{Pos} A \wedge \neg \operatorname{interp} C \vDash C \wedge S C=\{\#\}\}$
unfolding interp_def by (rule production.simps)
abbreviation productive :: 'a clause \Rightarrow bool where
productive $C \equiv$ production $C \neq\{ \}$
abbreviation produces :: ' a clause $\Rightarrow^{\prime} a \Rightarrow$ bool where
produces $C A \equiv$ production $C=\{A\}$
lemma producesD: produces $C A \Longrightarrow C \in N \wedge C \neq\{\#\} \wedge$ Pos $A=$ Max_mset $C \wedge \neg \operatorname{interp} C \models C \wedge S C=\{\#\}$ unfolding production_unfold by auto
definition Interp $::$ ' a clause \Rightarrow ' a interp where
Interp $C=\operatorname{interp} C \cup$ production C
lemma interp_subseteq_Interp[simp]: interp $C \subseteq$ Interp C
by (simp add: Interp_def)
lemma Interp_as_UNION: Interp $C=(\bigcup D \in\{D . D \leq C\}$. production $D)$ unfolding Interp_def interp_def less_eq_multiset_def by fast
lemma productive_not_empty: productive $C \Longrightarrow C \neq\{\#\}$
unfolding production_unfold by simp
lemma productive_imp_produces_Max_literal: productive $C \Longrightarrow$ produces C (atm_of (Max_mset C)) unfolding production_unfold by (auto simp del: atm_of_Max_lit)
lemma productive_imp_produces_Max_atom: productive $C \Longrightarrow$ produces C (Max (atms_of C))
unfolding atms_of_def Max_atm_of_set_mset_commute[OF productive_not_empty] by (rule productive_imp_produces_Max_literal)
lemma produces_imp_Max_literal: produces $C A \Longrightarrow A=$ atm_of (Max_mset C) using productive_imp_produces_Max_literal by auto
lemma produces_imp_Max_atom: produces $C A \Longrightarrow A=\operatorname{Max}($ atms_of $C)$ using produces D produces_imp_Max_literal by auto
lemma produces_imp_Pos_in_lits: produces $C A \Longrightarrow \operatorname{Pos} A \in \# C$ by (simp add: producesD)
lemma productive_in_N: productive $C \Longrightarrow C \in N$ unfolding production_unfold by simp
lemma produces_imp_atms_leq: produces $C A \Longrightarrow B \in$ atms_of $C \Longrightarrow B \leq A$ using Max.coboundedI produces_imp_Max_atom by blast
lemma produces_imp_neg_notin_lits: produces $C A \Longrightarrow \neg$ Neg $A \in \# C$ by (simp add: pos_Max_imp_neg_notin producesD)
lemma less_eq_imp_interp_subseteq_interp: $C \leq D \Longrightarrow$ interp $C \subseteq$ interp D unfolding interp_def by auto (metis order.strict_trans2)
lemma less_eq_imp_interp_subseteq_Interp: $C \leq D \Longrightarrow$ interp $C \subseteq$ Interp D unfolding Interp_def using less_eq_imp_interp_subseteq_interp by blast

```
lemma less_imp_production_subseteq_interp: C < D production C \subseteq interp D
    unfolding interp_def by fast
lemma less_eq_imp_production_subseteq_Interp: C \leq D production C \subseteq Interp D
    unfolding Interp_def using less_imp_production_subseteq_interp
    by (metis le_imp_less_or_eq le_supI1 sup_ge2)
lemma less_imp_Interp_subseteq_interp: C < D\Longrightarrow Interp C\subseteq interp D
    by (simp add: Interp_def less_eq_imp_interp_subseteq_interp less_imp_production_subseteq_interp)
lemma less_eq_imp_Interp_subseteq_Interp: C }\leqD\Longrightarrow\mathrm{ Interp C}\subseteq\mathrm{ Interp D
    using Interp_def less_eq_imp_interp_subseteq_Interp less_eq_imp_production_subseteq_Interp by auto
lemma not_Interp_to_interp_imp_less: A & Interp C # A\in interp D C < D
    using less_eq_imp_interp_subseteq_Interp not_less by blast
lemma not_interp_to_interp_imp_less: A & interp C\LongrightarrowA\in interp D\LongrightarrowC<D
    using less_eq_imp_interp_subseteq_interp not_less by blast
lemma not_Interp_to_Interp_imp_less: A & Interp C\LongrightarrowA\inInterp D C < D
    using less_eq_imp_Interp_subseteq_Interp not_less by blast
lemma not_interp_to_Interp_imp_le: }A\not\in\mathrm{ interp }C\LongrightarrowA\inInterp D\LongrightarrowC\leq
    using less_imp_Interp_subseteq_interp not_less by blast
definition INTERP :: 'a interp where
    INTERP = (UC\inN. production C)
lemma interp_subseteq_INTERP: interp C \subseteqINTERP
    unfolding interp_def INTERP_def by (auto simp: production_unfold)
lemma production_subseteq_INTERP: production C \subseteqINTERP
    unfolding INTERP_def using production_unfold by blast
lemma Interp_subseteq_INTERP: Interp C \subseteqINTERP
    by (simp add: Interp_def interp_subseteq_INTERP production_subseteq_INTERP)
lemma produces_imp_in_interp:
    assumes a_in_c: Neg A \in# C and d: produces D A
    shows A\in interp C
    by (metis Interp_def Max_pos_neg_less_multiset UnCI a_in_c d
        not_interp_to_Interp_imp_le not_less producesD singletonI)
```

lemma neg_notin_Interp_not_produce: Neg $A \in \# C \Longrightarrow A \notin$ Interp $D \Longrightarrow C \leq D \Longrightarrow \neg$ produces $D^{\prime \prime} A$
using less_eq_imp_interp_subseteq_Interp produces_imp_in_interp by blast
lemma in_production_imp_produces: $A \in$ production $C \Longrightarrow$ produces $C A$
using productive_imp_produces_Max_atom by fastforce
lemma not_produces_imp_notin_production: \neg produces $C A \Longrightarrow A \notin$ production C
using in_production_imp_produces by blast
lemma not_produces_imp_notin_interp: $(\bigwedge D . \neg$ produces $D A) \Longrightarrow A \notin$ interp C
unfolding interp_def by (fast intro!: in_production_imp_produces)

The results below corresponds to Lemma 3.4.

```
lemma Interp_imp_general:
    assumes
    c_le_d:C \leq D and
    d_lt_d':}D<\mp@subsup{D}{}{\prime}\mathrm{ and
    c_at_d: Interp D}\modelsC\mathrm{ and
    subs: interp D'\subseteq(\bigcupC\inCC. production C)
```

```
    shows (UC\inCC. production C)}\models
proof (cases \existsA. Pos A\in#C\wedgeA\inInterp D)
    case True
    then obtain }A\mathrm{ where a_in_c: Pos }A\in#C\mathrm{ and a_at_d: A G Interp D
        by blast
    from a_at_d have }A\in\operatorname{interp D'
        using d_lt_d' less_imp_Interp_subseteq_interp by blast
    then show ?thesis
        using subs a_in_c by (blast dest:contra_subsetD)
next
    case False
    then obtain A where a_in_c: Neg A A# C and A\not\in Interp D
        using c_at_d unfolding true_cls_def by blast
    then have }\\mp@subsup{D}{}{\prime\prime}.\neg\mathrm{ produces }\mp@subsup{D}{}{\prime\prime}
        using c_le_d neg_notin_Interp_not_produce by simp
    then show ?thesis
        using a_in_c subs not_produces_imp_notin_production by auto
qed
lemma Interp_imp_interp: }C\leqD\LongrightarrowD<\mp@subsup{D}{}{\prime}\Longrightarrow\mathrm{ Interp }D\modelsC\Longrightarrow\mathrm{ interp D'}\mp@subsup{D}{}{\prime}\models
    using interp_def Interp_imp_general by simp
lemma Interp_imp_Interp: }C\leqD\LongrightarrowD\leq\mp@subsup{D}{}{\prime}\Longrightarrow\mathrm{ Interp }D\vDashC\Longrightarrow\mathrm{ Interp D' }=
    using Interp_as_UNION interp_subseteq_Interp Interp_imp_general by (metis antisym_conv2)
lemma Interp_imp_INTERP:C \leq D Interp D =C\LongrightarrowINTERP }=
    using INTERP_def interp_subseteq_INTERP Interp_imp_general[OF_le_multiset_right_total] by simp
lemma interp_imp_general:
    assumes
        c_le_d:C\leqD and
        d_le_d':}D\leq\mp@subsup{D}{}{\prime}\mathrm{ and
        c_at_d: interp D}\modelsC\mathrm{ and
        subs: interp D'\subseteq(UC\inCC. production C)
    shows (UC\inCC.production C) =C
proof (cases \existsA. Pos A\in#C\wedgeA\ininterp D)
    case True
```



```
        by blast
    from a_at_d have }A\in\operatorname{interp D'
        using d_le_d' less_eq_imp_interp_subseteq_interp by blast
    then show ?thesis
        using subs a_in_c by (blast dest:contra_subsetD)
next
    case False
    then obtain }A\mathrm{ where a_in_c: Neg A &#C and A & interp D
        using c_at_d unfolding true_cls_def by blast
    then have }\\mp@subsup{D}{}{\prime\prime}.\neg\mathrm{ produces }\mp@subsup{D}{}{\prime\prime}
        using c_le_d by (auto dest: produces_imp_in_interp less_eq_imp_interp_subseteq_interp)
    then show ?thesis
        using a_in_c subs not_produces_imp_notin_production by auto
qed
lemma interp_imp_interp: }C\leqD\LongrightarrowD\leq\mp@subsup{D}{}{\prime}\Longrightarrow\operatorname{interp}D\vDashC\Longrightarrow\operatorname{interp}\mp@subsup{D}{}{\prime}\vDash
    using interp_def interp_imp_general by simp
lemma interp_imp_Interp: }C\leqD\LongrightarrowD\leq\mp@subsup{D}{}{\prime}\Longrightarrow\mathrm{ interp }D\modelsC\Longrightarrow\mathrm{ Interp D'}\mp@subsup{D}{}{\prime}\models
    using Interp_as_UNION interp_subseteq_Interp[of D\ interp_imp_general by simp
lemma interp_imp_INTERP: C\leqD\Longrightarrow interp D =C\LongrightarrowINTERP \modelsC
    using INTERP_def interp_subseteq_INTERP interp_imp_general linear by metis
lemma productive_imp_not_interp: productive C\Longrightarrow \neg interp C}\models
```

unfolding production_unfold by simp
This corresponds to Lemma 3.3:

```
lemma productive_imp_Interp:
    assumes productive C
    shows Interp C}=
proof -
    obtain A where a: produces C A
        using assms productive_imp_produces_Max_atom by blast
    then have a_in_c: Pos A \in# C
        by (rule produces_imp_Pos_in_lits)
    moreover have A \in Interp C
        using a less_eq_imp_production_subseteq_Interp by blast
    ultimately show ?thesis
        by fast
qed
```

lemma productive_imp_INTERP: productive $C \Longrightarrow$ INTERP $\models C$
by (fast intro: productive_imp_Interp Interp_imp_INTERP)

This corresponds to Lemma 3.5:

```
lemma max_pos_imp_Interp:
    assumes C\inN and C\not={#} and Max_mset C=Pos A and S C={#}
    shows Interp C}=
proof (cases productive C)
    case True
    then show ?thesis
        by (fast intro: productive_imp_Interp)
next
    case False
    then have interp C}\models
        using assms unfolding production_unfold by simp
    then show ?thesis
        unfolding Interp_def using False by auto
qed
```

The following results correspond to Lemma 3.6:

```
lemma max_atm_imp_Interp:
    assumes
        c_in_n: \(C \in N\) and
        pos_in: Pos \(A \in \# C\) and
        max_atm: \(A=\operatorname{Max}\) (atms_of \(C\) ) and
        s_c_e: S \(C=\{\#\}\)
    shows Interp \(C \models C\)
proof (cases Neg \(A \in \# C\) )
    case True
    then show?thesis
        using pos_in pos_neg_in_imp_true by metis
next
    case False
    moreover have ne: \(C \neq\{\#\}\)
        using pos_in by auto
    ultimately have Max_mset \(C=\) Pos \(A\)
        using max_atm using Max_in_lits Max_lit_eq_pos_or_neg_Max_atm by metis
    then show ?thesis
        using ne c_in_n s_c_e by (blast intro: max_pos_imp_Interp)
qed
lemma not_Interp_imp_general:
    assumes
        \(d^{\prime}-l e_{-} d: D^{\prime} \leq D\) and
        in_n_or_max_gt: \(D^{\prime} \in N \wedge S D^{\prime}=\{\#\} \vee \operatorname{Max}\left(\right.\) atms_of \(\left.D^{\prime}\right)<\operatorname{Max}(\) atms_of \(D)\) and
        \(d^{\prime}\) _at_d: \(\neg \operatorname{Interp} D \models D^{\prime}\) and
```

```
    d_lt_c: D < C and
    subs: interp C\subseteq(\cupC\inCC. production C)
    shows }\neg(\cupC\inCC\mathrm{ . production C)}\models\mp@subsup{D}{}{\prime
proof -
    {
        assume cc_blw_d':(\bigcupC\inCC. production C)}\vDash\mp@subsup{D}{}{\prime
        have Interp D\subseteq(\bigcupC\inCC. production C)
            using less_imp_Interp_subseteq_interp d_lt_c subs by blast
        then obtain A where a_in_d': Pos A E# D' and a_blw_cc: }A\in(\cupC\inCC.production C
        using cc_blw_d' d'_at_d false_to_true_imp_ex_pos by metis
        from a_in_d' have a_at_d: A & Interp D
        using d'_}\mp@subsup{}{-}{\prime}\mp@subsup{t}{-}{}d\mathrm{ by fast
        from a_blw_cc obtain C' where prod_c': production C' = {A}
        by (fast intro!: in_production_imp_produces)
        have max_c': Max (atms_of C') = A
        using prod_c' productive_imp_produces_Max_atom by force
        have leq_dc': D \leq C'
        using a_at_d d'_at_d prod_c' by (auto simp: Interp_def intro: not_interp_to_Interp_imp_le)
    then have D' 
        using d'_le_d order_trans by blast
    then have max_d': Max (atms_of D')=A
        using a_in_d' max_c' by (fast intro: pos_lit_in_atms_of le_multiset_Max_in_imp_Max)
        {
        assume D' }\mp@subsup{D}{}{\prime}\inN\wedgeS\mp@subsup{D}{}{\prime}={#
        then have Interp D'}=\mp@subsup{D}{}{\prime
            using a_in_d' max_d' by (blast intro: max_atm_imp_Interp)
        then have Interp D}\vDash\mp@subsup{D}{}{\prime
            using d'_le_d by (auto intro: Interp_imp_Interp simp:less_eq_multiset_def)
        then have False
            using d'_at_d by satx
        }
        moreover
        {
            assume Max (atms_of D') < Max (atms_of D)
            then have False
            using max_d' leq_dc' max_c' d'_le_d
            by (metis le_imp_less_or_eq le_multiset_empty_right less_eq_Max_atms_of less_imp_not_less)
        }
        ultimately have False
        using in_n_or_max_gt by satx
    }
    then show ?thesis
        by satx
qed
lemma not_Interp_imp_not_interp:
\(D^{\prime} \leq D \Longrightarrow D^{\prime} \in N \wedge S D^{\prime}=\{\#\} \vee \operatorname{Max}\left(\right.\) atms_of \(\left.D^{\prime}\right)<\operatorname{Max}(\) atms_of \(D) \Longrightarrow \neg\) Interp \(D \models D^{\prime} \Longrightarrow\) \(D<C \Longrightarrow \neg \operatorname{interp} C \models D^{\prime}\)
using interp_def not_Interp_imp_general by simp
lemma not_Interp_imp_not_Interp:
\(D^{\prime} \leq D \Longrightarrow D^{\prime} \in N \wedge S D^{\prime}=\{\#\} \vee \operatorname{Max}\left(\right.\) atms_of \(\left.D^{\prime}\right)<\operatorname{Max}(\) atms_of \(D) \Longrightarrow \neg\) Interp \(D \models D^{\prime} \Longrightarrow\) \(D<C \Longrightarrow \neg\) Interp \(C \models D^{\prime}\)
using Interp_as_UNION interp_subseteq_Interp not_Interp_imp_general by metis
lemma not_Interp_imp_not_INTERP:
\(D^{\prime} \leq D \Longrightarrow D^{\prime} \in N \wedge S D^{\prime}=\{\#\} \vee \operatorname{Max}\left(\right.\) atms_of \(\left.D^{\prime}\right)<\operatorname{Max}(\) atms_of \(D) \Longrightarrow \neg\) Interp \(D \models D^{\prime} \Longrightarrow\) \(\neg\) INTERP \(=D^{\prime}\)
using INTERP_def interp_subseteq_INTERP not_Interp_imp_general \(\left[O F ~ \_~ \_~ e ~ l e \_m u l t i s e t \_r i g h t \_t o t a l\right] ~\) by simp
```

Lemma 3.7 is a problem child. It is stated below but not proved; instead, a counterexample is displayed. This is not much of a problem, because it is not invoked in the rest of the chapter.

```
lemma
```



```
    shows interp D}\models
    oops
lemma
    assumes d: D={#} and n:N ={D,C} and c:C={#Pos A#}
    shows }D\inN\mathrm{ and }\\mp@subsup{D}{}{\prime}.\mp@subsup{D}{}{\prime}<D\Longrightarrow\mathrm{ Interp }\mp@subsup{D}{}{\prime}\vDashC\mathrm{ and }\neg\mathrm{ interp }D\models
    using n unfolding d c interp_def by auto
end
end
end
```


10 Ground Unordered Resolution Calculus

theory Unordered_Ground_Resolution
imports Inference_System Ground_Resolution_Model

begin

Unordered ground resolution is one of the two inference systems studied in Section 3 ("Standard Resolution") of Bachmair and Ganzinger's chapter.

10.1 Inference Rule

Unordered ground resolution consists of a single rule, called unord_resolve below, which is sound and counterexample-reducing.
locale ground_resolution_without_selection
begin
sublocale ground_resolution_with_selection where $S=\lambda_{\text {_. }}$ \{\#\}
by unfold_locales auto
inductive unord_resolve :: 'a clause \Rightarrow 'a clause \Rightarrow ' a clause \Rightarrow bool where
unord_resolve $(C+$ replicate_mset $(\operatorname{Suc} n)(\operatorname{Pos} A))\left(\operatorname{add_ mset}(N e g A) D\right)(C+D)$
lemma unord_resolve_sound: unord_resolve $C D E \Longrightarrow I \models C \Longrightarrow I \models D \Longrightarrow I \models E$
using unord_resolve.cases by fastforce
The following result corresponds to Theorem 3.8, except that the conclusion is strengthened slightly to make it fit better with the counterexample-reducing inference system framework.

```
theorem unord_resolve_counterex_reducing:
    assumes
        \(e c \_n i \_n:\{\#\} \notin N\) and
        \(c \_i n \_n: C \in N\) and
        c_cex: \(\neg\) INTERP \(N \models C\) and
        c_min: \(\bigwedge D . D \in N \Longrightarrow \neg\) INTERP \(N \neq D \Longrightarrow C \leq D\)
    obtains \(D E\) where
        \(D \in N\)
        INTERP \(N \models D\)
        productive \(N D\)
        unord_resolve \(D C E\)
        \(\neg \operatorname{INTERP} N \models E\)
        \(E<C\)
proof -
    have \(c_{-} n e: C \neq\{\#\}\)
        using c_in_n ec_ni_n by blast
    have \(\exists A . A \in a t m s_{-}\)of \(C \wedge A=\operatorname{Max}\left(a t m s_{-}\right.\)of \(\left.C\right)\)
        using \(c_{-} n e\) by (blast intro: Max_in_lits atm_of_Max_lit atm_of_lit_in_atms_of)
```

```
then have }\existsA\mathrm{ . Neg A G#C
    using c_ne c_in_n c_cex c_min Max_in_lits Max_lit_eq_pos_or_neg_Max_atm max_pos_imp_Interp
        Interp_imp_INTERP by metis
    then obtain A where neg_a_in_c: Neg A \in# C
    by blast
then obtain C' where c: C=add_mset (Neg A) C'
    using insert_DiffM by metis
have A\inINTERP N
    using neg_a_in_c c_cex[unfolded true_cls_def] by fast
then obtain D where d0: produces ND A
    unfolding INTERP_def by (metis UN_E not_produces_imp_notin_production)
have prod_d: productive N D
    unfolding d0 by simp
then have d_in_n: }D\in
    using productive_in_N by fast
have d_true: INTERP N\modelsD
    using prod_d productive_imp_INTERP by blast
obtain D' AAA where
    d:D= D' + AAA and
    d}:\mp@subsup{D}{}{\prime}={#L\in#D.L\not=Pos A#} and
    aa:AAA={#L\in#D.L=Pos A#}
    using multiset_partition union_commute by metis
have d'_subs: set_mset D'\subseteq set_mset D
    unfolding d' by auto
have }\negNeg A\in#
    using d0 by (blast dest: produces_imp_neg_notin_lits)
then have neg_a_ni_d': \neg Neg A G# D'
    using d'_subs by auto
have a_ni_d': A & atms_of D'
    using d' neg_a_ni_d' by (auto dest:atm_imp_pos_or_neg_lit)
have }\existsn.AAA= replicate_mset (Suc n) (Pos A)
    using aa d0 not0_implies_Suc produces_imp_Pos_in_lits[of N]
    by (simp add: filter_eq_replicate_mset del: replicate_mset_Suc)
then have res_e: unord_resolve D C ( }\mp@subsup{D}{}{\prime}+\mp@subsup{C}{}{\prime}
    unfolding cd by (fastforce intro:unord_resolve.intros)
have d'_le_d: D' 
    unfolding d by simp
have a_max_d: A = Max (atms_of D)
    using d0 productive_imp_produces_Max_atom by auto
then have D'}\mp@subsup{D}{}{\prime}\not={#}\LongrightarrowMax(atms_of D')\leq
    using d'_le_d by (blast intro: less_eq_Max_atms_of)
moreover have D'\not={#}\LongrightarrowMax (atms_of D')}\not=
    using a_ni_d' Max_in by (blast intro: atms_empty_iff_empty[THEN iffD1])
ultimately have max_d'_lta: D' 
    using dual_order.strict_iff_order by blast
have }\neg\operatorname{interp N D}\models
    using d0 productive_imp_not_interp by blast
then have }\neg\operatorname{Interp}ND\models\mp@subsup{D}{}{\prime
    unfolding d0 d' Interp_def true_cls_def by (auto simp: true_lit_def simp del: not_gr_zero)
then have }\negINTERPN\models\mp@subsup{D}{}{\prime
    using a_max_d d'_le_d max_d'_lt_a not_Interp_imp_not_INTERP by blast
moreover have ᄀINTERPN}\models=\mp@subsup{C}{}{\prime
    using c_cex unfolding c by simp
ultimately have e_cex: \neg INTERP N\models D'+C'
    by simp
have }\B.B\in\mathrm{ atms_of }\mp@subsup{D}{}{\prime}\LongrightarrowB\leq
    using d0 d'_subs contra_subsetD lits_subseteq_imp_atms_subseteq produces_imp_atms_leq by metis
then have }\L.L\in#\mp@subsup{D}{}{\prime}\LongrightarrowL<Neg
    using neg_a_ni_d' antisym_conv1 atms_less_eq_imp_lit_less_eq_neg by metis
```

```
    then have lt_cex: }\mp@subsup{D}{}{\prime}+\mp@subsup{C}{}{\prime}<
    by (force intro: add.commute simp: c less_multiset }\mp@subsup{D}{M}{M}\mathrm{ intro: exI[of _ {#Neg A#}])
    from d_in_n d_true prod_d res_e e_cex lt_cex show ?thesis ..
qed
```


10.2 Inference System

Lemma 3.9 and Corollary 3.10 are subsumed in the counterexample-reducing inference system framework, which is instantiated below.

```
definition unord_\Gamma :: 'a inference set where
    unord_\Gamma = {Infer {#C#} D E| C D E. unord_resolve C D E}
sublocale unord_\Gamma_sound_counterex_reducing?:
    sound_counterex_reducing_inference_system unord_\Gamma INTERP
proof unfold_locales
    fix D E and N :: ('b :: wellorder) clause set
    assume {#} }\not=N\mathrm{ and }D\inN\mathrm{ and }\negINTERPN\vDashD and \C.C\inN\Longrightarrow\negINTERPN\modelsC\LongrightarrowD\
    then obtain CE where
        c_in_n:C\inN and
        c_true:INTERP N}=C\mathrm{ and
        res_e:unord_resolve C D E and
        e_cex: ᄀINTERP N}\modelsE\mathrm{ and
        e_lt_d: E < D
        using unord_resolve_counterex_reducing by (metis (no_types))
    from c_in_n have set_mset {#C#}\subseteqN
        by auto
    moreover have Infer {#C#} D E \in unord_\Gamma
        unfolding unord_\Gamma_def using res_e by blast
    ultimately show
```



```
        using c_in_n c_true e_cex e_lt_d by blast
next
    fix CCD E and I :: 'b interp
    assume Infer CC D E\in unord_\Gamma and I}\modelsmCC and I\models
    then show }I\models
        by (clarsimp simp: unord_\Gamma_def true_cls_mset_def) (erule unord_resolve_sound, auto)
qed
lemmas clausal_logic_compact = unord_\Gamma_sound_counterex_reducing.clausal_logic_compact
end
```

Theorem 3.12, compactness of clausal logic, has finally been derived for a concrete inference system:
lemmas clausal_logic_compact = ground_resolution_without_selection.clausal_logic_compact
end

11 Ground Ordered Resolution Calculus with Selection

theory Ordered_Ground_Resolution
imports Inference_System Ground_Resolution_Model
begin
Ordered ground resolution with selection is the second inference system studied in Section 3 ("Standard Resolution") of Bachmair and Ganzinger's chapter.

11.1 Inference Rule

Ordered ground resolution consists of a single rule, called ord_resolve below. Like unord_resolve, the rule is sound and counterexample-reducing. In addition, it is reductive.

context ground_resolution_with_selection
 begin

The following inductive definition corresponds to Figure 2.

```
definition maximal_wrt :: ' \(a \Rightarrow\) ' \(a\) literal multiset \(\Rightarrow\) bool where
```

 maximal_wrt \(A D A \equiv A=\operatorname{Max}(\) atms_of \(D A)\)
 definition strictly_maximal_wrt $::$ ' $a \Rightarrow$ 'a literal multiset \Rightarrow bool where
strictly_maximal_wrt $A C A \longleftrightarrow(\forall B \in$ atms_of $C A . B<A)$
inductive eligible :: 'a list \Rightarrow 'a clause \Rightarrow bool where
eligible: $(S D A=$ negs $($ mset $A s)) \vee(S D A=\{\#\} \wedge$ length $A s=1 \wedge$ maximal_wrt $(A s!0) D A) \Longrightarrow$
eligible As DA
lemma $(S D A=$ negs $($ mset $A s) \vee S D A=\{\#\} \wedge$ length $A s=1 \wedge$ maximal_wrt $(A s!0) D A) \longleftrightarrow$
eligible As DA
using eligible.intros ground_resolution_with_selection.eligible.cases ground_resolution_with_selection_axioms by blast

inductive

 ord_resolve \(::\) 'a clause list \(\Rightarrow{ }^{\prime}\) 'a clause \(\Rightarrow{ }^{\prime}\) 'a multiset list \(\Rightarrow{ }^{\prime}\) a list \(\Rightarrow\) 'a clause \(\Rightarrow\) bool
 where
ord_resolve:
length $C A s=n \Longrightarrow$
length $C s=n \Longrightarrow$
length $A A s=n \Longrightarrow$
length $A s=n \Longrightarrow$
$n \neq 0 \Longrightarrow$
$(\forall i<n . C A s!i=C s!i+$ poss $(A A s!i)) \Longrightarrow$
$(\forall i<n . A A s!i \neq\{\#\}) \Longrightarrow$
$(\forall i<n . \forall A \in \# A A s!i . A=A s!i) \Longrightarrow$
eligible $A s(D+$ negs $($ mset $A s)) \Longrightarrow$
$(\forall i<n$. strictly_maximal_wrt $(A s!i)(C s!i)) \Longrightarrow$
$(\forall i<n . S(C A s!i)=\{\#\}) \Longrightarrow$
ord_resolve CAs $(D+$ negs $(m s e t ~ A s)) A A s A s(\bigcup \#$ mset $C s+D)$
lemma ord_resolve_sound:
assumes
res_e: ord_resolve CAs DA AAs As E and
cc_true: $I \models m$ mset CAs and
d_true: $I \models D A$
shows $I \models E$
using res_e
proof (cases rule: ord_resolve.cases)
case (ord_resolve n Cs D)
note $D A=$ this(1) and $e=$ this(2) and cas_len $=$ this(3) and cs_len $=$ this(4) and
$a s_{-} l e n=\operatorname{this}(6)$ and cas $=$ this(8$)$ and aas_ne $=\operatorname{this}(9)$ and $a_{-} e q=$ this (10)
show ?thesis
proof (cases $\forall A \in$ set As. $A \in I$)
case True
then have $\neg I \models$ negs (mset As)
unfolding true_cls_def by fastforce
then have $I \models D$
using d_true DA by fast
then show ?thesis
unfolding e by blast
next
case False
then obtain i where
a_in_aa: $i<n$ and
a_false: As ! i $\notin I$
using cas_len as_len by (metis in_set_conv_nth)

```
    have }\negI\models\mathrm{ poss (AAs! ! )
        using a_false a_eq aas_ne a_in_aa unfolding true_cls_def by auto
    moreover have I}=CAs!
        using a_in_aa cc_true unfolding true_cls_mset_def using cas_len by auto
    ultimately have }I=Cs!
        using cas a_in_aa by auto
    then show ?thesis
        using a_in_aa cs_len unfolding e true_cls_def
        by (meson in_Union_mset_iff nth_mem_mset union_iff)
    qed
qed
lemma filter_neg_atm_of_S: {#Neg (atm_of L).L\in# S C#} = S C
    by (simp add: S_selects_neg_lits)
```

This corresponds to Lemma 3.13:
lemma ord_resolve_reductive:
assumes ord_resolve $C A s D A$ AAs As E
shows $E<D A$
using assms
proof (cases rule: ord_resolve.cases)
case (ord_resolve n Cs D)
note $D A=$ this(1) and $e=$ this(2) and cas_len $=$ this(3) and cs_len $=$ this(4) and
ai_len $=$ this (6) and $n z=$ this(7) and cas $=$ this(8) and maxim $=$ this(12)
show ?thesis
proof (cases $\bigcup \#$ mset $C s=\{\#\}$)
case True
have negs (mset $A s) \neq\{\#\}$
using $n z$ ai_len by auto
then show ?thesis
unfolding True e DA by auto
next
case False
define max_A_of_Cs where max_A_of_Cs = Max (atms_of (\bigcup \# mset Cs) $)$
have
mc_in: max_A_of_Cs \in atms_of ($\bigcup \#$ mset Cs) and
mc_max: $\bigwedge B . B \in$ atms_of $(\bigcup \#$ mset $C s) \Longrightarrow B \leq m a x _A _o f _C s$
using max_A_of_Cs_def False by auto
then have \exists C_max \in set Cs. max_A_of_Cs $\in a t m s _o f\left(C _m a x\right)$
by (metis atm_imp_pos_or_neg_lit in_Union_mset_iff neg_lit_in_atms_of pos_lit_in_atms_of
set_mset_mset)
then obtain max_ i where
cm_in_cas: max_i < length CAs and
mc_in_cm: max_A_of_Cs \in atms_of (Cs! max_i)
using in_set_conv_nth[of _ CAs] by (metis cas_len cs_len in_set_conv_nth)
define CA_max where CA_max $=C A s!$ max_ i
define A_{-}max where $A_{-} \max =A s!\max _i$
define C_max where $C _m a x=C s!$ max_ i
have mc_lt_ma: max_A_of_Cs $<A_{-} m a x$
using maxim cm_in_cas mc_in_cm cas_len unfolding strictly_maximal_wrt_def A_max_def by auto
then have ucas_ne_neg_aa: $(\cup \#$ mset $C s) \neq$ negs (mset As)
using mc_in mc_max mc_lt_ma cm_in_cas cas_len ai_len unfolding $A_{-} m a x_{-} d e f$
by (metis atms_of_negs nth_mem set_mset_mset leD)
moreover have ucas_lt_ma: $\forall B \in a t m s_{-} o f(U \#$ mset $C s) . B<A_{-} \max$
using mc_max mc_lt_ma by fastforce
moreover have \neg Neg $A_{-} \max \in \#(\cup \#$ mset Cs)

```
        using ucas_l__ma neg_lit_in_atms_of [of A_max U# mset Cs] by auto
    moreover have Neg A_max \in# negs (mset As)
        using cm_in_cas cas_len ai_len A_max_def by auto
    ultimately have ( U# mset Cs) < negs (mset As)
        unfolding less_multiset HO
        by (metis (no_types) atms_less_eq_imp_lit_less_eq_neg count_greater_zero_iff
            count_inI le_imp_less_or_eq less_imp_not_less not_le)
    then show ?thesis
        unfolding e DA by auto
    qed
qed
This corresponds to Theorem 3.15:
```

```
theorem ord_resolve_counterex_reducing:
```

theorem ord_resolve_counterex_reducing:
assumes
assumes
ec_ni_n: $\{\#\} \notin N$ and
ec_ni_n: $\{\#\} \notin N$ and
d_in_n: $D A \in N$ and
d_in_n: $D A \in N$ and
d_cex: \neg INTERP $N \models D A$ and
d_cex: \neg INTERP $N \models D A$ and
d_min: $\Lambda C . C \in N \Longrightarrow \neg$ INTERP $N \vDash C \Longrightarrow D A \leq C$
d_min: $\Lambda C . C \in N \Longrightarrow \neg$ INTERP $N \vDash C \Longrightarrow D A \leq C$
obtains CAs AAs As E where
obtains CAs AAs As E where
set $C A s \subseteq N$
set $C A s \subseteq N$
INTERP $N=m$ mset CAs
INTERP $N=m$ mset CAs
$\bigwedge C A . C A \in$ set $C A s \Longrightarrow$ productive $N C A$
$\bigwedge C A . C A \in$ set $C A s \Longrightarrow$ productive $N C A$
ord_resolve CAs DA AAs As E
ord_resolve CAs DA AAs As E
ᄀ INTERP $N \models E$
ᄀ INTERP $N \models E$
$E<D A$
$E<D A$
proof -
proof -
have d_ne: $D A \neq\{\#\}$
have d_ne: $D A \neq\{\#\}$
using d_in_n ec_ni_n by blast
using d_in_n ec_ni_n by blast
have $\exists A s . A s \neq[] \wedge$ negs $($ mset $A s) \leq \# D A \wedge$ eligible As DA
have $\exists A s . A s \neq[] \wedge$ negs $($ mset $A s) \leq \# D A \wedge$ eligible As DA
proof (cases $S D A=\{\#\}$)
proof (cases $S D A=\{\#\}$)
assume $s_{-} d_{-} e: S D A=\{\#\}$
assume $s_{-} d_{-} e: S D A=\{\#\}$
define A where $A=M a x$ (atms_of $D A$)
define A where $A=M a x$ (atms_of $D A$)
define $A s$ where $A s=[A]$
define $A s$ where $A s=[A]$
define D where $D=D A-\{\#$ Neg $A \#\}$
define D where $D=D A-\{\#$ Neg $A \#\}$
have na_in_d: Neg $A \in \# D A$
have na_in_d: Neg $A \in \# D A$
unfolding A_{-}def using $s_{-} d_{-} e d_{-} n e ~ d _i n _n ~ d _c e x ~ d _m i n ~$
unfolding A_{-}def using $s_{-} d_{-} e d_{-} n e ~ d _i n _n ~ d _c e x ~ d _m i n ~$
by (metis Max_in_lits Max_lit_eq_pos_or_neg_Max_atm max_pos_imp_Interp Interp_imp_INTERP)
by (metis Max_in_lits Max_lit_eq_pos_or_neg_Max_atm max_pos_imp_Interp Interp_imp_INTERP)
then have das: $D A=D+$ negs (mset As) unfolding $D_{-} d e f$ As_def by auto
then have das: $D A=D+$ negs (mset As) unfolding $D_{-} d e f$ As_def by auto
moreover from na_in_d have negs (mset As) $\subseteq \# D A$
moreover from na_in_d have negs (mset As) $\subseteq \# D A$
by (simp add: As_def)
by (simp add: As_def)
moreover have $A s!0=\operatorname{Max}\left(a t m s _o f(D+\right.$ negs $($ mset As $\left.))\right)$
moreover have $A s!0=\operatorname{Max}\left(a t m s _o f(D+\right.$ negs $($ mset As $\left.))\right)$
using A_{-}def As_def das by auto
using A_{-}def As_def das by auto
then have eligible As $D A$
then have eligible As $D A$
using eligible s_d_e As_def das maximal_wrt_def by auto
using eligible s_d_e As_def das maximal_wrt_def by auto
ultimately show ?thesis
ultimately show ?thesis
using As_def by blast
using As_def by blast
next
next
assume s_d_e: S $D A \neq\{\#\}$
assume s_d_e: S $D A \neq\{\#\}$
define $A s$:: 'a list where
define $A s$:: 'a list where
As $=$ list_of_mset $\{\#$ atm_of $L . L \in \# S D A \#\}$
As $=$ list_of_mset $\{\#$ atm_of $L . L \in \# S D A \#\}$
define D :: 'a clause where
define D :: 'a clause where
$D=D A-$ negs $\left\{\# a t m _o f L . L \in \# S D A \#\right\}$
$D=D A-$ negs $\left\{\# a t m _o f L . L \in \# S D A \#\right\}$
have $A s \neq[]$ unfolding $A s_{-} d e f$ using $s_{-} d_{-} e$
have $A s \neq[]$ unfolding $A s_{-} d e f$ using $s_{-} d_{-} e$
by (metis image_mset_is_empty_iff list_of_mset_empty)
by (metis image_mset_is_empty_iff list_of_mset_empty)
moreover have da_sub_as: negs $\{\#$ atm_of $L . L \in \# S D A \#\} \subseteq \# D A$
moreover have da_sub_as: negs $\{\#$ atm_of $L . L \in \# S D A \#\} \subseteq \# D A$
using S_selects_subseteq by (auto simp: filter_neg_atm_of_S)
using S_selects_subseteq by (auto simp: filter_neg_atm_of_S)
then have negs (mset $A s) \subseteq \# D A$
then have negs (mset $A s) \subseteq \# D A$
unfolding As_def by auto

```
        unfolding As_def by auto
```

```
    moreover have das: DA = D + negs (mset As)
    using da_sub_as unfolding D_def As_def by auto
    moreover have S DA= negs {#atm_of L. L\in#S DA#}
        by (auto simp: filter_neg_atm_of_S)
    then have S DA= negs (mset As)
        unfolding As_def by auto
    then have eligible As DA
        unfolding das using eligible by auto
    ultimately show ?thesis
        by blast
qed
then obtain As :: 'a list where
    as_ne: As \not=[] and
    negs_as_le_d: negs (mset As) \leq# DA and
    s_d: eligible As DA
    by blast
define D :: 'a clause where
    D=DA - negs (mset As)
have set As\subseteqINTERP N
    using d_cex negs_as_le_d by force
then have prod_ex: }\forallA\in\mathrm{ set As. }\exists\textrm{D}\mathrm{ . produces N D A
    unfolding INTERP_def
    by (metis (no_types, lifting) INTERP_def subsetCE UN_E not_produces_imp_notin_production)
then have }\A.\existsD\mathrm{ . produces NDA }\longrightarrowA\in\mathrm{ set As
    using ec_ni_n by (auto intro: productive_in_N)
then have }\bigwedgeA.\existsD. produces NDA\longleftrightarrowA\in set A
    using prod_ex by blast
then obtain CA_of where c_of0: \A. produces N(CA_of A) A \longleftrightarrowA\in set As
    by metis
then have prod_c0: }\forallA\in\mathrm{ set As. produces N(CA_of A) A
    by blast
define C_of where
    \A. C_of A={#L\in# CA_of A. L\not= Pos A#}
define Aj_of where
    \A. Aj_of A = image_mset atm_of {#L \in# CA_of A. L = Pos A#}
```



```
    by (metis (mono_tags, lifting) image_filter_cong literal.sel(1) multiset.map_ident)
have ca_of_c_of_aj_of: \A. CA_of A = C_of A + poss (Aj_of A)
    using pospos[of _ CA_of _] by (simp add: C_of_def Aj_of_def add.commute multiset_partition)
define n :: nat where
    n= length As
define Cs :: 'a clause list where
    Cs=map C_of As
define AAs :: 'a multiset list where
    AAs = map Aj_of As
define CAs :: 'a literal multiset list where
    CAs = map CA_of As
have m_nz: \A. A set As \Longrightarrow Aj_of A\not={#}
    unfolding Aj_of_def using prod_c0 produces_imp_Pos_in_lits
    by (metis (full_types) filter_mset_empty_conv image_mset_is_empty_iff)
have prod_c: productive NCA if ca_in: CA \in set CAs for CA
proof -
    obtain i}\mathrm{ where i_p:i< length CAs CAs ! i=CA
        using ca_in by (meson in_set_conv_nth)
    have production N(CA_of (As!i))={As!i}
        using i_p CAs_def prod_c0 by auto
```

```
    then show productive N CA
    using i_p CAs_def by auto
qed
then have cs_subs_n: set CAs\subseteqN
    using productive_in_N by auto
have cs_true: INTERP N}=m mset CA
    unfolding true_cls_mset_def using prod_c productive_imp_INTERP by auto
```

have $\bigwedge A . A \in$ set $A s \Longrightarrow \neg \operatorname{Neg} A \in \# C A _o f A$
using prod_c0 produces_imp_neg_notin_lits by auto
then have $a_{-} n c_{-} c^{\prime}: \bigwedge A . A \in$ set $A s \Longrightarrow A \notin$ atms_of (C _of A)
unfolding C_{-}of_def using atm_imp_pos_or_neg_lit by force
have c^{\prime}-le_c: $\backslash A$. C_{-}of $A \leq C A_{-}$of A
unfolding C_of_def by (auto intro: subset_eq_imp_le_multiset)
have a_max_c: $\bigwedge A . A \in$ set $A s \Longrightarrow A=M a x\left(a t m s_{-} o f\left(C A_{-} o f A\right)\right)$
using prod_c0 productive_imp_produces_Max_atom[of N] by auto
then have $\bigwedge A . A \in$ set $A s \Longrightarrow C_{\text {_of }} A \neq\{\#\} \Longrightarrow \operatorname{Max}\left(a t m s _o f\left(C_{-} o f A\right)\right) \leq A$
using c^{\prime} _le_c by (metis less_eq_Max_atms_of)
moreover have $\bigwedge A . A \in$ set $A s \Longrightarrow C_{-}$of $A \neq\{\#\} \Longrightarrow \operatorname{Max}\left(\right.$ atms_of $\left(C _\right.$of $\left.\left.A\right)\right) \neq A$
using a_ni_c c^{\prime} Max_in by (metis (no_types) atms_empty_iff_empty finite_atms_of)
ultimately have max_c'_lt_a: $\wedge A . A \in$ set $A s \Longrightarrow C_{-} o f A \neq\{\#\} \Longrightarrow M a x\left(a t m s _o f\left(C_{-} o f A\right)\right)<A$
by (metis order.strict_iff_order)
have le_cs_as: length $C A s=l e n g t h ~ A s$
unfolding CAs_def by simp
have length $C A s=n$
by (simp add: le_cs_as n_def)
moreover have length $C s=n$
by (simp add: Cs_def n_def)
moreover have length $A A s=n$
by (simp add: AAs_def n_def)
moreover have length $A s=n$
using n_{-}def by auto
moreover have $n \neq 0$
by (simp add: as_ne n_def)
moreover have $\forall i . i<$ length $A A s \longrightarrow(\forall A \in \# A A s!i . A=A s!i)$
using $A A s_{-} d e f$ Aj_of_def by auto
have $\wedge x$ B. production $N\left(C A _o f x\right)=\{x\} \Longrightarrow B \in \# C A _o f x \Longrightarrow B \neq$ Pos $x \Longrightarrow$ atm_of $B<x$
by (metis atm_of_lit_in_atms_of insert_not_empty le_imp_less_or_eq Pos_atm_of_iff
Neg_atm_of_iff pos_neg_in_imp_true produces_imp_Pos_in_lits produces_imp_atms_leq
productive_imp_not_interp)
then have $\wedge B A$. $A \in$ set $A s \Longrightarrow B \in \# C A _$of $A \Longrightarrow B \neq P$ os $A \Longrightarrow$ atm_of $B<A$
using prod_c0 by auto
have $\forall i . i<$ length $A A s \longrightarrow A A s!i \neq\{\#\}$
unfolding AAs_def using m_nz by simp
have $\forall i<n . C A s!i=C s!i+$ poss $(A A s!i)$
unfolding $C A s_{-} d e f$ Cs_def $A A s_{-} d e f$ using ca_of_c_of_aj_of by (simp add: n_def)
moreover have $\forall i<n$. AAs $!i \neq\{\#\}$
using $\langle\forall i<$ length AAs. AAs $!i \neq\{\#\}\rangle$ calculation(3) by blast
moreover have $\forall i<n . \forall A \in \# A A s!i . A=A s!i$
by (simp add: $\forall i<$ length AAs. $\forall A \in \# A A s!i . A=A s!i\rangle$ calculation(3))
moreover have eligible As DA
using $s_{-} d$ by auto
then have eligible $A s(D+$ negs $(m s e t A s))$
using D _def negs_as_le_d by auto
moreover have $\bigwedge i . i<$ length $A A s \Longrightarrow$ strictly_maximal_wrt $(A s!i)((C s!i))$
by (simp add: C_of_def Cs_def 〈 $\bigwedge x B$. $\llbracket p r o d u c t i o n ~ N\left(C A _o f ~ x\right)=\{x\} ; B \in \# C A _o f x ; B \neq P o s x \rrbracket \Longrightarrow a t m_{_}$of
$B\langle x\rangle$ atms_of_def calculation(3) n_def prod_c0 strictly_maximal_wrt_def)
have $\forall i<n$. strictly_maximal_wrt (As!i)(Cs!i)
by（simp add：〈 $\backslash i . i<$ length $A A s \Longrightarrow$ strictly＿maximal＿wrt（As！i）（Cs！i）〉calculation（3））
moreover have $\forall C A \in$ set CAs．$S C A=\{\#\}$
using prod＿c producesD productive＿imp＿produces＿Max＿literal by blast
have $\forall C A \in$ set CAs．$S C A=\{\#\}$
using $\langle\forall C A \in$ set CAs．$S C A=\{\#\}\rangle$ by simp
then have $\forall i<n . S(C A s!i)=\{\#\}$
using 〈length $C A s=n$ » nth＿mem by blast
ultimately have res＿e：ord＿resolve CAs $(D+$ negs（mset As））AAs As $(\bigcup \#$ mset Cs $+D)$ using ord＿resolve by auto
have $\wedge A . A \in$ set $A s \Longrightarrow \neg \operatorname{interp} N\left(C A_{-}\right.$of $\left.A\right) \models C A _$of A by（simp add：prod＿c0 producesD）
then have $\bigwedge A . A \in$ set $A s \Longrightarrow \neg$ Interp $N\left(C A_{-}\right.$of $\left.A\right) \models C_{-}$of A
unfolding prod＿c0 C＿of＿def Interp＿def true＿cls＿def using true＿lit＿def not＿gr＿zero prod＿c0 by auto
then have $c^{\prime}{ }_{-} a t _n: \wedge A . A \in$ set $A s \Longrightarrow \neg$ INTERP $N \models C_{-}$of A
using a＿max＿c c $c^{\prime} l e_{-} c$ max＿c＇＿lt＿a not＿Interp＿imp＿not＿INTERP unfolding true＿cls＿def by（metis true＿cls＿def true＿cls＿empty）
have \neg INTERP $N \models \bigcup \#$ mset Cs
unfolding Cs＿def true＿cls＿def by（auto dest！：$\left.c^{\prime} _a t _n\right)$
moreover have \neg INTERP $N \models D$
using d＿cex by（metis D＿def add＿diff＿cancel＿right＇negs＿as＿le＿d subset＿mset．add＿diff＿assoc2 true＿cls＿def union＿iff）
ultimately have e＿cex：$\neg I N T E R P N \models \bigcup \#$ mset $C s+D$
by simp
have set $C A s \subseteq N$ by（simp add：cs＿subs＿n）
moreover have $I N T E R P N \models m$ mset $C A s$ by（simp add：cs＿true）
moreover have $\bigwedge C A$ ．$C A \in$ set $C A s \Longrightarrow$ productive $N C A$ by（simp add：prod＿c）
moreover have ord＿resolve CAs DA AAs As（ $\bigcup \#$ mset Cs＋D） using $D_{-} d e f$ negs＿as＿le＿d res＿e by auto
moreover have $\neg I N T E R P N \models \bigcup \#$ mset $C s+D$ using e＿cex by simp
moreover have $(\cup \#$ mset $C s+D)<D A$
using calculation（4）ord＿resolve＿reductive by auto
ultimately show thesis
qed
lemma ord＿resolve＿atms＿of＿concl＿subset：
assumes ord＿resolve CAs DA AAs As E
shows atms＿of $E \subseteq(\cup C \in$ set $C A s$ ．atms＿of $C) \cup$ atms＿of $D A$
using assms
proof（cases rule：ord＿resolve．cases）
case（ord＿resolve n Cs D）
note $D A=$ this（1）and $e=$ this（2）and cas＿len $=$ this（3）and cs＿len $=t h i s(4)$ and cas $=t h i s(8)$
have $\forall i<n$ ．set＿mset $(C s!i) \subseteq$ set＿mset $(C A s!i)$ using cas by auto
then have $\forall i<n$ ．Cs $!i \subseteq \# \bigcup \#$ mset CAs by（metis cas cas＿len mset＿subset＿eq＿add＿left nth＿mem＿mset sum＿mset．remove union＿assoc）
then have $\forall C \in$ set $C s . C \subseteq \# \bigcup \#$ mset $C A s$ using cs＿len in＿set＿conv＿nth［of＿Cs］by auto
then have set＿mset $(\bigcup \#$ mset Cs $) \subseteq$ set＿mset $(\bigcup \#$ mset CAs） by auto（meson in＿mset＿sum＿list2 mset＿subset＿eqD）
then have atms＿of $(\cup \#$ mset Cs）\subseteq atms＿of $(\bigcup \#$ mset CAs） by（meson lits＿subseteq＿imp＿atms＿subseteq mset＿subset＿eqD subsetI）
moreover have atms＿of $(\bigcup \#$ mset $C A s)=(\bigcup C A \in$ set CAs．atms＿of $C A)$ by（intro set＿eqI iffI，simp＿all，
metis in_mset_sum_list2 atm_imp_pos_or_neg_lit neg_lit_in_atms_of pos_lit_in_atms_of, metis in_mset_sum_list atm_imp_pos_or_neg_lit neg_lit_in_atms_of pos_lit_in_atms_of)
ultimately have atms_of $(\bigcup \#$ mset $C s) \subseteq(\bigcup C A \in$ set $C A s$.atms_of $C A)$ by auto
moreover have atms_of $D \subseteq$ atms_of $D A$
using $D A$ by auto
ultimately show ?thesis
unfolding e by auto
qed

11.2 Inference System

Theorem 3.16 is subsumed in the counterexample-reducing inference system framework, which is instantiated below. Unlike its unordered cousin, ordered resolution is additionally a reductive inference system.

```
definition ord_\Gamma :: 'a inference set where
    ord_\Gamma = {Infer (mset CAs) DA E|CAs DA AAs As E. ord_resolve CAs DA AAs As E}
sublocale ord_\Gamma_sound_counterex_reducing?:
    sound_counterex_reducing_inference_system ground_resolution_with_selection.ord_\Gamma S
        ground_resolution_with_selection.INTERP S +
    reductive_inference_system ground_resolution_with_selection.ord_\Gamma S
proof unfold_locales
    fix DA :: 'a clause and N :: 'a clause set
    assume {#} }\not=N\mathrm{ and }DA\inN\mathrm{ and }\negINTERPN\vDashDA and \C.C\inN\Longrightarrow\negINTERPN\modelsC\LongrightarrowDA
C
    then obtain CAs AAs As E where
        dd_sset_n: set CAs}\subseteqN\mathrm{ and
        dd_true:INTERP N}=m\mathrm{ mset CAs and
        res_e:ord_resolve CAs DA AAs As E and
        e_cex: \negINTERP N}=E\mathrm{ and
        e_lt_c: E< DA
        using ord_resolve_counterex_reducing[of N DA thesis] by auto
    have Infer (mset CAs) DA E \in ord_\Gamma
        using res_e unfolding ord_\Gamma_def by (metis (mono_tags, lifting) mem_Collect_eq)
    then show \existsCC E. set_mset CC\subseteqN^INTERP N}=mCC\wedge Infer CC DA E \in ord_
        \wedge ᄀINTERP N}=E\wedgeE<D
        using dd_sset_n dd_true e_cex e_lt_c by (metis set_mset_mset)
qed (auto simp: ord_\Gamma_def intro: ord_resolve_sound ord_resolve_reductive)
lemmas clausal_logic_compact = ord_\Gamma_sound_counterex_reducing.clausal_logic_compact
end
A second proof of Theorem 3.12, compactness of clausal logic:
lemmas clausal_logic_compact = ground_resolution_with_selection.clausal_logic_compact
end
```


12 Theorem Proving Processes

```
theory Proving_Process
    imports Unordered_Ground_Resolution Lazy_List_Chain
begin
```

This material corresponds to Section 4.1 ("Theorem Proving Processes") of Bachmair and Ganzinger's chapter.
The locale assumptions below capture conditions R1 to R3 of Definition 4.1. Rf denotes $\mathcal{R}_{\mathcal{F}} ; R i$ denotes $\mathcal{R}_{\mathcal{I}}$.
locale redundancy_criterion $=$ inference_system + fixes

```
    Rf :: 'a clause set => 'a clause set and
    Ri :: 'a clause set }=>\mp@subsup{}{}{\prime}\mp@subsup{}{}{\prime}\mathrm{ i inference set
assumes
    Ri_subset_\Gamma:Ri N\subseteq\Gamma and
    Rf_mono: N\subseteq N'\LongrightarrowRf N\subseteqRf N' and
    Ri_mono:N\subseteq N'\LongrightarrowRiN\subseteqRi N' and
    Rf_indep: N'\subseteqRf N\LongrightarrowRfN\subseteqRf(N-N') and
    Ri_indep: N'\subseteqRfN\LongrightarrowRiN\subseteqRi (N - N') and
    Rf_sat: satisfiable ( N - Rf N) \Longrightarrow satisfiable N
begin
definition saturated_upto :: 'a clause set }=>\mathrm{ bool where
    saturated_upto N}\longleftrightarrow\mathrm{ inferences_from (N - Rf N) ¢ Ri N
inductive derive :: 'a clause set }=>\mathrm{ ' 'a clause set }=>\mathrm{ bool (infix }\triangleright50) where
    deduction_deletion: N-M\subseteqconcls_of (inferences_from M)\LongrightarrowM-N\subseteqRfN\LongrightarrowM\trianglerightN
lemma derive_subset: }M\trianglerightN\LongrightarrowN\subseteqM\cup\mathrm{ concls_of (inferences_from M)
    by (meson Diff_subset_conv derive.cases)
end
locale sat_preserving_redundancy_criterion =
    sat_preserving_inference_system \Gamma :: ('a :: wellorder) inference set + redundancy_criterion
begin
lemma deriv_sat_preserving:
    assumes
        deriv: chain (op\triangleright) Ns and
        sat_n0: satisfiable (lhd Ns)
    shows satisfiable (Sup_llist Ns)
proof -
    have ns0: lnth Ns 0 = lhd Ns
        using deriv by (metis chain_not_lnull lhd_conv_lnth)
    have len_ns: llength Ns > 0
        using deriv by (case_tac Ns) simp+
    {
        fix }D
        assume fin: finite DD and sset_lun: DD\subseteq Sup_llist Ns
        then obtain k}\mathrm{ where dd_sset: DD}\subseteq\mathrm{ Sup_upto_llist Ns k
            using finite_Sup_llist_imp_Sup_upto_llist by blast
        have satisfiable (Sup_upto_llist Ns k)
        proof (induct k)
            case 0
            then show ?case
            using len_ns ns0 sat_n0 unfolding Sup_upto_llist_def true_clss_def by auto
        next
        case (Suc k)
        show ?case
        proof (cases enat (Suc k)\geqllength Ns)
            case True
            then have Sup_upto_llist Ns k= Sup_upto_llist Ns (Suc k)
                    unfolding Sup_upto_llist_def using le_Suc_eq not_less by blast
            then show ?thesis
                using Suc by simp
        next
            case False
            then have lnth Ns k\triangleright lnth Ns (Suc k)
                using deriv by (auto simp: chain_lnth_rel)
            then have lnth Ns (Suc k)\subseteqlnth Ns k \cup concls_of (inferences_from (lnth Ns k))
                by (rule derive_subset)
            moreover have lnth Ns k\subseteq Sup_upto_llist Ns k
                unfolding Sup_upto_llist_def using False Suc_ile_eq linear by blast
```

```
            ultimately have lnth Ns (Suc k)
                \subseteqSup_upto_llist Ns k U concls_of (inferences_from (Sup_upto_llist Ns k))
                by clarsimp (metis UnCI UnE image_Un inferences_from_mono le_iff_sup)
            moreover have Sup_upto_llist Ns (Suc k) = Sup_upto_llist Ns k Ulnth Ns (Suc k)
                    unfolding Sup_upto_llist_def using False by (force elim: le_SucE)
            moreover have
                satisfiable (Sup_upto_llist Ns k U concls_of (inferences_from (Sup_upto_llist Ns k)))
                    using Suc \Gamma_sat_preserving unfolding sat_preserving_inference_system_def by simp
            ultimately show ?thesis
            by (metis le_iff_sup true_clss_union)
        qed
    qed
    then have satisfiable DD
        using dd_sset unfolding Sup_upto_llist_def by (blast intro: true_clss_mono)
    }
    then show ?thesis
    using ground_resolution_without_selection.clausal_logic_compact[THEN iffD1] by metis
qed
```

This corresponds to Lemma 4.2:

```
lemma
    assumes deriv: chain (op\triangleright) Ns
    shows
        Rf_Sup_subset_Rf_Liminf: Rf (Sup_llist Ns) \subseteqRf (Liminf_llist Ns) and
        Ri_Sup_subset_Ri_Liminf: Ri (Sup_llist Ns)\subseteqRi (Liminf_llist Ns) and
        sat_deriv_Limin__iff: satisfiable (Liminf_llist Ns)\longleftrightarrow \longleftrightarrowatisfiable (lhd Ns)
proof -
    {
        fix Cij
        assume
            c_in: C < lnth Ns i and
            c_ni:C\not\inRf(Sup_llist Ns) and
            j:j\geqi and
            j': enat j < llength Ns
            from c_ni have c_ni': \i. enat i<llength Ns \LongrightarrowC\not\inRf (lnth Ns i)
                using Rf_mono lnth_subset_Sup_llist Sup_llist_def by (blast dest: contra_subsetD)
            have C\inlnth Ns j
            using j j'
            proof (induct j)
                case 0
                then show ?case
                    using c_in by blast
    next
                case (Suc k)
                then show ?case
            proof (cases i<Suc k)
                    case True
                    have i\leqk
                    using True by linarith
            moreover have enat k<llength Ns
                using Suc.prems(2) Suc_ile_eq by (blast intro: dual_order.strict_implies_order)
            ultimately have c_in_k: C\inlnth Ns k
                    using Suc.hyps by blast
            have rel: lnth Ns k\triangleright lnth Ns (Suc k)
                    using Suc.prems deriv by (auto simp: chain_lnth_rel)
            then show ?thesis
                using c_in_k c_ni' Suc.prems(2) by cases auto
            next
            case False
            then show ?thesis
                    using Suc c_in by auto
        qed
        qed
```

```
}
then have lu_ll:Sup_llist Ns - Rf (Sup_llist Ns)\subseteqLiminf_llist Ns
    unfolding Sup_llist_def Liminf_llist_def by blast
    have rf:Rf (Sup_llist Ns - Rf (Sup_llist Ns))\subseteqRf(Liminf_llist Ns)
    using lu_ll Rf_mono by simp
    have ri:Ri (Sup_llist Ns - Rf (Sup_llist Ns))\subseteqRi(Liminf_llist Ns)
        using lu_ll Ri_mono by simp
    show Rf (Sup_llist Ns)\subseteqRf(Liminf_llist Ns)
    using rf Rf_indep by blast
show Ri (Sup_llist Ns)\subseteqRi (Liminf_llist Ns)
    using ri Ri_indep by blast
show satisfiable (Liminf_llist Ns) \longleftrightarrow satisfiable (lhd Ns)
proof
    assume satisfiable (lhd Ns)
    then have satisfiable (Sup_llist Ns)
        using deriv deriv_sat_preserving by simp
    then show satisfiable (Liminf_llist Ns)
        using true_clss_mono[OF Liminf_llist_subset_Sup_llist] by blast
next
    assume satisfiable (Liminf_llist Ns)
    then have satisfiable (Sup_llist Ns - Rf (Sup_llist Ns))
        using true_clss_mono[OF lu_ll] by blast
    then have satisfiable (Sup_llist Ns)
        using Rf_sat by blast
    then show satisfiable (lhd Ns)
        using deriv true_clss_mono lhd_subset_Sup_llist chain_not_lnull by metis
    qed
qed
lemma
    assumes chain (op\triangleright) Ns
    shows
        Rf_Liminf_eq_Rf_Sup: Rf (Liminf_llist Ns) = Rf (Sup_llist Ns) and
        Ri_Liminf_eq_Ri_Sup: Ri (Liminf_llist Ns) = Ri (Sup_llist Ns)
    using assms
    by (auto simp: Rf_Sup_subset_Rf_Liminf Rf_mono Ri_Sup_subset_Ri_Liminf Ri_mono
        Liminf_llist_subset_Sup_llist subset_antisym)
end
The assumption below corresponds to condition R4 of Definition 4.1.
```

```
locale effective_redundancy_criterion = redundancy_criterion +
```

locale effective_redundancy_criterion = redundancy_criterion +
assumes Ri_effective: }\gamma\in\Gamma\Longrightarrow\mathrm{ concl_of }\gamma\inN\cupRfN\Longrightarrow\gamma\inRi
begin
definition fair_clss_seq :: 'a clause set llist }=>\mathrm{ bool where
fair_clss_seq Ns \longleftrightarrow(let N'= Liminf_llist Ns - Rf (Liminf_llist Ns) in
concls_of (inferences_from N' }\mp@subsup{N}{}{\prime}-Ri\mp@subsup{N}{}{\prime})\subseteqSup_llist Ns \cupRf (Sup_llist Ns)
end
locale sat_preserving_effective_redundancy_criterion =
sat_preserving_inference_system \Gamma :: ('a :: wellorder) inference set +
effective_redundancy_criterion
begin
sublocale sat_preserving_redundancy_criterion

```

The result below corresponds to Theorem 4.3.
theorem fair_derive_saturated_upto:
assumes
```

 deriv: chain (op\triangleright) Ns and
 fair: fair_clss_seq Ns
 shows saturated_upto (Liminf_llist Ns)
 unfolding saturated_upto_def
 proof
fix }
let ?N' = Liminf_llist Ns - Rf (Liminf_llist Ns)
assume }\gamma:\gamma\in\mathrm{ inferences_from ? N'
show }\gamma\inRi(\mathrm{ Liminf_llist Ns)
proof (cases }\gamma\inRi ?N'
case True
then show ?thesis
using Ri_mono by blast
next
case False
have concls_of (inferences_from ?N' - Ri ?N')\subseteq Sup_llist Ns \cupRf (Sup_llist Ns)
using fair unfolding fair_clss_seq_def Let_def .
then have concl_of \gamma \in Sup_llist Ns \cupRf (Sup_llist Ns)
using False }\gamma\mathrm{ by auto
moreover
{
assume concl_of }\gamma\in\mathrm{ Sup_llist Ns
then have \gamma\inRi (Sup_llist Ns)
using \gamma Ri_effective inferences_from_def by blast
then have \gamma\inRi (Liminf_llist Ns)
using deriv Ri_Sup_subset_Ri_Liminf by fast
}
moreover
{
assume concl_of \gamma\inRf (Sup_llist Ns)
then have concl_of \gamma \inRf (Liminf_llist Ns)
using deriv Rf_Sup_subset_Rf_Liminf by blast
then have }\gamma\inRi(\mathrm{ Liminf_llist Ns)
using \gamma Ri_effective inferences_from_def by auto
}
ultimately show }\gamma\inRi(\mathrm{ Liminf_llist Ns)
by blast
qed
qed
end

```

This corresponds to the trivial redundancy criterion defined on page 36 of Section 4.1.
```

locale trivial_redundancy_criterion = inference_system
begin
definition Rf :: 'a clause set }=>\mp@subsup{|}{}{\prime}a\mathrm{ clause set where
Rf_={}
definition Ri :: 'a clause set }=>\mp@subsup{|}{}{\prime}a\mathrm{ inference set where
RiN}={\gamma.\gamma\in\Gamma\wedge\mathrm{ concl_of }\gamma\inN
sublocale effective_redundancy_criterion \Gamma Rf Ri
by unfold_locales (auto simp: Rf_def Ri_def)
lemma saturated_upto_iff: saturated_upto N}\longleftrightarrow\mathrm{ concls_of (inferences_from N) }\subseteq
unfolding saturated_upto_def inferences_from_def Rf_def Ri_def by auto
end

```

The following lemmas corresponds to the standard extension of a redundancy criterion defined on page 38 of Section 4.1.
lemma redundancy_criterion_standard_extension:
```

 assumes }\Gamma\subseteq\mp@subsup{\Gamma}{}{\prime}\mathrm{ and redundancy_criterion }\Gamma\mathrm{ Rf Ri
 shows redundancy_criterion }\mp@subsup{\Gamma}{}{\prime}Rf(\lambdaN.RiN\cup(\mp@subsup{\Gamma}{}{\prime}-\Gamma)
 using assms unfolding redundancy_criterion_def by (intro conjI) ((auto simp: rev_subsetD)[5], sat)
 lemma redundancy_criterion_standard_extension_saturated_upto_iff:
assumes }\Gamma\subseteq\mp@subsup{\Gamma}{}{\prime}\mathrm{ and redundancy_criterion }\Gamma\mathrm{ Rf Ri
shows redundancy_criterion.saturated_upto \Gamma Rf Ri M \longleftrightarrow
redundancy_criterion.saturated_upto 湩 Rf (}\lambdaN.RiN\cup(\mp@subsup{\Gamma}{}{\prime}-\Gamma))
using assms redundancy_criterion.saturated_upto_def redundancy_criterion.saturated_upto_def
redundancy_criterion_standard_extension
unfolding inference_system.inferences_from_def by blast
lemma redundancy_criterion_standard_extension_effective:
assumes \Gamma\subseteq Г' and effective_redundancy_criterion \Gamma Rf Ri
shows effective_redundancy_criterion }\mp@subsup{\Gamma}{}{\prime}Rf(\lambdaN.RiN\cup(\mp@subsup{\Gamma}{}{\prime}-\Gamma)
using assms redundancy_criterion_standard_extension[of \Gamma]
unfolding effective_redundancy_criterion_def effective_redundancy_criterion_axioms_def by auto
lemma redundancy_criterion_standard_extension_fair_iff:
assumes \Gamma\subseteq \' and effective_redundancy_criterion \Gamma Rf Ri
shows effective_redundancy_criterion.fair_clss_seq \Gamma}\mp@subsup{\Gamma}{}{\prime}Rf(\lambdaN.RiN\cup(\mp@subsup{\Gamma}{}{\prime}-\Gamma))Ns
effective_redundancy_criterion.fair_clss_seq \Gamma Rf Ri Ns
using assms redundancy_criterion_standard_extension_effective[of \Gamma \Gamma'Rf Ri]
effective_redundancy_criterion.fair_clss_seq_def[of \Gamma Rf Ri Ns]
effective_redundancy_criterion.fair_clss_seq_def[of \Gamma' Rf (\lambdaN.Ri N \cup (\Gamma' - \Gamma)) Ns]
unfolding inference_system.inferences_from_def Let_def by auto
theorem redundancy_criterion_standard_extension_fair_derive_saturated_upto:
assumes
subs: }\Gamma\subseteq\mp@subsup{\Gamma}{}{\prime}\mathrm{ and
red: redundancy_criterion \Gamma Rf Ri and
red': sat_preserving_effective_redundancy_criterion }\mp@subsup{\Gamma}{}{\prime}Rf(\lambdaN.RiN\cup(\mp@subsup{\Gamma}{}{\prime}-\Gamma))\mathrm{ and
deriv: chain (redundancy_criterion.derive }\mp@subsup{\Gamma}{}{\prime}Rf) Ns and
fair: effective_redundancy_criterion.fair_clss_seq \Gamma' Rf (\lambdaN.Ri N \cup (}\mp@subsup{\Gamma}{}{\prime}-\Gamma))N
shows redundancy_criterion.saturated_upto \Gamma Rf Ri (Liminf_llist Ns)
proof -

```

```

 by (rule sat_preserving_effective_redundancy_criterion.fair_derive_saturated_upto
 [OF red' deriv fair])
 then show ?thesis
 by (rule redundancy_criterion_standard_extension_saturated_upto_iff[THEN iffD2,OF subs red])
 qed
end

```

\section*{13 The Standard Redundancy Criterion}
```

theory Standard_Redundancy
imports Proving_Process
begin

```

This material is based on Section 4.2.2 ("The Standard Redundancy Criterion") of Bachmair and Ganzinger's chapter.
locale standard_redundancy_criterion =
inference_system \(\Gamma\) for \(\Gamma\) :: ('a :: wellorder) inference set
begin
abbreviation redundant_infer :: 'a clause set \(\Rightarrow\) ' \(a\) inference \(\Rightarrow\) bool where
redundant_infer \(N \gamma \equiv\)
\(\exists D D\). set_mset \(D D \subseteq N \wedge(\forall I . I \models m D D+\) side_prems_of \(\gamma \longrightarrow I \models\) concl_of \(\gamma)\)
\[
\wedge(\forall D . D \in \# D D \longrightarrow D<\text { main_prem_of } \gamma)
\]
```

definition Rf :: 'a clause set }=>\mp@subsup{}{}{\prime}'a clause set where
Rf N={C.\existsDD. set_mset DD\subseteqN^(\forallI.I\modelsmDD\longrightarrowI\modelsC)\wedge(\forallD.D\in\#DD\longrightarrowD<C)}
definition Ri :: 'a clause set }=>\mathrm{ ' 'a inference set where
Ri N = {\gamma\in\Gamma. redundant_infer N \gamma}
lemma tautology_redundant:
assumes Pos A \in\# C
assumes Neg A \in\#C
shows C\inRfN
proof -
have set_mset {\#}\subseteqN\wedge(\forallI.I\modelsm{\#}\longrightarrowI\modelsC)\wedge(\forallD.D\in\#{\#}\longrightarrowD<C)
using assms by auto
then show C\inRfN
unfolding Rf_def by blast
qed
lemma contradiction_Rf:{\#}\inN\LongrightarrowRfN=UNIV - {{\#}}
unfolding Rf_def by force

```

The following results correspond to Lemma 4.5. The lemma wlog_non_Rf generalizes the core of the argument.
```

lemma Rf_mono: $N \subseteq N^{\prime} \Longrightarrow R f N \subseteq R f N^{\prime}$
unfolding $R f_{-} d e f$ by auto
lemma wlog_non_Rf:
assumes ex: $\exists D D$. set_mset $D D \subseteq N \wedge(\forall I . I \models m D D+C C \longrightarrow I \models E) \wedge\left(\forall D^{\prime} . D^{\prime} \in \# D D \longrightarrow D^{\prime}<D\right)$
shows $\exists D D$. set_mset $D D \subseteq N-R f N \wedge(\forall I . I \models m D D+C C \longrightarrow I \vDash E) \wedge\left(\forall D^{\prime} . D^{\prime} \in \# D D \longrightarrow D^{\prime}<D\right)$
proof -
from ex obtain $D D 0$ where
$d d 0: D D 0 \in\left\{D D\right.$. set_mset $\left.D D \subseteq N \wedge(\forall I . I \models m D D+C C \longrightarrow I \models E) \wedge\left(\forall D^{\prime} . D^{\prime} \in \# D D \longrightarrow D^{\prime}<D\right)\right\}$
by blast
have $\exists D D$. set_mset $D D \subseteq N \wedge(\forall I . I \models m D D+C C \longrightarrow I \models E) \wedge\left(\forall D^{\prime} . D^{\prime} \in \# D D \longrightarrow D^{\prime}<D\right) \wedge$
$\left(\forall D D^{\prime}\right.$. set_mset $D D^{\prime} \subseteq N \wedge\left(\forall I . I \models m D D^{\prime}+C C \longrightarrow I \models E\right) \wedge\left(\forall D^{\prime} . D^{\prime} \in \# D D^{\prime} \longrightarrow D^{\prime}<D\right) \longrightarrow$
$\left.D D \leq D D^{\prime}\right)$
using $w f_{-}$eq_minimal[THEN iffD1, rule_format, OF wf_less_multiset dd0]
unfolding not_le[symmetric] by blast
then obtain $D D$ where
$d d _s u b s _n:$ set_mset $D D \subseteq N$ and
$d d c c _i m p _e: \forall I . I \models m D D+C C \longrightarrow I \models E$ and
$d d_{-} l t_{-} d: \forall D^{\prime} . D^{\prime} \in \# D D \longrightarrow D^{\prime}<D$ and
d_min: $\forall D D^{\prime}$. set_mset $D D^{\prime} \subseteq N \wedge\left(\forall I . I \models m D D^{\prime}+C C \longrightarrow I \models E\right) \wedge\left(\forall D^{\prime} . D^{\prime} \in \# D D^{\prime} \longrightarrow D^{\prime}<D\right) \longrightarrow$
$D D \leq D D^{\prime}$
by blast
have $\forall D a . D a \in \# D D \longrightarrow D a \notin R f N$
proof clarify
fix $D a$
assume
$d a_{-} i n_{-} d d: D a \in \# D D$ and
$d a _r f: D a \in R f N$
from $d a_{-} r f$ obtain $D D^{\prime}$ where
$d d^{\prime}$ _subs_n: set_mset $D D^{\prime} \subseteq N$ and
$d d^{\prime}$ _imp_da: $\forall I . I \models m D D^{\prime} \longrightarrow I \models D a$ and
$d d^{\prime}-l t_{-} d a: \forall D^{\prime} . D^{\prime} \in \# D D^{\prime} \longrightarrow D^{\prime}<D a$
unfolding $R f_{-}$def by blast
define $D D a$ where
$D D a=D D-\{\# D a \#\}+D D^{\prime}$
have set_mset $D D a \subseteq N$
unfolding $D D a _d e f$ using $d d _s u b s _n d d^{\prime}$ _subs_n

```
```

 by (meson contra_subsetD in_diffD subsetI union_iff)
 moreover have }\forallI.I\modelsmDDa+CC\longrightarrowI\models
 using dd'_imp_da ddcc_imp_e da_in_dd unfolding DDa_def true_cls_mset_def
 by (metis in_remove1_mset_neq union_iff)
 moreover have }\forall\mp@subsup{D}{}{\prime}.\mp@subsup{D}{}{\prime}\in# DDa\longrightarrow\mp@subsup{D}{}{\prime}<
 using dd_lt_d dd'_lt_da da_in_dd unfolding DDa_def
 by (metis insert_DiffM2 order.strict_trans union_iff)
 moreover have DDa< DD
 unfolding DDa_def
 by (meson da_in_dd dd'_lt_da mset_lt_single_right_iff single_subset_iff union_le_diff_plus)
 ultimately show False
 using d_min unfolding less_eq_multiset_def by (auto intro!: antisym)
 qed
 then show ?thesis
 using dd_subs_n ddcc_imp_e dd_lt_d by auto
 qed
lemma Rf_imp_ex_non_Rf:
assumes C\inRfN
shows \existsCC. set_mset CC\subseteqN-RfN\wedge(\forallI.I\modelsmCC\longrightarrowI\modelsC)\wedge(\forall\mp@subsup{C}{}{\prime}.\mp@subsup{C}{}{\prime}\in\#CC\longrightarrowC
using assms by (auto simp: Rf_def intro: wlog_non_Rf[of _ {\#}, simplified])
lemma Rf_subs_Rf_diff_Rf:Rf N\subseteqRf(N - Rf N)
proof
fix C
assume c_rf:C\inRf N
then obtain CC where
cc_subs: set_mset CC\subseteqN-RfN and
cc_imp_c: }\forallI.I\modelsmCC\longrightarrowI\modelsC and
cc_lt_c:\forallC'. 和\in\# CC \longrightarrow C'<
using Rf_imp_ex_non_Rf by blast
have }\forallD.D\in\#CC\longrightarrowD\not\inRf
using cc_subs by (simp add: subset_iff)
then have cc_nr:
\CDD. C G\# CC\Longrightarrow set_mset DD\subseteqN\Longrightarrow
unfolding Rf_def by auto metis
have set_mset CC\subseteqN
using cc_subs by auto
then have set_mset CC\subseteq
N-{C.\existsDD. set_mset DD\subseteqN^(\forallI.I\modelsmDD\longrightarrowI\modelsC)\wedge(\forallD.D\in\#DD\longrightarrowD<C)}
using cc_nr by auto
then show C \inRf(N-RfN)
using cc_imp_c cc_lt_c unfolding Rf_def by auto
qed
lemma Rf_eq_Rf_diff_Rf: Rf N = Rf (N - Rf N)
by (metis Diff_subset Rf_mono Rf_subs_Rf_diff_Rf subset_antisym)
The following results correspond to Lemma 4.6.

```
```

lemma Ri_mono: $N \subseteq N^{\prime} \Longrightarrow R i N \subseteq R i N^{\prime}$

```
lemma Ri_mono: \(N \subseteq N^{\prime} \Longrightarrow R i N \subseteq R i N^{\prime}\)
    unfolding Ri_def by auto
    unfolding Ri_def by auto
lemma Ri_subs_Ri_diff_Rf: Ri \(N \subseteq R i(N-R f N)\)
lemma Ri_subs_Ri_diff_Rf: Ri \(N \subseteq R i(N-R f N)\)
proof
proof
    fix \(\gamma\)
    fix \(\gamma\)
    assume \(\gamma_{-} r i: \gamma \in \operatorname{Ri} N\)
    assume \(\gamma_{-} r i: \gamma \in \operatorname{Ri} N\)
    then obtain CCDE where \(\gamma: \gamma=\operatorname{Infer} C C D E\)
    then obtain CCDE where \(\gamma: \gamma=\operatorname{Infer} C C D E\)
        by (cases \(\gamma\) )
        by (cases \(\gamma\) )
    have \(c c\) : \(C C=\) side_prems_of \(\gamma\) and \(d: D=\) main_prem_of \(\gamma\) and \(e: E=\) concl_of \(\gamma\)
    have \(c c\) : \(C C=\) side_prems_of \(\gamma\) and \(d: D=\) main_prem_of \(\gamma\) and \(e: E=\) concl_of \(\gamma\)
        unfolding \(\gamma\) by simp_all
        unfolding \(\gamma\) by simp_all
    obtain \(D D\) where
    obtain \(D D\) where
        set_mset \(D D \subseteq N\) and \(\forall I . I \models m D D+C C \longrightarrow I \models E\) and \(\forall C . C \in \# D D \longrightarrow C<D\)
        set_mset \(D D \subseteq N\) and \(\forall I . I \models m D D+C C \longrightarrow I \models E\) and \(\forall C . C \in \# D D \longrightarrow C<D\)
        using \(\gamma_{-} r i\) unfolding Ri_def cc \(d e\) by blast
```

 using \(\gamma_{-} r i\) unfolding Ri_def cc \(d e\) by blast
    ```
```

 then obtain }D\mp@subsup{D}{}{\prime}\mathrm{ where
 set_mset D\mp@subsup{D}{}{\prime}\subseteqN-RfN and }\forallI.I\modelsmD\mp@subsup{D}{}{\prime}+CC\longrightarrowI\modelsE\mathrm{ and }\forall\mp@subsup{D}{}{\prime}.\mp@subsup{D}{}{\prime}\in#D\mp@subsup{D}{}{\prime}\longrightarrow\mp@subsup{D}{}{\prime}<
 using wlog_non_Rf by atomize_elim blast
 then show }\gamma\inRi(N-RfN
 using \gamma_ri unfolding Ri_def d cc e by blast
 qed
lemma Ri_eq_Ri_diff_Rf: Ri N = Ri (N - Rf N)
by (metis Diff_subset Ri_mono Ri_subs_Ri_diff_Rf subset_antisym)
lemma Ri_subset_\Gamma: Ri N\subseteq }
unfolding Ri_def by blast
lemma Rf_indep: N'\subseteqRf N\LongrightarrowRf N\subseteqRf(N - N')
by (metis Diff_cancel Diff_eq_empty_iff Diff_mono Rf_eq_Rf_diff_Rf Rf_mono)
lemma Ri_indep: N'\subseteqRfN\LongrightarrowRiN\subseteqRi(N-N')
by (metis Diff_mono Ri_eq_Ri_diff_Rf Ri_mono order_refl)
lemma Rf_model:
assumes I\modelssN-RfN
shows I =s N
proof -
have I\modelss Rf (N - Rf N)
unfolding true_clss_def
by (subst Rf_def, simp add: true_cls_mset_def, metis assms subset_eq true_clss_def)
then have I =s Rf N
using Rf_subs_Rf_diff_Rf true_clss_mono by blast
then show ?thesis
using assms by (metis Un_Diff_cancel true_clss_union)
qed
lemma Rf_sat: satisfiable (N - Rf N)\Longrightarrow satisfiable N
by (metis Rf_model)
The following corresponds to Theorem 4.7:
sublocale redundancy_criterion Γ Rf Ri
by unfold_locales (rule Ri_subset_ Γ, (elim Rf_mono Ri_mono Rf_indep Ri_indep Rf_sat)+)
end
locale standard_redundancy_criterion_reductive $=$ standard_redundancy_criterion + reductive_inference_system
begin
The following corresponds to Theorem 4.8:

```
```

lemma Ri_effective:

```
lemma Ri_effective:
    assumes
    assumes
        in_ \(_{-}\): \(\gamma \in \Gamma\) and
        in_ \(_{-}\): \(\gamma \in \Gamma\) and
        concl_of_in_n_un_rf_n: concl_of \(\gamma \in N \cup R f N\)
        concl_of_in_n_un_rf_n: concl_of \(\gamma \in N \cup R f N\)
    shows \(\gamma \in \operatorname{RiN}\)
    shows \(\gamma \in \operatorname{RiN}\)
proof -
proof -
    obtain \(C C D E\) where
    obtain \(C C D E\) where
        \(\gamma: \gamma=\) Infer \(C C D E\)
        \(\gamma: \gamma=\) Infer \(C C D E\)
        by (cases \(\gamma\) )
        by (cases \(\gamma\) )
    then have \(c c\) : \(C C=\) side_prems_of \(\gamma\) and \(d: D=\) main_prem_of \(\gamma\) and \(e: E=\) concl_of \(\gamma\)
    then have \(c c\) : \(C C=\) side_prems_of \(\gamma\) and \(d: D=\) main_prem_of \(\gamma\) and \(e: E=\) concl_of \(\gamma\)
        unfolding \(\gamma\) by simp_all
        unfolding \(\gamma\) by simp_all
    note \(e_{-} i n_{-} n_{-} u n_{-} r f_{-} n=\) concl_of_in_n_un_rf_n[folded e]
    note \(e_{-} i n_{-} n_{-} u n_{-} r f_{-} n=\) concl_of_in_n_un_rf_n[folded e]
    \{
    \{
        assume \(E \in N\)
        assume \(E \in N\)
        moreover have \(E<D\)
        moreover have \(E<D\)
            using \(\Gamma_{\_}\)reductive e d in_ \(\gamma\) by auto
```

 using \(\Gamma_{_}\)reductive e d in_ \(\gamma\) by auto
    ```
```

 ultimately have
 set_mset {#E#}\subseteqN and }\forallI.I\modelsm{#E#}+CC\longrightarrowI\modelsE\mathrm{ and }\forall\mp@subsup{D}{}{\prime}.\mp@subsup{D}{}{\prime}\in#{#E#}\longrightarrow\mp@subsup{D}{}{\prime}<
 by simp_all
 then have redundant_infer N \gamma
 using cc d e by blast
 }
moreover
{
assume E \inRfN
then obtain DD where
dd_sset: set_mset DD\subseteqN and
dd_imp_e:}\forallI.I\modelsm\overline{D}D\longrightarrowI\modelsE an
dd_lt_e: \forallC'. C'}\in\# DD \longrightarrowC'<'<
unfolding Rf_def by blast
from dd_lt_e have }\forallDa.Da\in\#DD\longrightarrowDa<
using d e in_\gamma \Gamma_reductive less_trans by blast
then have redundant_infer N \gamma
using dd_sset dd_imp_e cc d e by blast
}
ultimately show }\gamma\in\operatorname{Ri}
using in_\gamma e_in_n_un_rf_n unfolding Ri_def by blast
qed
sublocale effective_redundancy_criterion \Gamma Rf Ri
unfolding effective_redundancy_criterion_def
by (intro conjI redundancy_criterion_axioms, unfold_locales,rule Ri_effective)
lemma contradiction_Rf:{\#} \inN\LongrightarrowRiN=\Gamma
unfolding Ri_def using \Gamma_reductive le_multiset_empty_right
by (force intro: exI[of - {\#{\#}\#}] le_multiset_empty_left)

```
end
locale standard_redundancy_criterion_counterex_reducing \(=\)
    standard_redundancy_criterion + counterex_reducing_inference_system
begin

The following result corresponds to Theorem 4.9.
```

lemma saturated_upto_complete_if:
assumes
satur: saturated_upto N and
unsat: ᄀ satisfiable N
shows $\{\#\} \in N$
proof (rule ccontr)
assume ec_ni_n: $\{\#\} \notin N$
define M where
$M=N-R f N$
have ec_ni_m: $\{\#\} \notin M$
unfolding M_def using ec_ni_n by fast
have I_{-}of $M \models s M$
proof (rule ccontr)
assume $\neg I_{\text {_of }} M \models s M$
then obtain D where
d_in_m: $D \in M$ and
d_cex: $\neg I_{-}$of $M \models D$ and
d_min: $\wedge C . C \in M \Longrightarrow C<D \Longrightarrow I$ _of $M \models C$
using ex_min_counterex by meson
then obtain $\gamma C C E$ where
$\gamma: \gamma=$ Infer $C C D E$ and
cc_subs_m: set_mset $C C \subseteq M$ and

```
```

 cc_true: I_of M }\modelsmCC\mathrm{ and
 \gamma_in: }\gamma\in\Gamma\mathrm{ and
 e_cex: \negI_of M}\modelsE\mathrm{ and
 e_lt_d: E < D
 using \Gamma_counterex_reducing[OF ec_ni_m] not_less by metis
 have cc:CC= side_prems_of \gamma and d:D = main_prem_of \gamma and e:E= concl_of \gamma
 unfolding }\gamma\mathrm{ by simp_all
 have }\gamma\inRi
 by (rule set_mp[OF satur[unfolded saturated_upto_def inferences_from_def infer_from_def]])
 (simp add: \gamma_in d_in_m cc_subs_m cc[symmetric] d[symmetric] M_def[symmetric])
 then have }\gamma\inRi
 unfolding M_def using Ri_indep by fast
 then obtain DD where
 dd_subs_m: set_mset DD\subseteqM and
 dd_cc_imp_d: }\forallI.I\modelsmDD+CC\longrightarrowI\modelsE and
 dd_l__d:\forallC.C \in# DD \longrightarrowC<D
 unfolding Ri_def cc d e by blast
 from dd_subs_m dd_lt_d have I_of M}=mD
 using d_min unfolding true_cls_mset_def by (metis contra_subsetD)
 then have I_of M}=
 using dd_cc_imp_d cc_true by auto
 then show False
 using e_cex by auto
 qed
 then have I_of M}\modelss
 using M_def Rf_model by blast
 then show False
 using unsat by blast
 qed
theorem saturated_upto_complete:
assumes saturated_upto N
shows \neg satisfiable N}\longleftrightarrow{\#}\in
using assms saturated_upto_complete_if true_clss_def by auto
end
end

```

\section*{14 First-Order Ordered Resolution Calculus with Selection}

\author{
theory \(F\) O_Ordered_Resolution \\ imports Abstract_Substitution Ordered_Ground_Resolution Standard_Redundancy begin
}

This material is based on Section 4.3 ("A Simple Resolution Prover for First-Order Clauses") of Bachmair and Ganzinger's chapter. Specifically, it formalizes the ordered resolution calculus for first-order standard clauses presented in Figure 4 and its related lemmas and theorems, including soundness and Lemma 4.12 (the lifting lemma).
The following corresponds to pages 41-42 of Section 4.3, until Figure 5 and its explanation.
```

locale $F O_{-} r e s o l u t i o n=m g u ~ s u b s t_{-} a t m ~ i d _s u b s t ~ c o m p _s u b s t ~ a t m_{-} o f_{-} a t m s ~ r e n a m i n g s s_{-} a p a r t ~ m g u$
for
subst_atm :: ' a :: wellorder $\Rightarrow{ }^{\prime} s \Rightarrow{ }^{\prime} a$ and
id_subst :: 's and
comp_subst : : 's \Rightarrow ' $s \Rightarrow$'s and
renamings_apart :: 'a literal multiset list \Rightarrow 's list and
atm_of_atms :: 'a list $\Rightarrow{ }^{\prime} a$ and
$m g u::$ 'a set set \Rightarrow 's option +
fixes
less_atm $::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow$ bool
assumes
less_atm_stable: less_atm $A B \Longrightarrow$ less_atm $(A \cdot a \sigma)(B \cdot a \sigma)$

```

\section*{begin}

\subsection*{14.1 Library}
lemma Bex_cartesian_product: \((\exists x y \in A \times B . P x y) \equiv(\exists x \in A . \exists y \in B . P(x, y))\) by \(\operatorname{simp}\)
lemma length_sorted_list_of_multiset[simp]: length (sorted_list_of_multiset \(A\) ) \(=\) size \(A\) by (metis mset_sorted_list_of_multiset size_mset)
lemma eql_map_neg_lit_eql_atm:
assumes map \((\lambda L . L \cdot l \eta)\left(\right.\) map Neg \(\left.A s^{\prime}\right)=\) map Neg As
shows \(A s^{\prime} \cdot a l \eta=A s\)
using assms by (induction \(A s^{\prime}\) arbitrary: As) auto
lemma instance_list:
assumes negs (mset \(A s)=S D A^{\prime} \cdot \eta\)
shows \(\exists A s^{\prime}\). negs \(\left(\right.\) mset \(\left.A s^{\prime}\right)=S D A^{\prime} \wedge A s^{\prime} \cdot a l \eta=A s\)
proof -
from assms have negL: \(\forall L \in \# S D A^{\prime}\). is_neg \(L\) using Melem_subst_cls subst_lit_in_negs_is_neg by metis
from assms have \(\left\{\# L \cdot l \eta . L \in \# S D A^{\prime} \#\right\}=\operatorname{mset}(\) map Neg As) using subst_cls_def by auto
then have \(\exists N A s^{\prime}\). map \((\lambda L . L \cdot l \eta) N A s^{\prime}=\) map Neg As \(\wedge m s e t N A s^{\prime}=S D A^{\prime}\) using image_mset_of_subset_list[of \(\lambda L . L \cdot l \eta S D A^{\prime}\) map Neg As] by auto
then obtain \(A s^{\prime}\) where \(A s^{\prime} \_p\) : map \((\lambda L . L \cdot l \eta)\left(\right.\) map Neg \(\left.A s^{\prime}\right)=\) map Neg As \(\wedge\) mset \(\left(\right.\) map Neg As \(\left.s^{\prime}\right)=S D A^{\prime}\) by (metis (no_types, lifting) Neg_atm_of_iff negL ex_map_conv set_mset_mset)
have negs (mset \(\left.A s^{\prime}\right)=S D A^{\prime}\) using \(A s^{\prime}{ }_{-} p\) by auto
moreover have map \((\lambda L . L \cdot l \eta)(\) map Neg As') \(=\) map Neg As using \(A s^{\prime}{ }_{-} p\) by auto
then have \(A s^{\prime} \cdot\) al \(\eta=A s\) using eql_map_neg_lit_eql_atm by auto
ultimately show ?thesis by blast
qed

\subsection*{14.2 First-Order Logic}
inductive true_fo_cls :: 'a interp \(\Rightarrow\) 'a clause \(\Rightarrow\) bool (infix \(\models f o 50\) ) where true_fo_cls: \((\bigwedge \sigma\). is_ground_subst \(\sigma \Longrightarrow I \models C \cdot \sigma) \Longrightarrow I \models f o C\)
lemma true_fo_cls_inst: \(I \models\) fo \(C \Longrightarrow\) is_ground_subst \(\sigma \Longrightarrow I \models C \cdot \sigma\) by (rule true_fo_cls.induct)
inductive true_fo_cls_mset :: 'a interp \(\Rightarrow\) 'a clause multiset \(\Rightarrow\) bool (infix \(\models\) fom 50) where true_fo_cls_mset: \((\bigwedge \sigma\). is_ground_subst \(\sigma \Longrightarrow I \models m C C \cdot c m \sigma) \Longrightarrow I \models f o m C C\)
lemma true_fo_cls_mset_inst: \(I \models\) fom \(C \Longrightarrow\) is_ground_subst \(\sigma \Longrightarrow I \models m C \cdot c m \sigma\) by (rule true_fo_cls_mset.induct)
lemma true_fo_cls_mset_def2: \(I \models f o m ~ C C \longleftrightarrow(\forall C \in \# C C . I \models f o C)\)
unfolding true_fo_cls_mset.simps true_fo_cls.simps true_cls_mset_def by force
context
fixes \(S\) :: 'a clause \(\Rightarrow\) ' \(a\) clause
begin

\subsection*{14.3 Calculus}

The following corresponds to Figure 4.
definition maximal_wrt :: ' \(a \Rightarrow\) 'a literal multiset \(\Rightarrow\) bool where maximal_wrt \(A C(\forall B \in\) atms_of \(C\). \(\neg\) less_atm \(A B)\)
definition strictly_maximal_wrt :: ' \(a \Rightarrow\) 'a literal multiset \(\Rightarrow\) bool where strictly_maximal_wrt \(A C \equiv B \in\) atms_of \(C . A \neq B \wedge \neg\) less_atm \(A B\)
lemma strictly_maximal_wrt_maximal_wrt: strictly_maximal_wrt \(A C \Longrightarrow\) maximal_wrt \(A C\) unfolding maximal_wrt_def strictly_maximal_wrt_def by auto
```

inductive eligible $::$ ' $s \Rightarrow$ 'a list \Rightarrow ' a clause \Rightarrow bool where
eligible:
$S D A=$ negs $($ mset $A s) \vee S D A=\{\#\} \wedge$ length $A s=1 \wedge$ maximal_wrt $(A s!0 \cdot a \sigma)(D A \cdot \sigma) \Longrightarrow$
eligible σ As $D A$

```

\section*{inductive}
```

ord_resolve
$::$ ' a clause list \Rightarrow 'a clause \Rightarrow 'a multiset list \Rightarrow ' a list \Rightarrow ' $s \Rightarrow$ 'a clause \Rightarrow bool

```

\section*{where}
```

ord_resolve:
length $C A s=n \Longrightarrow$
length $C s=n \Longrightarrow$
length $A A s=n \Longrightarrow$
length $A s=n \Longrightarrow$
$n \neq 0 \Longrightarrow$
$(\forall i<n . C A s!i=C s!i+$ poss $(A A s!i)) \Longrightarrow$
$(\forall i<n . A A s!i \neq\{\#\}) \Longrightarrow$
Some $\sigma=m g u($ set_mset ' set (map2 add_mset As AAs)) \Longrightarrow
eligible σ As $(D+$ negs $($ mset $A s)) \Longrightarrow$
$(\forall i<n$. strictly_maximal_wrt $(A s!i \cdot a \sigma)(C s!i \cdot \sigma)) \Longrightarrow$ $(\forall i<n . S(C A s!i)=\{\#\}) \Longrightarrow$ ord_resolve CAs $(D+$ negs $($ mset As $))$ AAs As $\sigma(((\bigcup \#$ mset Cs $)+D) \cdot \sigma)$

```

\section*{inductive}
ord_resolve_rename
\(::\) 'a clause list \(\Rightarrow\) 'a clause \(\Rightarrow{ }^{\prime} a\) multiset list \(\Rightarrow\) ' \(a\) list \(\Rightarrow\) ' \(s \Rightarrow\) 'a clause \(\Rightarrow\) bool

\section*{where}
ord_resolve_rename:
length CAs \(=n \Longrightarrow\)
length \(A A s=n \Longrightarrow\)
length \(A s=n \Longrightarrow\)
\((\forall i<n\). poss \((A A s!i) \subseteq \# C A s!i) \Longrightarrow\)
negs \((\) mset \(A s) \subseteq \# D A \Longrightarrow\)
\(\varrho=h d(\) renamings_apart \((D A \# C A s)) \Longrightarrow\) \(\varrho s=t l(\) renamings_apart \((D A \# C A s)) \Longrightarrow\) ord_resolve \((C A s \cdot \cdot c l \varrho s)(D A \cdot \varrho)(A A s \cdot \cdot a m l ~ \varrho s)(A s \cdot a l \varrho) \sigma E \Longrightarrow\) ord_resolve_rename CAs DA AAs As \(\sigma\) E
lemma ord_resolve_empty_main_prem: \(\neg\) ord_resolve Cs \(\{\#\}\) AAs As \(\sigma\) E by (simp add: ord_resolve.simps)
lemma ord_resolve_rename_empty_main_prem: ᄀord_resolve_rename Cs \(\{\#\}\) AAs As \(\sigma\) E by (simp add: ord_resolve_empty_main_prem ord_resolve_rename.simps)

\subsection*{14.4 Soundness}

Soundness is not discussed in the chapter, but it is an important property. The following lemma is used to prove soundness. It is also used to prove Lemma 4.10, which is used to prove completeness.
lemma ord_resolve_ground_inst_sound:
assumes
```

 res_e: ord_resolve CAs DA AAs As \sigma E and
 cc_inst_true: I =m mset CAs cm \sigma.cm \eta and
 d_inst_true: }I=DA\cdot\sigma\cdot\eta\mathrm{ and
 ground_subst_\eta: is_ground_subst \eta
 shows }I=E\cdot
 using res_e
 proof (cases rule: ord_resolve.cases)
case (ord_resolve n Cs D)
note da = this(1) and e=this(2) and cas_len = this(3) and cs_len = this(4) and
aas_len = this(5) and as_len = this(6) and cas =this(8) and mgu = this(10) and
len = this(1)
have len: length CAs = length As
using as_len cas_len by auto
have is_ground_subst (}\sigma\odot\eta\mathrm{)
using ground_subst_\eta by (rule is_ground_comp_subst)
then have cc_true: I=m mset CAs cm \sigma cm \eta and d_true: I}=DA\cdot\sigma\cdot
using cc_inst_true d_inst_true by auto
from mgu have unif: }\foralli<n.\forallA\in\#AAs!i.A\cdota\sigma=As!i\cdota
using mgu_unifier as_len aas_len by blast
show }I\modelsE\cdot
proof (cases }\forallA\in\mathrm{ set As.A A a }\sigma\cdota\eta\inI
case True
then have }\negI\models\mathrm{ negs (mset As) . }\sigma\cdot
unfolding true_cls_def[of I] by auto
then have I}=D\cdot\sigma\cdot
using d_true da by auto
then show?thesis
unfolding e by auto
next
case False
then obtain i where a_in_aa: i< length CAs and a_false: (As!i) \cdota \sigma \cdota \eta\not\inI
using da len by (metis in_set_conv_nth)
define C where C\equivCs!i
define }BB\mathrm{ where }BB\equivAAs!
have c_cf':}C\subseteq\#U\# mset CA
unfolding C_def using a_in_aa cas cas_len
by (metis less_subset_eq_Union_mset mset_subset_eq_add_left subset_mset.order.trans)
have c_in_cc: C + poss BB \in\# mset CAs
using C_def BB_def a_in_aa cas_len in_set_conv_nth cas by fastforce
{
fix }
assume B\in\# BB

```

```

 using unif a_in_aa cas_len unfolding BB_def by auto
 }
 then have }\negI\models\mathrm{ poss BB 白 㐾
 using a_false by (auto simp: true_cls_def)
 moreover have I}=(C+\mathrm{ poss BB) · }\sigma\cdot
 using c_in_cc cc_true true_cls_mset_true_cls[of I mset CAs cm \sigma cm \eta] by force
 ultimately have }I=C\cdot\sigma\cdot
 by simp
 then show?thesis
 unfolding e subst_cls_union using c_cf' C_def a_in_aa cas_len cs_len
 by (metis (no_types, lifting) mset_subset_eq_add_left nth_mem_mset set_mset_mono sum_mset.remove true_cls_mono
 subst_cls_mono)
qed
qed
lemma ord_resolve_sound:
assumes

```
```

 res_e: ord_resolve CAs DA AAs As \sigma E and
 cc_d_true:I =fom mset CAs + {#DA#}
 shows }I=\mathrm{ fo }
 proof (rule true_fo_cls, use res_e in <cases rule:ord_resolve.cases〉)
fix }
assume ground_subst_\eta: is_ground_subst \eta
case (ord_resolve n Cs D)
note da = this(1) and e = this(2) and cas_len = this(3) and cs_len = this(4)
and aas_len = this(5) and as_len = this(6) and cas = this(8) and mgu = this(10)
have is_ground_subst (}\sigma\odot\eta
using ground_subst_\eta by (rule is_ground_comp_subst)
then have cas_true: }I\modelsm\mathrm{ mset CAs cm }\sigma\cdotcm \eta and da_true: I =DA\cdot\sigma\cdot
using true_fo_cls_mset_inst[OF cc_d_true, of \sigma \odot \eta] by auto
show }I\modelsE\cdot
using ord_resolve_ground_inst_sound[OF res_e cas_true da_true] ground_subst_\eta by auto
qed
lemma subst_sound: }I|foC\LongrightarrowI\modelsfo(C\cdot\varrho
by (metis is_ground_comp_subst subst_cls_comp_subst true_fo_cls true_fo_cls_inst)
lemma true_fo_cls_mset_true_fo_cls: I fom CC\LongrightarrowC C \# CC\LongrightarrowI\modelsfo C
using true_fo_cls_mset_def2 by auto
lemma subst_sound_scl:
assumes
len: length P = length CAs and
true_cas: I =fom mset CAs
shows I =fom mset (CAs .cl P)
proof -
from true_cas have }\forallCA.CA\in\# mset CAs \longrightarrowI|fo C
using true_fo_cls_mset_true_fo_cls by auto
then have }\foralli<length CAs. I =fo CAs!
using in_set_conv_nth by auto
then have true_cp: }\foralli<length CAs. I =fo CAs!i \cdot P!i
using subst_sound len by auto
{
fix CA
assume CA \in\# mset (CAs ..cl P)
then obtain i where
i_x:i<length (CAs ..clP) CA=(CAs ..cl P)!i
by (metis in_mset_conv_nth)
then have }I|foC
using true_cp unfolding subst_cls_lists_def by (simp add: len)
}
then show ?thesis
unfolding true_fo_cls_mset_def2 by auto
qed

```

This is a lemma needed to prove Lemma 4.11.
```

lemma ord_resolve_rename_ground_inst_sound:
assumes
ord_resolve_rename CAs DA AAs As \sigma E and
\varrhos=tl (renamings_apart (DA \# CAs)) and
\varrho = h d ~ (r e n a m i n g s _ a p a r t ~ (D A ~ \# ~ C A s)) ~ a n d ~
I =m (mset (CAs \cdotcl \varrhos)) cm \sigma cm \eta and
I=DA | \varrho \cdot\sigma \cdot \eta and
is_ground_subst \eta
shows}I\modelsE\cdot
using assms by (cases rule: ord_resolve_rename.cases) (fast intro: ord_resolve_ground_inst_sound)

```
lemma ord_resolve_rename_sound:
```

 assumes
 res_e: ord_resolve_rename CAs DA AAs As \sigma E and
 cc_d_true: I =fom(mset CAs) + {#DA#}
 shows I =fo E
 using res_e
 proof (cases rule: ord_resolve_rename.cases)
case (ord_resolve_rename n \varrho @s)
note \varrhos = this(7) and res = this(8)
have len: length @s = length CAs
using \varrhos renames_apart by auto

```

```

 using subst_sound_scl[OF len, of I] subst_sound cc_d_true by (simp add: true_fo_cls_mset_def2)
 then show I\modelsfo E
 using ord_resolve_sound[OF res] by simp
 qed

```

\subsection*{14.5 Other Basic Properties}
```

lemma ord_resolve_unique:
assumes
ord_resolve $C A s D A$ AAs As σE and
ord_resolve CAs DA AAs As $\sigma^{\prime} E^{\prime}$
shows $\sigma=\sigma^{\prime} \wedge E=E^{\prime}$
using assms
proof (cases rule: ord_resolve.cases[case_product ord_resolve.cases], intro conjI)
case (ord_resolve_ord_resolve CAs n Cs AAs As $\sigma^{\prime \prime} D A C A s^{\prime} n^{\prime} C s^{\prime} A A s^{\prime} A s^{\prime} \sigma^{\prime \prime \prime} D A^{\prime}$)
note res $=$ this $(1-17)$ and res $^{\prime}=$ this $(18-34)$
show σ : $\sigma=\sigma^{\prime}$
using $\operatorname{res}(3-5,14) \operatorname{res}^{\prime}(3-5,14)$ by (metis option.inject)
have $C s=C s^{\prime}$
using res $(1,3,7,8,12)$ res $^{\prime}(1,3,7,8,12)$ by (metis add_right_imp_eq nth_equalityI)
moreover have $D A=D A^{\prime}$
using res(2,4) res'(2,4) by fastforce
ultimately show $E=E^{\prime}$
using $\operatorname{res}(5,6) \operatorname{res}^{\prime}(5,6) \sigma$ by blast
qed
lemma ord_resolve_rename_unique:
assumes
ord_resolve_rename $C A s D A A A s A s \sigma E$ and
ord_resolve_rename $C A s D A A A s A s \sigma^{\prime} E^{\prime}$
shows $\sigma=\sigma^{\prime} \wedge E=E^{\prime}$
using assms unfolding ord_resolve_rename.simps using ord_resolve_unique by meson

```
lemma ord_resolve_max_side_prems: ord_resolve \(C A s D A A A s A s \sigma E \Longrightarrow\) length \(C A s \leq\) size \(D A\)
    by (auto elim!: ord_resolve.cases)
lemma ord_resolve_rename_max_side_prems:
ord_resolve_rename \(C A s D A\) AAs As \(\sigma E \Longrightarrow\) length \(C A s \leq\) size \(D A\)
by (elim ord_resolve_rename.cases, drule ord_resolve_max_side_prems, simp add: renames_apart)

\subsection*{14.6 Inference System}
definition ord_FO_ \(\Gamma\) :: ' \(a\) inference set where ord_FO_ \(=\{\operatorname{Infer}(m s e t C A s) D A E \mid C A s D A A A s A s \sigma\) E. ord_resolve_rename CAs DA AAs As \(\sigma E\}\)
interpretation ord_FO_resolution: inference_system ord_FO_Г .
lemma exists_compose: \(\exists x . P(f x) \Longrightarrow \exists y . P y\)
by meson
lemma finite_ord_FO_resolution_inferences_between:
```

assumes fin_cc: finite $C C$
shows finite (ord_FO_resolution.inferences_between CC C)
proof -
let $? C C C=C C \cup\{C\}$
define all_A A where all_AA $=(\bigcup D \in$? CCC. atms_of $D)$
define max_ary where max_ary $=$ Max (size' ?CCC)
define $C A S$ where $C A S=\{C A s . C A s \in$ lists ? $C C C \wedge$ length $C A s \leq$ max_ary $\}$
define $A S$ where $A S=\{$ As. As \in lists all_AA \wedge length $A s \leq$ max_ary $\}$
define $A A S$ where $A A S=\{A A s . A A s \in$ lists $($ mset'AS $) \wedge$ length $A A s \leq$ max_ary $\}$
note defs $=$ all_AA_def max_ary_def CAS_def $A S_{-} d e f$ AAS_def
let ?infer_of $=$
$\lambda C A s D A$ AAs As. Infer (mset CAs) DA (THE E. $\exists \sigma$. ord_resolve_rename CAs DA AAs As σ E)
let ? $Z=\{\gamma \mid$ CAs DA AAs As $\sigma E \gamma \cdot \gamma=$ Infer (mset CAs) DA E
\wedge ord_resolve_rename CAs DA AAs As $\sigma E \wedge$ infer_from? $C C C \gamma \wedge C \in \#$ prems_of $\gamma\}$
let ? $Y=\{$ Infer (mset CAs) DA $E \mid C A s D A A A s$ As σ E.
ord_resolve_rename CAs DA AAs As $\sigma E \wedge$ set CAs $\cup\{D A\} \subseteq ? C C C\}$
let ? $X=\{$? infer_of $C A s D A A A s A s \mid C A s D A A A s A s . C A s \in C A S \wedge D A \in ? C C C \wedge A A s \in A A S \wedge A s \in A S\}$
let ? $W=C A S \times ? C C C \times A A S \times A S$
have fin_w: finite? W
unfolding defs using fin_cc by (simp add: finite_lists_length_le lists_eq_set)
have ? $Z \subseteq$? Y
by (force simp: infer_from_def)
also have $\ldots \subseteq$? X
proof -
\{
fix $C A s D A$ AAs As σE
assume
res_e: ord_resolve_rename CAs DA AAs As σ E and
da_in: $D A \in ? C C C$ and
cas_sub: set $C A s \subseteq$? $C C C$
have $E=(T H E E . \exists \sigma$. ord_resolve_rename $C A s D A$ AAs As $\sigma E)$
$\wedge C A s \in C A S \wedge A A s \in A A S \wedge A s \in A S($ is ? $e \wedge$?cas \wedge ?aas \wedge ?as)
proof (intro conjI)
show ? e
using res_e ord_resolve_rename_unique by (blast intro: the_equality[symmetric])
next
show ?cas
unfolding $C A S_{-}$def max_ary_def using cas_sub
ord_resolve_rename_max_side_prems[OF res_e] da_in fin_cc
by (auto simp add: Max_ge_iff)
next
show ?aas
using res_e
proof (cases rule: ord_resolve_rename.cases)
case (ord_resolve_rename $n \varrho \varrho s$)
note len_cas $=$ this(1) and len_aas $=$ this(2) and len_as $=$ this(3) and
$a a s_{_} s u b=$ this (4) and $a s_{-} s u b=$ this(5) and res_e $e^{\prime}=$ this (8)
show ?thesis
unfolding $A A S_{-} d e f$
proof (clarify, intro conjI)
show AAs \in lists (mset ' $A S$)
unfolding $A S_{-} d e f$ image_def
proof clarsimp
fix $A A$
assume $A A \in \operatorname{set} A A s$

```
```

 then obtain i where
 i_lt: i<n and
 aa:AA=AAs!i
 by (metis in_set_conv_nth len_aas)
 have casi_in: CAs ! i\in ?CCC
 using i_lt len_cas cas_sub nth_mem by blast
 have pos_aa_sub: poss AA\subseteq#CAs ! i
 using aa aas_sub i_lt by blast
 then have set_mset AA\subseteqatms_of (CAs!i)
 by (metis atms_of_poss lits_subseteq_imp_atms_subseteq set_mset_mono)
 also have aa_sub: . . \subseteq all_AA
 unfolding all_AA_def using casi_in by force
 finally have aa_sub: set_mset AA\subseteq all_AA
 have size AA= size (poss AA)
 by simp
 also have ... \leq size (CAs!i)
 by (rule size_mset_mono[OF pos_aa_sub])
 also have . . \leq max_ary
 unfolding max_ary_def using fin_cc casi_in by auto
 finally have sz_aa: size AA \leq max_ary
 let ?As' = sorted_list_of_multiset AA
 have ?As'\in lists all_AA
 using aa_sub by auto
 moreover have length ?As' }\leq\mathrm{ max_ary
 using sz_aa by simp
 moreover have AA=mset ?As'
 by simp
 ultimately show \existsxa. xa \in lists all_AA ^ length xa \leqmax_ary }\wedgeAA=mset x
 by blast
 qed
 next
 have length AAs = length As
 unfolding len_aas len_as ..
 also have ... \leq size DA
 using as_sub size_mset_mono by fastforce
 also have .. . \leq max_ary
 unfolding max_ary_def using fin_cc da_in by auto
 finally show length AAs \leq max_ary
 qed
 qed
next
show ?as
unfolding AS_def
proof (clarify, intro conjI)
have set As \subseteqatms_of DA
using res_e[simplified ord_resolve_rename.simps]
by (metis atms_of_negs lits_subseteq_imp_atms_subseteq set_mset_mono set_mset_mset)
also have . . \subseteq all_AA
unfolding all_AA_def using da_in by blast
finally show As \in lists all_AA
unfolding lists_eq_set by simp
next
have length As \leq size DA
using res_e[simplified ord_resolve_rename.simps]
ord_resolve_rename_max_side_prems[OF res_e] by auto

```
```

 also have size DA\leqmax_ary
 unfolding max_ary_def using fin_cc da_in by auto
 finally show length As \leq max_ary
 qed
 qed
 }
 then show ?thesis
 by simp fast
 qed
 also have }\ldots\subseteq(\lambda(CAs,DA,AAs,As).?infer_of CAs DA AAs As)'?W
 unfolding image_def Bex_cartesian_product by fast
 finally show ?thesis
 unfolding inference_system.inferences_between_def ord_FO_\Gamma_def mem_Collect_eq
 by (fast intro: rev_finite_subset[OF finite_imageI[OF fin_w]])
 qed
lemma ord_FO_resolution_inferences_between_empty_empty:
ord_FO_resolution.inferences_between {} {\#} = {}
unfolding ord_FO_resolution.inferences_between_def inference_system.inferences_between_def
infer_from_def ord_FO_\Gamma_def
using ord_resolve_rename_empty_main_prem by auto

```

\subsection*{14.7 Lifting}

The following corresponds to the passage between Lemmas 4.11 and 4.12.
```

context
fixes M :: 'a clause set
assumes select: selection S
begin
interpretation selection
by (rule select)
definition S_M :: 'a literal multiset }=>\mathrm{ ' 'a literal multiset where
S_M C =
(if C \in grounding_of_clss M then

```

```

 else
 SC)
 lemma S_M_grounding_of_clss:
assumes C\in grounding_of_clss M
obtains D \sigma where
D\inM\wedge C=D | \sigma^S_M C=S D | \sigma^ is_ground_subst }
proof (atomize_elim, unfold S_M_def eqTrueI[OF assms] if_True, rule someI_ex)
from assms show \exists C' D \sigma. D G M ^ C = D | \sigma ^ C' = S D | \sigma ^ is_ground_subst \sigma
by (auto simp: grounding_of_clss_def grounding_of_cls_def)
qed
lemma S_M_not_grounding_of_clss: C \# grounding_of_clss M\LongrightarrowS_M C = S C
unfolding S_M_def by simp
lemma S_M_selects_subseteq: S_M C\subseteq\# C
by (metis S_M_grounding_of_clss S_M___not_grounding_of_clss S_selects_subseteq subst_cls_mono_mset)
lemma S_M_selects_neg_lits: L \in\# S_M C\Longrightarrow is_neg L
by (metis Melem_subst_cls S_M_grounding_of_clss S_M_not_grounding_of_clss S_selects_neg_lits
subst_lit_is_neg)
end
end

```

The following corresponds to Lemma 4.12:
```

lemma map2_add_mset_map:
assumes length AAs'}=n\mathrm{ and length As' = n
shows map2 add_mset (As''al \eta) (AAs''.aml \eta) = map2 add_mset As' AAs''aml \eta
using assms
proof (induction n arbitrary: AAs' As')
case (Suc n)
then have map2 add_mset (tl (A\mp@subsup{s}{}{\prime}}\cdot\mp@code{al \eta)) (tl (AAs''.aml \eta)) = map2 add_mset (tl As') (tl AAs') \cdotaml \eta
by simp
moreover
have Succ: length (As'}\cdot\mathrm{ al }\eta)=\mathrm{ Suc n length (AAs'}\cdotaml \eta)=Suc n
using Suc(3) Suc(2) by auto
then have length (tl (As'}\cdotal \eta))=n length (tl (AAs''aml \eta))=
by auto
then have length (map2 add_mset (tl (As''al \eta)) (tl (AAs''aml \eta))) =n
length (map2 add_mset (tl As') (tl AAs') \cdotaml \eta) =n
using Suc(2,3) by auto

```

```

 tl (map2 add_mset (As') (AAs') \cdotaml \eta)! i
 using Suc(2,3) Succ by (simp add: map2_tl map_tl subst_atm_mset_list_def del: subst_atm_list_tl)
 moreover have nn: length (map2 add_mset ((A\mp@subsup{s}{}{\prime}\cdotal \eta)) ((AAs'' aml \eta))) = Suc n
 length (map2 add_mset (As') (AAs') \cdotaml \eta)=Suc n
 using Succ Suc by auto
 ultimately have }\foralli.i<Suc n\longrightarrowi>0
 map2 add_mset (As' \cdotal \eta) (AAs' \cdotaml \eta)! i = (map2 add_mset As' AAs' 'aml \eta) ! i
 by (auto simp: subst_atm_mset_list_def grO_conv_Suc subst_atm_mset_def)
 moreover have add_mset (hd A\mp@subsup{s}{}{\prime}}\cdota\mp@code{\eta)(hd AAs'}\cdotam \eta)=add_mset (hd As') (hd AAs') \cdotam \eta
 unfolding subst_atm_mset_def by auto
 then have (map2 add_mset (A\mp@subsup{s}{}{\prime}\cdotal \eta) (AAs'}\cdotaml \eta))!0 = (map2 add_mset (As') (AAs') \cdotaml \eta)!0
 using Suc by (simp add: Succ(2) subst_atm_mset_def)
 ultimately have }\foralli<Suc n. (map2 add_mset (As' \cdotal \eta) (AAs''aml \eta))! i
 (map2 add_mset (As') (AAs') \cdotaml \eta)!i
 using Suc by auto
 then show ?case
 using nn list_eq_iff_nth_eq by metis
 qed auto
lemma maximal_wrt_subst: maximal_wrt (A a \sigma) (C | \sigma) \Longrightarrow maximal_wrt A C
unfolding maximal_wrt_def using in_atms_of_subst less_atm_stable by blast
lemma strictly_maximal_wrt_subst: strictly_maximal_wrt (A a \sigma) (C | \sigma) \Longrightarrow strictly_maximal_wrt A C
unfolding strictly_maximal_wrt_def using in_atms_of_subst less_atm_stable by blast
lemma ground_resolvent_subset:
assumes gr_cas: is_ground_cls_list CAs and gr_da: is_ground_cls $D A$ and res_e: ord_resolve $S C A s D A A A s A s \sigma E$
shows $E \subseteq \#(\bigcup \#$ mset $C A s)+D A$
using res_e
proof (cases rule: ord_resolve.cases)
case (ord_resolve n Cs D)
note $d a=$ this(1) and $e=$ this(2) and cas_len $=$ this(3) and cs_len $=$ this(4) and aas_len $=$ this(5) and as_len $=$ this (6) and cas $=$ this (8) and $m g u=$ this (10)
then have cs_sub_cas: $\bigcup \#$ mset $C s \subseteq \# \bigcup \#$ mset $C A s$ using subseteq_list_Union_mset cas_len cs_len by force
then have cs_sub_cas: $\bigcup \#$ mset $C s \subseteq \# \bigcup \#$ mset $C A s$ using subseteq_list_Union_mset cas_len cs_len by force
then have $g r_{-} c s$: is_ground_cls_list Cs using gr_cas by simp
have $d_{-} s u b_{-} d a$: $D \subseteq \# D A$ by (simp add: $d a$)
then have $g r_{-} d$: is_ground_cls D

```
using gr_da is_ground_cls_mono by auto
have is_ground_cls ( \(\cup \#\) mset \(C s+D\) )
using \(g r_{-} c s\) gr_d by auto
with \(e\) have \(E=(\bigcup \#\) mset \(C s+D)\)
by auto
then show?thesis
using cs_sub_cas d_sub_da by (auto simp: subset_mset.add_mono)
qed
lemma ord_resolve_obtain_clauses:

\section*{assumes}
res_e: ord_resolve (S_M S M) CAs DA AAs As \(\sigma\) E and
select: selection \(S\) and
grounding: \(\{D A\} \cup\) set \(C A s \subseteq\) grounding_of_clss \(M\) and
\(n\) : length \(C A s=n\) and
\(d: D A=D+\) negs (mset As) and
\(c:(\forall i<n . C A s!i=C s!i+\) poss \((A A s!i))\) length \(C s=n\) length \(A A s=n\)
obtains \(D A^{\prime \prime} \eta^{\prime \prime} C A s^{\prime \prime} \eta s^{\prime \prime} A s^{\prime \prime} A A s^{\prime \prime} D^{\prime \prime} C s^{\prime \prime}\) where
length \(C A s^{\prime \prime}=n\)
length \(\eta s^{\prime \prime}=n\)
\(D A^{\prime \prime} \in M\)
\(D A^{\prime \prime} \cdot \eta^{\prime \prime}=D A\)
\(S D A^{\prime \prime} \cdot \eta^{\prime \prime}=S_{-} M S M D A\)
\(\forall C A^{\prime \prime} \in\) set \(C A s^{\prime \prime} . C A^{\prime \prime} \in M\)
\(C A s^{\prime \prime} \cdot . c l \eta s^{\prime \prime}=C A s\)
map \(S C A s^{\prime \prime} \cdot . c l \eta s^{\prime \prime}=\operatorname{map}\left(S_{-} M S M\right) C A s\)
is_ground_subst \(\eta^{\prime \prime}\)
is_ground_subst_list \(\eta s^{\prime \prime}\)
\(A s^{\prime \prime} \cdot\) al \(\eta^{\prime \prime}=A s\)
\(A A s^{\prime \prime} \cdot \cdot a m l \eta s^{\prime \prime}=A A s\)
length \(A s^{\prime \prime}=n\)
\(D^{\prime \prime} \cdot \eta^{\prime \prime}=D\)
\(D A^{\prime \prime}=D^{\prime \prime}+\left(\right.\) negs \(\left(\right.\) mset \(\left.\left.A s^{\prime \prime}\right)\right)\)
\(S_{-} M S M(D+\) negs \((\) mset \(A s)) \neq\{\#\} \Longrightarrow\) negs \(\left(\right.\) meet \(\left.A s^{\prime \prime}\right)=S D A^{\prime \prime}\)
length \(C s^{\prime \prime}=n\)
\(C s^{\prime \prime} \cdot . c l \eta s^{\prime \prime}=C s\)
\(\forall i<n . C A s^{\prime \prime}!i=C s^{\prime \prime}!i+\operatorname{poss}\left(A A s^{\prime \prime}!i\right)\)
length \(A A s^{\prime \prime}=n\)
using res_e
proof (cases rule: ord_resolve.cases)
case (ord_resolve n_twin Cs_twins D_twin)
note \(d a=\) this(1) and \(e=\) this(2) and cas \(=\) this(8) and \(m g u=\) this(10) and eligible \(=\) this(11)
from ord_resolve have \(n_{-}\)twin \(=n D_{-}\)twin \(=D\)
using \(n d\) by auto
moreover have Cs_twins \(=C s\)
using \(c\) cas \(n\) calculation(1) 〈length Cs_twins \(=n_{-}\)twin〉 by (auto simp add: nth_equalityI)
ultimately
have \(n z: n \neq 0\) and cs_len: length \(C s=n\) and aas_len: length \(A A s=n\) and as_len: length \(A s=n\)
and da: DA \(=D+\) negs \((m s e t A s)\) and eligible: eligible \(\left(S \_M S M\right) \sigma\) As \((D+n e g s(m s e t ~ A s))\)
and cas: \(\forall i<n\). CAs \(!i=C s!i+\) poss \((A A s!i)\)
using ord_resolve by force+
note \(n=\langle n \neq 0\rangle\langle l e n g t h C A s=n\rangle\langle l e n g t h C s=n\rangle\langle l e n g t h A A s=n\rangle\langle l e n g t h A s=n\rangle\)
interpret \(S\) : selection \(S\) by (rule select)
- Obtain FO side premises
have \(\forall C A \in\) set \(C A s . \exists C A^{\prime \prime} \eta c^{\prime \prime} . C A^{\prime \prime} \in M \wedge C A^{\prime \prime} \cdot \eta c^{\prime \prime}=C A \wedge S C A^{\prime \prime} \cdot \eta c^{\prime \prime}=S \_M S M C A \wedge\) is_ground_subst \(\eta c^{\prime \prime}\)
using grounding S_M_grounding_of_clss select by (metis (no_types) le_supE subset_iff)
then have \(\forall i<n . \exists C A^{\prime \prime} \eta c^{\prime \prime} . C A^{\prime \prime} \in M \wedge C A^{\prime \prime} \cdot \eta c^{\prime \prime}=(C A s!i) \wedge S C A^{\prime \prime} \cdot \eta c^{\prime \prime}=S_{-} M S M(C A s!i) \wedge\) is_ground_subst \(\eta c^{\prime \prime}\)
using \(n\) by force
then obtain \(\eta s^{\prime \prime} f C A s^{\prime \prime} f\) where \(f_{-} p\) :
\(\forall i<n . C A s^{\prime \prime} f i \in M\)
\(\forall i<n .\left(C A s^{\prime \prime} f i\right) \cdot\left(\eta s^{\prime \prime} f i\right)=(C A s!i)\)
\(\forall i<n . S\left(C A s^{\prime \prime} f i\right) \cdot\left(\eta s^{\prime \prime} f i\right)=S \_M S M(C A s!i)\)
\(\forall i<n\). is_ground_subst ( \(\left.\eta s^{\prime \prime} f i\right)\)
using \(n\) by (metis (no_types))
define \(\eta s^{\prime \prime}\) where
\(\eta s^{\prime \prime}=m a p \eta s^{\prime \prime} f[0 . .<n]\)
define \(C A s^{\prime \prime}\) where
\(C A s^{\prime \prime}=\operatorname{map} C A s^{\prime \prime} f[0 . .<n]\)
have length \(\eta s^{\prime \prime}=n\) length \(C A s^{\prime \prime}=n\)
unfolding \(\eta s^{\prime \prime}{ }_{\text {_ }}\) def \(C A s^{\prime \prime}\) _def by auto
note \(n=\left\langle\right.\) length \(\left.\eta s^{\prime \prime}=n\right\rangle\left\langle l e n g t h C A s^{\prime \prime}=n\right\rangle n\)
- The properties we need of the FO side premises
have \(C A s^{\prime \prime}{ }_{-} n_{-} M: \forall C A^{\prime \prime} \in\) set \(C A s^{\prime \prime} . C A^{\prime \prime} \in M\)
unfolding \(C A s^{\prime \prime}\) _def using \(f_{-} p(1)\) by auto
have \(C A s^{\prime \prime}{ }_{-}\)to_CAs: \(C A s^{\prime \prime}{ }^{\prime \cdot}\) cl \(\eta s^{\prime \prime}=C A s\)
unfolding \(C A s^{\prime \prime}\) _def \(\eta s^{\prime \prime}{ }^{\prime}\) def using \(f_{-} p(2)\) by (auto simp: \(n\) intro: nth_equalityI)
have SCAs \({ }^{\prime \prime}\) _to_SMCAs: \(\left(\right.\) map \(\left.S C A s^{\prime \prime}\right) \cdot \cdot c l \eta s^{\prime \prime}=\operatorname{map}\left(S_{-} M S M\right) C A s\)
unfolding \(C A s^{\prime \prime}{ }_{-}\)def \(\eta s^{\prime \prime}{ }^{\prime}\) def using \(f_{-} p(3) n\) by (force intro: nth_equalityI)
have sub_ground: \(\forall \eta c^{\prime \prime} \in\) set \(\eta s^{\prime \prime}\). is_ground_subst \(\eta c^{\prime \prime}\)
unfolding \(\eta s^{\prime \prime}{ }^{\prime}\) def using \(f_{-} p n\) by force
then have is_ground_subst_list \(\eta s^{\prime \prime}\)
using \(n\) unfolding is_ground_subst_list_def by auto
- Split side premises CAs" into Cs" and AAs"
obtain \(A A s^{\prime \prime} C s^{\prime \prime}\) where \(A A s^{\prime \prime}{ }_{-C s}{ }^{\prime \prime}{ }^{\prime} p\) :
\(A A s^{\prime \prime} . . a m l \eta s^{\prime \prime}=A A s\) length \(C s^{\prime \prime}=n C s^{\prime \prime} . . c l \eta s^{\prime \prime}=C s\)
\(\forall i<n . C A s^{\prime \prime}!i=C s^{\prime \prime}!i+\) poss \(\left(A A s^{\prime \prime}!i\right)\) length \(A A s^{\prime \prime}=n\)
proof -
have \(\forall i<n . \exists A A^{\prime \prime} . A A^{\prime \prime} \cdot a m \eta s^{\prime \prime}!i=A A s!i \wedge\) poss \(A A^{\prime \prime} \subseteq \# C A s^{\prime \prime}!i\)
proof (rule, rule)
fix \(i\)
assume \(i<n\)
have \(C A s^{\prime \prime}!i \cdot \eta s^{\prime \prime}!i=C A s!i\)
using \(\langle i<n\rangle\left\langle C A s^{\prime \prime} \cdot . c l \eta s^{\prime \prime}=C A s\right\rangle n\) by force
moreover have poss \((A A s!i) \subseteq \# C A s!i\)
using \(\langle i<n\rangle\) cas by auto
ultimately obtain poss_ \(A A^{\prime \prime}\) where
\(n n:\) poss_ \(A A^{\prime \prime} \cdot \eta s^{\prime \prime}!i=\) poss \((A A s!i) \wedge\) poss_ \(A A^{\prime \prime} \subseteq \# C A s^{\prime \prime}!i\)
using cas image_mset_of_subset unfolding subst_cls_def by metis
then have \(l: \forall L \in \#\) poss_ \(A A^{\prime \prime}\). is_pos \(L\)
unfolding subst_cls_def by (metis Melem_subst_cls imageE literal.disc(1)
literal.map_disc_iff set_image_mset subst_cls_def subst_lit_def)
define \(A A^{\prime \prime}\) where
\(A A^{\prime \prime}=\) image_mset atm_of poss_A \(A^{\prime \prime}\)
have na: poss \(A A^{\prime \prime}=\) poss_\(_{-} A A^{\prime \prime}\)
using \(l\) unfolding \(A A^{\prime \prime}\) _def by auto
then have \(A A^{\prime \prime} \cdot a m \eta s^{\prime \prime}!i=A A s!i\)
using \(n n\) by (metis (mono_tags) literal.inject(1) multiset.inj_map_strong subst_cls_poss)
moreover have poss \(A A^{\prime \prime} \subseteq \# C A s^{\prime \prime}!i\)
using na nn by auto
ultimately show \(\exists A A^{\prime} . A A^{\prime} \cdot a m \eta s^{\prime \prime}!i=A A s!i \wedge\) poss \(A A^{\prime} \subseteq \# C A s^{\prime \prime}!i\)
by blast
qed
then obtain \(A A s^{\prime \prime} f\) where
\(A A s^{\prime \prime} f_{-} p: \forall i<n . A A s^{\prime \prime} f i \cdot a m \eta s^{\prime \prime}!i=A A s!i \wedge\left(\right.\) poss \(\left.\left(A A s^{\prime \prime} f i\right)\right) \subseteq \# C A s^{\prime \prime}!i\)
by metis
```

define $A A s^{\prime \prime}$ where $A A s^{\prime \prime}=\operatorname{map} A A s^{\prime \prime} f[0 . .<n]$
then have length $A A s^{\prime \prime}=n$
by auto
note $n=n$ 〈length $\left.A A s^{\prime \prime}=n\right\rangle$
from $A A s^{\prime \prime}{ }^{\prime}$ def have $\forall i<n . A A s^{\prime \prime}!i \cdot a m \eta s^{\prime \prime}!i=A A s!i$
using $A A s^{\prime \prime} f_{-} p$ by auto
then have $A A s^{\prime}{ }^{\prime} A A s: A A s^{\prime \prime} . . a m l \eta s^{\prime \prime}=A A s$
using n by (auto intro: nth_equalityI)
from $A A s^{\prime \prime}$ _def have $A A s^{\prime \prime}{ }_{-} n_{-} C A s^{\prime \prime}: \forall i<n$. poss $\left(A A s^{\prime \prime}!i\right) \subseteq \# C A s^{\prime \prime}!i$
using $A A s^{\prime \prime} f_{-} p$ by auto
define $C s^{\prime \prime}$ where
$C s^{\prime \prime}=$ map2 $(o p-) C A s^{\prime \prime}\left(\right.$ map poss $\left.A A s^{\prime \prime}\right)$
have length $C s^{\prime \prime}=n$
using $C s^{\prime \prime}{ }^{\prime}$ def n by auto
note $n=n\left\langle\right.$ length $\left.C s^{\prime \prime}=n\right\rangle$
have $\forall i<n . C A s^{\prime \prime}!i=C s^{\prime \prime}!i+$ poss $\left(A A s^{\prime \prime}!i\right)$
using $A A s^{\prime \prime}{ }_{-}$in_ $^{\prime} C A s^{\prime \prime} C s^{\prime \prime}{ }^{\prime \prime}$ def n by auto
then have $C s^{\prime \prime} . . c l \eta s^{\prime \prime}=C s$
using $\left\langle C A s^{\prime \prime} . . c l \eta s^{\prime \prime}=C A s\right\rangle A A s^{\prime}{ }_{-} A A s$ cas n by (auto intro: nth_equalityI)
show ?thesis
using that
$\left\langle A A s^{\prime \prime} \cdot . a m l \eta s^{\prime \prime}=A A s\right\rangle\left\langle C s^{\prime \prime} . . c l \eta s^{\prime \prime}=C s\right\rangle\left\langle\forall i<n . C A s^{\prime \prime}!i=C s^{\prime \prime}!i+\operatorname{poss}\left(A A s^{\prime \prime}!i\right)\right\rangle$
$\left\langle\right.$ length $\left.A A s^{\prime \prime}=n\right\rangle\left\langle l e n g t h C s^{\prime \prime}=n\right\rangle$
by blast
qed

```
- Obtain FO main premise
have \(\exists D A^{\prime \prime} \eta^{\prime \prime} . D A^{\prime \prime} \in M \wedge D A=D A^{\prime \prime} \cdot \eta^{\prime \prime} \wedge S D A^{\prime \prime} \cdot \eta^{\prime \prime}=S_{-} M S M D A \wedge\) is_ground_subst \(\eta^{\prime \prime}\)
    using grounding S_M_grounding_of_clss select by (metis le_supE singletonI subsetCE)
then obtain \(D A^{\prime \prime} \eta^{\prime \prime}\) where
    \(D A^{\prime \prime}{ }_{-} \eta^{\prime \prime}{ }^{\prime} p: D A^{\prime \prime} \in M \wedge D A=D A^{\prime \prime} \cdot \eta^{\prime \prime} \wedge S D A^{\prime \prime} \cdot \eta^{\prime \prime}=S \_M S M D A \wedge\) is_ground_subst \(\eta^{\prime \prime}\)
    by auto
- The properties we need of the FO main premise
have \(D A^{\prime \prime}{ }_{-} i_{n} M: D A^{\prime \prime} \in M\)
    using \(D A^{\prime \prime}{ }_{-} \eta^{\prime \prime}{ }_{-} p\) by auto
have \(D A^{\prime \prime}{ }_{-} t o_{-} D A: D A^{\prime \prime} \cdot \eta^{\prime \prime}=D A\)
    using \(D A^{\prime \prime}{ }_{-} \eta^{\prime \prime}{ }_{-} p\) by auto
have \(S D A^{\prime \prime}\) _to_SMDA: \(S D A^{\prime \prime} \cdot \eta^{\prime \prime}=S_{-} M S M D A\)
    using \(D A^{\prime \prime}{ }_{-} \eta^{\prime \prime}{ }_{-} p\) by auto
have is_ground_subst \(\eta^{\prime \prime}\)
    using \(D A^{\prime \prime}{ }_{-} \eta^{\prime \prime}{ }_{-} p\) by auto
- Split main premise DA" into D" and As"
obtain \(D^{\prime \prime} A s^{\prime \prime}\) where \(D^{\prime \prime} A s^{\prime \prime}{ }_{-} p\) :
    \(A s^{\prime \prime} \cdot a l \eta^{\prime \prime}=A s\) length \(A s^{\prime \prime}=n D^{\prime \prime} \cdot \eta^{\prime \prime}=D D A^{\prime \prime}=D^{\prime \prime}+\left(\right.\) negs \(\left(\right.\) mset \(\left.\left.A s^{\prime \prime}\right)\right)\)
    \(S_{-} M S M(D+\) negs \((m s e t A s)) \neq\{\#\} \Longrightarrow\) negs \(\left(m s e t A s^{\prime \prime}\right)=S D A^{\prime \prime}\)
proof -
    \{
        assume \(a: S_{-} M S M(D+\) negs \((\) mset \(A s))=\{\#\} \wedge\) length \(A s=(\) Suc 0\()\)
            \(\wedge\) maximal_wrt \((\) As ! \(0 \cdot a \sigma)((D+\) negs \((m s e t ~ A s)) \cdot \sigma)\)
            then have as: mset As \(=\{\#\) As! \(0 \#\}\)
                by (auto intro: nth_equalityI)
    then have negs (mset As) \(=\{\#\) Neg (As!0)\#\}
                by (simp add: 〈mset \(A s=\{\# A s!0 \#\}\rangle)\)
```

 then have \(D A=D+\{\# \operatorname{Neg}(A s!0) \#\}\)
 using \(d a\) by auto
 then obtain \(L\) where \(L \in \# D A^{\prime \prime} \wedge L \cdot l \eta^{\prime \prime}=\operatorname{Neg}(A s!0)\)
 using \(D A^{\prime \prime}\) _to_DA by (metis Melem_subst_cls mset_subset_eq_add_right single_subset_iff)
 then have Neg (atm_of \(L) \in \# D A^{\prime \prime} \wedge\) Neg (atm_of \(\left.L\right) \cdot l \eta^{\prime \prime}=\operatorname{Neg}(A s!0)\)
 by (metis Neg_atm_of_iff literal.sel(2) subst_lit_is_pos)
 then have \([\) atm_of \(L] \cdot a l \eta^{\prime \prime}=A s \wedge\) negs \(\left(\operatorname{mset}\left[a t m _o f L\right]\right) \subseteq \# D A^{\prime \prime}\)
 using as subst_lit_def by auto
 then have \(\exists A s^{\prime} . A s^{\prime} \cdot a l \eta^{\prime \prime}=A s \wedge\) negs \(\left(\right.\) mset \(\left.A s^{\prime}\right) \subseteq \# D A^{\prime \prime}\)
 \(\wedge\left(S_{-} M S M(D+\right.\) negs \((\) mset \(A s)) \neq\{\#\} \longrightarrow\) negs \(\left(\right.\) mset \(\left.\left.A s^{\prime}\right)=S D A^{\prime \prime}\right)\)
 using \(a\) by blast
 \}
moreover
\{
assume $S_{-} M S M(D+n e g s(m s e t A s))=$ negs $($ mset $A s)$
then have negs $(m s e t ~ A s)=S D A^{\prime \prime} \cdot \eta^{\prime \prime}$
using $d a\left\langle S D A^{\prime \prime} \cdot \eta^{\prime \prime}=S_{-} M S M D A\right\rangle$ by auto
then have $\exists A s^{\prime}$. negs $\left(\right.$ mset $\left.A s^{\prime}\right)=S D A^{\prime \prime} \wedge A s^{\prime} \cdot$ al $\eta^{\prime \prime}=A s$
using instance_list[of As $\left.S D A^{\prime \prime} \eta^{\prime \prime}\right]$ S.S_selects_neg_lits by auto
then have $\exists A s^{\prime} . A s^{\prime} \cdot a l \eta^{\prime \prime}=A s \wedge$ negs $\left(\right.$ mset $\left.A s^{\prime}\right) \subseteq \# D A^{\prime \prime}$
$\wedge\left(S_{-} M S M(D+\right.$ negs $($ mset $A s)) \neq\{\#\} \longrightarrow$ negs $\left(\right.$ mset $\left.\left.A s^{\prime}\right)=S D A^{\prime \prime}\right)$
using S.S_selects_subseteq by auto
\}
ultimately have $\exists A s^{\prime \prime} . A s^{\prime \prime} \cdot a l \eta^{\prime \prime}=A s \wedge\left(\right.$ negs $\left(\right.$ mset $\left.\left.A s^{\prime \prime}\right)\right) \subseteq \# D A^{\prime \prime}$
$\wedge\left(S _M S M(D+\right.$ negs $($ mset $A s)) \neq\{\#\} \longrightarrow$ negs $\left(\right.$ mset $\left.\left.A s^{\prime \prime}\right)=S D A^{\prime \prime}\right)$
using eligible unfolding eligible.simps by auto
then obtain $A s^{\prime \prime}$ where
$A s^{\prime} _p: A s^{\prime \prime} \cdot a l \eta^{\prime \prime}=A s \wedge$ negs $\left(m s e t A s^{\prime \prime}\right) \subseteq \# D A^{\prime \prime}$
$\wedge\left(S_{-} M S M(D+\right.$ negs $($ mset $A s)) \neq\{\#\} \longrightarrow$ negs $\left(\right.$ mset $\left.\left.A s^{\prime \prime}\right)=S D A^{\prime \prime}\right)$
by blast
then have length $A s^{\prime \prime}=n$
using as_len by auto
note $n=n$ this
have $A s^{\prime \prime} \cdot$ al $\eta^{\prime \prime}=A s$
using $A s^{\prime}{ }_{-} p$ by auto
define $D^{\prime \prime}$ where
$D^{\prime \prime}=D A^{\prime \prime}-$ negs $\left(\right.$ mset $\left.A s^{\prime \prime}\right)$
then have $D A^{\prime \prime}=D^{\prime \prime}+$ negs (mset $A s^{\prime \prime}$)
using $A s^{\prime}{ }_{-} p$ by auto
then have $D^{\prime \prime} \cdot \eta^{\prime \prime}=D$
using $D A^{\prime \prime}{ }_{-}$to_ $D A$ da $A s^{\prime}{ }_{-} p$ by auto
have $S_{-} M S M(D+$ negs $($ mset $A s)) \neq\{\#\} \Longrightarrow$ negs $\left(\right.$ mset $\left.A s^{\prime \prime}\right)=S D A^{\prime \prime}$
using $A s^{\prime}{ }_{-} p$ by blast
then show ?thesis
using that $\left\langle A s^{\prime \prime} \cdot\right.$ al $\left.\eta^{\prime \prime}=A s\right\rangle\left\langle D^{\prime \prime} \cdot \eta^{\prime \prime}=D\right\rangle\left\langle D A^{\prime \prime}=D^{\prime \prime}+\left(\right.\right.$ negs $\left(\right.$ mset $\left.\left.\left.A s^{\prime \prime}\right)\right)\right\rangle\left\langle\right.$ length $\left.A s^{\prime \prime}=n\right\rangle$
by metis
qed
show ?thesis
using that[OF n(2,1) $D A^{\prime \prime}{ }_{-}$in_M $D A^{\prime \prime}{ }_{-}$to_DA $S D A^{\prime \prime}{ }_{-} t o_{-} S M D A C A s^{\prime \prime}{ }_{-} i n_{-} M C A s^{\prime \prime}{ }_{-} t o_{-} C A s S C A s^{\prime \prime}{ }_{-} t o_{-} S M C A s$
$\left\langle i s _g r o u n d _s u b s t \eta^{\prime \prime}\right\rangle\left\langle i s_{-} g r o u n d _s u b s t _l i s t ~ \eta s^{\prime \prime}\right\rangle\left\langle A s^{\prime \prime} \cdot a l \eta^{\prime \prime}=A s\right\rangle$
$\left\langle A A s^{\prime \prime} \cdot . a m l \eta s^{\prime \prime}=A A s\right\rangle$
$\left\langle\right.$ length $\left.A s^{\prime \prime}=n\right\rangle$
$\left\langle D^{\prime \prime} \cdot \eta^{\prime \prime}=D\right\rangle$
$\left\langle D A^{\prime \prime}=D^{\prime \prime}+\left(\right.\right.$ negs $\left(\right.$ mset $\left.\left.\left.A s^{\prime \prime}\right)\right)\right\rangle$
$\left\langle S _M S M(D+n e g s(\operatorname{mset} A s)) \neq\{\#\} \Longrightarrow\right.$ negs $\left(\right.$ mset $\left.\left.A s^{\prime \prime}\right)=S D A^{\prime \prime}\right\rangle$
$\left\langle\right.$ length $\left.C s^{\prime \prime}=n\right\rangle$
$\left\langle C s^{\prime \prime} \cdot . c l \eta s^{\prime \prime}=C s\right\rangle$
$\left\langle\forall i<n . C A s^{\prime \prime}!i=C s^{\prime \prime}!i+\operatorname{poss}\left(A A s^{\prime \prime}!i\right)\right.$
$\left\langle\right.$ length $\left.A A s^{\prime \prime}=n\right\rangle$]

```
by auto
qed

\section*{lemma}
assumes Pos \(A \in \# C\)
shows \(A \in\) atms_of \(C\)
using assms
by (simp add: atm_iff_pos_or_neg_lit)
lemma ord_resolve_rename_lifting:

\section*{assumes}
sel_stable: \(\bigwedge \varrho C\). is_renaming \(\varrho \Longrightarrow S(C \cdot \varrho)=S C \cdot \varrho\) and
res_e: ord_resolve (S_M S M) CAs DA AAs As \(\sigma\) E and
select: selection \(S\) and
grounding: \(\{D A\} \cup\) set \(C A s \subseteq\) grounding_of_clss \(M\)
obtains \(\eta s \eta \eta 2 C A s^{\prime \prime} D A^{\prime \prime} A A s^{\prime \prime} A s^{\prime \prime} E^{\prime \prime} \tau\) where
is_ground_subst \(\eta\)
is_ground_subst_list \(\eta s\)
is_ground_subst \(\eta 2\)
ord_resolve_rename \(S C A s^{\prime \prime} D A^{\prime \prime} A A s^{\prime \prime} A s^{\prime \prime} \tau E^{\prime \prime}\)
\(C A s^{\prime \prime} \cdot \cdot c l \eta s=C A s D A^{\prime \prime} \cdot \eta=D A E^{\prime \prime} \cdot \eta 2=E\)
\(\left\{D A^{\prime \prime}\right\} \cup\) set \(C A s^{\prime \prime} \subseteq M\)
using res_e
proof (cases rule: ord_resolve.cases)
case (ord_resolve n Cs D)
note \(d a=\) this(1) and \(e=\) this(2) and cas_len \(=\) this(3) and cs_len \(=\) this(4) and
aas_len \(=\) this(5) and as_len \(=\) this (6) and \(n z=t h i s(7)\) and cas \(=\) this \((8)\) and
aas_not_empt \(=\) this \((9)\) and \(m g u=\) this(10) and eligible \(=\) this(11) and str_max \(=\) this(12) and
sel_empt \(=\) this(13)
have sel_ren_list_inv:
〔@s Cs. length \(\varrho s=\) length \(C s \Longrightarrow\) is_renaming_list \(\varrho s \Longrightarrow\) map \(S(C s . . c l \varrho s)=\) map \(S C s . \cdot c l \varrho s\) using sel_stable unfolding is_renaming_list_def by (auto intro: nth_equalityI)
note \(n=\langle n \neq 0\rangle\langle l e n g t h C A s=n\rangle\langle l e n g t h C s=n\rangle\langle l e n g t h A A s=n\rangle\langle l e n g t h A s=n\rangle\)
interpret \(S\) : selection \(S\) by (rule select)
```

obtain $D A^{\prime \prime} \eta^{\prime \prime} C A s^{\prime \prime} \eta s^{\prime \prime} A s^{\prime \prime} A A s^{\prime \prime} D^{\prime \prime} C s^{\prime \prime}$ where $a s^{\prime \prime}$:
length $C A s^{\prime \prime}=n$
length $\eta s^{\prime \prime}=n$
$D A^{\prime \prime} \in M$
$D A^{\prime \prime} \cdot \eta^{\prime \prime}=D A$
$S D A^{\prime \prime} \cdot \eta^{\prime \prime}=S_{-} M S M D A$
$\forall C A^{\prime \prime} \in$ set $C A s^{\prime \prime} . C A^{\prime \prime} \in M$
$C A s^{\prime \prime} \cdot . \mathrm{cl} \eta s^{\prime \prime}=C A s$
map $S C A s^{\prime \prime} . . c l \eta s^{\prime \prime}=\operatorname{map}\left(S_{-} M S M\right) C A s$
is_ground_subst $\eta^{\prime \prime}$
is_ground_subst_list $\eta s^{\prime \prime}$
$A s^{\prime \prime} \cdot a l \eta^{\prime \prime}=A s$
$A A s^{\prime \prime} \cdot \cdot a m l \eta s^{\prime \prime}=A A s$
length $A s^{\prime \prime}=n$
$D^{\prime \prime} \cdot \eta^{\prime \prime}=D$
$D A^{\prime \prime}=D^{\prime \prime}+\left(\right.$ negs $\left(\right.$ mset $\left.\left.A s^{\prime \prime}\right)\right)$
$S_{-} M S M(D+\operatorname{negs}(m s e t A s)) \neq\{\#\} \Longrightarrow$ negs $\left(m s e t A s^{\prime \prime}\right)=S D A^{\prime \prime}$
length $C s^{\prime \prime}=n$
$C s^{\prime \prime} \cdot . c l \eta s^{\prime \prime}=C s$
$\forall i<n . C A s^{\prime \prime}!i=C s^{\prime \prime}!i+\operatorname{poss}\left(A A s^{\prime \prime}!i\right)$
length $A A s^{\prime \prime}=n$
using ord_resolve_obtain_clauses[of S M CAs DA, OF res_e select grounding $n(2)\langle D A=D+n e g s(m s e t ~ A s)\rangle$
$\langle\forall i<n . C A s!i=C s!i+$ poss $(A A s!i)\rangle\langle l e n g t h C s=n\rangle\langle l e n g t h A A s=n\rangle$, of thesis by blast

```
```

note $n=\left\langle l e n g t h C A s^{\prime \prime}=n\right\rangle\left\langle l e n g t h ~ \eta s^{\prime \prime}=n\right\rangle\left\langle l e n g t h ~ A s^{\prime \prime}=n\right\rangle\left\langle l e n g t h A A s^{\prime \prime}=n\right\rangle\left\langle l e n g t h C s^{\prime \prime}=n\right\rangle n$
have length (renamings_apart $\left.\left(D A^{\prime \prime} \# C A s^{\prime \prime}\right)\right)=$ Suc n
using n renames_apart by auto
note $n=$ this n
define ϱ where
$\varrho=h d$ (renamings_apart $\left.\left(D A^{\prime \prime} \# C A s^{\prime \prime}\right)\right)$
define ϱs where
$\varrho s=t l$ (renamings_apart $\left.\left(D A^{\prime \prime} \# C A s^{\prime \prime}\right)\right)$
define $D A^{\prime}$ where
$D A^{\prime}=D A^{\prime \prime} \cdot \varrho$
define D^{\prime} where
$D^{\prime}=D^{\prime \prime} \cdot \varrho$
define $A s^{\prime}$ where
$A s^{\prime}=A s^{\prime \prime} \cdot a l \varrho$
define $C A s^{\prime}$ where
$C A s^{\prime}=C A s^{\prime \prime} \cdot . c l \varrho s$
define Cs $^{\prime}$ where
$C s^{\prime}=C s^{\prime \prime} . \cdot c l \varrho s$
define $A A s^{\prime}$ where
$A A s^{\prime}=A A s^{\prime \prime} \cdot \cdot a m l \varrho s$
define η^{\prime} where
$\eta^{\prime}=$ inv_renaming $\varrho \odot \eta^{\prime \prime}$
define ηs^{\prime} where
$\eta s^{\prime}=$ map inv_renaming $\varrho s \odot s \eta s^{\prime \prime}$
have renames_DA": is_renaming ϱ
using renames_apart unfolding $\varrho_{-} d e f$
by (metis length_greater_0_conv list.exhaust_sel list.set_intros(1) list.simps(3))
have renames_CAs ${ }^{\prime \prime}$: is_renaming_list ϱs
using renames_apart unfolding $\varrho s_{-} d e f$
by (metis is_renaming_list_def length_greater_0_conv list.set_sel(2) list.simps(3))
have length $\varrho s=n$
unfolding $\varrho s_{\text {_ }}$ def using n by auto
note $n=n$ 〈length $\varrho s=n$ 〉
have length $A s^{\prime}=n$
unfolding $A s^{\prime} _d e f$ using n by auto
have length $C A s^{\prime}=n$
using $a s^{\prime \prime}(1) n$ unfolding $C A s^{\prime} _$def by auto
have length $C s^{\prime}=n$
unfolding $C s^{\prime}$ _def using n by auto
have length $A A s^{\prime}=n$
unfolding $A A s^{\prime}$ _def using n by auto
have length $\eta s^{\prime}=n$
using $a s^{\prime \prime}(2) n$ unfolding $\eta s^{\prime} _$def by auto
note $n=\left\langle l e n g t h C A s^{\prime}=n\right\rangle\left\langle l e n g t h ~ \eta s^{\prime}=n\right\rangle\left\langle l e n g t h A s^{\prime}=n\right\rangle\left\langle l e n g t h A A s^{\prime}=n\right\rangle\left\langle l e n g t h C s^{\prime}=n\right\rangle n$
have $D A^{\prime}{ }_{-} D A$: $D A^{\prime} \cdot \eta^{\prime}=D A$
using as ${ }^{\prime \prime}(4)$ unfolding η^{\prime} _def $D A^{\prime}{ }_{-}$def using renames_ $D A^{\prime \prime}$ by simp
have $D^{\prime}{ }_{-} D: D^{\prime} \cdot \eta^{\prime}=D$
using $a s^{\prime \prime}(14)$ unfolding $\eta^{\prime}{ }_{-}$def D^{\prime} _def using renames_DA" by simp
have $A s^{\prime}{ }_{-} A s: A s^{\prime} \cdot$ al $\eta^{\prime}=A s$
using $a s^{\prime \prime}(11)$ unfolding η^{\prime} _def $A s^{\prime}$ _def using renames_DA" by auto
have $S D A^{\prime} \cdot \eta^{\prime}=S_{-} M S M D A$
using $a s^{\prime \prime}(5)$ unfolding η^{\prime} _def $D A^{\prime}$ _def using renames_D $A^{\prime \prime}$ sel_stable by auto
have $C A s^{\prime} _C A s$: $C A s^{\prime} .$. cl $\eta s^{\prime}=C A s$
using $a s^{\prime \prime}(7)$ unfolding $C A s^{\prime}$ _def ηs^{\prime} _def using renames_apart renames_CAs ${ }^{\prime \prime} n$ by auto
have $C s^{\prime} _C s$: $C s^{\prime} .$. cl $\eta s^{\prime}=C s$
using $a s^{\prime \prime}(18)$ unfolding $C s^{\prime}{ }^{\prime}$ def $\eta s^{\prime}{ }^{\prime}$ def using renames_apart renames_CAs ${ }^{\prime \prime} n$ by auto

```
```

have $A A s^{\prime}{ }_{-} A A s: A A s^{\prime} \cdot . a m l \eta s^{\prime}=A A s$
using $a s^{\prime \prime}(12)$ unfolding $\eta s^{\prime}{ }^{\prime}$ def $A A s^{\prime}$ _def using renames_CAs ${ }^{\prime \prime}$ using n by auto
have map $S C A s^{\prime} . . \mathrm{cl} \eta s^{\prime}=\operatorname{map}\left(S_{-} M S M\right) C A s$
unfolding $C A s^{\prime} _d e f ~ \eta s^{\prime} _$def using $a s^{\prime \prime}(8) n$ renames_CAs" sel_ren_list_inv by auto
have $D A^{\prime}$ _split: $D A^{\prime}=D^{\prime}+$ negs (mset $A s^{\prime}$)
using $a s^{\prime \prime}(15) D A^{\prime} _$def D^{\prime} _def $A s^{\prime}$ _def by auto
then have D^{\prime} _subset_ $D A^{\prime}: D^{\prime} \subseteq \# D A^{\prime}$
by auto
from $D A^{\prime}$ _split have negs_As'_subset_DA': negs $\left(m s e t ~ A s^{\prime}\right) \subseteq \# D A^{\prime}$
by auto
have $C A s^{\prime} _$split: $\forall i<n . C A s^{\prime}!i=C s^{\prime}!i+$ poss $\left(A A s^{\prime}!i\right)$
using $a s^{\prime \prime}(19) C A s^{\prime} _$def $C s^{\prime} _$def $A A s^{\prime} _$def n by auto
then have $\forall i<n . C s^{\prime}!i \subseteq \# C A s^{\prime}!i$
by auto
from $C A s^{\prime}$ _split have poss_AAs'_subset_CAs': $\forall i<n$. poss $\left(A A s^{\prime}!i\right) \subseteq \# C A s^{\prime}!i$
by auto
then have $A A s^{\prime}$ _in_atms_of_CAs': $\forall i<n . \forall A \in \# A A s^{\prime}!i . A \in \operatorname{atms}$ _of $\left(C A s^{\prime}!i\right)$
by (auto simp add: atm_iff_pos_or_neg_lit)
have $a s^{\prime}$:
$S_{-} M S M(D+$ negs $($ mset $A s)) \neq\{\#\} \Longrightarrow$ negs $\left(\right.$ met $\left.A s^{\prime}\right)=S D A^{\prime}$
proof -
assume a : S_M $S M(D+$ negs $($ mset $A s)) \neq\{\#\}$
then have negs $\left(\right.$ mset $\left.A s^{\prime \prime}\right) \cdot \varrho=S D A^{\prime \prime} \cdot \varrho$
using $a s^{\prime \prime}(16)$ unfolding $\varrho_{-} d e f$ by metis
then show negs (mset As') $=S D A^{\prime}$
using $A s^{\prime}$ _def $D A^{\prime} _$def using sel_stable[of $\varrho\left(D A^{\prime}\right]$ renames_DA" by auto
qed
have $v d$: var_disjoint $\left(D A^{\prime} \# C A s^{\prime}\right)$
unfolding $D A^{\prime}{ }_{-}$def $C A s^{\prime}$ _def using renames_apart[of $\left.D A^{\prime \prime} \# C A s^{\prime \prime}\right]$
unfolding $\varrho_{-} d e f$ @s_def
by (metis length_greater_0_conv list.exhaust_sel $n(6)$ substitution.subst_cls_lists_Cons
substitution_axioms zero_less_Suc)

- Introduce ground substitution
from $v d D A^{\prime}{ }_{-} D A C A s^{\prime} _C A s$ have $\exists \eta . \forall i<S u c n . \forall S . S \subseteq \#\left(D A^{\prime} \# C A s^{\prime}\right)!i \longrightarrow S \cdot\left(\eta^{\prime} \# \eta s^{\prime}\right)!i=S \cdot \eta$
unfolding var_disjoint_def using n by auto
then obtain η where $\eta_{-} p: \forall i<S u c n^{n} . \forall S . S \subseteq \#\left(D A^{\prime} \# C A s^{\prime}\right)!i \longrightarrow S \cdot\left(\eta^{\prime} \# \eta s^{\prime}\right)!i=S \cdot \eta$
by auto
have $\eta_{-} p_{-} l i t: \forall i<S u c n . \forall L . L \in \#\left(D A^{\prime} \# C A s^{\prime}\right)!i \longrightarrow L \cdot l\left(\eta^{\prime} \# \eta s^{\prime}\right)!i=L \cdot l \eta$
proof (rule, rule, rule, rule)
fix i :: nat and $L::$ 'a literal
assume a :
$i<$ Suc n
$L \in \#\left(D A^{\prime} \# C A s^{\prime}\right)!i$
then have $\forall S . S \subseteq \#\left(D A^{\prime} \# C A s^{\prime}\right)!i \longrightarrow S \cdot\left(\eta^{\prime} \# \eta s^{\prime}\right)!i=S \cdot \eta$
using $\eta_{-} p$ by auto
then have $\{\# L \#\} \cdot\left(\eta^{\prime} \# \eta s^{\prime}\right)!i=\{\# L \#\} \cdot \eta$
using a by (meson single_subset_iff)
then show $L \cdot l\left(\eta^{\prime} \# \eta s^{\prime}\right)!i=L \cdot l \eta$ by auto
qed
have $\eta_{-} p_{-}$atm: $\forall i<S u c n . \forall A . A \in a t m s_{-} o f\left(\left(D A^{\prime} \# C A s^{\prime}\right)!i\right) \longrightarrow A \cdot a\left(\eta^{\prime} \# \eta s^{\prime}\right)!i=A \cdot a \eta$
proof (rule, rule, rule, rule)
fix $i::$ nat and $A::{ }^{\prime} a$
assume a :
$i<$ Suc n
$A \in$ atms_of $\left(\left(D A^{\prime} \# C A s^{\prime}\right)!i\right)$
then obtain L where $L_{-} p$: atm_of $L=A \wedge L \in \#\left(D A^{\prime} \# C A s^{\prime}\right)!i$
unfolding atms_of_def by auto
then have $L \cdot l\left(\eta^{\prime} \# \eta s^{\prime}\right)!i=L \cdot l \eta$

```
```

 using \eta_p_lit a by auto
 then show }A\cdota(\mp@subsup{\eta}{}{\prime}#\eta\mp@subsup{s}{}{\prime})!i=A\cdota
 using L_p unfolding subst_lit_def by (cases L) auto
 qed

```
have \(D A^{\prime}{ }_{-} D A: D A^{\prime} \cdot \eta=D A\)
    using \(D A^{\prime} D A \eta_{-} p\) by auto
have \(D^{\prime} \cdot \eta=D\) using \(\eta_{-} p D^{\prime}{ }_{-} D n D^{\prime} \_\)subset_ \(D A^{\prime}\) by auto
have \(A s^{\prime} \cdot\) al \(\eta=A s\)
proof (rule nth_equalityI)
    show length \(\left(A s^{\prime} \cdot a l \eta\right)=\) length \(A s\)
        using \(n\) by auto
next
    show \(\forall i<\) length \(\left(A s^{\prime} \cdot a l \eta\right) .\left(A s^{\prime} \cdot a l \eta\right)!i=A s!i\)
    proof (rule, rule)
        fix \(i::\) nat
        assume \(a\) : \(i<\) length (As'al \(\eta\) )
        have \(A_{-} e q: \forall A . A \in a t m s_{-}\)of \(D A^{\prime} \longrightarrow A \cdot a \eta^{\prime}=A \cdot a \eta\)
            using \(\eta_{-} p_{-} a t m n\) by force
        have \(A s^{\prime}!i \in\) atms_of \(D A^{\prime}\)
            using negs_As'_subset_D \(A^{\prime}\) unfolding atms_of_def
            using \(a n\) by force
        then have \(A s^{\prime}!i \cdot a \eta^{\prime}=A s^{\prime}!i \cdot a \eta\)
            using \(A_{-}\)eq by simp
        then show \(\left(A s^{\prime} \cdot a l \eta\right)!i=A s!i\)
            using \(A s^{\prime}{ }^{\prime} A s\) 〈length \(A s^{\prime}=n\) ) a by auto
    qed
qed
have \(S D A^{\prime} \cdot \eta=S_{-} M S M D A\)
    using \(\left\langle S D A^{\prime} \cdot \eta^{\prime}=S_{-} M S M D A\right\rangle \eta_{-} p\) S.S_selects_subseteq by auto
from \(\eta_{-} p\) have \(\eta_{-} p_{-} C A s^{\prime}: \forall i<n .\left(C A s^{\prime}!i\right) \cdot\left(\eta s^{\prime}!i\right)=\left(C A s^{\prime}!i\right) \cdot \eta\)
    using \(n\) by auto
then have \(C A s^{\prime} \cdot . c l \eta s^{\prime}=C A s^{\prime} \cdot c l \eta\)
    using \(n\) by (auto intro: nth_equalityI)
then have \(C A s^{\prime} \__{-} f o_{-} C A s: C A s^{\prime} \cdot c l ~ \eta=C A s\)
    using \(C A s^{\prime}{ }_{-} C A s \eta_{-} p n\) by auto
from \(\eta_{-} p\) have \(\forall i<n . S\left(C A s^{\prime}!i\right) \cdot \eta s^{\prime}!i=S\left(C A s^{\prime}!i\right) \cdot \eta\)
    using S.S_selects_subseteq \(n\) by auto
then have map \(S C A s^{\prime} \cdot . c l \eta s^{\prime}=\operatorname{map} S C A s^{\prime} \cdot c l \eta\)
    using \(n\) by (auto intro: nth_equalityI)
then have \(S C A s^{\prime} \__{-} \eta_{-} S M C A s: \operatorname{map} S C A s^{\prime} \cdot c l \eta=\operatorname{map}\left(S \_M S M\right) C A s\)
    using \(\left\langle m a p S C A s^{\prime} . . c l \eta s^{\prime}=\operatorname{map}\left(S_{-} M S M\right) C A s\right\rangle\) by auto
have \(C s^{\prime} \cdot c l \eta=C s\)
proof (rule nth_equalityI)
    show length \(\left(C s^{\prime} \cdot c l \eta\right)=\) length \(C s\)
        using \(n\) by auto
next
    show \(\forall i<l e n g t h ~\left(C s^{\prime} \cdot c l ~ \eta\right) .\left(C s^{\prime} \cdot c l \eta\right)!i=C s!i\)
    proof (rule, rule)
        fix \(i::\) nat
        assume \(i<\) length \((C s ' \cdot c l ~ \eta)\)
        then have \(a: i<n\)
            using \(n\) by force
        have \(\left(C s^{\prime} . . c l \eta s^{\prime}\right)!i=C s!i\)
            using Cs'_Cs a \(n\) by force
        moreover
        have \(\eta_{-} p_{-} C A s^{\prime}: \forall S . S \subseteq \# C A s^{\prime}!i \longrightarrow S \cdot \eta s^{\prime}!i=S \cdot \eta\)
            using \(\eta_{-} p\) a by force
        have \(C s^{\prime}!i \cdot \eta s^{\prime}!i=\left(C s^{\prime} \cdot c l \eta\right)!i\)
```

 using \mp@subsup{\eta}{_}{\prime}\mp@subsup{p}{-}{}CA\mp@subsup{s}{}{\prime}}\langle\foralli<n.C\mp@subsup{s}{}{\prime}!i\subseteq#CA\mp@subsup{s}{}{\prime}!i\rangle a n by forc
 then have (Cs'.cl \eta\mp@subsup{s}{}{\prime})!i=(C\mp@subsup{s}{}{\prime}\cdotcl \eta)!i
 using a n by force
 ultimately show (Cs'}\cdot\textrm{cl}\eta)!i=Cs!
 by auto
    ```

```

 qed
 qed
have AAs'_AAs:AAs' }\cdot\mathrm{ aml }\eta=AA
proof (rule nth_equalityI)
show length (AAs''aml \eta)= length AAs
using n by auto
next
show }\foralli<length (AAs\mp@subsup{s}{}{\prime}\cdotaml \eta). (AAs'' \cdotaml \eta)!i=AAs!
proof (rule, rule)
fix i:: nat
assume a: i< length(AAs' .aml \eta)
then have i<n
using n by force
then have }\forallA.A\inatms_of ((D\mp@subsup{A}{}{\prime}\#CA\mp@subsup{s}{}{\prime})!Suc i)\longrightarrowA\cdota(\eta\mp@subsup{\eta}{}{\prime}\#\eta\mp@subsup{s}{}{\prime})!Suci=A\cdota
using \eta_p_atm n by force
then have A_eq: }\forallA.A\inatms_of (CAs'!i)\longrightarrowA\cdota\eta\mp@subsup{s}{}{\prime}!i=A\cdota
by auto
have AAs_CAs':}\forallA\in\#AA\mp@subsup{s}{}{\prime}!i.A\inatms_of (CAs'!i
using AAs'_in_atms_of_CAs' unfolding atms_of_def
using a n by force
then have AAs'! ! \cdotam \eta\mp@subsup{s}{}{\prime}!i=AAs'!i am \eta
unfolding subst_atm_mset_def using A_eq unfolding subst_atm_mset_def by auto
then show (AAs''aml \eta)!i=AAs!i
using AAs'_AAs <length AAs' = n) <length \eta\mp@subsup{s}{}{\prime}=n\rangle a by auto
qed
qed

- Obtain MGU and substitution
obtain }\tau\varphi\mathrm{ where }\tau\varphi\mathrm{ :
Some \tau = mgu (set_mset 'set (map2 add_mset As' AAs'))
\tau\odot\varphi=\eta\odot\sigma
proof -
have uu: is_unifiers \sigma (set_mset'set (map2 add_mset (As'.al \eta) (AAs' .aml \eta)))
using mgu mgu_sound is_mgu_def unfolding \langleAAs'}\cdotaml \eta=AAs\rangle using \langleA\mp@subsup{s}{}{\prime}\cdotal \eta=As\rangle by aut
have \eta\sigmauni: is_unifiers (}\eta\odot\sigma)(set_mset ' set (map2 add_mset As' AAs'))
proof -
have set_mset'set (map2 add_mset As' AAs' .aml \eta) =
set_mset 'set (map2 add_mset As' AAs') .ass \eta
unfolding subst_atmss_def subst_atm_mset_list_def using subst_atm_mset_def subst_atms_def
by (simp add: image_image subst_atm_mset_def subst_atms_def)
then have is_unifiers \sigma (set_mset 'set (map2 add_mset As' AAs') ·ass \eta)
using uu by (auto simp: n map2_add_mset_map)
then show ?thesis
using is_unifiers_comp by auto
qed
then obtain }\tau\mathrm{ where
\tau_p:Some \tau = mgu (set_mset 'set (map2 add_mset As' AAs'))
using mgu_complete
by (metis (mono_tags, hide_lams) List.finite_set finite_imageI finite_set_mset image_iff)
moreover then obtain \varphi where \varphi_p:\tau\odot\varphi=\eta\odot\sigma
by (metis (mono_tags, hide_lams) finite_set \eta\sigmauni finite_imageI finite_set_mset image_iff
mgu_sound set_mset_mset substitution_ops.is_mgu_def)
ultimately show thesis
using that by auto
qed

```
```

- Lifting eligibility
have eligible': eligible $S \tau A s^{\prime}\left(D^{\prime}+\right.$ negs (mset $\left.\left.A s^{\prime}\right)\right)$
proof -
have $S_{-} M S M(D+n e g s(m s e t A s))=$ negs $(m s e t A s) \vee S _M S M(D+n e g s(m s e t A s))=\{\#\} \wedge$
length $A s=1 \wedge$ maximal_wrt $(A s!0 \cdot a \sigma)((D+$ negs $($ mset $A s)) \cdot \sigma)$
using eligible unfolding eligible.simps by auto
then show?thesis
proof
assume $S_{-} M S M(D+$ negs $($ mset As $))=$ negs $($ mset As $)$
then have $S_{-} M S M(D+$ negs $($ meet $A s)) \neq\{\#\}$
using n by force
then have $S\left(D^{\prime}+\right.$ negs $\left(\right.$ mset $\left.\left.A s^{\prime}\right)\right)=$ negs (mset $\left.A s^{\prime}\right)$
using as ${ }^{\prime} D A^{\prime}$ _split by auto
then show ?thesis
unfolding eligible.simps[simplified] by auto
next
assume asm: S_M S M (D + negs (mset As)) $=\{\#\} \wedge$ length $A s=1 \wedge$
maximal_wrt $(A s!0 \cdot a \sigma)((D+$ negs $($ mset $A s)) \cdot \sigma)$
then have $S\left(D^{\prime}+\right.$ negs $\left(\right.$ mset $\left.\left.A s^{\prime}\right)\right)=\{\#\}$
using $\left\langle D^{\prime} \cdot \eta=D\right\rangle\left[\right.$ symmetric $\left\langle\left\langle A s^{\prime} \cdot\right.\right.$ al $\left.\eta=A s\right\rangle[$ symmetric $]\left\langle S\left(D A^{\prime}\right) \cdot \eta=S _M S M(D A)\right\rangle$
da $D A^{\prime}$ _split subst_cls_empty_iff by metis
moreover from asm have l : length $A s^{\prime}=1$
using $\left\langle A s^{\prime} \cdot\right.$ al $\left.\eta=A s\right\rangle$ by auto
moreover from asm have maximal_wrt $\left(A s^{\prime}!0 \cdot a(\tau \odot \varphi)\right)\left(\left(D^{\prime}+\right.\right.$ negs $\left(\right.$ mset $\left.\left.\left.A s^{\prime}\right)\right) \cdot(\tau \odot \varphi)\right)$
using $\left\langle A s^{\prime} \cdot a l \eta=A s\right\rangle\left\langle D^{\prime} \cdot \eta=D\right\rangle$ using $l \tau \varphi$ by auto
then have maximal_wrt $\left(A s^{\prime}!0 \cdot a \tau \cdot a \varphi\right)\left(\left(D^{\prime}+\right.\right.$ negs $\left(\right.$ mset $\left.\left.\left.A s^{\prime}\right)\right) \cdot \tau \cdot \varphi\right)$
by auto
then have maximal_wrt $\left(A s^{\prime}!0 \cdot a \tau\right)\left(\left(D^{\prime}+\right.\right.$ negs $\left(\right.$ mset $\left.\left.\left.A s^{\prime}\right)\right) \cdot \tau\right)$
using maximal_wrt_subst by blast
ultimately show ?thesis
unfolding eligible.simps[simplified] by auto
qed
qed
- Lifting maximality
have maximality: $\forall i<n$. strictly_maximal_wrt $\left(A s^{\prime}!i \cdot a \tau\right)\left(C s^{\prime}!i \cdot \tau\right)$
proof -
from str_max have $\forall i<n$. strictly_maximal_wrt $\left(\left(A s^{\prime} \cdot a l \eta\right)!i \cdot a \sigma\right)\left(\left(C s^{\prime} \cdot c l \eta\right)!i \cdot \sigma\right)$
using $\left\langle A s^{\prime} \cdot a l \eta=A s\right\rangle\left\langle C s^{\prime} \cdot c l \eta=C s\right\rangle$ by simp
then have $\forall i<n$. strictly_maximal_wrt $\left(A s^{\prime}!i \cdot a(\tau \odot \varphi)\right)\left(C s^{\prime}!i \cdot(\tau \odot \varphi)\right)$
using $n \tau \varphi$ by simp
then have $\forall i<n$. strictly_maximal_wrt $\left(A s^{\prime}!i \cdot a \tau \cdot a \varphi\right)\left(C s^{\prime}!i \cdot \tau \cdot \varphi\right)$
by auto
then show $\forall i<n$. strictly_maximal_wrt $\left(A s^{\prime}!i \cdot a \tau\right)\left(C s^{\prime}!i \cdot \tau\right)$
using strictly_maximal_wrt_subst $\tau \varphi$ by blast
qed
- Lifting nothing being selected
have nothing_selected: $\forall i<n . S\left(C A s^{\prime}!i\right)=\{\#\}$
proof -
have $\forall i<n$. (map $\left.S C A s^{\prime} \cdot c l \eta\right)!i=\operatorname{map}\left(S_{-} M S M\right) C A s!i$
by (simp add: $\left\langle m a p S C A s^{\prime} \cdot\right.$ cl $\eta=$ map (S_M S M) CAs〉)
then have $\forall i<n . S\left(C A s^{\prime}!i\right) \cdot \eta=S _M S M(C A s!i)$
using n by auto
then have $\forall i<n . S\left(C A s^{\prime}!i\right) \cdot \eta=\{\#\}$
using sel_empt $\left\langle\forall i<n . S\left(C A s^{\prime}!i\right) \cdot \eta=S_{-} M S M(C A s!i)\right\rangle$ by auto
then show $\forall i<n . S\left(C A s^{\prime}!i\right)=\{\#\}$
using subst_cls_empty_iff by blast
qed

```
- Lifting AAs's non-emptiness
have \(\forall i<n . A A s^{\prime}!i \neq\{\#\}\)
using \(n\) aas_not_empt \(\left\langle A A s^{\prime} \cdot a m l ~ \eta=A A s\right\rangle\) by auto

\section*{- Resolve the lifted clauses}

\section*{define \(E^{\prime}\) where}
\[
E^{\prime}=\left(\left(\bigcup \# \text { mset } C s^{\prime}\right)+D^{\prime}\right) \cdot \tau
\]
have res_e \(e^{\prime}\) : ord_resolve \(S C A s^{\prime} D A^{\prime} A A s^{\prime} A s^{\prime} \tau E^{\prime}\)
using ord_resolve.intros \(\left[\right.\) of \(C A s^{\prime} n C s^{\prime} A A s^{\prime} A s^{\prime} \tau S D^{\prime}\), \(O F \ldots \ldots \ldots\left\langle\forall i<n . A A s^{\prime}!i \neq\{\#\}\right\rangle \tau \varphi(1)\) eligible \({ }^{\prime}\)
\(\left\langle\forall i<n\right.\). strictly_maximal_wrt \(\left.\left.\left(A s^{\prime}!i \cdot a \tau\right)\left(C s^{\prime}!i \cdot \tau\right)\right\rangle\left\langle\forall i<n . S\left(C A s^{\prime}!i\right)=\{\#\}\right\rangle\right]\)
unfolding \(E^{\prime}\) _def using \(D A^{\prime}{ }^{\prime}\) split \(n\left\langle\forall i<n\right.\). \(C A s^{\prime}!i=C s^{\prime}!i+\) poss \(\left.\left(A A s^{\prime}!i\right)\right\rangle\) by blast
- Prove resolvent instantiates to ground resolvent
have \(e^{\prime} \varphi e: E^{\prime} \cdot \varphi=E\)
proof -
have \(E^{\prime} \cdot \varphi=\left(\left(\bigcup \#\right.\right.\) mset \(\left.\left.C s^{\prime}\right)+D^{\prime}\right) \cdot(\tau \odot \varphi)\)
unfolding \(E^{\prime}\) _def by auto
also have \(\ldots=\left(\bigcup \#\right.\) mset \(\left.C s^{\prime}+D^{\prime}\right) \cdot(\eta \odot \sigma)\) using \(\tau \varphi\) by auto
also have \(\ldots=(\bigcup \#\) mset \(C s+D) \cdot \sigma\)
using \(\left\langle C s^{\prime} \cdot c l \eta=C s\right\rangle\left\langle D^{\prime} \cdot \eta=D\right\rangle\) by auto
also have \(\ldots=E\)
using e by auto
finally show \(e^{\prime} \varphi e: E^{\prime} \cdot \varphi=E\)
qed
- Replace \(\varphi\) with a true ground substitution
obtain \(\eta^{2}\) where
ground_ 2 2: is_ground_subst \(\eta 2 E^{\prime} \cdot \eta 2=E\)
proof -
have is_ground_cls_list CAs is_ground_cls DA
using grounding grounding_ground unfolding is_ground_cls_list_def by auto
then have is_ground_cls \(E\)
using res_e ground_resolvent_subset by (force intro: is_ground_cls_mono)
then show thesis using that e' \(\varphi\) e make_ground_subst by auto
qed
- Wrap up the proof
have ord_resolve \(S\left(C A s^{\prime \prime} \cdot \cdot c l \varrho s\right)\left(D A^{\prime \prime} \cdot \varrho\right)\left(A A s^{\prime \prime} \cdot \cdot a m l \varrho s\right)\left(A s^{\prime \prime} \cdot a l \varrho\right) \tau E^{\prime}\) using res_e \({ }^{\prime} A s^{\prime}{ }_{-}\)def \(\varrho_{-} \operatorname{def} A A s^{\prime}{ }_{-}\)def \(\varrho s_{-} \operatorname{def} D A^{\prime}{ }_{-} \operatorname{def} \varrho_{-} \operatorname{def} C A s^{\prime}{ }_{-} d e f\) @s_def by simp
moreover have \(\forall i<n\). poss \(\left(A A s^{\prime \prime}!i\right) \subseteq \# C A s^{\prime \prime}!i\)
using \(a s^{\prime \prime}(19)\) by auto
moreover have negs (mset \(\left.A s^{\prime \prime}\right) \subseteq \# D A^{\prime \prime}\)
using local.as \({ }^{\prime \prime}(15)\) by auto
ultimately have ord_resolve_rename \(S C A s^{\prime \prime} D A^{\prime \prime} A A s^{\prime \prime} A s^{\prime \prime} \tau E^{\prime}\)
using ord_resolve_rename[of \(\left.C A s^{\prime \prime} n A A s^{\prime \prime} A s^{\prime \prime} D A^{\prime \prime} \varrho \varrho s S \tau E\right\rangle\) Ø_def \(\varrho s \_d e f n\) by auto
then show thesis
using that[of \(\left.\eta^{\prime \prime} \eta s^{\prime \prime} \eta 2 C A s^{\prime \prime} D A^{\prime \prime}\right]\left\langle i s_{-} g r o u n d \_s u b s t \eta^{\prime \prime}\right\rangle\left\langle i s_{-} g r o u n d \_s u b s t \_l i s t ~ \eta s^{\prime \prime}\right\rangle\) \(\left\langle i s \_g r o u n d \_s u b s t ~ \eta 2\right\rangle\left\langle C A s^{\prime \prime} \cdot \cdot c l \eta s^{\prime \prime}=C A s\right\rangle\left\langle D A^{\prime \prime} \cdot \eta^{\prime \prime}=D A\right\rangle\left\langle E^{\prime} \cdot \eta \mathscr{2}=E\right\rangle\left\langle D A^{\prime \prime} \in M\right\rangle\) \(\left\langle\forall C A \in \operatorname{set} C A s^{\prime \prime} . C A \in M\right\rangle\) by blast
qed
end
end

\section*{15 An Ordered Resolution Prover for First-Order Clauses}

\author{
theory FO_Ordered_Resolution_Prover \\ imports FO_Ordered_Resolution
}

\section*{begin}

This material is based on Section 4.3 ("A Simple Resolution Prover for First-Order Clauses") of Bachmair and Ganzinger's chapter. Specifically, it formalizes the RP prover defined in Figure 5 and its related lemmas and theorems, including Lemmas 4.10 and 4.11 and Theorem 4.13 (completeness).
```

definition is_least $::($ nat \Rightarrow bool $) \Rightarrow$ nat \Rightarrow bool where
is_least $P n \longleftrightarrow P n \wedge\left(\forall n^{\prime}<n . \neg P n^{\prime}\right)$
lemma least_exists: $P n \Longrightarrow \exists n$. is_least $P n$
using exists_least_iff unfolding is_least_def by auto

```

The following corresponds to page 42 and 43 of Section 4.3, from the explanation of RP to Lemma 4.10.
```

type-synonym 'a state = 'a clause set }\times\mathrm{ 'a clause set }\times\mathrm{ 'a clause set

```
locale FO_resolution_prover \(=\)
    FO_resolution subst_atm id_subst comp_subst renamings_apart atm_of_atms mgu less_atm +
    selection \(S\)
    for
        \(S::\left({ }^{\prime} a::\right.\) wellorder \()\) clause \(\Rightarrow\) ' \(a\) clause and
        subst_atm :: ' \(a \Rightarrow\) ' \(s \Rightarrow{ }^{\prime} a\) and
        id_subst :: 's and
        comp_subst \(::\) ' \(s \Rightarrow\) ' \(s \Rightarrow\) 's and
        renamings_apart :: 'a clause list \(\Rightarrow\) 's list and
        atm_of_atms :: ' \(a\) list \(\Rightarrow{ }^{\prime} a\) and
        \(m g u::\) ' \(a\) set set \(\Rightarrow\) 's option and
        less_atm :: ' \(a \Rightarrow{ }^{\prime} a \Rightarrow\) bool +
    assumes
        sel_stable: \(\bigwedge \varrho C\). is_renaming \(\varrho \Longrightarrow S(C \cdot \varrho)=S C \cdot \varrho\) and
        less_atm_ground: is_ground_atm \(A \Longrightarrow\) is_ground_atm \(B \Longrightarrow\) less_atm \(A B \Longrightarrow A<B\)
begin
fun \(N_{-}\)of_state :: ' \(a\) state \(\Rightarrow\) 'a clause set where
    \(N_{-}\)of_state \((N, P, Q)=N\)
fun \(P_{-}\)of_state :: ' \(a\) state \(\Rightarrow\) 'a clause set where
    \(P_{-} o f_{-}\)state \((N, P, Q)=P\)
\(O\) denotes relation composition in Isabelle, so the formalization uses \(Q\) instead.
```

fun $Q_{\text {_of_state }}:$: 'a state \Rightarrow ' a clause set where
$Q _o f$ _state $(N, P, Q)=Q$

```
definition clss_of_state :: 'a state \(\Rightarrow\) ' \(a\) clause set where
    clss_of_state \(S t=N_{-}\)of_state \(S t \cup P \_o f \_\)state \(S t \cup Q \_o f \_\)state \(S t\)
abbreviation grounding_of_state :: 'a state \(\Rightarrow\) 'a clause set where grounding_of_state St \(\equiv\) grounding_of_clss (clss_of_state \(S t)\)
interpretation ord_FO_resolution: inference_system ord_FO_Г \(S\).
The following inductive predicate formalizes the resolution prover in Figure 5.
```

inductive $R P$:: 'a state $\Rightarrow{ }^{\prime}$ 'a state \Rightarrow bool (infix $\rightsquigarrow 50$) where
tautology_deletion: Neg $A \in \# C \Longrightarrow$ Pos $A \in \# C \Longrightarrow(N \cup\{C\}, P, Q) \rightsquigarrow(N, P, Q)$
| forward_subsumption: $D \in P \cup Q \Longrightarrow$ subsumes $D C \Longrightarrow(N \cup\{C\}, P, Q) \rightsquigarrow(N, P, Q)$
\mid backward_subsumption_P: $D \in N \Longrightarrow$ strictly_subsumes $D C \Longrightarrow(N, P \cup\{C\}, Q) \rightsquigarrow(N, P, Q)$
\mid backward_subsumption_ $Q: D \in N \Longrightarrow$ strictly_subsumes $D C \Longrightarrow(N, P, Q \cup\{C\}) \rightsquigarrow(N, P, Q)$
| forward_reduction: $D+\left\{\# L^{\prime} \#\right\} \in P \cup Q \Longrightarrow-L=L^{\prime} \cdot l \sigma \Longrightarrow D \cdot \sigma \subseteq \# C \Longrightarrow$
$(N \cup\{C+\{\# L \#\}\}, P, Q) \rightsquigarrow(N \cup\{C\}, P, Q)$
\mid backward_reduction_P: $D+\left\{\# L^{\prime} \#\right\} \in N \Longrightarrow-L=L^{\prime} \cdot l \sigma \Longrightarrow D \cdot \sigma \subseteq \# C \Longrightarrow$
$(N, P \cup\{C+\{\# L \#\}\}, Q) \rightsquigarrow(N, P \cup\{C\}, Q)$
\mid backward_reduction_ $Q: D+\left\{\# L^{\prime} \#\right\} \in N \Longrightarrow-L=L^{\prime} \cdot l \sigma \Longrightarrow D \cdot \sigma \subseteq \# C \Longrightarrow$
$(N, P, Q \cup\{C+\{\# L \#\}\}) \rightsquigarrow(N, P \cup\{C\}, Q)$
| clause_processing: $(N \cup\{C\}, P, Q) \rightsquigarrow(N, P \cup\{C\}, Q)$

```
```

| inference_computation: N = concls_of (ord_FO_resolution.inferences_between Q C) \Longrightarrow

```
    \((\}, P \cup\{C\}, Q) \rightsquigarrow(N, P, Q \cup\{C\})\)
lemma final_RP: \(\neg(\},\{ \}, Q) \rightsquigarrow S t\)
    by (auto elim: RP.cases)
definition Sup_state :: 'a state llist \(\Rightarrow\) 'a state where
    Sup_state Sts =
        (Sup_llist (lmap N_of_state Sts), Sup_llist (lmap P_of_state Sts),
        Sup_llist (lmap Q_of_state Sts))
definition Liminf_state :: 'a state llist \(\Rightarrow\) 'a state where
    Liminf_state Sts \(=\)
        (Liminf_llist (lmap N_of_state Sts), Liminf_llist (lmap P_of_state Sts),
        Liminf_llist (lmap Q_of_state Sts))
context
    fixes Sts Sts' :: 'a state llist
    assumes Sts: lfinite Sts lfinite Sts \({ }^{\prime} \neg\) lnull Sts \(\neg\) lnull Sts' \({ }^{\prime}\) llast Sts \({ }^{\prime}=\) llast Sts
begin

\section*{lemma}

    \(P_{-}\)of_Liminf_state_fin: \(P_{-}\)of_state (Liminf_state Sts \(\left.{ }^{\prime}\right)=P_{-}\)of_state (Liminf_state Sts) and
    Q_of_Liminf_state_fin: Q_of_state (Liminf_state Sts') \(=Q_{\text {_of_state }}(\) Liminf_state Sts)
    using Sts by (simp_all add: Liminf_state_def lfinite_Liminf_llist llast_lmap)
lemma Liminf_state_fin: Liminf_state Sts \({ }^{\prime}=\) Liminf_state Sts
    using \(N_{-} o f_{-} L i m i n f_{-} s t a t e \_f i n P_{-} o f_{-}\)Liminf_state_fin \(Q_{-} o f_{-} L i m i n f_{-} s t a t e \_f i n\)
    by (simp add: Liminf_state_def)

\section*{end}
context
    fixes Sts Sts' :: 'a state llist
    assumes Sts: \(\neg\) lfinite Sts emb Sts Sts \({ }^{\prime}\)
begin
lemma
    N_of_Liminf_state_inf: N_of_state (Liminf_state Sts') \(\subseteq\) N_of_state (Liminf_state Sts) and
    \(P_{-} o f\) _Liminf_state_inf: \(P_{-}\)of_state (Liminf_state Sts \(\left.{ }^{\prime}\right) \subseteq P_{-}\)of_state (Liminf_state Sts) and
    \(Q \_o f\) _Liminf_state_inf: \(Q_{\text {_of_state }}\left(L_{\text {Liminf_state }}\right.\) Sts \(\left.^{\prime}\right) \subseteq Q_{\text {_of_state }}(\) Liminf_state Sts)
    using Sts by (simp_all add: Liminf_state_def emb_Liminf_llist_infinite emb_lmap)
lemma clss_of_Liminf_state_inf:
    clss_of_state (Liminf_state Sts') \(\subseteq\) clss_of_state (Liminf_state Sts)
    unfolding clss_of_state_def

end
definition fair_state_seq :: 'a state llist \(\Rightarrow\) bool where
    fair_state_seq Sts \(\longleftrightarrow N_{-} o f_{-} s t a t e ~\left(L i m i n f \_s t a t e ~ S t s\right)=\{ \} \wedge P_{-} o f_{-} s t a t e ~(\) Liminf_state Sts) \(=\{ \}\)

The following formalizes Lemma 4.10.
```

context
fixes
Sts :: 'a state llist
assumes
deriv: chain (op \rightsquigarrow)Sts and
empty_Q0:Q_of_state (lhd Sts) = {}

```
begin
lemmas lhd_lmap_Sts \(=\) llist.map_sel(1)[OF chain_not_lnull \([\) OF deriv \(]]\)
definition \(S_{-} Q\) :: 'a clause \(\Rightarrow{ }^{\prime}\) ' clause where \(S_{-} Q=S_{-} M S\left(Q_{-} f_{-}\right.\)state (Liminf_state Sts) \()\)
interpretation sq: selection S_Q
unfolding \(S_{-} Q_{-} d e f\) using \(S_{-} M_{\_}\)selects_subseteq \(S_{-} M_{-}\)selects_neg_lits selection_axioms by unfold_locales auto
interpretation gr: ground_resolution_with_selection S_ \(Q\) by unfold_locales
interpretation sr: standard_redundancy_criterion_reductive gr.ord_Г by unfold_locales
interpretation sr: standard_redundancy_criterion_counterex_reducing gr.ord_ \(\Gamma\) ground_resolution_with_selection.INTERP S_Q by unfold_locales

The extension of ordered resolution mentioned in 4.10. We let it consist of all sound rules.
definition ground_sound_ \(\Gamma::\) 'a inference set where
\[
\text { ground_sound_ } \Gamma=\{\text { Infer } C C D E \mid C C D E .(\forall I . I \models m C C \longrightarrow I \models D \longrightarrow I \models E)\}
\]

We prove that we indeed defined an extension.
```

lemma gd_ord_\Gamma_ngd_ord_\Gamma: gr.ord_\Gamma\subseteq ground_sound_\Gamma
unfolding ground_sound_\Gamma_def using gr.ord_\Gamma_def gr.ord_resolve_sound by fastforce
lemma sound_ground_sound_\Gamma: sound_inference_system ground_sound_\Gamma
unfolding sound_inference_system_def ground_sound_\Gamma_def by auto
lemma sat_preserving_ground_sound_\Gamma: sat_preserving_inference_system ground_sound_\Gamma
using sound_ground_sound_\Gamma sat_preserving_inference_system.intro
sound_inference_system.\Gamma_sat_preserving by blast
definition sr_ext_Ri :: 'a clause set }=>\mp@subsup{}{}{\prime}\mp@subsup{}{}{\prime}a\mathrm{ inference set where
sr_ext_Ri N = sr.Ri N U(ground_sound_\Gamma - gr.ord_\Gamma)
interpretation sr_ext:
sat_preserving_redundancy_criterion ground_sound_\Gamma sr.Rf sr_ext_Ri
unfolding sat_preserving_redundancy_criterion_def sr_ext_Ri_def
using sat_preserving_ground_sound_\Gamma redundancy_criterion_standard_extension gd_ord_\Gamma_ngd_ord_\Gamma
sr.redundancy_criterion_axioms by auto

```
lemma strict_subset_subsumption_redundant_clause:
    assumes
        sub: \(D \cdot \sigma \subset \# C\) and
        ground_ \(\sigma\) : is_ground_subst \(\sigma\)
    shows \(C \in\) sr.Rf (grounding_of_cls D)
proof -
    from sub have \(\forall I . I \models D \cdot \sigma \longrightarrow I \models C\)
        unfolding true_cls_def by blast
    moreover have \(C>D \cdot \sigma\)
        using sub by (simp add: subset_imp_less_mset)
    moreover have \(D \cdot \sigma \in\) grounding_of_cls \(D\)
        using ground_ \(\sigma\) by (metis (mono_tags, lifting) mem_Collect_eq substitution_ops.grounding_of_cls_def)
    ultimately have set_mset \(\{\# D \cdot \sigma \#\} \subseteq\) grounding_of_cls \(D\)
        \((\forall I . I \models m\{\# D \cdot \sigma \#\} \longrightarrow I \models C)\)
        \(\left(\forall D^{\prime} \cdot D^{\prime} \in \#\{\# D \cdot \sigma \#\} \longrightarrow D^{\prime}<C\right)\)
        by auto
    then show?thesis
        using sr.Rf_def by blast
qed
```

lemma strict_subset_subsumption_redundant_state:
assumes
D \cdot\sigma\subset\#C and
is_ground_subst \sigma and
D\inclss_of_state St
shows C \in sr.Rf (grounding_of_state St)
using assms
proof (induction St)
case (fields N P Q)
note sub = this(1) and gr = this(2) and d_in = this(3)
have C \in sr.Rf (grounding_of_cls D)
by (rule strict_subset_subsumption_redundant_clause[OF sub gr])
then show ?case
using d_in unfolding clss_of_state_def grounding_of_clss_def
by (metis (no_types) sr.Rf_mono sup_ge1 SUP_absorb contra_subsetD)
qed
lemma subst_cls_eq_grounding_of_cls_subset_eq:
assumes D · \sigma = C
shows grounding_of_cls C \subseteq grounding_of_cls D
proof
fix }C\mp@subsup{\sigma}{}{\prime
assume C }\mp@subsup{\sigma}{}{\prime}\in\mathrm{ grounding_of_cls C
then obtain }\mp@subsup{\sigma}{}{\prime}\mathrm{ where
C\mp@subsup{\sigma}{}{\prime}:C}C\cdot\mp@subsup{\sigma}{}{\prime}=C\mp@subsup{\sigma}{}{\prime}\mathrm{ is_ground_subst }\mp@subsup{\sigma}{}{\prime
unfolding grounding_of_cls_def by auto
then have C}\cdot\mp@subsup{\sigma}{}{\prime}=D\cdot\sigma\cdot\mp@subsup{\sigma}{}{\prime}\wedge is_ground_subst (\sigma\odot 有
using assms by auto
then show }C\mp@subsup{\sigma}{}{\prime}\in\mathrm{ grounding_of_cls D
unfolding grounding_of_cls_def using C\mp@subsup{\sigma}{}{\prime}(1) by force
qed

```

The following corresponds the part of Lemma 4.10 that states we have a theorem proving process:
```

lemma resolution_prover_ground_derive:
St }\rightsquigarrowS\mp@subsup{t}{}{\prime}\Longrightarrow\mathrm{ sr_ext.derive (grounding_of_state St) (grounding_of_state St')
proof (induction rule: RP.induct)
case (tautology_deletion A C N P Q)
{
fix }C
assume C\sigma\in grounding_of_cls C
then obtain }\sigma\mathrm{ where
C\sigma=C}\cdot
unfolding grounding_of_cls_def by auto
then have Neg (A\cdota\sigma)\in\#C\sigma^Pos (A\cdota\sigma)\in\#C\sigma
using tautology_deletion Neg_Melem_subst_atm_subst_cls Pos_Melem_subst_atm_subst_cls by auto
then have C\sigma\insr.Rf (grounding_of_state (N,P,Q))
using sr.tautology_redundant by auto
}
then have grounding_of_state (}N\cup{C},P,Q) - grounding_of_state (N, P,Q
\subseteq s r . R f ~ (g r o u n d i n g _ o f _ s t a t e ~ (~ N , ~ P , Q))
unfolding clss_of_state_def grounding_of_clss_def by auto
moreover have grounding_of_state (N,P,Q) - grounding_of_state (N\cup{C},P,Q)={}
unfolding clss_of_state_def grounding_of_clss_def by auto
ultimately show ?case
using sr_ext.derive.intros[of grounding_of_state (N,P,Q) grounding_of_state (N\cup{C},P,Q)]
by auto
next
case (forward_subsumption D P Q C N)
note D_p = this
then obtain }\sigma\mathrm{ where
D \cdot\sigma=C\veeD | \sigma\subset\# C

```
```

 by (auto simp: subsumes_def subset_mset_def)
 then have \(D \cdot \sigma=C \vee D \cdot \sigma \subset \# C\)
 by (simp add: subset_mset_def)
 then show ?case
 proof
 assume \(D \cdot \sigma=C\)
 then have grounding_of_cls \(C \subseteq\) grounding_of_cls \(D\)
 using subst_cls_eq_grounding_of_cls_subset_eq by simp
 then have grounding_of_state \((N \cup\{C\}, P, Q)=\) grounding_of_state \((N, P, Q)\)
 using \(D_{-} p\) unfolding clss_of_state_def grounding_of_clss_def by auto
 then show? case
 by (auto intro: sr_ext.derive.intros)
 next
 assume \(a: D \cdot \sigma \subset \# C\)
 have grounding_of_cls \(C \subseteq\) sr.Rf (grounding_of_state \((N, P, Q)\))
 proof
 fix \(C \mu\)
 assume \(C \mu \in\) grounding_of_cls \(C\)
 then obtain \(\mu\) where
 \(\mu_{-} p: C \mu=C \cdot \mu \wedge\) is_ground_subst \(\mu\)
 unfolding grounding_of_cls_def by auto
 have \(D \sigma \mu C \mu: D \cdot \sigma \cdot \mu \subset \# C \cdot \mu\)
 using a subst_subset_mono by auto
 then show \(C \mu \in \operatorname{sr} . R f\) (grounding_of_state \((N, P, Q)\))
 using \(\mu_{-}\)pstrict_subset_subsumption_redundant_state \([\)of \(D \sigma \odot \mu C \cdot \mu(N, P, Q)] D _p\)
 unfolding clss_of_state_def by auto
 qed
 then show ?case
 unfolding clss_of_state_def grounding_of_clss_def by (force intro: sr_ext.derive.intros)
 qed
 next
case (backward_subsumption_P D N C P Q)
note $D_{-} p=$ this
then obtain σ where
$D \cdot \sigma=C \vee D \cdot \sigma \subset \# C$
by (auto simp: strictly_subsumes_def subsumes_def subset_mset_def)
then show? case
proof
assume $D \cdot \sigma=C$
then have grounding_of_cls $C \subseteq$ grounding_of_cls D
using subst_cls_eq_grounding_of_cls_subset_eq by simp
then have grounding_of_state ($N, P \cup\{C\}, Q)=$ grounding_of_state (N, P, Q)
using D _p unfolding clss_of_state_def grounding_of_clss_def by auto
then show ?case
by (auto intro: sr_ext.derive.intros)
next
assume $a: D \cdot \sigma \subset \# C$
have grounding_of_cls $C \subseteq$ sr.Rf (grounding_of_state (N, P, Q))
proof
fix $C \mu$
assume $C \mu \in$ grounding_of_cls C
then obtain μ where
$\mu_{-} p: C \mu=C \cdot \mu \wedge$ is_ground_subst μ
unfolding grounding_of_cls_def by auto
have $D \sigma \mu C \mu: D \cdot \sigma \cdot \mu \subset \# C \cdot \mu$
using a subst_subset_mono by auto
then show $C \mu \in s r . R f$ (grounding_of_state (N, P, Q))
using $\mu_{-} p$ strict_subset_subsumption_redundant_state $[$ of $D \sigma \odot \mu C \cdot \mu(N, P, Q)] D_{-} p$
unfolding clss_of_state_def by auto
qed
then show ? case
unfolding clss_of_state_def grounding_of_clss_def by (force intro: sr_ext.derive.intros)

```
```

 qed
 next
case (backward_subsumption_Q D N C P Q)
note D_ p = this
then obtain \sigma where
D \cdot\sigma =C\veeD | \sigma\subset\# C
by (auto simp: strictly_subsumes_def subsumes_def subset_mset_def)
then show ?case
proof
assume D | \sigma = C
then have grounding_of_cls C\subseteqgrounding_of_cls D
using subst_cls_eq_grounding_of_cls_subset_eq by simp
then have grounding_of_state (N,P,Q\cup{C})= grounding_of_state (N,P,Q)
using D_p unfolding clss_of_state_def grounding_of_clss_def by auto
then show ?case
by (auto intro: sr_ext.derive.intros)
next
assume a: D | \sigma\subset\#C
have grounding_of_cls C\subseteqsr.Rf (grounding_of_state (N,P,Q))
proof
fix }C
assume C\mu\in grounding_of_cls C
then obtain }\mu\mathrm{ where
\mu_p:C\mu}=C\cdot\mu\wedge is_ground_subst
unfolding grounding_of_cls_def by auto

```

```

 using a subst_subset_mono by auto
 then show C\mu\insr.Rf (grounding_of_state (N,P,Q))
 using }\mp@subsup{\mu}{-}{
 unfolding clss_of_state_def by auto
 qed
 then show ?case
 unfolding clss_of_state_def grounding_of_clss_def by (force intro: sr_ext.derive.intros)
 qed
 next
case (forward_reduction D L' PQ L\sigma CN)
note DL'_p = this
{
fix }C
assume C\mu\in grounding_of_cls C
then obtain }\mu\mathrm{ where
\mu_p: C\mu}=C\cdot\mu\wedge is_ground_subst \mu
unfolding grounding_of_cls_def by auto
define }\gamma\mathrm{ where
\gamma=Infer {\#(C+{\#L\#})\cdot\mu\#}((D+{\#\mp@subsup{L}{}{\prime}\#})\cdot\sigma\cdot\mu)(C\cdot\mu)
have (D+{\#\mp@subsup{L}{}{\prime}\#})\cdot\sigma\cdot\mu\in grounding_of_state (N\cup{C+{\#L\#}}, P,Q)
unfolding clss_of_state_def grounding_of_clss_def grounding_of_cls_def
by (rule UN_I[of D + {\#L'\#}], use D\mp@subsup{L}{}{\prime}-p(1) in simp,
metis (mono_tags, lifting) \mp@subsup{\mu}{-}{}p is_ground_comp_subst mem_Collect_eq subst_cls_comp_subst)
moreover have (C+{\#L\#})\cdot\mu\in grounding_of_state (N\cup{C+{\#L\#}},P,Q)
using \mp@subsup{\mu}{-}{}p\mathrm{ unfolding clss_of_state_def grounding_of_clss_def grounding_of_cls_def by auto}

```

```

 - }
 by auto
 then have }\forallI.I\models(D+{#\mp@subsup{L}{}{\prime}#})\cdot\sigma\cdot\mu\longrightarrowI\models(C+{#L#})\cdot\mu\longrightarrowI\modelsD\cdot\sigma\cdot\mu+C\cdot
 using DL'_p
 by (metis add_mset_add_single subst_cls_add_mset subst_cls_union subst_minus)
 then have }\forallI.I\models(D+{#\mp@subsup{L}{}{\prime}#})\cdot\sigma\cdot\mu\longrightarrowI\models(C+{#L#})\cdot\mu\longrightarrowI\modelsC\cdot
 using DL'_p by (metis (no_types, lifting) subset_mset.le_iff_add subst_cls_union true_cls_union)
 then have }\forallI.I\modelsm{#(D+{#\mp@subsup{L}{}{\prime}#})\cdot\sigma\cdot\mu#}\longrightarrowI\models(C+{#L#})\cdot\mu\longrightarrowI\modelsC\cdot
 by (meson true_cls_mset_singleton)
    ```
ultimately have \(\gamma \in\) sr_ext.inferences_from (grounding_of_state \((N \cup\{C+\{\# L \#\}\}, P, Q)\) ) unfolding sr_ext.inferences_from_def unfolding ground_sound_ \(\Gamma_{-}\)def infer_from_def \(\gamma_{-}\)def by auto
then have \(C \cdot \mu \in\) concls_of (sr_ext.inferences_from (grounding_of_state \((N \cup\{C+\{\# L \#\}\}, P, Q))\) ) using image_iff unfolding \(\gamma_{-}\)def by fastforce
then have \(C \mu \in\) concls_of (sr_ext.inferences_from (grounding_of_state \((N \cup\{C+\{\# L \#\}\}, P, Q))\) ) using \(\mu_{-} p\) by auto
\}
then have grounding_of_state \((N \cup\{C\}, P, Q)\) - grounding_of_state \((N \cup\{C+\{\# L \#\}\}, P, Q)\)
\(\subseteq\) concls_of (sr_ext.inferences_from (grounding_of_state \((N \cup\{C+\{\# L \#\}\}, P, Q))\) )
unfolding grounding_of_clss_def clss_of_state_def by auto

\section*{moreover}
\{
fix \(C L \mu\)
assume CL \(\mu \in\) grounding_of_cls ( \(C+\{\# L \#\}\) )
then obtain \(\mu\) where
\(\mu_{\text {_d }}\) def: \(C L \mu=(C+\{\# L \#\}) \cdot \mu \wedge\) is_ground_subst \(\mu\) unfolding grounding_of_cls_def by auto
have \(C \mu_{-} C L \mu\) : \(C \cdot \mu \subset \#(C+\{\# L \#\}) \cdot \mu\) by auto
then have \((C+\{\# L \#\}) \cdot \mu \in\) sr.Rf (grounding_of_state \((N \cup\{C\}, P, Q))\) using sr.Rf_def[of grounding_of_cls \(C\) ] using strict_subset_subsumption_redundant_state \([\) of \(C \mu(C+\{\# L \#\}) \cdot \mu(N \cup\{C\}, P, Q)] \mu_{-} d e f\) unfolding clss_of_state_def by force
then have \(C L \mu \in s r . R f\) (grounding_of_state \((N \cup\{C\}, P, Q)\) ) using \(\mu_{-}\)def by auto
\}
then have grounding_of_state \((N \cup\{C+\{\# L \#\}\}, P, Q)\) - grounding_of_state \((N \cup\{C\}, P, Q)\) \(\subseteq\) sr.Rf (grounding_of_state \((N \cup\{C\}, P, Q))\)
unfolding clss_of_state_def grounding_of_clss_def by auto
ultimately show ?case
using sr_ext.derive.intros[of grounding_of_state \((N \cup\{C\}, P, Q)\) grounding_of_state \((N \cup\{C+\{\# L \#\}\}, P, Q)]\)
by auto
next
case (backward_reduction_P D \(L^{\prime} N L \sigma C P Q\) )
note \(D L^{\prime}{ }_{-} p=\) this
\{
fix \(C \mu\)
assume \(C \mu \in\) grounding_of_cls \(C\)
then obtain \(\mu\) where \(\mu_{-} p: C \mu=C \cdot \mu \wedge\) is_ground_subst \(\mu\) unfolding grounding_of_cls_def by auto
define \(\gamma\) where
\[
\gamma=\text { Infer }\{\#(C+\{\# L \#\}) \cdot \mu \#\}\left(\left(D+\left\{\# L^{\prime} \#\right\}\right) \cdot \sigma \cdot \mu\right)(C \cdot \mu)
\]
have \(\left(D+\left\{\# L^{\prime} \#\right\}\right) \cdot \sigma \cdot \mu \in\) grounding_of_state \((N, P \cup\{C+\{\# L \#\}\}, Q)\) unfolding clss_of_state_def grounding_of_clss_def grounding_of_cls_def by (rule UN_I[of \(\left.D+\left\{\# L^{\prime} \#\right\}\right]\), use \(D L^{\prime}{ }_{-} p(1)\) in simp,
metis (mono_tags, lifting) \(\mu_{-} p\) is_ground_comp_subst mem_Collect_eq subst_cls_comp_subst)
moreover have \((C+\{\# L \#\}) \cdot \mu \in\) grounding_of_state \((N, P \cup\{C+\{\# L \#\}\}, Q)\) using \(\mu_{-} p\) unfolding clss_of_state_def grounding_of_clss_def grounding_of_cls_def by auto
moreover have \(\forall I . I \models D \cdot \sigma \cdot \mu+\{\#-(L \cdot l \mu) \#\} \longrightarrow I \models C \cdot \mu+\{\# L \cdot l \mu \#\} \longrightarrow I \models D \cdot \sigma \cdot \mu+C\) - \(\mu\)
by auto
then have \(\forall I . I \models\left(D+\left\{\# L^{\prime} \#\right\}\right) \cdot \sigma \cdot \mu \longrightarrow I \models(C+\{\# L \#\}) \cdot \mu \longrightarrow I \models D \cdot \sigma \cdot \mu+C \cdot \mu\) using \(D L^{\prime}{ }_{-} p\)
by (metis add_mset_add_single subst_cls_add_mset subst_cls_union subst_minus)
then have \(\forall I . I \models\left(D+\left\{\# L^{\prime} \#\right\}\right) \cdot \sigma \cdot \mu \longrightarrow I \models(C+\{\# L \#\}) \cdot \mu \longrightarrow I \models C \cdot \mu\)
using \(D L^{\prime}\) _p by (metis (no_types, lifting) subset_mset.le_iff_add subst_cls_union true_cls_union)
then have \(\forall I \cdot I \models m\left\{\#\left(D+\left\{\# L^{\prime} \#\right\}\right) \cdot \sigma \cdot \mu \#\right\} \longrightarrow I \models(C+\{\# L \#\}) \cdot \mu \longrightarrow I \models C \cdot \mu\)
by (meson true_cls_mset_singleton)
ultimately have \(\gamma \in\) sr_ext.inferences_from (grounding_of_state \((N, P \cup\{C+\{\# L \#\}\}, Q)\) )
unfolding sr_ext.inferences_from_def unfolding ground_sound_ \(\Gamma_{-}\)def infer_from_def \(\gamma_{-}\)def by simp
then have \(C \cdot \mu \in\) concls_of (sr_ext.inferences_from (grounding_of_state \((N, P \cup\{C+\{\# L \#\}\}, Q))\) ) using image_iff unfolding \(\gamma_{-}\)def by fastforce
then have \(C \mu \in\) concls_of (sr_ext.inferences_from (grounding_of_state \((N, P \cup\{C+\{\# L \#\}\}, Q))\) ) using \(\mu_{-} p\) by auto
\}
then have grounding_of_state \((N, P \cup\{C\}, Q)\) - grounding_of_state \((N, P \cup\{C+\{\# L \#\}\}, Q)\)
\(\subseteq\) concls_of (sr_ext.inferences_from (grounding_of_state \((N, P \cup\{C+\{\# L \#\}\}, Q))\) )
unfolding grounding_of_clss_def clss_of_state_def by auto
moreover
\{
fix \(C L \mu\)
assume \(C L \mu \in\) grounding_of_cls \((C+\{\# L \#\})\)
then obtain \(\mu\) where \(\mu_{-} d e f: C L \mu=(C+\{\# L \#\}) \cdot \mu \wedge\) is_ground_subst \(\mu\) unfolding grounding_of_cls_def by auto
have \(C \mu_{-} C L \mu: C \cdot \mu \subset \#(C+\{\# L \#\}) \cdot \mu\) by auto
then have \((C+\{\# L \#\}) \cdot \mu \in s r . R f\) (grounding_of_state \((N, P \cup\{C\}, Q))\) using sr.Rf_def[of grounding_of_cls \(C\) ] using strict_subset_subsumption_redundant_state \([\) of \(C \mu(C+\{\# L \#\}) \cdot \mu(N, P \cup\{C\}, Q)] \mu_{-} d e f\) unfolding clss_of_state_def by force
then have \(C L \mu \in\) sr.Rf (grounding_of_state \((N, P \cup\{C\}, Q)\) ) using \(\mu_{-} d e f\) by auto
\}
then have grounding_of_state \((N, P \cup\{C+\{\# L \#\}\}, Q)\) - grounding_of_state \((N, P \cup\{C\}, Q)\)
\(\subseteq\) sr.Rf (grounding_of_state \((N, P \cup\{C\}, Q))\)
unfolding clss_of_state_def grounding_of_clss_def by auto
ultimately show ?case
using sr_ext.derive.intros[of grounding_of_state \((N, P \cup\{C\}, Q)\) grounding_of_state \((N, P \cup\{C+\{\# L \#\}\}, Q)]\)
by auto
next
case (backward_reduction_Q D \(\left.L^{\prime} N L \sigma C P Q\right)\)
note \(D L^{\prime}{ }_{-} p=\) this
\{
fix \(C \mu\)
assume \(C \mu \in\) grounding_of_cls \(C\)
then obtain \(\mu\) where
\(\mu_{-} p: C \mu=C \cdot \mu \wedge\) is_ground_subst \(\mu\)
unfolding grounding_of_cls_def by auto
define \(\gamma\) where
\(\gamma=\) Infer \(\{\#(C+\{\# L \#\}) \cdot \mu \#\}\left(\left(D+\left\{\# L^{\prime} \#\right\}\right) \cdot \sigma \cdot \mu\right)(C \cdot \mu)\)
have \(\left(D+\left\{\# L^{\prime} \#\right\}\right) \cdot \sigma \cdot \mu \in\) grounding_of_state \((N, P, Q \cup\{C+\{\# L \#\}\})\)
unfolding clss_of_state_def grounding_of_clss_def grounding_of_cls_def
by (rule \(U N_{-} I\left[\right.\) of \(\left.D+\left\{\# L^{\prime} \#\right\}\right]\), use \(D L^{\prime}{ }_{-} p(1)\) in simp,
metis (mono_tags, lifting) \(\mu_{-} p\) is_ground_comp_subst mem_Collect_eq subst_cls_comp_subst)
moreover have \((C+\{\# L \#\}) \cdot \mu \in\) grounding_of_state \((N, P, Q \cup\{C+\{\# L \#\}\})\)
using \(\mu_{-} p\) unfolding clss_of_state_def grounding_of_clss_def grounding_of_cls_def by auto
moreover have \(\forall I . I \models D \cdot \sigma \cdot \mu+\{\#-(L \cdot l \mu) \#\} \longrightarrow I \models C \cdot \mu+\{\# L \cdot l \mu \#\} \longrightarrow I \models D \cdot \sigma \cdot \mu+C\)
- \(\mu\)
by auto
then have \(\forall I . I \models\left(D+\left\{\# L^{\prime} \#\right\}\right) \cdot \sigma \cdot \mu \longrightarrow I \models(C+\{\# L \#\}) \cdot \mu \longrightarrow I \models D \cdot \sigma \cdot \mu+C \cdot \mu\) using \(D L^{\prime}{ }_{-} p\)
by (metis add_mset_add_single subst_cls_add_mset subst_cls_union subst_minus)
then have \(\forall I . I \models\left(D+\left\{\# L^{\prime} \#\right\}\right) \cdot \sigma \cdot \mu \longrightarrow I \models(C+\{\# L \#\}) \cdot \mu \longrightarrow I \models C \cdot \mu\) using \(D L_{-}^{\prime} p\) by (metis (no_types, lifting) subset_mset.le_iff_add subst_cls_union true_cls_union)
then have \(\forall I . I \models m\left\{\#\left(D+\left\{\# L^{\prime} \#\right\}\right) \cdot \sigma \cdot \mu \#\right\} \longrightarrow I \models(C+\{\# L \#\}) \cdot \mu \longrightarrow I \models C \cdot \mu\) by (meson true_cls_mset_singleton)
ultimately have \(\gamma \in\) sr_ext.inferences_from (grounding_of_state \((N, P, Q \cup\{C+\{\# L \#\}\})\) ) unfolding sr_ext.inferences_from_def unfolding ground_sound_ \(\Gamma_{-}\)def infer_from_def \(\gamma_{-}\)def by simp
```

 then have C \cdot }\mu\in\mathrm{ concls_of (sr_ext.inferences_from (grounding_of_state (N,P,Q U {C+{#L#}})))
 using image_iff unfolding }\mp@subsup{\gamma}{-}{}\mathrm{ def by fastforce
 then have C\mu\in concls_of (sr_ext.inferences_from(grounding_of_state (N,P,Q\cup{C+{#L#}})))
 using }\mp@subsup{\mu}{-}{}p\mathrm{ by auto
 }
 then have grounding_of_state (N,P\cup{C},Q) - grounding_of_state (N, P,Q\cup{C+{#L#}})
 \subseteqconcls_of (sr_ext.inferences_from (grounding_of_state (N,P,Q \cup{C + {#L#}})))
 unfolding grounding_of_clss_def clss_of_state_def by auto
 moreover
 {
 fix CL\mu
 assume CL\mu G grounding_of_cls (C + {#L#})
 then obtain }\mu\mathrm{ where
 \mu_def:CL\mu = (C + {#L#}) \cdot }\mu\wedge\mathrm{ is_ground_subst }
 unfolding grounding_of_cls_def by auto
 have }C\mp@subsup{\mu}{-}{}CL\mu:C\cdot\mu\subset#(C+{#L#})\cdot
 by auto
 then have (C+{#L#}) \cdot }\mu\in\mathrm{ sr.Rf (grounding_of_state (N,P
 using sr.Rf_def[of grounding_of_cls C]
 using strict_subset_subsumption_redundant_state[of C \mu (C+{#L#})}\cdot\mu(N,P\cup{C},Q)] \mu_def
 unfolding clss_of_state_def by force
 then have CL\mu sr.Rf(grounding_of_state (N,P\cup{C},Q))
 using }\mp@subsup{\mu}{_}{\primedef by auto
 }
 then have grounding_of_state (N,P,Q\cup{C+{#L#}}) - grounding_of_state (N,P \cup{C},Q)
 sr.Rf (grounding_of_state (N,P\cup{C},Q))
 unfolding clss_of_state_def grounding_of_clss_def by auto
 ultimately show ?case
 using sr_ext.derive.intros[of grounding_of_state (N,P\cup{C},Q)
 grounding_of_state (N,P,Q\cup{C+{#L#}})]
 by auto
 next
case (clause_processing N C P Q)
then show ?case
unfolding clss_of_state_def using sr_ext.derive.intros by auto
next
case (inference_computation N Q C P)
{
fix }E
assume E\mu\in grounding_of_clss N
then obtain }\muE\mathrm{ where
E_\mu_p: E\mu=E | \mu^E EN^ is_ground_subst }
unfolding grounding_of_clss_def grounding_of_cls_def by auto
then have E_concl: E \in concls_of (ord_FO_resolution.inferences_between Q C)
using inference_computation by auto
then obtain }\gamma\mathrm{ where
\gamma-p: \gamma\in ord_FO_\Gamma S ^ infer_from (Q\cup{C}) \gamma ^C\in\# prems_of }\gamma\wedge\mathrm{ concl_of }\gamma=
unfolding ord_FO_resolution.inferences_between_def by auto
then obtain CC CAs DAAs As \sigma}\mathrm{ where
\gamma_p2: \gamma = Infer CC D E ^ ord_resolve_rename S CAs D AAs As \sigma E ^ mset CAs = CC
unfolding ord_FO_\Gamma_def by auto
define }\varrho\mathrm{ where
\varrho=hd (renamings_apart (D\#CAs))
define \varrhos where
@s=tl (renamings_apart (D \# CAs))
define }\mp@subsup{\gamma}{_}{\primeground where
\gamma_ground = Infer (mset (CAs \cdot.cl @s) cm \sigma cm \mu) (D | @ \sigma | \mu) (E | \mu)
have }\forallI.I\modelsmmset (CAs \cdot.cl \varrhos)\cdotcm \sigma cm \mu\longrightarrowI\modelsD\cdot\varrho\cdot\sigma\cdot\mu\longrightarrowI\modelsE\cdot
using ord_resolve_rename_ground_inst_sound[of _ _ _ - _ - _ - - \mu] \varrho_def \varrhos_def E_ }\mp@subsup{\mu}{-}{
by auto
then have \gamma_ground }\in{\mathrm{ Infer cc d e| cc d e. }\forallI.I\modelsm cc\longrightarrowI\modelsd\longrightarrowI\modelse
unfolding \gamma_ground_def by auto
moreover have set_mset (prems_of \gamma_ground) \subseteqgrounding_of_state ({},P\cup{C},Q)

```
```

proof -
have D=C\veeD G Q
unfolding \mp@subsup{\gamma}{-}{\prime}ground_def using E_ }\mp@subsup{\mu}{-}{}p\mp@subsup{\gamma}{-}{}p2 \mp@subsup{\gamma}{-}{}p\mathrm{ unfolding infer_from_def
unfolding clss_of_state_def grounding_of_clss_def
unfolding grounding_of_cls_def
by simp

```

```

 using E_ __p
 unfolding grounding_of_cls_def
 by (metis (mono_tags, lifting) is_ground_comp_subst mem_Collect_eq subst_cls_comp_subst)
 then have (D | \varrho \sigma \sigma \mu \in grounding_of_cls C V
    ```

```

 (\existsx\inQ.D\cdot\varrho\cdot\sigma\cdot\mu\in grounding_of_cls x))
 by metis
 moreover have }\foralli<length (CAs ..cl @s .cl \sigma cl \mu).((CAs ..cl @s cl \sigma .cl \mu)!i)
 {C\cdot\sigma |\sigma. is_ground_subst \sigma} \cup
 ((\bigcupC CP.{C\cdot\sigma|\sigma. is_ground_subst \sigma}) \cup(\bigcupC\inQ.{C\cdot\sigma|\sigma. is_ground_subst \sigma}))
 proof (rule, rule)
 fix i
 assume i < length (CAs ..cl @s .cl \sigma.cl \mu)
 then have a:i< length CAs \wedgei< length @s
 by simp
 moreover from a have CAs !i\in{C}\cupQ
 using \mp@subsup{\gamma_p}{2}{2} \mp@subsup{\gamma}{-}{}p}\mathrm{ unfolding infer_from_def
 by (metis (no_types, lifting) Un_subset_iff inference.sel(1) set_mset_union
 sup_commute nth_mem_mset subsetCE)
 ultimately have (CAs .cl @s .cl \sigma cl \mu)!i\in
 {C\cdot\sigma|\sigma. is_ground_subst \sigma} \vee
 ((CAs ..cl @s .cl \sigma cl }\mu)!i\in(\bigcupC\inP.{C\cdot\sigma|\sigma. is_ground_subst \sigma}) \vee
 (CAs ..cl @s cl }\sigma\cdot\textrm{cl}\mu)!i\in(\bigcupC\inQ.{C\cdot\sigma|\sigma.is_ground_subst \sigma})
 unfolding \mp@subsup{\gamma}{-}{}ground_def using E_\mu_p \mp@subsup{\gamma}{-}{}p2 \mp@subsup{\gamma}{-}{}p}\mathrm{ unfolding infer_from_def
 unfolding clss_of_state_def grounding_of_clss_def
 unfolding grounding_of_cls_def
 apply -
 apply (cases CAs !i=C)
 subgoal
 apply (rule disjI1)
 apply (rule Set.CollectI)
 apply (rule_tac x=(\varrhos!i)\odot\sigma\odot\mu in exI)
 using \varrhos_def using renames_apart apply (auto;fail)
 done
 subgoal
 apply (rule disjI2)
 apply (rule disjI2)
 apply (rule_tac a=CAs! i in UN_I)
 subgoal
 apply blast
 done
 subgoal
 apply (rule Set.CollectI)
 apply (rule_tac x=(\varrhos!i)\odot\sigma\odot\mu in exI)
 using \varrhos_def using renames_apart apply (auto;fail)
 done
 done
 done
 then show (CAs ..cl @s cl \sigma cl \mu)!i\in{C | \sigma |. is_ground_subst \sigma} U
 ((\bigcupC\inP.{C\cdot\sigma|\sigma. is_ground_subst \sigma}) \cup(\bigcupC\inQ.{C | \sigma | \sigma. is_ground_subst \sigma}))
 by blast
 qed
 then have }\forallx\in# mset (CAs ..cl @s.cl \sigma cl \mu). x \in{C | \sigma | \sigma. is_ground_subst \sigma} U
 ((\bigcupC \inP.{C\cdot\sigma |\sigma. is_ground_subst \sigma}) \cup(\bigcupC\inQ.{C\cdot\sigma|\sigma. is_ground_subst \sigma}))
 by (metis (lifting) in_set_conv_nth set_mset_mset)
 then have set_mset (mset (CAs \cdot.cl @s) cm \sigma cm \mu)\subseteq
    ```
```

 grounding_of_cls C \cup grounding_of_clss P U grounding_of_clss Q
 unfolding grounding_of_cls_def grounding_of_clss_def
 using mset_subst_cls_list_subst_cls_mset by auto
 ultimately show ?thesis
 unfolding \gamma_ground_def clss_of_state_def grounding_of_clss_def by auto
 qed
 ultimately have E \cdot }\mu\in\mathrm{ concls_of (sr_ext.inferences_from (grounding_of_state ({},P }\cup{C,C,Q))
 unfolding sr_ext.inferences_from_def inference_system.inferences_from_def ground_sound_\Gamma_def infer_from_def
 using \mp@subsup{\gamma}{_}{\primeground_def by (metis (no_types, lifting) imageI inference.sel(3) mem_Collect_eq)}
 then have E\mu\in concls_of (sr_ext.inferences_from (grounding_of_state ({}, P\cup{C},Q)))
 using }\mp@subsup{E}{-}{\prime
 }
then have grounding_of_state (N,P,Q\cup{C}) - grounding_of_state ({}, P\cup{C},Q)
\subseteq \mp@code { c o n c l s _ o f ~ (s r _ e x t . i n f e r e n c e s _ f r o m ~ (g r o u n d i n g _ o f _ s t a t e ~ (\{ \} , ~ P \cup \{ C \} , Q))) }
unfolding clss_of_state_def grounding_of_clss_def by auto
moreover have grounding_of_state ({},P\cup{C},Q) - grounding_of_state (N,P,Q Q {C})={}
unfolding clss_of_state_def grounding_of_clss_def by auto
ultimately show ?case
using sr_ext.derive.intros[of (grounding_of_state (N,P,Q\cup{C}))
(grounding_of_state ({}, P\cup{C},Q))] by auto
qed
A useful consequence:
lemma RP_model: St }\rightsquigarrowS\mp@subsup{t}{}{\prime}\LongrightarrowI\modelss grounding_of_state St' \longleftrightarrow \longleftrightarrowI\modelss grounding_of_state St
proof (drule resolution_prover_ground_derive, erule sr_ext.derive.cases, hypsubst)
let
?gSt = grounding_of_state St and
?gSt' = grounding_of_state St'
assume
deduct: ?gSt' - ?gSt \subseteqconcls_of (sr_ext.inferences_from?gSt) (is _ \subseteq ?concls) and
delete:?gSt - ?gSt'\subseteqsr.Rf ?gSt'
show }I\modelss?gg\mp@subsup{t}{}{\prime}\longleftrightarrowI\modelss?gS
proof
assume bef: I =s ?gSt
then have I }=s\mathrm{ ?concls
unfolding ground_sound_\Gamma_def inference_system.inferences_from_def true_clss_def true_cls_mset_def
by (auto simp add: image_def infer_from_def dest!: spec[of_I])
then have diff: I =s ?gSt' - ?gSt
using deduct by (blast intro: true_clss_mono)
then show I =s ?gSt'
using bef unfolding true_clss_def by blast
next
assume aft: I\modelss ?gSt'
have I =s ?gSt'\cup sr.Rf ?gSt'
by (rule sr.Rf_model) (metis aft sr.Rf_mono[OF Un_upper1] Diff_eq_empty_iff Diff_subset
Un_Diff true_clss_mono true_clss_union)
then have I\modelss sr.Rf ?gSt'
using true_clss_union by blast
then have diff: I =s ?gSt - ?gSt'
using delete by (blast intro: true_clss_mono)
then show I =s ?gSt
using aft unfolding true_clss_def by blast
qed
qed

```

Another formulation of the part of Lemma 4.10 that states we have a theorem proving process:
lemma resolution_prover_ground_derivation:
chain \((o p \rightsquigarrow)\) Sts \(\Longrightarrow\) chain sr_ext.derive (lmap grounding_of_state Sts)
using resolution_prover_ground_derive by (simp add: chain_lmap [of op \(\rightsquigarrow\) ])
The following is used prove to Lemma 4.11:
```

lemma in_Sup_llist_in_nth:C \in Sup_llist Ns \Longrightarrow \existsj. enat j < llength Ns ^C \in lnth Ns j
unfolding Sup_llist_def by auto
lemma Sup_llist_grounding_of_state_ground:
assumes C \in Sup_llist (lmap grounding_of_state Sts)
shows is_ground_cls C
proof -
have \existsj. enat j < llength (lmap grounding_of_state Sts) ^C Clnth (lmap grounding_of_state Sts) j
using assms in_Sup_llist_in_nth by metis
then obtain j where
enat j < llength (lmap grounding_of_state Sts)
C\inlnth (lmap grounding_of_state Sts) j
by blast
then show ?thesis
unfolding grounding_of_clss_def grounding_of_cls_def by auto
qed
lemma Liminf_grounding_of_state_ground:
C \in Liminf_llist (lmap grounding_of_state Sts) \Longrightarrow is_ground_cls C
using Liminf_llist_subset_Sup_llist[of lmap grounding_of_state Sts]
Sup_llist_grounding_of_state_ground
by blast
lemma in_Sup_llist_in_Sup_state:
assumes C \in Sup_llist (lmap grounding_of_state Sts)
shows \existsD \sigma. D E clss_of_state (Sup_state Sts) ^D | \sigma = C ^ is_ground_subst \sigma
proof -
from assms obtain i where
i_p: enat i < llength Sts }\wedgeC\inlnth (lmap grounding_of_state Sts) i
using in_Sup_llist_in_nth by fastforce
then obtain D \sigma where
D clss_of_state (lnth Sts i) ^D D \sigma = C ^ is_ground_subst \sigma
using assms unfolding grounding_of_clss_def grounding_of_cls_def by fastforce
then have D G clss_of_state (Sup_state Sts) ^D D \sigma = C ^ is_ground_subst \sigma
using i_p unfolding Sup_state_def clss_of_state_def
by (metis (no_types, lifting) UnCI UnE contra_subsetD N_of_state.simps P_of_state.simps
Q_of_state.simps llength_lmap lnth_lmap lnth_subset_Sup_llist)
then show ?thesis
by auto
qed
lemma
N_of_state_Liminf: N_of_state (Liminf_state Sts) = Liminf_llist (lmap N_of_state Sts) and
P_of_state_Liminf: P_of_state (Liminf_state Sts) = Liminf_llist (lmap P_of_state Sts)
unfolding Liminf_state_def by auto
lemma eventually_removed_from_N:
assumes
d_in: D \in N_of_state (lnth Sts i) and
fair: fair_state_seq Sts and
i_Sts: enat i < llength Sts

```

```

proof (rule ccontr)
assume a:\neg ?thesis
have }i\leql\Longrightarrow\mathrm{ enat l < llength Sts }\LongrightarrowD\inN_of_state (lnth Sts l) for l
using d_in by (induction l, blast, metis a Suc_ile_eq le_SucE less_imp_le)
then have D E Liminf_llist (lmap N_of_state Sts)
unfolding Liminf_llist_def using i_Sts by auto
then show False
using fair unfolding fair_state_seq_def by (simp add: N_of_state_Liminf)
qed
lemma eventually_removed_from_P:

```
```

 assumes
 d_in: D \in P_of_state (lnth Sts i) and
 fair: fair_state_seq Sts and
 i_Sts: enat i < llength Sts
 shows \existsl. D \in P_of_state (lnth Sts l) ^ D & P_of_state (lnth Sts (Suc l)) ^ i \leql ^ enat (Suc l) < llength Sts
 proof (rule ccontr)
assume a:\neg ?thesis
have i}\leql\Longrightarrow\mathrm{ enat l < llength Sts \#D E P_of_state (lnth Sts l) for l
using d_in by (induction l, blast, metis a Suc_ile_eq le_SucE less_imp_le)
then have D < Liminf_llist (lmap P_of_state Sts)
unfolding Liminf_llist_def using i_Sts by auto
then show False
using fair unfolding fair_state_seq_def by (simp add: P_of_state_Liminf)
qed

```
lemma instance_if_subsumed_and_in_limit:

\section*{assumes}
\(n s: N s=l m a p\) grounding_of_state Sts and
\(c: C \in\) Liminf_llist \(N s-s r . R f(\) Liminf_llist \(N s)\) and
\(d: D \in N_{-} o f_{-}\)state \(\left(\right.\)lnth Sts i) \(\cup P_{-}\)of_state \(\left(\right.\)lnth Sts i) \(\cup Q_{-} f_{-}\)state (lnth Sts \(\left.i\right)\)
enat \(i<l l e n g t h\) Sts subsumes \(D C\)
shows \(\exists \sigma . D \cdot \sigma=C \wedge\) is_ground_subst \(\sigma\)
proof -
let ?Ps \(=\lambda i\). P_of_state \((\) lnth Sts i)
let ?Qs \(=\lambda i\). Q_of_state (lnth Sts \(i)\)
have ground_C: is_ground_cls C
using \(c\) using Liminf_grounding_of_state_ground \(n s\) by auto
have derivns: chain sr_ext.derive Ns
using resolution_prover_ground_derivation deriv ns by auto
have \(\exists \sigma . D \cdot \sigma=C\)
proof (rule ccontr)
assume \(\nexists \sigma . D \cdot \sigma=C\)
moreover from \(d(3)\) obtain \(\tau_{-}\)proto where
\(D \cdot \tau_{-}\)proto \(\subseteq \# C\) unfolding subsumes_def
by blast
then obtain \(\tau\) where
\(\tau_{-} p: D \cdot \tau \subseteq \# C \wedge\) is_ground_subst \(\tau\)
using ground_C by (metis is_ground_cls_mono make_ground_subst subset_mset.order_refl)
ultimately have subsub: \(D \cdot \tau \subset \# C\)
using subset_mset.le_imp_less_or_eq by auto
moreover have is_ground_subst \(\tau\)
using \(\tau_{-} p\) by auto
moreover have \(D \in\) clss_of_state (lnth Sts i)
using \(d\) unfolding clss_of_state_def by auto
ultimately have \(C \in s r . R f\) (grounding_of_state (lnth Sts i))
using strict_subset_subsumption_redundant_state[of \(D \tau C\) lnth Sts i] by auto
then have \(C \in s r . R f\left(S u p \_l l i s t ~ N s\right)\)
using \(d n s\) by (metis contra_subsetD llength_lmap lnth_lmap lnth_subset_Sup_llist sr.Rf_mono)
then have \(C \in s r . R f(\) Liminf_llist Ns)
unfolding \(n s\) using local.sr_ext. \(R f_{-}\)Sup_subset_Rf_Liminf derivns ns by auto
then show False
using \(c\) by auto
qed
then obtain \(\sigma\) where
\(D \cdot \sigma=C \wedge\) is_ground_subst \(\sigma\)
using ground_C by (metis make_ground_subst)
then show ?thesis
by auto
```

qed
lemma from_Q_to_Q_inf:
assumes
fair: fair_state_seq Sts and
ns:Ns=lmap grounding_of_state Sts and
c:C \in Liminf_llist Ns - sr.Rf (Liminf_llist Ns) and
d: D \in Q_of_state (lnth Sts i) enat i < llength Sts subsumes D C and
d_least:}\forallE\in{E.E\in(\mathrm{ clss_of_state (Sup_state Sts))^ subsumes E C }. ᄀ strictly_subsumes E D
shows D\inQ_of_state (Liminf_state Sts)
proof -
let ?Ps = \lambdai. P_of_state (lnth Sts i)
let ?Qs = \lambdai. Q_of_state (lnth Sts i)
have ground_C: is_ground_cls C
using c using Liminf_grounding_of_state_ground ns by auto
have derivns: chain sr_ext.derive Ns
using resolution_prover_ground_derivation deriv ns by auto
have }\exists\sigma.D\cdot\sigma=C^is_ground_subst
using instance_if_subsumed_and_in_limit ns c d by blast
then obtain \sigma where
\sigma: D \cdot \sigma=C is_ground_subst \sigma
by auto
from deriv have four_ten: chain sr_ext.derive Ns
using resolution_prover_ground_derivation ns by auto
have in_Sts_in_Sts_Suc:
\foralll\geqi. enat (Suc l) < llength Sts \longrightarrowD G Q_of_state (lnth Sts l) \longrightarrowD 隹 Q_of_state (lnth Sts (Suc l))
proof (rule, rule, rule, rule)
fix l
assume
len: i
llen: enat (Suc l) < llength Sts and
d_in_q: D \in Q_of_state (lnth Sts l)
have lnth Sts l\rightsquigarrow lnth Sts (Suc l)
using llen deriv chain_lnth_rel by blast
then show D\inQ_of_state (lnth Sts (Suc l))
proof (cases rule: RP.cases)
case (backward_subsumption_Q D' N D_removed P Q)
moreover
{
assume D_removed = D
then obtain D_subsumes where
D_subsumes_p: D_subsumes }\inN\wedge\mathrm{ strictly_subsumes D_subsumes D
using backward_subsumption_Q by auto
moreover from D_subsumes_p have subsumes D_subsumes C
using d subsumes_trans unfolding strictly_subsumes_def by blast
moreover from backward_subsumption_Q have D_subsumes \in clss_of_state (Sup_state Sts)
using D_subsumes_p llen
by (metis (no_types) UnI1 clss_of_state_def N_of_state.simps llength_lmap lnth_lmap
lnth_subset_Sup_llist rev_subsetD Sup_state_def)
ultimately have False
using d_least unfolding subsumes_def by auto
}
ultimately show ?thesis
using d_in_q by auto
next
case (backward_reduction_Q E L'N L \sigma D' P Q)
{

```
```

 assume D'
 then have D'_p: strictly_subsumes D' D ^ D' }\in\mathrm{ ?Ps (Suc l)
 using subset_strictly_subsumes[of D' D] backward_reduction_Q by auto
 then have subc: subsumes D' C
 using d(3) subsumes_trans unfolding strictly_subsumes_def by auto
 from D'_p have D'
 using llen by (metis (no_types) UnI1 clss_of_state_def P_of_state.simps llength_lmap
 lnth_lmap lnth_subset_Sup_llist subsetCE sup_ge2 Sup_state_def)
 then have False
 using d_least D'_p subc by auto
 }
 then show ?thesis
 using backward_reduction_Q d_in_q by auto
 qed (use d_in_q in auto)
 qed
 have D_in_Sts: D \in Q_of_state (lnth Sts l) and D_in_Sts_Suc: D \in Q_of_state (lnth Sts (Suc l))
 if l_i:l}l\geqi\mathrm{ and enat: enat (Suc l) < llength Sts for l
 proof -
 show D \in Q_of_state (lnth Sts l)
 using l_i enat
 apply (induction l - i arbitrary: l)
 subgoal using d by auto
 subgoal using d(1) in_Sts_in_Sts_Suc
 by (metis (no_types, lifting) Suc_ile_eq add_Suc_right add_diff_cancel_left' le_SucE
 le_Suc_ex less_imp_le)
 done
 then show D \in Q_of_state (lnth Sts (Suc l))
 using l_i enat in_Sts_in_Sts_Suc by blast
 qed
 have i}\leqx\Longrightarrow\mathrm{ enat }x<\mathrm{ llength Sts }\LongrightarrowD\in\mp@subsup{Q}{_}{\primeof_state (lnth Sts x) for }
 apply (cases x)
 subgoal using d(1) by (auto intro!: exI[of _ i] simp:less_Suc_eq)
 subgoal for }\mp@subsup{x}{}{\prime
 using d(1) D_in_Sts_Suc[of x] by (cases <i\leq x`) (auto simp: not_less_eq_eq)
 done
 then have D E Liminf_llist (lmap Q_of_state Sts)
 unfolding Liminf_llist_def by (auto intro!: exI[of _ i] simp:d)
 then show ?thesis
 unfolding Liminf_state_def by auto
 qed
lemma from_P_to_Q:
assumes
fair: fair_state_seq Sts and
ns:Ns=lmap grounding_of_state Sts and
c:C E Liminf_llist Ns - sr.Rf (Liminf_llist Ns) and
d: D \in P_of_state (lnth Sts i) enat i < llength Sts subsumes D C and
d_least:}\forallE\in{E.E\in(clss_of_state (Sup_state Sts))^ subsumes E C }.\neg strictly_subsumes E D
shows }\existsl.D\inQ_of_state (lnth Sts l)^ enat l < llength St
proof -
let ?Ns = \lambdai. N_of_state (lnth Sts i)
let ?Ps = \lambdai. P_of_state (lnth Sts i)
let ?Qs=\lambdai. Q_of_state (lnth Sts i)
have ground_C: is_ground_cls C
using c using Liminf_grounding_of_state_ground ns by auto
have derivns: chain sr_ext.derive Ns
using resolution_prover_ground_derivation deriv ns by auto
have }\exists\sigma.D\cdot\sigma=C^ is_ground_subst \sigma
using instance_if_subsumed_and_in_limit ns c d by blast
then obtain }\sigma\mathrm{ where

```
\[
\sigma: D \cdot \sigma=C \text { is_ground_subst } \sigma
\]
by auto
from deriv have four_ten: chain sr_ext.derive Ns
using resolution_prover_ground_derivation ns by auto
obtain \(l\) where
\(l_{-} p: D \in P_{-} f_{-}\)state (lnth Sts \(l\) ) \(\wedge D \notin P_{-}\)of_state (lnth Sts \((\)Suc l)) \(\wedge i \leq l \wedge\) enat (Suc l) <llength Sts using fair using eventually_removed_from_P \(d\) unfolding \(n s\) by auto
then have l_Ns: enat (Suc l) < llength Ns
using \(n s\) by auto
from l_p have lnth Sts l lnth Sts (Suc l)
using deriv using chain_lnth_rel by auto
then show ?thesis
proof (cases rule: RP.cases)
case (backward_subsumption_P \(D^{\prime} N D_{-}\)twin \(P Q\) )
note lrhs \(=\) this (1,2) and \(D^{\prime}{ }_{-} p=\operatorname{this}(3,4)\)
then have twins: \(D_{-}\)twin \(=D\) ? Ns \((\) Suc \(l)=N\) ?Ns \(l=N \quad ? P s(\) Suc \(l)=P\) ?Ps \(l=P \cup\left\{D_{\_}\right.\)twin \(\}\)?Qs \((\)Suc \(l)=Q\) ?Qs \(l=Q\) using \(l_{-} p\) by auto
note \(D^{\prime}{ }_{-} p=D^{\prime}{ }_{-} p[\) unfolded twins (1)]
then have subc: subsumes \(D^{\prime} C\) unfolding strictly_subsumes_def subsumes_def using \(\sigma\) by (metis subst_cls_comp_subst subst_cls_mono_mset)
from \(D^{\prime}{ }_{-} p\) have \(D^{\prime} \in\) clss_of_state (Sup_state Sts) unfolding twins(2)[symmetric] using l_p by (metis (no_types) UnI1 clss_of_state_def \(N_{-}\)of_state.simps llength_lmap lnth_lmap lnth_subset_Sup_llist subsetCE Sup_state_def)
then have False using d_least \(D^{\prime}{ }_{-} p\) subc by auto
then show ?thesis by auto
next
case (backward_reduction_PE \(L^{\prime} N L \sigma D^{\prime} P Q\) )
then have twins: \(D^{\prime}+\{\# L \#\}=D\) ? Ns \((\) Suc \(l)=N\) ?Ns \(l=N\) ?Ps \((\) Suc \(l)=P \cup\left\{D^{\prime}\right\}\) ?Ps \(l=P \cup\left\{D^{\prime}+\{\# L \#\}\right\}\) ? Qs \((\) Suc \(l)=Q\) ?Qs \(l=Q\) using \(l_{-} p\) by auto
then have \(D^{\prime}{ }_{-} p\) : strictly_subsumes \(D^{\prime} D \wedge D^{\prime} \in\) ?Ps (Suc l) using subset_strictly_subsumes \(\left[\right.\) of \(\left.D^{\prime} D\right]\) by auto
then have subc: subsumes \(D^{\prime} C\)
using \(d(3)\) subsumes_trans unfolding strictly_subsumes_def by auto
from \(D^{\prime}{ }_{-} p\) have \(D^{\prime} \in\) clss_of_state (Sup_state Sts) using \(l_{-} p\) by (metis (no_types) UnI1 clss_of_state_def P_of_state.simps llength_lmap lnth_lmap lnth_subset_Sup_llist subsetCE sup_ge2 Sup_state_def)
then have False using d_least \(D^{\prime}{ }_{-} p\) subc by auto
then show ?thesis by auto
next
case (inference_computation \(N Q D_{-}\)twin \(P\) )
then have twins: \(D_{-}\)twin \(=D\) ? Ps \((S u c l)=P ? P s l=P \cup\left\{D \_\right.\)twin \(\}\) ?Qs \((\) Suc \(l)=Q \cup\left\{D_{-}\right.\)twin \(\}\)? Qs \(l=Q\)
using \(l_{-} p\) by auto
then show ?thesis using \(d \sigma l_{-} p\) by auto
qed (use \(l_{-} p\) in auto)
qed
lemma variants_sym: variants \(D D^{\prime} \longleftrightarrow\) variants \(D^{\prime} D\)
unfolding variants_def by auto
lemma variants_imp_exists_subtitution: variants \(D D^{\prime} \Longrightarrow \exists \sigma . D \cdot \sigma=D^{\prime}\)
unfolding variants_iff_subsumes subsumes_def
by (meson strictly_subsumes_def subset_mset_def strict_subset_subst_strictly_subsumes subsumes_def)
```

lemma properly_subsume_variants:
assumes strictly_subsumes E D and variants D D'
shows strictly_subsumes E D'
proof -
from assms obtain \sigma \sigma
\sigma_\mp@subsup{\sigma}{}{\prime}
using variants_imp_exists_subtitution variants_sym by metis
from assms obtain }\mp@subsup{\sigma}{}{\prime\prime}\mathrm{ where
E \cdot \sigma''}\subseteq\#
unfolding strictly_subsumes_def subsumes_def by auto
then have E \cdot \sigma'\prime}\cdot\sigma\subseteq\#D | \sigma
using subst_cls_mono_mset by blast
then have E \cdot (\mp@subsup{\sigma}{}{\prime\prime}\odot\sigma)\subseteq\# D'
using }\mp@subsup{\sigma}{-}{}\mp@subsup{\sigma}{}{\prime}\mp@subsup{}{-}{}p\mathrm{ by auto
moreover from assms have n:(\#\sigma.D D \sigma\subseteq\#E)
unfolding strictly_subsumes_def subsumes_def by auto
have }\not\exists\sigma.\mp@subsup{D}{}{\prime}\cdot\sigma\subseteq\#
proof
assume }\exists\mp@subsup{\sigma}{}{\prime\prime\prime}.\mp@subsup{D}{}{\prime}\cdot\mp@subsup{\sigma}{}{\prime\prime\prime}\subseteq\#
then obtain }\mp@subsup{\sigma}{}{\prime\prime\prime}\mathrm{ where
D ^ { \prime } \cdot \sigma ^ { \prime \prime \prime } \subseteq \# \# E
by auto
then have }D\cdot(\sigma\odot\mp@subsup{\sigma}{}{\prime\prime\prime})\subseteq\#
using }\mp@subsup{\sigma}{-}{}\mp@subsup{\sigma}{}{\prime}\mp@subsup{}{-}{}p\mathrm{ by auto
then show False
using n by metis
qed
ultimately show ?thesis
unfolding strictly_subsumes_def subsumes_def by metis
qed
lemma neg_properly_subsume_variants:
assumes }\neg\mathrm{ strictly_subsumes E D and variants D D'
shows ᄀ strictly_subsumes E D'
using assms properly_subsume_variants variants_sym by auto
lemma from_N_to_P_or_Q:
assumes
fair: fair_state_seq Sts and
ns:Ns=lmap grounding_of_state Sts and
c:C\in Liminf_llist Ns - sr.Rf (Liminf_llist Ns) and
d: D \in N_of_state (lnth Sts i) enat i < llength Sts subsumes D C and
d_least:}\forallE\in{E.E\in(\mathrm{ clss_of_state (Sup_state Sts)) ^ subsumes E C }. ᄀ strictly_subsumes E D
shows \existsl D' }\mp@subsup{\sigma}{}{\prime}.\mp@subsup{D}{}{\prime}\in
enat l < llength Sts ^
(\forallE\in{E.E\in(clss_of_state (Sup_state Sts)) ^ subsumes E C }. ᄀ strictly_subsumes E D')}
D'}\cdot\mp@subsup{\sigma}{}{\prime}=C\wedge is_ground_subst \mp@subsup{\sigma}{}{\prime}\wedge subsumes D ' C C
proof -
let ?Ns = \lambdai. N_of_state (lnth Sts i)
let ?Ps = \lambdai. P_of_state (lnth Sts i)
let ?Qs = \lambdai. Q_of_state (lnth Sts i)
have ground_C: is_ground_cls C
using c using Liminf_grounding_of_state_ground ns by auto
have derivns: chain sr_ext.derive Ns
using resolution_prover_ground_derivation deriv ns by auto
have }\exists\sigma.D\cdot\sigma=C^is_ground_subst
using instance_if_subsumed_and_in_limit ns c d by blast

```

\section*{then obtain \(\sigma\) where}
\(\sigma: D \cdot \sigma=C\) is_ground_subst \(\sigma\)
by auto
from \(c\) have no_taut: \(\neg(\exists A\). Pos \(A \in \# C \wedge\) Neg \(A \in \# C)\)
using sr.tautology_redundant by auto
from deriv have four_ten: chain sr_ext.derive Ns
using resolution_prover_ground_derivation ns by auto
have \(\exists l . D \in N_{-}\)_of_state (lnth Sts l) \(\wedge D \notin N_{\text {_of_state }}(\) lnth Sts (Suc l)) \(\wedge i \leq l \wedge\) enat (Suc l) \(<\) llength Sts using fair using eventually_removed_from_ \(N d\) unfolding \(n s\) by auto
then obtain \(l\) where
\(l \_p: D \in N_{-} o f\) _state (lnth Sts \(\left.l\right) \wedge D \notin N_{-} o f \_\)state (lnth Sts \((\)Suc \(\left.l)\right) \wedge i \leq l \wedge\) enat (Suc l) \(<\) llength Sts by auto
then have l_Ns: enat (Suc l) < llength Ns using \(n s\) by auto
from \(l_{-} p\) have lnth Sts \(l \rightsquigarrow\) lnth Sts (Suc l) using deriv using chain_lnth_rel by auto
then show?thesis
proof (cases rule: RP.cases)
case (tautology_deletion A D_twin N P Q)
then have \(D_{-}\)twin \(=D\) using \(l_{-} p\) by auto
then have \(\operatorname{Pos}(A \cdot a \sigma) \in \# C \wedge N e g(A \cdot a \sigma) \in \# C\)
using tautology_deletion \((3,4) \sigma\)
by (metis Melem_subst_cls eql_neg_lit_eql_atm eql_pos_lit_eql_atm)
then have False
using no_taut by metis
then show?thesis by blast
next
case (forward_subsumption \(D^{\prime} P Q D_{-}\)twin \(N\) )
note lrhs \(=\) this \((1,2)\) and \(D^{\prime}{ }^{\prime} p=\) this \((3,4)\)
then have twins: \(D_{-}\)twin \(=D\) ?Ns \((\) Suc \(l)=N\) ?Ns \(l=N \cup\left\{D_{-}\right.\)twin \(\} \quad\) ?Ps \((\) Suc \(l)=P\) ?Ps \(l=P\) ?Qs \((\) Suc \(l)=Q\) ?Qs \(l=Q\) using \(l_{-} p\) by auto
note \(D^{\prime}{ }_{-} p=D^{\prime}{ }_{-} p[\) unfolded twins(1)]
from \(D^{\prime}{ }_{-} p(2)\) have subs: subsumes \(D^{\prime} C\) using \(d(3)\) by (blast intro: subsumes_trans)
moreover have \(D^{\prime} \in\) clss_of_state (Sup_state Sts)
using twins \(D^{\prime}{ }_{-} p l_{-} p\) unfolding clss_of_state_def Sup_state_def
by simp (metis (no_types) contra_subsetD llength_lmap lnth_lmap lnth_subset_Sup_llist)
ultimately have \(\neg\) strictly_subsumes \(D^{\prime} D\)
using d_least by auto
then have subsumes \(D D^{\prime}\)
unfolding strictly_subsumes_def using \(D^{\prime} \_p\) by auto
then have \(v\) : variants \(D D^{\prime}\) using \(D^{\prime}{ }_{-} p\) unfolding variants_iff_subsumes by auto
then have mini: \(\forall E \in\{E \in\) clss_of_state (Sup_state Sts). subsumes \(E C\}\). \(\neg\) strictly_subsumes \(E D^{\prime}\) using d_least \(D^{\prime}\) _p neg_properly_subsume_variants \(\left[o f, D D^{\prime}\right]\) by auto
from \(v\) have \(\exists \sigma^{\prime} . D^{\prime} \cdot \sigma^{\prime}=C\) using \(\sigma\) variants_imp_exists_subtitution variants_sym by (metis subst_cls_comp_subst)
then have \(\exists \sigma^{\prime} . D^{\prime} \cdot \sigma^{\prime}=C \wedge\) is_ground_subst \(\sigma^{\prime}\) using ground_C by (meson make_ground_subst refl)
then obtain \(\sigma^{\prime}\) where \(\sigma^{\prime}{ }_{-} p: D^{\prime} \cdot \sigma^{\prime}=C \wedge\) is_ground_subst \(\sigma^{\prime}\) by metis
show ?thesis
using \(D^{\prime}{ }_{-} p\) twins \(l_{-} p\) subs mini \(\sigma^{\prime}{ }_{-} p\) by auto
next
```

 case (forward_reduction \(E L^{\prime} P Q L \sigma D^{\prime} N\))
 then have twins: \(D^{\prime}+\{\# L \#\}=D\) ? Ns (Suc \(\left.l\right)=N \cup\left\{D^{\prime}\right\}\) ? \(N s l=N \cup\left\{D^{\prime}+\{\# L \#\}\right\}\)
 ?Ps \((\) Suc \(l)=P\) ?Ps \(l=P\) ?Qs \((\) Suc \(l)=Q\) ?Qs \(l=Q\)
 using \(l_{-} p\) by auto
 then have \(D^{\prime}{ }_{-} p\) : strictly_subsumes \(D^{\prime} D \wedge D^{\prime} \in\) ? Ns (Suc l)
 using subset_strictly_subsumes \(\left[\right.\) of \(\left.D^{\prime} D\right]\) by auto
 then have subc: subsumes \(D^{\prime} C\)
 using \(d(3)\) subsumes_trans unfolding strictly_subsumes_def by blast
 from \(D^{\prime}{ }_{-} p\) have \(D^{\prime} \in\) clss_of_state (Sup_state Sts)
 using l_p by (metis (no_types) UnI1 clss_of_state_def N_of_state.simps llength_lmap lnth_lmap
 lnth_subset_Sup_llist subsetCE Sup_state_def)
 then have False
 using d_least \(D^{\prime}{ }_{-} p\) subc by auto
 then show ?thesis
 by auto
 next
 case (clause_processing \(N\) D_twin \(P Q\))
 then have twins: \(\quad D_{_}\)twin \(=D\) ? Ns \((\) Suc \(l)=N\) ? \(N s l=N \cup\{D\} \quad\) ? Ps \((\) Suc \(l)=P \cup\{D\}\)
 ?Ps \(l=P\) ? Qs (Suc \(l)=Q\) ?Qs \(l=Q\)
 using \(l-p\) by auto
 then show ?thesis
 using \(d \sigma\) l_p d_least by blast
 qed (use l_p in auto)
 qed
lemma eventually_in_Qinf:
assumes
D_p: $D \in$ clss_of_state (Sup_state Sts)
subsumes $D C \forall E \in\left\{E . E \in\left(\right.\right.$ clss_of_state $\left(S u p_{-}\right.$state Sts)) \wedge subsumes $\left.E C\right\}$. ᄀ strictly_subsumes $E D$ and
fair: fair_state_seq Sts and
$n s: N s=l m a p$ grounding_of_state Sts and
$c: C \in$ Liminf_llist $N s-s r . R f($ Liminf_llist $N s)$ and
ground_C: is_ground_cls C
shows $\exists D^{\prime} \sigma^{\prime} . D^{\prime} \in Q_{-} f_{-}$state $\left(\right.$Liminf_state Sts) $\wedge D^{\prime} \cdot \sigma^{\prime}=C \wedge$ is_ground_subst σ^{\prime}
proof -
let ?Ns $=\lambda i . N_{-} o f _s t a t e ~(l n t h ~ S t s ~ i) ~$
let ?Ps $=\lambda i . P_{-} o f _s t a t e ~(l n t h S t s i)$
let ?Qs $=\lambda i$. Q_of_state $($ lnth Sts $i)$
from $D_{-} p$ obtain i where
$i_{-} p: i<$ llength Sts $D \in$?Ns $i \vee D \in$?Ps $i \vee D \in$?Qs i
unfolding clss_of_state_def Sup_state_def
by simp_all (metis (no_types) in_Sup_llist_in_nth llength_lmap lnth_lmap)
have derivns: chain sr_ext.derive Ns using resolution_prover_ground_derivation deriv ns by auto
have $\exists \sigma . D \cdot \sigma=C \wedge i s _g r o u n d _s u b s t \sigma$
using instance_if_subsumed_and_in_limit[OF ns c] D_p i_p by blast
then obtain σ where
$\sigma: D \cdot \sigma=C$ is_ground_subst σ
by blast
\{
assume $a: D \in$?Ns i
then obtain $D^{\prime} \sigma^{\prime} l$ where $D^{\prime}{ }_{-} p$:
$D^{\prime} \in$? Ps $l \cup$?Qs l
$D^{\prime} \cdot \sigma^{\prime}=C$
enat $l<$ llength Sts
is_ground_subst σ^{\prime}
$\forall E \in\{E . E \in($ clss_of_state $($ Sup_state Sts $)) \wedge$ subsumes $E C\} . \neg$ strictly_subsumes $E D^{\prime}$
subsumes $D^{\prime} C$
using from_N_to_P_or_Q deriv fair ns c i_p(1) $D_{-} p(2) D_{-} p(3)$ by blast

```
```

 then obtain l' where
 l'_p: D' }\in\mathrm{ ?Qs l' l' < llength Sts
 using from_P_to_Q[OF fair ns c_ D'_
 then have D' }\mp@subsup{D}{}{\prime}\mathrm{ Q_of_state (Liminf_state Sts)
 using from_Q_to_Q_inf[OF fair ns c_ _ l'_
 then have ?thesis
 using D'_p by auto
 }
 moreover
 {
 assume a: D\in?Ps i
 then obtain l' where
 l'_p:D E?Qs l' l' < llength Sts
 using from_P_to_Q[OF fair ns c a i_p(1) D_p(2) D_p(3)] by auto
 then have }D\in\mp@subsup{Q}{_}{\prime}of_state (Liminf_state Sts
 using from_Q_to_Q_inf[OF fair ns c l'_p(1) l'_}p(2)] D_p(3) \sigma(1) \sigma(2) D_p(2) by aut
 then have ?thesis
 using }\mp@subsup{D}{-}{}p\sigma\mathrm{ by auto
 }
 moreover
 {
 assume a: D\in?Qs i
 then have D\in Q_of_state (Liminf_state Sts)
 using from_Q_to_Q_inf[OF fair ns c a i_p(1)]\sigma D_p(2,3) by auto
 then have ?thesis
 using D_p \sigma by auto
 }
 ultimately show ?thesis
 using i_p by auto
 qed

```

The following corresponds to Lemma 4.11:
```

lemma fair_imp_Liminf_minus_Rf_subset_ground_Liminf_state:
assumes
deriv: chain (op \rightsquigarrow) Sts and
fair: fair_state_seq Sts and
$n s:$ Ns $=$ lmap grounding_of_state Sts
shows Liminf_llist Ns - sr.Rf $($ Liminf_llist Ns $) \subseteq$ grounding_of_clss ($Q_{\text {_of_state }}($ Liminf_state Sts) $)$
proof
let ?Ns $=\lambda i$. N_{-}of_state (lnth Sts i)
let ?Ps $=\lambda i$. P_of_state $($ lnth Sts $i)$
let ?Qs $=\lambda i$. Q_of_state (lnth Sts i)
have SQinf: clss_of_state (Liminf_state Sts) $=$ Liminf_llist (lmap Q_of_state Sts)
using fair unfolding fair_state_seq_def Liminf_state_def clss_of_state_def by auto
fix C
assume C_p: $C \in$ Liminf_llist Ns - sr.Rf (Liminf_llist Ns)
then have $C \in$ Sup_llist Ns
using Liminf_llist_subset_Sup_llist[of Ns] by blast
then obtain D_proto where
D_proto \in clss_of_state (Sup_state Sts) \wedge subsumes D_proto C
using in_Sup_llist_in_Sup_state unfolding ns subsumes_def by blast
then obtain D where
D_p: $D \in$ clss_of_state (Sup_state Sts)
subsumes $D C$
$\forall E \in\{E . E \in$ clss_of_state (Sup_state Sts) \wedge subsumes $E C\}$. \neg strictly_subsumes E D
using strictly_subsumes_has_minimum $[$ of $\{E . E \in$ clss_of_state (Sup_state Sts) \wedge subsumes E C $\}$]
by auto

```
    have ground_C: is_ground_cls \(C\)
    using C_p using Liminf_grounding_of_state_ground ns by auto
```

 have \(\exists D^{\prime} \sigma^{\prime} . D^{\prime} \in Q _o f\) _state (Liminf_state Sts) \(\wedge D^{\prime} \cdot \sigma^{\prime}=C \wedge\) is_ground_subst \(\sigma^{\prime}\)
 using eventually_in_Qinf[of D C Ns \(]\) using \(D_{-} p(1) D_{-} p(2) D_{-} p(3)\) fair ns C_p ground_C by auto
 then obtain \(D^{\prime} \sigma^{\prime}\) where
 \(D^{\prime}\) _p: \(D^{\prime} \in Q_{\text {_of_state }}\left(\right.\) Liminf_state Sts) \(\wedge D^{\prime} \cdot \sigma^{\prime}=C \wedge\) is_ground_subst \(\sigma^{\prime}\)
 by blast
 then have \(D^{\prime} \in\) clss_of_state (Liminf_state Sts)
 by (simp add: clss_of_state_def)
 then have \(C \in\) grounding_of_state (Liminf_state Sts)
 unfolding grounding_of_clss_def grounding_of_cls_def using \(D^{\prime}{ }_{-} p\) by auto
 then show \(C \in\) grounding_of_clss (\(Q_{-}\)of_state (Liminf_state Sts))
 using SQinf clss_of_state_def fair fair_state_seq_def by auto
 qed

```

The following corresponds to (one direction of) Theorem 4.13:
```

lemma ground_subclauses:
assumes
\foralli<length CAs.CAs!i=Cs!i+ poss (AAs!i) and
length Cs = length CAs and
is_ground_cls_list CAs
shows is_ground_cls_list Cs
unfolding is_ground_cls_list_def
by (metis assms in_set_conv_nth is_ground_cls_list_def is_ground_cls_union)
lemma subseteq_Liminf_state_eventually_always:
fixes CC
assumes
finite CC and
CC\not={} and
CC\subseteqQ_of_state (Liminf_state Sts)
shows \existsj. enat j < llength Sts }\wedge(\forall\mp@subsup{j}{}{\prime}\geq\mathrm{ enat j. j' < llength Sts }\longrightarrowCC\subseteq Q_of_state (lnth Sts j')
proof -
from assms(3) have }\forallC\inCC.\existsj. enat j < llength Sts ^
(}\mp@subsup{|}{}{\prime}\geq\mathrm{ enat j. j' < llength Sts }\longrightarrowC\inQ_of_state (lnth Sts j'))
unfolding Liminf_state_def Liminf_llist_def by force
then obtain f}\mathrm{ where
f_p:\forallC\inCC.fC<llength Sts }\wedge(\forall\mp@subsup{j}{}{\prime}\geq\mathrm{ enat (f C). j' < llength Sts }\longrightarrowC\inQ_of_state (lnth Sts j')
by moura
define j :: nat where
j= Max (f`CC)
have enat j < llength Sts
unfolding j_def using f_p assms(1)
by (metis (mono_tags) Max_in assms(2) finite_imageI imageE image_is_empty)
moreover have \forallC j'.C \inCC\longrightarrow enat j \leq j'\longrightarrow }\longrightarrow\mp@subsup{j}{}{\prime}<llength Sts \longrightarrowC C Q_of_state (lnth Sts j'
proof (intro allI impI)
fix C :: 'a clause and j' :: nat
assume a:C }\inCC\mathrm{ enat j < enat j' enat j' < llength Sts
then have fC\leqj'
unfolding j_def using assms(1) Max.bounded_iff by auto
then show C \& Q_of_state (lnth Sts j')
using \mp@subsup{f}{-}{}p a by auto
qed
ultimately show ?thesis
by auto
qed
lemma empty_clause_in_Q_of_Liminf_state:
assumes
empty_in: {\#} \in Liminf_llist (lmap grounding_of_state Sts) and
fair: fair_state_seq Sts
shows {\#} \in Q_of_state (Liminf_state Sts)
proof -

```
```

 define Ns :: 'a clause set llist where
 ns:Ns = lmap grounding_of_state Sts
 from empty_in have in_Liminf_not_Rf: {#} \in Liminf_llist Ns - sr.Rf (Liminf_llist Ns)
 unfolding ns sr.Rf_def by auto
 from assms obtain i where
 i_p: enat i < llength (lmap grounding_of_state Sts)
 {#}\in lnth (lmap grounding_of_state Sts) i
 unfolding Liminf_llist_def by force
 then have {#} \in grounding_of_state (lnth Sts i)
 by auto
 then have {#} \in clss_of_state (lnth Sts i)
 unfolding grounding_of_clss_def grounding_of_cls_def by auto
 then have in_Sup_state: {#} \in clss_of_state (Sup_state Sts)
 using i_p(1) unfolding Sup_state_def clss_of_state_def
 by simp (metis llength_lmap lnth_lmap lnth_subset_Sup_llist set_mp)
    ```

```

 using eventually_in_Qinf[of {#} {#} Ns,OF in_Sup_state _ _ fair ns in_Liminf_not_Rf]
 unfolding is_ground_cls_def strictly_subsumes_def subsumes_def by simp
 then show ?thesis
 by simp
 qed
lemma grounding_of_state_Liminf_state_subseteq:
grounding_of_state (Liminf_state Sts)\subseteq Liminf_llist (lmap grounding_of_state Sts)
proof
fix C :: 'a clause
assume C \in grounding_of_state (Liminf_state Sts)
then obtain D \sigma where
D_\sigma_p: D \in clss_of_state (Liminf_state Sts) D \cdot \sigma = C is_ground_subst \sigma
unfolding clss_of_state_def grounding_of_clss_def grounding_of_cls_def by auto
then have ii: D\inLiminf_llist (lmap N_of_state Sts) \vee
D}\in\mathrm{ Liminf_llist (lmap P_of_state Sts) V
D E Liminf_llist (lmap Q_of_state Sts)
unfolding clss_of_state_def Liminf_state_def by simp
then have C\in Liminf_llist (lmap grounding_of_clss (lmap N_of_state Sts)) V
C\inLiminf_llist (lmap grounding_of_clss (lmap P_of_state Sts)) \vee
C\inLiminf_llist (lmap grounding_of_clss (lmap Q_of_state Sts))
unfolding Liminf_llist_def grounding_of_clss_def grounding_of_cls_def
apply -
apply (erule disjE)
subgoal
apply (rule disjI1)
using }\mp@subsup{D}{-}{\prime}\mp@subsup{\sigma}{-}{}p\mathrm{ by auto
subgoal
apply (erule HOL.disjE)
subgoal
apply (rule disjI2)
apply (rule disjI1)
using D_\sigma_p by auto
subgoal
apply (rule disjI2)
apply (rule disjI2)
using D_\sigma_p by auto
done
done
then show C\in Liminf_llist (lmap grounding_of_state Sts)
unfolding Liminf_llist_def clss_of_state_def grounding_of_clss_def by auto
qed
theorem RP_sound:
assumes {\#}\inclss_of_state (Liminf_state Sts)

```
```

 shows \neg satisfiable (grounding_of_state (lhd Sts))
 proof -
from assms have {\#} \in grounding_of_state (Liminf_state Sts)
unfolding grounding_of_clss_def by (force intro: ex_ground_subst)
then have \neg satisfiable (grounding_of_state (Liminf_state Sts))
unfolding true_clss_def by auto
then have }\neg\mathrm{ satisfiable (Liminf_llist (lmap grounding_of_state Sts))
using grounding_of_state_Liminf_state_subseteq true_clss_mono by blast
then have }\neg\mathrm{ satisfiable (lhd (lmap grounding_of_state Sts))
using sr_ext.sat_deriv_Liminf_iff [of lmap grounding_of_state Sts]
by (metis deriv resolution_prover_ground_derivation)
then show?thesis
unfolding lhd_lmap_Sts .
qed
theorem RP_saturated_if_fair:
assumes fair: fair_state_seq Sts
shows sr.saturated_upto (Liminf_llist (lmap grounding_of_state Sts))
proof -
define Ns :: 'a clause set llist where
ns:Ns=lmap grounding_of_state Sts
let ?N = \lambdai. grounding_of_state (lnth Sts i)
let ?Ns = \lambdai. N_of_state (lnth Sts i)
let ?Ps = \lambdai. P_of_state (lnth Sts i)
let ?Qs = i i. Q_of_state (lnth Sts i)
have ground_ns_in_ground_limit_st:
Liminf_llist Ns - sr.Rf (Liminf_llist Ns)\subseteq grounding_of_clss (Q_of_state (Liminf_state Sts))
using fair deriv fair_imp_Liminf_minus_Rf_subset_ground_Liminf_state ns by blast
have derivns: chain sr_ext.derive Ns
using resolution_prover_ground_derivation deriv ns by auto
{
fix }\gamma\mathrm{ :: 'a inference
assume \gamma_p: \gamma \in gr.ord_\Gamma
let ?CC = side_prems_of \gamma
let ?DA = main_prem_of }
let ?E = concl_of \gamma
assume a: set_mset ?CC\cup{?DA}
\subseteq Liminf_llist (lmap grounding_of_state Sts) - sr.Rf (Liminf_llist (lmap grounding_of_state Sts))
have ground_ground_Liminf: is_ground_clss (Liminf_llist (lmap grounding_of_state Sts))
using Liminf_grounding_of_state_ground unfolding is_ground_clss_def by auto
have ground_cc: is_ground_clss (set_mset ?CC)
using a ground_ground_Liminf is_ground_clss_def by auto
have ground_da: is_ground_cls ?DA
using a grounding_ground singletonI ground_ground_Liminf
by (simp add: Liminf_grounding_of_state_ground)
from }\mp@subsup{\gamma}{-}{}p\mathrm{ obtain CAs AAs As where
CAs_p: gr.ord_resolve CAs ?DA AAs As ?E }\wedge mset CAs = ?CC
unfolding gr.ord_\Gamma_def by auto
have DA_CAs_in_ground_Liminf:
{?DA} \cup set CAs \subseteq grounding_of_clss (Q_of_state (Liminf_state Sts))
using a CAs_p unfolding clss_of_state_def using fair unfolding fair_state_seq_def
by (metis (no_types, lifting) Un_empty_left ground_ns_in_ground_limit_st a clss_of_state_def
ns set_mset_mset subset_trans sup_commute)

```
then have ground_cas: is_ground_cls_list CAs
using CAs_p unfolding is_ground_cls_list_def by auto
```

have ground_e: is_ground_cls ?E
proof -
have a1: atms_of ? E \subseteq(\bigcup CA\in set CAs. atms_of CA) \cup atms_of ?DA
using \gamma_p ground_cc ground_da gr.ord_resolve_atms_of_concl_subset[of CAs ?DA _ _ ?E] CAs_p
by auto
{
fix L :: 'a literal
assume L \in\# concl_of }
then have atm_of L \in atms_of (concl_of \gamma)
by (meson atm_of_lit_in_atms_of)
then have is_ground_atm (atm_of L)
using a1 ground_cas ground_da is_ground_cls_imp_is_ground_atm is_ground_cls_list_def
by auto
}
then show ?thesis
unfolding is_ground_cls_def is_ground_lit_def by simp
qed
have \existsAAs As \sigma. ord_resolve (S_M S (Q_of_state (Liminf_state Sts))) CAs ?DA AAs As \sigma ?E
using CAs_p[THEN conjunct1]
proof (cases rule: gr.ord_resolve.cases)
case (ord_resolve n Cs D)
note DA=this(1) and e=this(2) and cas_len =this(3) and cs_len = this(4) and
aas_len = this(5) and as_len = this(6) and nz=this(7) and cas=this(8) and
aas_not_empt = this(9) and as_aas = this(10) and eligibility = this(11) and
str_max = this(12) and sel_empt = this(13)
have len_aas_len_as:length AAs = length As
using aas_len as_len by auto
from as_aas have }\foralli<n.\forallA\in\# add_mset (As!i)(AAs!i).A=As!
using ord_resolve by simp
then have \foralli<n.card (set_mset (add_mset (As!i) (AAs!i)))\leqSuc 0
using all_the_same by metis
then have \foralli< length AAs.card (set_mset (add_mset (As!i)(AAs!i)))\leqSuc 0
using aas_len by auto
then have }\forallAA\in set (map2 add_mset As AAs). card (set_mset AA) \leq Suc 0
using set_map2_ex[of AAs As add_mset, OF len_aas_len_as] by auto
then have is_unifiers id_subst (set_mset 'set (map2 add_mset As AAs))
unfolding is_unifiers_def is_unifier_def by auto
moreover have finite (set_mset'set (map2 add_mset As AAs))
by auto
moreover have }\forallAA\in\mathrm{ set_mset ' set (map2 add_mset As AAs). finite AA
by auto
ultimately obtain }\sigma\mathrm{ where
\sigma_p:Some \sigma = mgu (set_mset ' set (map2 add_mset As AAs))
using mgu_complete by metis
have ground_elig: gr.eligible As (D + negs (mset As))
using ord_resolve by simp
have ground_cs: }\foralli<n. is_ground_cls (Cs!i
using ord_resolve(8) ord_resolve(3,4) ground_cas
using ground_subclauses[of CAs Cs AAs] unfolding is_ground_cls_list_def by auto
have ground_set_as: is_ground_atms (set As)
using ord_resolve(1) ground_da
by (metis atms_of_negs is_ground_cls_union set_mset_mset is_ground_cls_is_ground_atms_atms_of)
then have ground_mset_as: is_ground_atm_mset (mset As)
unfolding is_ground_atm_mset_def is_ground_atms_def by auto
have ground_as: is_ground_atm_list As

```
using ground＿set＿as is＿ground＿atm＿list＿def is＿ground＿atms＿def by auto
have ground＿d：is＿ground＿cls \(D\)
using ground＿da ord＿resolve by simp
from as＿len \(n z\) have atms＿of \(D \cup\) set \(A s \neq\{ \}\) finite（atms＿of \(D \cup\) set As）
by auto
then have \(\operatorname{Max}(\) atms＿of \(D \cup\) set \(A s) \in\) atms＿of \(D \cup\) set \(A s\) using Max＿in by metis
then have is＿ground＿Max：is＿ground＿atm（Max（atms＿of D \(\cup\) set As）） using ground＿d ground＿mset＿as is＿ground＿cls＿imp＿is＿ground＿atm unfolding is＿ground＿atm＿mset＿def by auto
then have Max和is＿Max：\(\forall \sigma . \operatorname{Max}\left(a t m s_{-} o f D \cup\right.\) set \(\left.A s\right) \cdot a \sigma=M a x\left(a t m s_{-} o f D \cup\right.\) set As） by auto
have ann1：maximal＿wrt（Max（atms＿of \(D \cup\) set As））\((D+\) negs（mset As））
unfolding maximal＿wrt＿def
by clarsimp（metis Max＿less＿iff UnCI〈atms＿of \(D \cup\) set \(A s \neq\{ \}\rangle\)
\(\langle\) finite \((\) atms＿of \(D \cup\) set As）〉 ground＿d ground＿set＿as infinite＿growing is＿ground＿Max is＿ground＿atms＿def is＿ground＿cls＿imp＿is＿ground＿atm less＿atm＿ground）
from ground＿elig have ann2：
Max（atms＿of \(D \cup\) set As）\(\cdot a \sigma=M a x(\) atms＿of \(D \cup\) set As）
\(D \cdot \sigma+\) negs \((m s e t A s \cdot a m \sigma)=D+\) negs \((m s e t A s)\)
using is＿ground＿Max ground＿mset＿as ground＿d by auto
from ground＿elig have fo＿elig：
eligible（S＿M S（Q＿of＿state（Liminf＿state Sts）））\(\sigma\) As（ \(D+\operatorname{negs}(m s e t A s))\)
unfolding gr．eligible．simps eligible．simps gr．maximal＿wrt＿def using ann1 ann2
by（auto simp：\(\left.S_{-} Q_{-} d e f\right)\)
have \(l: \forall i<n\) ．gr．strictly＿maximal＿wrt（As！i）（Cs！i）
using ord＿resolve by simp
then have \(\forall i<n\) ．strictly＿maximal＿wrt（As！i）（Cs！i）
unfolding gr．strictly＿maximal＿wrt＿def strictly＿maximal＿wrt＿def
using ground＿as［unfolded is＿ground＿atm＿list＿def］ground＿cs as＿len less＿atm＿ground by clarsimp（fastforce simp：is＿ground＿cls＿as＿atms）＋
then have \(l l: \forall i<n\) ．strictly＿maximal＿wrt \((A s!i \cdot a \sigma)(C s!i \cdot \sigma)\) by（simp add：ground＿as ground＿cs as＿len）
have \(m: \forall i<n . S_{-} Q(C A s!i)=\{\#\}\)
using ord＿resolve by simp
have ground＿e：is＿ground＿cls（ \(\bigcup \#\) mset Cs + D）
using ground＿d ground＿cs ground＿e e by simp
show ？thesis
using ord＿resolve．intros［OF cas＿len cs＿len aas＿len as＿len nz cas aas＿not＿empt \(\sigma_{-} p\) fo＿elig ll］\(m\) DA e ground＿e unfolding \(S_{-} Q_{-}\)def by auto
qed
then obtain AAs As \(\sigma\) where
\(\sigma_{-} p:\) ord＿resolve（S＿M S（Q＿of＿state（Liminf＿state Sts）））CAs ？DA AAs As \(\sigma\) ？E
by auto
then obtain \(\eta s^{\prime} \eta^{\prime} \eta 2^{\prime} C A s^{\prime} D A^{\prime} A A s^{\prime} A s^{\prime} \tau^{\prime} E^{\prime}\) where \(s_{-} p\) ：
is＿ground＿subst \(\eta^{\prime}\)
is＿ground＿subst＿list \(\eta s^{\prime}\)
is＿ground＿subst \(\eta 2^{\prime}\)
ord＿resolve＿rename \(S C A s^{\prime} D A^{\prime} A A s^{\prime} A s^{\prime} \tau^{\prime} E^{\prime}\)
\(C A s^{\prime} . . c l \eta s^{\prime}=C A s\)
\(D A^{\prime} \cdot \eta^{\prime}=? D A\)
\(E^{\prime} \cdot \eta 2^{\prime}=? E\)
\(\left\{D A^{\prime}\right\} \cup\) set \(C A s^{\prime} \subseteq Q_{\text {＿of＿state }}(\) Liminf＿state Sts）
using ord＿resolve＿rename＿lifting［OF sel＿stable，of \(Q_{\text {＿of＿state }}(\) Liminf＿state Sts）CAs ？DA］ \(\sigma_{-} p\) selection＿axioms DA＿CAs＿in＿ground＿Liminf by metis
```

 from this(8) have \existsj. enat j < llength Sts }\wedge(\mathrm{ set CAs'}\cup{DA'}\subseteq?Qs j
 unfolding Liminf_llist_def
 using subseteq_Liminf_state_eventually_always[of {DA'}\cup set CAs'] by auto
 then obtain }j\mathrm{ where
 j_p: is_least (\lambdaj. enat j < llength Sts }\wedge\mathrm{ set CAs' }\cup{D\mp@subsup{A}{}{\prime}}\subseteq?Qs j) j
 using least_exists[of \lambdaj. enat j < llength Sts }\wedge\mathrm{ set CAs'}\cup{D\mp@subsup{A}{}{\prime}}\subseteq\mathrm{ ?Qs j] by force
 then have j_p': enat j < llength Sts set CAs'}\cup{D\mp@subsup{A}{}{\prime}}\subseteq?Qs
 unfolding is_least_def by auto
 then have jn0: j\not=0
 using empty_Q0 by (metis bot_eq_sup_iff gr_implies_not_zero insert_not_empty llength_lnull
 lnth_0_conv_lhd sup.orderE)
 then have j_adds_CAs': ᄀ set CAs'\cup{DA'}\subseteq?Qs(j - 1) set CAs'\cup{DA'}\subseteq?Qs j
 using j_p unfolding is_least_def
 apply (metis (no_types) One_nat_def Suc_diff_Suc Suc_ile_eq diff_diff_cancel diff_zero
 less_imp_le less_one neq0_conv zero_less_diff)
 using j_p'(2) by blast
 have lnth Sts (j - 1) m lnth Sts j
using j_p'(1) jn0 deriv chain_lnth_rel[of _ _ j - 1] by force
then obtain C' where C'_p:
?Ns (j-1) = {}
?Ps (j-1) = ?Ps j\cup{\mp@subsup{C}{}{\prime}}
?Qs j =?Qs (j - 1) \cup{C'}
?Ns j = concls_of (ord_FO_resolution.inferences_between (?Qs (j - 1)) C')
C'}\in\mathrm{ set CAs'}\cup{D\mp@subsup{A}{}{\prime}
C'}\not=?Qs(j-1
using j_adds_CAs' by (induction rule: RP.cases) auto
then have ihih: set CAs'\cup{DA'}-{\mp@subsup{C}{}{\prime}}\subseteq?Qs(j-1)
using j_adds_CAs' by auto
have E' }\in\mathrm{ ? Ns j
proof -
have E' G concls_of (ord_FO_resolution.inferences_between (Q_of_state (lnth Sts (j - 1))) C')
unfolding infer_from_def ord_FO_\Gamma_def unfolding inference_system.inferences_between_def
apply (rule_tac x = Infer (mset CAs')DA' E' in image_eqI)
subgoal by auto
subgoal
using s_p(4)
unfolding infer_from_def
apply (rule ord_resolve_rename.cases)
using s_p(4)
using C'_p(3) C'_}\mp@subsup{\}{}{\prime}(5) j-p'(2) apply forc
done
done
then show ?thesis
using C'_}\mp@subsup{_}{}{\prime}(4)\mathrm{ by auto
qed
then have E' }\in\mathrm{ clss_of_state (lnth Sts j)
using j_ p' unfolding clss_of_state_def by auto
then have ?E \in grounding_of_state (lnth Sts j)
using s_p(7) s_p(3) unfolding grounding_of_clss_def grounding_of_cls_def by force
then have \gamma\insr.Ri (grounding_of_state (lnth Sts j))
using sr.Ri_effective \gamma_p by auto
then have }\gamma\ins\mp@subsup{r}{-}{\prime}ext_Ri (?N j
unfolding sr_ext_Ri_def by auto
then have \gamma \in sr_ext_Ri (Sup_llist (lmap grounding_of_state Sts))
using j_p' contra_subsetD llength_lmap lnth_lmap lnth_subset_Sup_llist sr_ext.Ri_mono by metis
then have \gamma\in sr_ext_Ri (Liminf_llist (lmap grounding_of_state Sts))
using sr_ext.Ri_Sup_subset_Ri_Liminf[of Ns] derivns ns by blast
}
then have sr_ext.saturated_upto (Liminf_llist (lmap grounding_of_state Sts))
unfolding sr_ext.saturated_upto_def sr_ext.inferences_from_def infer_from_def sr_ext_Ri_def
by auto
then show ?thesis

```
```

 using gd_ord_\Gamma_ngd_ord_\Gamma sr.redundancy_criterion_axioms
 redundancy_criterion_standard_extension_saturated_upto_iff [of gr.ord_\Gamma]
 unfolding sr_ext_Ri_def by auto
 qed
corollary RP_complete_if_fair:
assumes
fair: fair_state_seq Sts and
unsat: ᄀ satisfiable (grounding_of_state (lhd Sts))
shows {\#} \in Q_of_state (Liminf_state Sts)
proof -
have \neg satisfiable (Liminf_llist (lmap grounding_of_state Sts))
unfolding sr_ext.sat_deriv_Liminf_iff[OF resolution_prover_ground_derivation[OF deriv]]
by (rule unsat[folded lhd_lmap_Sts[of grounding_of_state]])
moreover have sr.saturated_upto (Liminf_llist (lmap grounding_of_state Sts))
by (rule RP_saturated_if_fair[OF fair, simplified])
ultimately have {\#} \in Liminf_llist (lmap grounding_of_state Sts)
using sr.saturated_upto_complete_if by auto
then show ?thesis
using empty_clause_in_Q_of_Liminf_state fair by auto
qed
end
end
end

```
```

