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Formalization of Bachmair and Ganzinger’s

Ordered Resolution Prover

Anders Schlichtkrull, Jasmin Christian Blanchette, Dmitriy Traytel, and Uwe Waldmann

January 22, 2018

Abstract

This Isabelle/HOL formalization covers Sections 2 to 4 of Bachmair and Ganzinger’s “Resolution The-
orem Proving” chapter in the Handbook of Automated Reasoning. This includes soundness and com-
pleteness of unordered and ordered variants of ground resolution with and without literal selection, the
standard redundancy criterion, a general framework for refutational theorem proving, and soundness and
completeness of an abstract first-order prover.
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1 Introduction

Bachmair and Ganzinger’s “Resolution Theorem Proving” chapter in the Handbook of Automated Reasoning
is the standard reference on the topic. It defines a general framework for propositional and first-order
resolution-based theorem proving. Resolution forms the basis for superposition, the calculus implemented
in many popular automatic theorem provers.

This Isabelle/HOL formalization covers Sections 2.1, 2.2, 2.4, 2.5, 3, 4.1, 4.2, and 4.3 of Bachmair and
Ganzinger’s chapter. Section 2 focuses on preliminaries. Section 3 introduces unordered and ordered variants
of ground resolution with and without literal selection and proves them refutationally complete. Section 4.1
presents a framework for theorem provers based on refutation and saturation. Finally, Section 4.2 generalizes
the refutational completeness argument and introduces the standard redundancy criterion, which can be
used in conjunction with ordered resolution. Section 4.3 lifts the result to a first-order prover, specified as a
calculus. Figure 1 shows the corresponding Isabelle theory structure.

2 Map Function on Two Parallel Lists

theory Map2
imports Main

begin

This theory defines a map function that applies a (curried) binary function elementwise to two parallel lists.
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The definition is taken from https://www.isa-afp.org/browser_info/current/AFP/Jinja/Listn.html.

abbreviation map2 :: ( ′a ⇒ ′b ⇒ ′c) ⇒ ′a list ⇒ ′b list ⇒ ′c list where
map2 f xs ys ≡ map (case prod f ) (zip xs ys)

lemma map2 empty iff [simp]: map2 f xs ys = [] ←→ xs = [] ∨ ys = []
by (metis Nil is map conv list .exhaust list .simps(3 ) zip.simps(1 ) zip Cons Cons zip Nil)

lemma image map2 : length t = length s =⇒ g ‘ set (map2 f t s) = set (map2 (λa b. g (f a b)) t s)
by auto

lemma map2 tl : length t = length s =⇒ map2 f (tl t) (tl s) = tl (map2 f t s)
by (metis (no types, lifting) hd Cons tl list .sel(3 ) map2 empty iff map tl tl Nil zip Cons Cons)

lemma map zip assoc:
map f (zip (zip xs ys) zs) = map (λ(x , y , z ). f ((x , y), z )) (zip xs (zip ys zs))
by (induct zs arbitrary : xs ys) (auto simp add : zip.simps(2 ) split : list .splits)

lemma set map2 ex :
assumes length t = length s
shows set (map2 f s t) = {x . ∃ i < length t . x = f (s ! i) (t ! i)}

proof (rule; rule)
fix x
assume x ∈ set (map2 f s t)
then obtain i where i p: i < length (map2 f s t) ∧ x = map2 f s t ! i

by (metis in set conv nth)
from i p have i < length t

by auto
moreover from this i p have x = f (s ! i) (t ! i)

using assms by auto
ultimately show x ∈ {x . ∃ i < length t . x = f (s ! i) (t ! i)}

using assms by auto
next

fix x
assume x ∈ {x . ∃ i < length t . x = f (s ! i) (t ! i)}
then obtain i where i p: i < length t ∧ x = f (s ! i) (t ! i)

by auto
then have i < length (map2 f s t)

using assms by auto
moreover from i p have x = map2 f s t ! i

using assms by auto
ultimately show x ∈ set (map2 f s t)

by (metis in set conv nth)
qed

end

3 Liminf of Lazy Lists

theory Lazy List Liminf
imports Coinductive.Coinductive List

begin

Lazy lists, as defined in the Archive of Formal Proofs, provide finite and infinite lists in one type, defined
coinductively. The present theory introduces the concept of the union of all elements of a lazy list of sets
and the limit of such a lazy list. The definitions are stated more generally in terms of lattices. The basis for
this theory is Section 4.1 (“Theorem Proving Processes”) of Bachmair and Ganzinger’s chapter.

definition Sup llist :: ′a set llist ⇒ ′a set where
Sup llist Xs = (

⋃
i ∈ {i . enat i < llength Xs}. lnth Xs i)

lemma lnth subset Sup llist : enat i < llength xs =⇒ lnth xs i ⊆ Sup llist xs
unfolding Sup llist def by auto
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lemma Sup llist LNil [simp]: Sup llist LNil = {}
unfolding Sup llist def by auto

lemma Sup llist LCons[simp]: Sup llist (LCons X Xs) = X ∪ Sup llist Xs
unfolding Sup llist def

proof (intro subset antisym subsetI )
fix x
assume x ∈ (

⋃
i ∈ {i . enat i < llength (LCons X Xs)}. lnth (LCons X Xs) i)

then obtain i where len: enat i < llength (LCons X Xs) and nth: x ∈ lnth (LCons X Xs) i
by blast

from nth have x ∈ X ∨ i > 0 ∧ x ∈ lnth Xs (i − 1 )
by (metis lnth LCons ′ neq0 conv)

then have x ∈ X ∨ (∃ i . enat i < llength Xs ∧ x ∈ lnth Xs i)
by (metis len Suc pred ′ eSuc enat iless Suc eq less irrefl llength LCons not less order trans)

then show x ∈ X ∪ (
⋃

i ∈ {i . enat i < llength Xs}. lnth Xs i)
by blast

qed ((auto)[], metis i0 lb lnth 0 zero enat def , metis Suc ile eq lnth Suc LCons)

lemma lhd subset Sup llist : ¬ lnull Xs =⇒ lhd Xs ⊆ Sup llist Xs
by (cases Xs) simp all

definition Sup upto llist :: ′a set llist ⇒ nat ⇒ ′a set where
Sup upto llist Xs j = (

⋃
i ∈ {i . enat i < llength Xs ∧ i ≤ j}. lnth Xs i)

lemma Sup upto llist mono: j ≤ k =⇒ Sup upto llist Xs j ⊆ Sup upto llist Xs k
unfolding Sup upto llist def by auto

lemma Sup upto llist subset Sup llist : j ≤ k =⇒ Sup upto llist Xs j ⊆ Sup llist Xs
unfolding Sup llist def Sup upto llist def by auto

lemma elem Sup llist imp Sup upto llist : x ∈ Sup llist Xs =⇒ ∃ j . x ∈ Sup upto llist Xs j
unfolding Sup llist def Sup upto llist def by blast

lemma finite Sup llist imp Sup upto llist :
assumes finite X and X ⊆ Sup llist Xs
shows ∃ k . X ⊆ Sup upto llist Xs k
using assms

proof induct
case (insert x X )
then have x : x ∈ Sup llist Xs and X : X ⊆ Sup llist Xs

by simp+
from x obtain k where k : x ∈ Sup upto llist Xs k

using elem Sup llist imp Sup upto llist by fast
from X obtain k ′ where k ′: X ⊆ Sup upto llist Xs k ′

using insert .hyps(3 ) by fast
have insert x X ⊆ Sup upto llist Xs (max k k ′)

using k k ′

by (metis insert absorb insert subset Sup upto llist mono max .cobounded2 max .commute
order .trans)

then show ?case
by fast

qed simp

definition Liminf llist :: ′a set llist ⇒ ′a set where
Liminf llist Xs =
(
⋃

i ∈ {i . enat i < llength Xs}.
⋂

j ∈ {j . i ≤ j ∧ enat j < llength Xs}. lnth Xs j )

lemma Liminf llist subset Sup llist : Liminf llist Xs ⊆ Sup llist Xs
unfolding Liminf llist def Sup llist def by fast

lemma Liminf llist LNil [simp]: Liminf llist LNil = {}
unfolding Liminf llist def by simp
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lemma Liminf llist LCons:
Liminf llist (LCons X Xs) = (if lnull Xs then X else Liminf llist Xs) (is ?lhs = ?rhs)

proof (cases lnull Xs)
case nnull : False
show ?thesis
proof
{

fix x
assume ∃ i . enat i ≤ llength Xs
∧ (∀ j . i ≤ j ∧ enat j ≤ llength Xs −→ x ∈ lnth (LCons X Xs) j )

then have ∃ i . enat (Suc i) ≤ llength Xs
∧ (∀ j . Suc i ≤ j ∧ enat j ≤ llength Xs −→ x ∈ lnth (LCons X Xs) j )
by (cases llength Xs,

metis not lnull conv [THEN iffD1 , OF nnull ] Suc le D eSuc enat eSuc ile mono
llength LCons not less eq eq zero enat def zero le,

metis Suc leD enat ord code(3 ))
then have ∃ i . enat i < llength Xs ∧ (∀ j . i ≤ j ∧ enat j < llength Xs −→ x ∈ lnth Xs j )

by (metis Suc ile eq Suc n not le n lift Suc mono le lnth Suc LCons nat le linear)
}
then show ?lhs ⊆ ?rhs

by (simp add : Liminf llist def nnull) (rule subsetI , simp)

{
fix x
assume ∃ i . enat i < llength Xs ∧ (∀ j . i ≤ j ∧ enat j < llength Xs −→ x ∈ lnth Xs j )
then obtain i where

i : enat i < llength Xs and
j : ∀ j . i ≤ j ∧ enat j < llength Xs −→ x ∈ lnth Xs j
by blast

have enat (Suc i) ≤ llength Xs
using i by (simp add : Suc ile eq)

moreover have ∀ j . Suc i ≤ j ∧ enat j ≤ llength Xs −→ x ∈ lnth (LCons X Xs) j
using Suc ile eq Suc le D j by force

ultimately have ∃ i . enat i ≤ llength Xs ∧ (∀ j . i ≤ j ∧ enat j ≤ llength Xs −→
x ∈ lnth (LCons X Xs) j )
by blast

}
then show ?rhs ⊆ ?lhs

by (simp add : Liminf llist def nnull) (rule subsetI , simp)
qed

qed (simp add : Liminf llist def enat 0 iff (1 ))

lemma lfinite Liminf llist : lfinite Xs =⇒ Liminf llist Xs = (if lnull Xs then {} else llast Xs)
proof (induction rule: lfinite induct)

case (LCons xs)
then obtain y ys where

xs: xs = LCons y ys
by (meson not lnull conv)

show ?case
unfolding xs by (simp add : Liminf llist LCons LCons.IH [unfolded xs, simplified ] llast LCons)

qed (simp add : Liminf llist def )

lemma Liminf llist ltl : ¬ lnull (ltl Xs) =⇒ Liminf llist Xs = Liminf llist (ltl Xs)
by (metis Liminf llist LCons lhd LCons ltl lnull ltlI )

end

4 Relational Chains over Lazy Lists

theory Lazy List Chain
imports HOL−Library .BNF Corec Lazy List Liminf

begin
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A chain is a lazy lists of elements such that all pairs of consecutive elements are related by a given relation.
A full chain is either an infinite chain or a finite chain that cannot be extended. The inspiration for this
theory is Section 4.1 (“Theorem Proving Processes”) of Bachmair and Ganzinger’s chapter.

4.1 Chains

coinductive chain :: ( ′a ⇒ ′a ⇒ bool) ⇒ ′a llist ⇒ bool for R :: ′a ⇒ ′a ⇒ bool where
chain singleton: chain R (LCons x LNil)
| chain cons: chain R xs =⇒ R x (lhd xs) =⇒ chain R (LCons x xs)

lemma
chain LNil [simp]: ¬ chain R LNil and
chain not lnull : chain R xs =⇒ ¬ lnull xs
by (auto elim: chain.cases)

lemma chain lappend :
assumes

r xs: chain R xs and
r ys: chain R ys and
mid : R (llast xs) (lhd ys)

shows chain R (lappend xs ys)
proof (cases lfinite xs)

case True
then show ?thesis

using r xs mid
proof (induct rule: lfinite.induct)

case (lfinite LConsI xs x )
note fin = this(1 ) and ih = this(2 ) and r xxs = this(3 ) and mid = this(4 )
show ?case
proof (cases xs = LNil)

case True
then show ?thesis

using r ys mid by simp (rule chain cons)
next

case xs nnil : False
have r xs: chain R xs

by (metis chain.simps ltl simps(2 ) r xxs xs nnil)
have mid ′: R (llast xs) (lhd ys)

by (metis llast LCons lnull def mid xs nnil)
have start : R x (lhd (lappend xs ys))

by (metis (no types) chain.simps lhd LCons lhd lappend chain not lnull ltl simps(2 ) r xxs
xs nnil)

show ?thesis
unfolding lappend code(2 ) using ih[OF r xs mid ′] start by (rule chain cons)

qed
qed simp

qed (simp add : r xs lappend inf )

lemma chain length pos: chain R xs =⇒ llength xs > 0
by (cases xs) simp+

lemma chain ldropn:
assumes chain R xs and enat n < llength xs
shows chain R (ldropn n xs)
using assms
by (induct n arbitrary : xs, simp,

metis chain.cases ldrop eSuc ltl ldropn LNil ldropn eq LNil ltl simps(2 ) not less)

lemma chain lnth rel :
assumes

chain: chain R xs and
len: enat (Suc j ) < llength xs

shows R (lnth xs j ) (lnth xs (Suc j ))

7



proof −
define ys where ys = ldropn j xs
have llength ys > 1

unfolding ys def using len
by (metis One nat def funpow swap1 ldropn 0 ldropn def ldropn eq LNil ldropn ltl not less

one enat def )
obtain y0 y1 ys ′ where

ys: ys = LCons y0 (LCons y1 ys ′)
unfolding ys def by (metis Suc ile eq ldropn Suc conv ldropn len less imp not less not less)

have chain R ys
unfolding ys def using Suc ile eq chain chain ldropn len less imp le by blast

then have R y0 y1
unfolding ys by (auto elim: chain.cases)

then show ?thesis
using ys def unfolding ys by (metis ldropn Suc conv ldropn ldropn eq LConsD llist .inject)

qed

lemma infinite chain lnth rel :
assumes ¬ lfinite c and chain r c
shows r (lnth c i) (lnth c (Suc i))
using assms chain lnth rel lfinite conv llength enat by force

lemma lnth rel chain:
assumes
¬ lnull xs and
∀ j . enat (j + 1 ) < llength xs −→ R (lnth xs j ) (lnth xs (j + 1 ))

shows chain R xs
using assms

proof (coinduction arbitrary : xs rule: chain.coinduct)
case chain
note nnul = this(1 ) and nth chain = this(2 )

show ?case
proof (cases lnull (ltl xs))

case True
have xs = LCons (lhd xs) LNil

using nnul True by (simp add : llist .expand)
then show ?thesis

by blast
next

case nnul ′: False
moreover have xs = LCons (lhd xs) (ltl xs)

using nnul by simp
moreover have
∀ j . enat (j + 1 ) < llength (ltl xs) −→ R (lnth (ltl xs) j ) (lnth (ltl xs) (j + 1 ))
using nnul nth chain
by (metis Suc eq plus1 ldrop eSuc ltl ldropn Suc conv ldropn ldropn eq LConsD lnth ltl)

moreover have R (lhd xs) (lhd (ltl xs))
using nnul ′ nnul nth chain[rule format , of 0 , simplified ]
by (metis ldropn 0 ldropn Suc conv ldropn ldropn eq LConsD lhd LCons ltl lhd conv lnth

lnth Suc LCons ltl simps(2 ))
ultimately show ?thesis

by blast
qed

qed

lemma chain lmap:
assumes ∀ x y . R x y −→ R ′ (f x ) (f y) and chain R xs
shows chain R ′ (lmap f xs)
using assms

proof (coinduction arbitrary : xs)
case chain
then have (∃ y . xs = LCons y LNil) ∨ (∃ ys x . xs = LCons x ys ∧ chain R ys ∧ R x (lhd ys))

8



using chain.simps[of R xs] by auto
then show ?case
proof

assume ∃ ys x . xs = LCons x ys ∧ chain R ys ∧ R x (lhd ys)
then have ∃ ys x . lmap f xs = LCons x ys ∧

(∃ xs. ys = lmap f xs ∧ (∀ x y . R x y −→ R ′ (f x ) (f y)) ∧ chain R xs) ∧ R ′ x (lhd ys)
using chain
by (metis (no types) lhd LCons llist .distinct(1 ) llist .exhaust sel llist .map sel(1 )

lmap eq LNil chain not lnull ltl lmap ltl simps(2 ))
then show ?thesis

by auto
qed auto

qed

lemma chain mono:
assumes ∀ x y . R x y −→ R ′ x y and chain R xs
shows chain R ′ xs
using assms by (rule chain lmap[of λx . x , unfolded llist .map ident ])

lemma lfinite chain imp rtranclp lhd llast : lfinite xs =⇒ chain R xs =⇒ R∗∗ (lhd xs) (llast xs)
proof (induct rule: lfinite.induct)

case (lfinite LConsI xs x )
note fin xs = this(1 ) and ih = this(2 ) and r x xs = this(3 )
show ?case
proof (cases xs = LNil)

case xs nnil : False
then have r xs: chain R xs

using r x xs by (blast elim: chain.cases)
then show ?thesis

using ih[OF r xs] xs nnil r x xs
by (metis chain.cases converse rtranclp into rtranclp lhd LCons llast LCons chain not lnull

ltl simps(2 ))
qed simp

qed simp

lemma tranclp imp exists finite chain list :
R++ x y =⇒ ∃ xs. xs 6= [] ∧ tl xs 6= [] ∧ chain R (llist of xs) ∧ hd xs = x ∧ last xs = y

proof (induct rule: tranclp.induct)
case (r into trancl x y)
note r xy = this

define xs where
xs = [x , y ]

have xs 6= [] and tl xs 6= [] and chain R (llist of xs) and hd xs = x and last xs = y
unfolding xs def using r xy by (auto intro: chain.intros)

then show ?case
by blast

next
case (trancl into trancl x y z )
note rstar xy = this(1 ) and ih = this(2 ) and r yz = this(3 )

obtain xs where
xs: xs 6= [] tl xs 6= [] chain R (llist of xs) hd xs = x last xs = y
using ih by blast

define ys where
ys = xs @ [z ]

have ys 6= [] and tl ys 6= [] and chain R (llist of ys) and hd ys = x and last ys = z
unfolding ys def using xs r yz
by (auto simp: lappend llist of llist of [symmetric] intro: chain singleton chain lappend)

then show ?case
by blast

9



qed

inductive-cases chain consE : chain R (LCons x xs)
inductive-cases chain nontrivE : chain R (LCons x (LCons y xs))

primrec prepend where
prepend [] ys = ys
| prepend (x # xs) ys = LCons x (prepend xs ys)

lemma prepend butlast :
xs 6= [] =⇒ ¬ lnull ys =⇒ last xs = lhd ys =⇒ prepend (butlast xs) ys = prepend xs (ltl ys)
by (induct xs) auto

lemma lnull prepend [simp]: lnull (prepend xs ys) = (xs = [] ∧ lnull ys)
by (induct xs) auto

lemma lhd prepend [simp]: lhd (prepend xs ys) = (if xs 6= [] then hd xs else lhd ys)
by (induct xs) auto

lemma prepend LNil [simp]: prepend xs LNil = llist of xs
by (induct xs) auto

lemma lfinite prepend [simp]: lfinite (prepend xs ys) ←→ lfinite ys
by (induct xs) auto

lemma llength prepend [simp]: llength (prepend xs ys) = length xs + llength ys
by (induct xs) (auto simp: enat 0 iadd Suc eSuc enat [symmetric])

lemma llast prepend [simp]: ¬ lnull ys =⇒ llast (prepend xs ys) = llast ys
by (induct xs) (auto simp: llast LCons)

lemma prepend prepend : prepend xs (prepend ys zs) = prepend (xs @ ys) zs
by (induct xs) auto

lemma chain prepend :
chain R (llist of zs) =⇒ last zs = lhd xs =⇒ chain R xs =⇒ chain R (prepend zs (ltl xs))
by (induct zs; cases xs)

(auto split : if splits simp: lnull def [symmetric] intro!: chain cons elim!: chain consE)

lemma lmap prepend [simp]: lmap f (prepend xs ys) = prepend (map f xs) (lmap f ys)
by (induct xs) auto

lemma lset prepend [simp]: lset (prepend xs ys) = set xs ∪ lset ys
by (induct xs) auto

lemma prepend LCons: prepend xs (LCons y ys) = prepend (xs @ [y ]) ys
by (induct xs) auto

lemma lnth prepend :
lnth (prepend xs ys) i = (if i < length xs then nth xs i else lnth ys (i − length xs))
by (induct xs arbitrary : i) (auto simp: lnth LCons ′ nth Cons ′)

theorem lfinite less induct [consumes 1 , case names less]:
assumes fin: lfinite xs

and step:
∧

xs. lfinite xs =⇒ (
∧

zs. llength zs < llength xs =⇒ P zs) =⇒ P xs
shows P xs

using fin proof (induct the enat (llength xs) arbitrary : xs rule: less induct)
case (less xs)
show ?case

using less(2 ) by (intro step[OF less(2 )] less(1 ))
(auto dest !: lfinite llength enat simp: eSuc enat elim!: less enatE llength eq enat lfiniteD)

qed
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theorem lfinite prepend induct [consumes 1 , case names LNil prepend ]:
assumes lfinite xs

and LNil : P LNil
and prepend :

∧
xs. lfinite xs =⇒ (

∧
zs. (∃ ys. xs = prepend ys zs ∧ ys 6= []) =⇒ P zs) =⇒ P xs

shows P xs
using assms(1 ) proof (induct xs rule: lfinite less induct)

case (less xs)
from less(1 ) show ?case

by (cases xs)
(force simp: LNil neq Nil conv dest : lfinite llength enat intro!: prepend [of LCons ] intro: less)+

qed

coinductive emb :: ′a llist ⇒ ′a llist ⇒ bool where
emb LNil xs
| emb xs ys =⇒ emb (LCons x xs) (prepend zs (LCons x ys))

inductive prepend cong1 for X where
prepend cong1 base: X xs =⇒ prepend cong1 X xs
| prepend cong1 prepend : prepend cong1 X ys =⇒ prepend cong1 X (prepend xs ys)

lemma emb prepend coinduct [rotated , case names emb]:
assumes (

∧
x1 x2 . X x1 x2 =⇒

(∃ xs. x1 = LNil ∧ x2 = xs)
∨ (∃ xs ys x zs. x1 = LCons x xs ∧ x2 = prepend zs (LCons x ys)
∧ (prepend cong1 (X xs) ys ∨ emb xs ys))) (is

∧
x1 x2 . X x1 x2 =⇒ ?bisim x1 x2 )

shows X x1 x2 =⇒ emb x1 x2
proof (erule emb.coinduct [OF prepend cong1 base])

fix xs zs
assume prepend cong1 (X xs) zs
then show ?bisim xs zs

by (induct zs rule: prepend cong1 .induct) (erule assms, force simp: prepend prepend)
qed

context
begin

private coinductive chain ′ for R where
chain ′ R (LCons x LNil)
| chain R (llist of zs) =⇒ zs 6= [] =⇒ tl zs 6= [] =⇒ ¬ lnull xs =⇒ last zs = lhd xs =⇒

ys = ltl xs =⇒ chain ′ R xs =⇒ chain ′ R (prepend zs ys)

private lemma chain imp chain ′: chain R xs =⇒ chain ′ R xs
proof (coinduction arbitrary : xs rule: chain ′.coinduct)

case chain ′

then show ?case
proof (cases rule: chain.cases)

case (chain cons zs z )
then show ?thesis

by (intro disjI2 ) (force intro: chain.intros exI [of [z , lhd zs]] exI [of zs]
elim: chain.cases)

qed simp
qed

private inductive-cases chain ′ LConsE : chain ′ R (LCons x xs)

private lemma chain ′ stepD1 :
assumes chain ′ R (LCons x (LCons y xs))
shows chain ′ R (LCons y xs)

proof (cases xs)
case [simp]: (LCons z zs)
with assms show ?thesis
proof (cases rule: chain ′.cases)

case (2 as ys xs)
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then show ?thesis
proof (cases tl (tl as))

case Nil
with 2 show ?thesis by (auto simp: neq Nil conv)

next
case (Cons b bs)
with 2 have chain ′ R (prepend (y # b # bs) xs)

by (intro chain ′.intros)
(auto simp: chain cons not lnull conv neq Nil conv elim: chain nontrivE)

with 2 Cons show ?thesis
by (auto simp: neq Nil conv)

qed
qed

qed (simp only : chain ′.intros(1 ))

private lemma chain ′ stepD2 : chain ′ R (LCons x (LCons y xs)) =⇒ R x y
by (erule chain ′.cases) (auto simp: neq Nil conv elim!: chain nontrivE split : if splits)

private lemma chain ′ imp chain: chain ′ R xs =⇒ chain R xs
proof (coinduction arbitrary : xs rule: chain.coinduct)

case chain
then show ?case
proof (cases rule: chain ′.cases)

case (2 ys zs xs)
then show ?thesis
proof (cases ltl zs)

case LNil
with chain 2 show ?thesis

by (auto 0 4 simp: neq Nil conv not lnull conv elim: chain ′ stepD1 chain ′ stepD2 )
next

case (LCons b bs)
with chain 2 show ?thesis

unfolding neq Nil conv not lnull conv
by (elim exE) (auto elim: chain ′ stepD1 chain nontrivE)

qed
qed simp

qed

private lemma chain chain ′: chain = chain ′

unfolding fun eq iff by (metis chain imp chain ′ chain ′ imp chain)

lemma chain prepend coinduct [case names chain]:
X x =⇒ (

∧
x . X x =⇒

(∃ z . x = LCons z LNil) ∨
(∃ xs zs. x = prepend zs (ltl xs) ∧ zs 6= [] ∧ tl zs 6= [] ∧ ¬ lnull xs ∧ last zs = lhd xs ∧

(X xs ∨ chain R xs) ∧ chain R (llist of zs))) =⇒ chain R x
by (subst chain chain ′, erule chain ′.coinduct) (auto simp: chain chain ′)

end

context
fixes R :: ′a ⇒ ′a ⇒ bool

begin

private definition pick where
pick x y = (SOME xs. xs 6= [] ∧ tl xs 6= [] ∧ chain R (llist of xs) ∧ hd xs = x ∧ last xs = y)

private lemma pick [simp]:
assumes R++ x y
shows pick x y 6= [] tl (pick x y) 6= [] chain R (llist of (pick x y))

hd (pick x y) = x last (pick x y) = y
unfolding pick def using tranclp imp exists finite chain list [THEN someI ex , OF assms] by auto
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private lemma butlast pick [simp]: R++ x y =⇒ butlast (pick x y) 6= []
by (cases pick x y ; cases tl (pick x y)) (auto dest : pick(2 ))

private friend-of-corec prepend where
prepend xs ys = (case xs of [] ⇒

(case ys of LNil ⇒ LNil | LCons x xs ⇒ LCons x xs) | x # xs ′ ⇒ LCons x (prepend xs ′ ys))
by (simp split : list .splits llist .splits) transfer prover

private corec wit where
wit xs = (case xs of LCons x (LCons y xs) ⇒

let zs = pick x y in LCons (hd zs) (prepend (butlast (tl zs)) (wit (LCons y xs))) | ⇒ xs)

private lemma
wit LNil [simp]: wit LNil = LNil and
wit lsingleton[simp]: wit (LCons x LNil) = LCons x LNil and
wit LCons2 : wit (LCons x (LCons y xs)) =

(let zs = pick x y in LCons (hd zs) (prepend (butlast (tl zs)) (wit (LCons y xs))))
by (subst wit .code; auto)+

private lemma wit LCons: wit (LCons x xs) = (case xs of LNil ⇒ LCons x LNil | LCons y xs ⇒
(let zs = pick x y in LCons (hd zs) (prepend (butlast (tl zs)) (wit (LCons y xs)))))

by (subst wit .code; auto split : llist .splits)+

private lemma lnull wit [simp]: lnull (wit xs) ←→ lnull xs
by (subst wit .code) (auto split : llist .splits simp: Let def )

private lemma lhd wit [simp]: chain R++ xs =⇒ lhd (wit xs) = lhd xs
by (erule chain.cases; subst wit .code) (auto split : llist .splits simp: Let def )

private lemma butlast alt : butlast xs = (if tl xs = [] then [] else hd xs # butlast (tl xs))
by (cases xs) auto

private lemma wit alt :
chain R++ xs =⇒ wit xs = (case xs of LCons x (LCons y xs) ⇒

prepend (pick x y) (ltl (wit (LCons y xs))) | ⇒ xs)
by (auto split : llist .splits simp: prepend butlast [symmetric] wit LCons2 Let def

prepend .simps(2 )[symmetric] butlast alt [of pick ]
simp del : prepend .simps elim!: chain nontrivE)

private lemma wit alt2 :
chain R++ xs =⇒ wit xs = (case xs of LCons x (LCons y xs) ⇒

prepend (butlast (pick x y)) (wit (LCons y xs)) | ⇒ xs)
by (auto split : llist .splits simp: wit LCons2 Let def

prepend .simps(2 )[symmetric] butlast alt [of pick ]
simp del : prepend .simps elim!: chain nontrivE)

private lemma LNil eq iff lnull : LNil = xs ←→ lnull xs
by (cases xs) auto

private lemma lfinite wit [simp]:
assumes chain R++ xs
shows lfinite (wit xs) ←→ lfinite xs

proof
assume lfinite (wit xs)
from this assms show lfinite xs
proof (induct wit xs arbitrary : xs rule: lfinite prepend induct)

case (prepend zs)
then show ?case
proof (cases zs)

case [simp]: (LCons x xs)
then show ?thesis
proof (cases xs)

case [simp]: LCons

13



with prepend show ?thesis
by (subst (asm) (2 ) wit alt2 ) (force split : llist .splits elim!: chain nontrivE)+

qed simp
qed simp

qed (simp add : LNil eq iff lnull)
next

assume lfinite xs
then show lfinite (wit xs)
proof (induct xs rule: lfinite.induct)

case (lfinite LConsI xs x )
then show ?case

by (cases xs) (auto simp: wit LCons Let def )
qed simp

qed

private lemma llast wit [simp]:
assumes chain R++ xs
shows llast (wit xs) = llast xs

proof (cases lfinite xs)
case True
from this assms show ?thesis
proof (induct rule: lfinite.induct)

case (lfinite LConsI xs x )
then show ?case

by (cases xs) (auto simp: wit LCons2 llast LCons elim: chain nontrivE)
qed auto

qed (auto simp: llast linfinite assms)

lemma emb wit [simp]: chain R++ xs =⇒ emb xs (wit xs)
proof (coinduction arbitrary : xs rule: emb prepend coinduct)

case (emb xs)
then show ?case
proof (cases rule: chain.cases)

case (chain cons zs z )
then show ?thesis

by (subst (2 ) wit .code)
(auto split : llist .splits intro!: exI [of []] exI [of :: llist ]

prepend cong1 prepend [OF prepend cong1 base])
qed (auto intro!: exI [of LNil ] exI [of []] emb.intros)

qed

lemma chain tranclp imp exists chain:
chain R++ xs =⇒
∃ ys. chain R ys ∧ emb xs ys ∧ (lfinite ys ←→ lfinite xs) ∧ lhd ys = lhd xs
∧ llast ys = llast xs

proof (intro exI [of wit xs] conjI , coinduction arbitrary : xs rule: chain prepend coinduct)
case chain
then show ?case

by (subst (1 2 ) wit alt ; assumption? ) (erule chain.cases; force split : llist .splits)
qed auto

inductive-cases emb LConsE : emb (LCons z zs) ys
inductive-cases emb LNil2E : emb xs LNil

lemma emb lset mono[rotated ]: x ∈ lset xs =⇒ emb xs ys =⇒ x ∈ lset ys
by (induct x xs arbitrary : ys rule: llist .set induct) (auto elim!: emb LConsE)

lemma emb Ball lset antimono:
assumes emb Xs Ys
shows ∀Y ∈ lset Ys. x ∈ Y =⇒ ∀X ∈ lset Xs. x ∈ X
using emb lset mono[OF assms] by blast

lemma emb lfinite antimono[rotated ]: lfinite ys =⇒ emb xs ys =⇒ lfinite xs
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by (induct ys arbitrary : xs rule: lfinite prepend induct)
(force elim!: emb LNil2E simp: LNil eq iff lnull prepend LCons elim: emb.cases)+

lemma emb Liminf llist mono aux :
assumes emb Xs Ys and ¬ lfinite Xs and ¬ lfinite Ys and ∀ j≥i . x ∈ lnth Ys j
shows ∀ j≥i . x ∈ lnth Xs j

using assms proof (induct i arbitrary : Xs Ys rule: less induct)
case (less i)
then show ?case
proof (cases i)

case 0
then show ?thesis

using emb Ball lset antimono[OF less(2 ), of x ] less(5 )
unfolding Ball def in lset conv lnth simp thms

not lfinite llength[OF less(3 )] not lfinite llength[OF less(4 )] enat ord code subset eq
by blast

next
case [simp]: (Suc nat)
from less(2 ,3 ) obtain xs as b bs where

[simp]: Xs = LCons b xs Ys = prepend as (LCons b bs) and emb xs bs
by (auto elim: emb.cases)

have IH : ∀ k≥j . x ∈ lnth xs k if ∀ k≥j . x ∈ lnth bs k j < i for j
using that less(1 )[OF 〈emb xs bs〉] less(3 ,4 ) by auto

from less(5 ) have ∀ k≥i − length as − 1 . x ∈ lnth xs k
by (intro IH allI )

(drule spec[of + length as + 1 ], auto simp: lnth prepend lnth LCons ′)
then show ?thesis

by (auto simp: lnth LCons ′)
qed

qed

lemma emb Liminf llist infinite:
assumes emb Xs Ys and ¬ lfinite Xs
shows Liminf llist Ys ⊆ Liminf llist Xs

proof −
from assms have ¬ lfinite Ys

using emb lfinite antimono by blast
with assms show ?thesis

unfolding Liminf llist def by (auto simp: not lfinite llength dest : emb Liminf llist mono aux )
qed

lemma emb lmap: emb xs ys =⇒ emb (lmap f xs) (lmap f ys)
proof (coinduction arbitrary : xs ys rule: emb.coinduct)

case emb
show ?case
proof (cases xs)

case xs: (LCons x xs ′)

obtain ysa0 and zs0 where
ys: ys = prepend zs0 (LCons x ysa0 ) and
emb ′: emb xs ′ ysa0
using emb LConsE [OF emb[unfolded xs]] by metis

let ?xa = f x
let ?xsa = lmap f xs ′

let ?zs = map f zs0
let ?ysa = lmap f ysa0

have lmap f xs = LCons ?xa ?xsa
unfolding xs by simp

moreover have lmap f ys = prepend ?zs (LCons ?xa ?ysa)
unfolding ys by simp

moreover have ∃ xsa ysa. ?xsa = lmap f xsa ∧ ?ysa = lmap f ysa ∧ emb xsa ysa
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using emb ′ by blast
ultimately show ?thesis

by blast
qed simp

qed

end

lemma chain inf llist if infinite chain function:
assumes ∀ i . r (f (Suc i)) (f i)
shows ¬ lfinite (inf llist f ) ∧ chain r−1−1 (inf llist f )
using assms by (simp add : lnth rel chain)

lemma infinite chain function iff infinite chain llist :
(∃ f . ∀ i . r (f (Suc i)) (f i)) ←→ (∃ c. ¬ lfinite c ∧ chain r−1−1 c)
using chain inf llist if infinite chain function infinite chain lnth rel by blast

lemma wfP iff no infinite down chain llist : wfP r ←→ (@ c. ¬ lfinite c ∧ chain r−1−1 c)
proof −

have wfP r ←→ wf {(x , y). r x y}
unfolding wfP def by auto

also have . . . ←→ (@ f . ∀ i . (f (Suc i), f i) ∈ {(x , y). r x y})
using wf iff no infinite down chain by blast

also have . . . ←→ (@ f . ∀ i . r (f (Suc i)) (f i))
by auto

also have . . . ←→ (@ c. ¬lfinite c ∧ chain r−1−1 c)
using infinite chain function iff infinite chain llist by blast

finally show ?thesis
by auto

qed

4.2 Full Chains

coinductive full chain :: ( ′a ⇒ ′a ⇒ bool) ⇒ ′a llist ⇒ bool for R :: ′a ⇒ ′a ⇒ bool where
full chain singleton: (∀ y . ¬ R x y) =⇒ full chain R (LCons x LNil)
| full chain cons: full chain R xs =⇒ R x (lhd xs) =⇒ full chain R (LCons x xs)

lemma
full chain LNil [simp]: ¬ full chain R LNil and
full chain not lnull : full chain R xs =⇒ ¬ lnull xs
by (auto elim: full chain.cases)

lemma full chain ldropn:
assumes full : full chain R xs and enat n < llength xs
shows full chain R (ldropn n xs)
using assms
by (induct n arbitrary : xs, simp,

metis full chain.cases ldrop eSuc ltl ldropn LNil ldropn eq LNil ltl simps(2 ) not less)

lemma full chain iff chain:
full chain R xs ←→ chain R xs ∧ (lfinite xs −→ (∀ y . ¬ R (llast xs) y))

proof (intro iffI conjI impI allI ; (elim conjE)? )
assume full : full chain R xs

show chain: chain R xs
using full by (coinduction arbitrary : xs) (auto elim: full chain.cases)

{
fix y
assume lfinite xs
then obtain n where

suc n: Suc n = llength xs
by (metis chain chain length pos lessE less enatE lfinite conv llength enat)
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have full chain R (ldropn n xs)
by (rule full chain ldropn[OF full ]) (use suc n Suc ile eq in force)

moreover have ldropn n xs = LCons (llast xs) LNil
using suc n by (metis enat le plus same(2 ) enat ord simps(2 ) gen llength def

ldropn Suc conv ldropn ldropn all lessI llast ldropn llast singleton llength code)
ultimately show ¬ R (llast xs) y

by (auto elim: full chain.cases)
}

next
assume

chain R xs and
lfinite xs −→ (∀ y . ¬ R (llast xs) y)

then show full chain R xs
by (coinduction arbitrary : xs) (erule chain.cases, simp, metis lfinite LConsI llast LCons)

qed

lemma full chain imp chain: full chain R xs =⇒ chain R xs
using full chain iff chain by blast

lemma full chain length pos: full chain R xs =⇒ llength xs > 0
by (fact chain length pos[OF full chain imp chain])

lemma full chain lnth rel :
full chain R xs =⇒ enat (Suc j ) < llength xs =⇒ R (lnth xs j ) (lnth xs (Suc j ))
by (fact chain lnth rel [OF full chain imp chain])

inductive-cases full chain consE : full chain R (LCons x xs)
inductive-cases full chain nontrivE : full chain R (LCons x (LCons y xs))

lemma full chain tranclp imp exists full chain:
assumes full : full chain R++ xs
shows ∃ ys. full chain R ys ∧ emb xs ys ∧ lfinite ys = lfinite xs ∧ lhd ys = lhd xs
∧ llast ys = llast xs

proof −
obtain ys where ys:

chain R ys emb xs ys lfinite ys = lfinite xs lhd ys = lhd xs llast ys = llast xs
using full chain imp chain[OF full ] chain tranclp imp exists chain by blast

have full chain R ys
using ys(1 ,3 ,5 ) full unfolding full chain iff chain by auto

then show ?thesis
using ys(2−5 ) by auto

qed

end

5 Clausal Logic

theory Clausal Logic
imports Nested Multisets Ordinals.Multiset More

begin

Resolution operates of clauses, which are disjunctions of literals. The material formalized here corresponds
roughly to Sections 2.1 (“Formulas and Clauses”) of Bachmair and Ganzinger, excluding the formula and
term syntax.

5.1 Literals

Literals consist of a polarity (positive or negative) and an atom, of type ′a.

datatype ′a literal =
is pos: Pos (atm of : ′a)
| Neg (atm of : ′a)
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abbreviation is neg :: ′a literal ⇒ bool where
is neg L ≡ ¬ is pos L

lemma Pos atm of iff [simp]: Pos (atm of L) = L ←→ is pos L
by (cases L) simp+

lemma Neg atm of iff [simp]: Neg (atm of L) = L ←→ is neg L
by (cases L) simp+

lemma set literal atm of : set literal L = {atm of L}
by (cases L) simp+

lemma ex lit cases: (∃L. P L) ←→ (∃A. P (Pos A) ∨ P (Neg A))
by (metis literal .exhaust)

instantiation literal :: (type) uminus
begin

definition uminus literal :: ′a literal ⇒ ′a literal where
uminus L = (if is pos L then Neg else Pos) (atm of L)

instance ..

end

lemma
uminus Pos[simp]: − Pos A = Neg A and
uminus Neg [simp]: − Neg A = Pos A
unfolding uminus literal def by simp all

lemma atm of uminus[simp]: atm of (−L) = atm of L
by (case tac L, auto)

lemma uminus of uminus id [simp]: − (− (x :: ′v literal)) = x
by (simp add : uminus literal def )

lemma uminus not id [simp]: x 6= − (x :: ′v literal)
by (case tac x ) auto

lemma uminus not id ′[simp]: − x 6= (x :: ′v literal)
by (case tac x , auto)

lemma uminus eq inj [iff ]: − (a:: ′v literal) = − b ←→ a = b
by (case tac a; case tac b) auto+

lemma uminus lit swap: (a:: ′a literal) = − b ←→ − a = b
by auto

lemma is pos neg not is pos: is pos (− L) ←→ ¬ is pos L
by (cases L) auto

instantiation literal :: (preorder) preorder
begin

definition less literal :: ′a literal ⇒ ′a literal ⇒ bool where
less literal L M ←→ atm of L < atm of M ∨ atm of L ≤ atm of M ∧ is neg L < is neg M

definition less eq literal :: ′a literal ⇒ ′a literal ⇒ bool where
less eq literal L M ←→ atm of L < atm of M ∨ atm of L ≤ atm of M ∧ is neg L ≤ is neg M

instance
apply intro classes
unfolding less literal def less eq literal def by (auto intro: order trans simp: less le not le)
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end

instantiation literal :: (order) order
begin

instance
by intro classes (auto simp: less eq literal def intro: literal .expand)

end

lemma pos less neg [simp]: Pos A < Neg A
unfolding less literal def by simp

lemma pos less pos iff [simp]: Pos A < Pos B ←→ A < B
unfolding less literal def by simp

lemma pos less neg iff [simp]: Pos A < Neg B ←→ A ≤ B
unfolding less literal def by (auto simp: less le not le)

lemma neg less pos iff [simp]: Neg A < Pos B ←→ A < B
unfolding less literal def by simp

lemma neg less neg iff [simp]: Neg A < Neg B ←→ A < B
unfolding less literal def by simp

lemma pos le neg [simp]: Pos A ≤ Neg A
unfolding less eq literal def by simp

lemma pos le pos iff [simp]: Pos A ≤ Pos B ←→ A ≤ B
unfolding less eq literal def by (auto simp: less le not le)

lemma pos le neg iff [simp]: Pos A ≤ Neg B ←→ A ≤ B
unfolding less eq literal def by (auto simp: less imp le)

lemma neg le pos iff [simp]: Neg A ≤ Pos B ←→ A < B
unfolding less eq literal def by simp

lemma neg le neg iff [simp]: Neg A ≤ Neg B ←→ A ≤ B
unfolding less eq literal def by (auto simp: less imp le)

lemma leq imp less eq atm of : L ≤ M =⇒ atm of L ≤ atm of M
unfolding less eq literal def using less imp le by blast

instantiation literal :: (linorder) linorder
begin

instance
apply intro classes
unfolding less eq literal def less literal def by auto

end

instantiation literal :: (wellorder) wellorder
begin

instance
proof intro classes

fix P :: ′a literal ⇒ bool and L :: ′a literal
assume ih:

∧
L. (

∧
M . M < L =⇒ P M ) =⇒ P L

have
∧

x . (
∧

y . y < x =⇒ P (Pos y) ∧ P (Neg y)) =⇒ P (Pos x ) ∧ P (Neg x )
by (rule conjI [OF ih ih])

(auto simp: less literal def atm of def split : literal .splits intro: ih)
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then have
∧

A. P (Pos A) ∧ P (Neg A)
by (rule less induct) blast

then show P L
by (cases L) simp+

qed

end

5.2 Clauses

Clauses are (finite) multisets of literals.

type-synonym ′a clause = ′a literal multiset

abbreviation map clause :: ( ′a ⇒ ′b) ⇒ ′a clause ⇒ ′b clause where
map clause f ≡ image mset (map literal f )

abbreviation rel clause :: ( ′a ⇒ ′b ⇒ bool) ⇒ ′a clause ⇒ ′b clause ⇒ bool where
rel clause R ≡ rel mset (rel literal R)

abbreviation poss :: ′a multiset ⇒ ′a clause where poss AA ≡ {#Pos A. A ∈# AA#}
abbreviation negs :: ′a multiset ⇒ ′a clause where negs AA ≡ {#Neg A. A ∈# AA#}

lemma Max in lits: C 6= {#} =⇒ Max mset C ∈# C
by simp

lemma Max atm of set mset commute: C 6= {#} =⇒ Max (atm of ‘ set mset C ) = atm of (Max mset C )
by (rule mono Max commute[symmetric]) (auto simp: mono def less eq literal def )

lemma Max pos neg less multiset :
assumes max : Max mset C = Pos A and neg : Neg A ∈# D
shows C < D

proof −
have Max mset C < Neg A

using max by simp
then show ?thesis

using neg by (metis (no types) Max less iff empty iff ex gt imp less multiset finite set mset)
qed

lemma pos Max imp neg notin: Max mset C = Pos A =⇒ Neg A /∈# C
using Max pos neg less multiset by blast

lemma less eq Max lit : C 6= {#} =⇒ C ≤ D =⇒ Max mset C ≤ Max mset D
proof (unfold less eq multisetHO)

assume
ne: C 6= {#} and
ex gt : ∀ x . count D x < count C x −→ (∃ y > x . count C y < count D y)

from ne have Max mset C ∈# C
by (fast intro: Max in lits)

then have ∃ l . l ∈# D ∧ ¬ l < Max mset C
using ex gt by (metis count greater zero iff count inI less not sym)

then have ¬ Max mset D < Max mset C
by (metis Max .coboundedI [OF finite set mset ] le less trans)

then show ?thesis
by simp

qed

definition atms of :: ′a clause ⇒ ′a set where
atms of C = atm of ‘ set mset C

lemma atms of empty [simp]: atms of {#} = {}
unfolding atms of def by simp

lemma atms of singleton[simp]: atms of {#L#} = {atm of L}
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unfolding atms of def by auto

lemma atms of add mset [simp]: atms of (add mset a A) = insert (atm of a) (atms of A)
unfolding atms of def by auto

lemma atms of union mset [simp]: atms of (A ∪# B) = atms of A ∪ atms of B
unfolding atms of def by auto

lemma finite atms of [iff ]: finite (atms of C )
by (simp add : atms of def )

lemma atm of lit in atms of : L ∈# C =⇒ atm of L ∈ atms of C
by (simp add : atms of def )

lemma atms of plus[simp]: atms of (C + D) = atms of C ∪ atms of D
unfolding atms of def by auto

lemma in atms of minusD : x ∈ atms of (A − B) =⇒ x ∈ atms of A
by (auto simp: atms of def dest : in diffD)

lemma pos lit in atms of : Pos A ∈# C =⇒ A ∈ atms of C
unfolding atms of def by force

lemma neg lit in atms of : Neg A ∈# C =⇒ A ∈ atms of C
unfolding atms of def by force

lemma atm imp pos or neg lit : A ∈ atms of C =⇒ Pos A ∈# C ∨ Neg A ∈# C
unfolding atms of def image def mem Collect eq by (metis Neg atm of iff Pos atm of iff )

lemma atm iff pos or neg lit : A ∈ atms of L ←→ Pos A ∈# L ∨ Neg A ∈# L
by (auto intro: pos lit in atms of neg lit in atms of dest : atm imp pos or neg lit)

lemma atm of eq atm of : atm of L = atm of L ′ ←→ (L = L ′ ∨ L = −L ′)
by (cases L; cases L ′) auto

lemma atm of in atm of set iff in set or uminus in set : atm of L ∈ atm of ‘ I ←→ (L ∈ I ∨ −L ∈ I )
by (auto intro: rev image eqI simp: atm of eq atm of )

lemma lits subseteq imp atms subseteq : set mset C ⊆ set mset D =⇒ atms of C ⊆ atms of D
unfolding atms of def by blast

lemma atms empty iff empty [iff ]: atms of C = {} ←→ C = {#}
unfolding atms of def image def Collect empty eq by auto

lemma
atms of poss[simp]: atms of (poss AA) = set mset AA and
atms of negs[simp]: atms of (negs AA) = set mset AA
unfolding atms of def image def by auto

lemma less eq Max atms of : C 6= {#} =⇒ C ≤ D =⇒ Max (atms of C ) ≤ Max (atms of D)
unfolding atms of def
by (metis Max atm of set mset commute leq imp less eq atm of less eq Max lit

less eq multiset empty right)

lemma le multiset Max in imp Max :
Max (atms of D) = A =⇒ C ≤ D =⇒ A ∈ atms of C =⇒ Max (atms of C ) = A
by (metis Max .coboundedI [OF finite atms of ] atms of def empty iff eq iff image subsetI

less eq Max atms of set mset empty subset Compl self eq)

lemma atm of Max lit [simp]: C 6= {#} =⇒ atm of (Max mset C ) = Max (atms of C )
unfolding atms of def Max atm of set mset commute ..

lemma Max lit eq pos or neg Max atm:
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C 6= {#} =⇒ Max mset C = Pos (Max (atms of C )) ∨ Max mset C = Neg (Max (atms of C ))
by (metis Neg atm of iff Pos atm of iff atm of Max lit)

lemma atms less imp lit less pos: (
∧

B . B ∈ atms of C =⇒ B < A) =⇒ L ∈# C =⇒ L < Pos A
unfolding atms of def less literal def by force

lemma atms less eq imp lit less eq neg : (
∧

B . B ∈ atms of C =⇒ B ≤ A) =⇒ L ∈# C =⇒ L ≤ Neg A
unfolding less eq literal def by (simp add : atm of lit in atms of )

end

6 Herbrand Intepretation

theory Herbrand Interpretation
imports Clausal Logic

begin

The material formalized here corresponds roughly to Sections 2.2 (“Herbrand Interpretations”) of Bachmair
and Ganzinger, excluding the formula and term syntax.

A Herbrand interpretation is a set of ground atoms that are to be considered true.

type-synonym ′a interp = ′a set

definition true lit :: ′a interp ⇒ ′a literal ⇒ bool (infix |=l 50 ) where
I |=l L ←→ (if is pos L then (λP . P) else Not) (atm of L ∈ I )

lemma true lit simps[simp]:
I |=l Pos A ←→ A ∈ I
I |=l Neg A ←→ A /∈ I
unfolding true lit def by auto

lemma true lit iff [iff ]: I |=l L ←→ (∃A. L = Pos A ∧ A ∈ I ∨ L = Neg A ∧ A /∈ I )
by (cases L) simp+

definition true cls :: ′a interp ⇒ ′a clause ⇒ bool (infix |= 50 ) where
I |= C ←→ (∃L ∈# C . I |=l L)

lemma true cls empty [iff ]: ¬ I |= {#}
unfolding true cls def by simp

lemma true cls singleton[iff ]: I |= {#L#} ←→ I |=l L
unfolding true cls def by simp

lemma true cls add mset [iff ]: I |= add mset C D ←→ I |=l C ∨ I |= D
unfolding true cls def by auto

lemma true cls union[iff ]: I |= C + D ←→ I |= C ∨ I |= D
unfolding true cls def by auto

lemma true cls mono: set mset C ⊆ set mset D =⇒ I |= C =⇒ I |= D
unfolding true cls def subset eq by metis

lemma
assumes I ⊆ J
shows

false to true imp ex pos: ¬ I |= C =⇒ J |= C =⇒ ∃A ∈ J . Pos A ∈# C and
true to false imp ex neg : I |= C =⇒ ¬ J |= C =⇒ ∃A ∈ J . Neg A ∈# C

using assms unfolding subset iff true cls def by (metis literal .collapse true lit simps)+

lemma true cls replicate mset [iff ]: I |= replicate mset n L ←→ n 6= 0 ∧ I |=l L
by (simp add : true cls def )

lemma pos literal in imp true cls[intro]: Pos A ∈# C =⇒ A ∈ I =⇒ I |= C
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using true cls def by blast

lemma neg literal notin imp true cls[intro]: Neg A ∈# C =⇒ A /∈ I =⇒ I |= C
using true cls def by blast

lemma pos neg in imp true: Pos A ∈# C =⇒ Neg A ∈# C =⇒ I |= C
using true cls def by blast

definition true clss :: ′a interp ⇒ ′a clause set ⇒ bool (infix |=s 50 ) where
I |=s CC ←→ (∀C ∈ CC . I |= C )

lemma true clss empty [iff ]: I |=s {}
by (simp add : true clss def )

lemma true clss singleton[iff ]: I |=s {C} ←→ I |= C
unfolding true clss def by blast

lemma true clss insert [iff ]: I |=s insert C DD ←→ I |= C ∧ I |=s DD
unfolding true clss def by blast

lemma true clss union[iff ]: I |=s CC ∪ DD ←→ I |=s CC ∧ I |=s DD
unfolding true clss def by blast

lemma true clss mono: DD ⊆ CC =⇒ I |=s CC =⇒ I |=s DD
by (simp add : set mp true clss def )

abbreviation satisfiable :: ′a clause set ⇒ bool where
satisfiable CC ≡ ∃ I . I |=s CC

definition true cls mset :: ′a interp ⇒ ′a clause multiset ⇒ bool (infix |=m 50 ) where
I |=m CC ←→ (∀C ∈# CC . I |= C )

lemma true cls mset empty [iff ]: I |=m {#}
unfolding true cls mset def by auto

lemma true cls mset singleton[iff ]: I |=m {#C #} ←→ I |= C
by (simp add : true cls mset def )

lemma true cls mset union[iff ]: I |=m CC + DD ←→ I |=m CC ∧ I |=m DD
unfolding true cls mset def by auto

lemma true cls mset add mset [iff ]: I |=m add mset C CC ←→ I |= C ∧ I |=m CC
unfolding true cls mset def by auto

lemma true cls mset image mset [iff ]: I |=m image mset f A ←→ (∀ x ∈# A. I |= f x )
unfolding true cls mset def by auto

lemma true cls mset mono: set mset DD ⊆ set mset CC =⇒ I |=m CC =⇒ I |=m DD
unfolding true cls mset def subset iff by auto

lemma true clss set mset [iff ]: I |=s set mset CC ←→ I |=m CC
unfolding true clss def true cls mset def by auto

lemma true cls mset true cls: I |=m CC =⇒ C ∈# CC =⇒ I |= C
using true cls mset def by auto

end

7 Abstract Substitutions

theory Abstract Substitution
imports Clausal Logic Map2

begin

23



Atoms and substitutions are abstracted away behind some locales, to avoid having a direct dependency on
the IsaFoR library.

Conventions: ′s substitutions, ′a atoms.

7.1 Library

lemma f Suc decr eventually const :
fixes f :: nat ⇒ nat
assumes leq : ∀ i . f (Suc i) ≤ f i
shows ∃ l . ∀ l ′ ≥ l . f l ′ = f (Suc l ′)

proof (rule ccontr)
assume a: @ l . ∀ l ′ ≥ l . f l ′ = f (Suc l ′)
have ∀ i . ∃ i ′. i ′ > i ∧ f i ′ < f i
proof

fix i
from a have ∃ l ′ ≥ i . f l ′ 6= f (Suc l ′)

by auto
then obtain l ′ where

l ′ p: l ′ ≥ i ∧ f l ′ 6= f (Suc l ′)
by metis

then have f l ′ > f (Suc l ′)
using leq le eq less or eq by auto

moreover have f i ≥ f l ′

using leq l ′ p by (induction l ′ arbitrary : i) (blast intro: lift Suc antimono le)+
ultimately show ∃ i ′ > i . f i ′ < f i

using l ′ p less le trans by blast
qed
then obtain g sm :: nat ⇒ nat where

g sm p: ∀ i . g sm i > i ∧ f (g sm i) < f i
by metis

define c :: nat ⇒ nat where∧
n. c n = (g sm ˆˆ n) 0

have f (c i) > f (c (Suc i)) for i
by (induction i) (auto simp: c def g sm p)

then have ∀ i . (f ◦ c) i > (f ◦ c) (Suc i)
by auto

then have ∃ fc :: nat ⇒ nat . ∀ i . fc i > fc (Suc i)
by metis

then show False
using wf less than by (simp add : wf iff no infinite down chain)

qed

7.2 Substitution Operators

locale substitution ops =
fixes

subst atm :: ′a ⇒ ′s ⇒ ′a and
id subst :: ′s and
comp subst :: ′s ⇒ ′s ⇒ ′s

begin

abbreviation subst atm abbrev :: ′a ⇒ ′s ⇒ ′a (infixl ·a 67 ) where
subst atm abbrev ≡ subst atm

abbreviation comp subst abbrev :: ′s ⇒ ′s ⇒ ′s (infixl � 67 ) where
comp subst abbrev ≡ comp subst

definition comp substs :: ′s list ⇒ ′s list ⇒ ′s list (infixl �s 67 ) where
σs �s τs = map2 comp subst σs τs

definition subst atms :: ′a set ⇒ ′s ⇒ ′a set (infixl ·as 67 ) where

24



AA ·as σ = (λA. A ·a σ) ‘ AA

definition subst atmss :: ′a set set ⇒ ′s ⇒ ′a set set (infixl ·ass 67 ) where
AAA ·ass σ = (λAA. AA ·as σ) ‘ AAA

definition subst atm list :: ′a list ⇒ ′s ⇒ ′a list (infixl ·al 67 ) where
As ·al σ = map (λA. A ·a σ) As

definition subst atm mset :: ′a multiset ⇒ ′s ⇒ ′a multiset (infixl ·am 67 ) where
AA ·am σ = image mset (λA. A ·a σ) AA

definition
subst atm mset list :: ′a multiset list ⇒ ′s ⇒ ′a multiset list (infixl ·aml 67 )

where
AAA ·aml σ = map (λAA. AA ·am σ) AAA

definition
subst atm mset lists :: ′a multiset list ⇒ ′s list ⇒ ′a multiset list (infixl ··aml 67 )

where
AAs ··aml σs = map2 (op ·am) AAs σs

definition subst lit :: ′a literal ⇒ ′s ⇒ ′a literal (infixl ·l 67 ) where
L ·l σ = map literal (λA. A ·a σ) L

lemma atm of subst lit [simp]: atm of (L ·l σ) = atm of L ·a σ
unfolding subst lit def by (cases L) simp+

definition subst cls :: ′a clause ⇒ ′s ⇒ ′a clause (infixl · 67 ) where
AA · σ = image mset (λA. A ·l σ) AA

definition subst clss :: ′a clause set ⇒ ′s ⇒ ′a clause set (infixl ·cs 67 ) where
AA ·cs σ = (λA. A · σ) ‘ AA

definition subst cls list :: ′a clause list ⇒ ′s ⇒ ′a clause list (infixl ·cl 67 ) where
Cs ·cl σ = map (λA. A · σ) Cs

definition subst cls lists :: ′a clause list ⇒ ′s list ⇒ ′a clause list (infixl ··cl 67 ) where
Cs ··cl σs = map2 (op ·) Cs σs

definition subst cls mset :: ′a clause multiset ⇒ ′s ⇒ ′a clause multiset (infixl ·cm 67 ) where
CC ·cm σ = image mset (λA. A · σ) CC

lemma subst cls add mset [simp]: add mset L C · σ = add mset (L ·l σ) (C · σ)
unfolding subst cls def by simp

lemma subst cls mset add mset [simp]: add mset C CC ·cm σ = add mset (C · σ) (CC ·cm σ)
unfolding subst cls mset def by simp

definition generalizes atm :: ′a ⇒ ′a ⇒ bool where
generalizes atm A B ←→ (∃σ. A ·a σ = B)

definition strictly generalizes atm :: ′a ⇒ ′a ⇒ bool where
strictly generalizes atm A B ←→ generalizes atm A B ∧ ¬ generalizes atm B A

definition generalizes lit :: ′a literal ⇒ ′a literal ⇒ bool where
generalizes lit L M ←→ (∃σ. L ·l σ = M )

definition strictly generalizes lit :: ′a literal ⇒ ′a literal ⇒ bool where
strictly generalizes lit L M ←→ generalizes lit L M ∧ ¬ generalizes lit M L

definition generalizes cls :: ′a clause ⇒ ′a clause ⇒ bool where
generalizes cls C D ←→ (∃σ. C · σ = D)
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definition strictly generalizes cls :: ′a clause ⇒ ′a clause ⇒ bool where
strictly generalizes cls C D ←→ generalizes cls C D ∧ ¬ generalizes cls D C

definition subsumes :: ′a clause ⇒ ′a clause ⇒ bool where
subsumes C D ←→ (∃σ. C · σ ⊆# D)

definition strictly subsumes :: ′a clause ⇒ ′a clause ⇒ bool where
strictly subsumes C D ←→ subsumes C D ∧ ¬ subsumes D C

definition variants :: ′a clause ⇒ ′a clause ⇒ bool where
variants C D ←→ generalizes cls C D ∧ generalizes cls D C

definition is renaming :: ′s ⇒ bool where
is renaming σ ←→ (∃ τ . σ � τ = id subst)

definition is renaming list :: ′s list ⇒ bool where
is renaming list σs ←→ (∀σ ∈ set σs. is renaming σ)

definition inv renaming :: ′s ⇒ ′s where
inv renaming σ = (SOME τ . σ � τ = id subst)

definition is ground atm :: ′a ⇒ bool where
is ground atm A ←→ (∀σ. A = A ·a σ)

definition is ground atms :: ′a set ⇒ bool where
is ground atms AA = (∀A ∈ AA. is ground atm A)

definition is ground atm list :: ′a list ⇒ bool where
is ground atm list As ←→ (∀A ∈ set As. is ground atm A)

definition is ground atm mset :: ′a multiset ⇒ bool where
is ground atm mset AA ←→ (∀A. A ∈# AA −→ is ground atm A)

definition is ground lit :: ′a literal ⇒ bool where
is ground lit L ←→ is ground atm (atm of L)

definition is ground cls :: ′a clause ⇒ bool where
is ground cls C ←→ (∀L. L ∈# C −→ is ground lit L)

definition is ground clss :: ′a clause set ⇒ bool where
is ground clss CC ←→ (∀C ∈ CC . is ground cls C )

definition is ground cls list :: ′a clause list ⇒ bool where
is ground cls list CC ←→ (∀C ∈ set CC . is ground cls C )

definition is ground subst :: ′s ⇒ bool where
is ground subst σ ←→ (∀A. is ground atm (A ·a σ))

definition is ground subst list :: ′s list ⇒ bool where
is ground subst list σs ←→ (∀σ ∈ set σs. is ground subst σ)

definition grounding of cls :: ′a clause ⇒ ′a clause set where
grounding of cls C = {C · σ | σ. is ground subst σ}

definition grounding of clss :: ′a clause set ⇒ ′a clause set where
grounding of clss CC = (

⋃
C ∈ CC . grounding of cls C )

definition is unifier :: ′s ⇒ ′a set ⇒ bool where
is unifier σ AA ←→ card (AA ·as σ) ≤ 1

definition is unifiers :: ′s ⇒ ′a set set ⇒ bool where
is unifiers σ AAA ←→ (∀AA ∈ AAA. is unifier σ AA)
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definition is mgu :: ′s ⇒ ′a set set ⇒ bool where
is mgu σ AAA ←→ is unifiers σ AAA ∧ (∀ τ . is unifiers τ AAA −→ (∃ γ. τ = σ � γ))

definition var disjoint :: ′a clause list ⇒ bool where
var disjoint Cs ←→
(∀σs. length σs = length Cs −→ (∃ τ . ∀ i < length Cs. ∀S . S ⊆# Cs ! i −→ S · σs ! i = S · τ))

end

7.3 Substitution Lemmas

locale substitution = substitution ops subst atm id subst comp subst
for

subst atm :: ′a ⇒ ′s ⇒ ′a and
id subst :: ′s and
comp subst :: ′s ⇒ ′s ⇒ ′s +

fixes
atm of atms :: ′a list ⇒ ′a and
renamings apart :: ′a clause list ⇒ ′s list

assumes
subst atm id subst [simp]: A ·a id subst = A and
subst atm comp subst [simp]: A ·a (τ � σ) = (A ·a τ) ·a σ and
subst ext : (

∧
A. A ·a σ = A ·a τ) =⇒ σ = τ and

make ground subst : is ground cls (C · σ) =⇒ ∃ τ . is ground subst τ ∧C · τ = C · σ and
renames apart :∧

Cs. length (renamings apart Cs) = length Cs ∧
(∀ % ∈ set (renamings apart Cs). is renaming %) ∧
var disjoint (Cs ··cl (renamings apart Cs)) and

atm of atms subst :∧
As Bs. atm of atms As ·a σ = atm of atms Bs ←→ map (λA. A ·a σ) As = Bs and

wf strictly generalizes atm: wfP strictly generalizes atm
begin

lemma subst ext iff : σ = τ ←→ (∀A. A ·a σ = A ·a τ)
by (blast intro: subst ext)

7.3.1 Identity Substitution

lemma id subst comp subst [simp]: id subst � σ = σ
by (rule subst ext) simp

lemma comp subst id subst [simp]: σ � id subst = σ
by (rule subst ext) simp

lemma id subst comp substs[simp]: replicate (length σs) id subst �s σs = σs
using comp substs def by (induction σs) auto

lemma comp substs id subst [simp]: σs �s replicate (length σs) id subst = σs
using comp substs def by (induction σs) auto

lemma subst atms id subst [simp]: AA ·as id subst = AA
unfolding subst atms def by simp

lemma subst atmss id subst [simp]: AAA ·ass id subst = AAA
unfolding subst atmss def by simp

lemma subst atm list id subst [simp]: As ·al id subst = As
unfolding subst atm list def by auto

lemma subst atm mset id subst [simp]: AA ·am id subst = AA
unfolding subst atm mset def by simp

lemma subst atm mset list id subst [simp]: AAs ·aml id subst = AAs
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unfolding subst atm mset list def by simp

lemma subst atm mset lists id subst [simp]: AAs ··aml replicate (length AAs) id subst = AAs
unfolding subst atm mset lists def by (induct AAs) auto

lemma subst lit id subst [simp]: L ·l id subst = L
unfolding subst lit def by (simp add : literal .map ident)

lemma subst cls id subst [simp]: C · id subst = C
unfolding subst cls def by simp

lemma subst clss id subst [simp]: CC ·cs id subst = CC
unfolding subst clss def by simp

lemma subst cls list id subst [simp]: Cs ·cl id subst = Cs
unfolding subst cls list def by simp

lemma subst cls lists id subst [simp]: Cs ··cl replicate (length Cs) id subst = Cs
unfolding subst cls lists def by (induct Cs) auto

lemma subst cls mset id subst [simp]: CC ·cm id subst = CC
unfolding subst cls mset def by simp

7.3.2 Associativity of Composition

lemma comp subst assoc[simp]: σ � (τ � γ) = σ � τ � γ
by (rule subst ext) simp

7.3.3 Compatibility of Substitution and Composition

lemma subst atms comp subst [simp]: AA ·as (τ � σ) = AA ·as τ ·as σ
unfolding subst atms def by auto

lemma subst atmss comp subst [simp]: AAA ·ass (τ � σ) = AAA ·ass τ ·ass σ
unfolding subst atmss def by auto

lemma subst atm list comp subst [simp]: As ·al (τ � σ) = As ·al τ ·al σ
unfolding subst atm list def by auto

lemma subst atm mset comp subst [simp]: AA ·am (τ � σ) = AA ·am τ ·am σ
unfolding subst atm mset def by auto

lemma subst atm mset list comp subst [simp]: AAs ·aml (τ � σ) = (AAs ·aml τ) ·aml σ
unfolding subst atm mset list def by auto

lemma subst atm mset lists comp substs[simp]: AAs ··aml (τs �s σs) = AAs ··aml τs ··aml σs
unfolding subst atm mset lists def comp substs def map zip map map zip map2 map zip assoc
by (simp add : split def )

lemma subst lit comp subst [simp]: L ·l (τ � σ) = L ·l τ ·l σ
unfolding subst lit def by (auto simp: literal .map comp o def )

lemma subst cls comp subst [simp]: C · (τ � σ) = C · τ · σ
unfolding subst cls def by auto

lemma subst clsscomp subst [simp]: CC ·cs (τ � σ) = CC ·cs τ ·cs σ
unfolding subst clss def by auto

lemma subst cls list comp subst [simp]: Cs ·cl (τ � σ) = Cs ·cl τ ·cl σ
unfolding subst cls list def by auto

lemma subst cls lists comp substs[simp]: Cs ··cl (τs �s σs) = Cs ··cl τs ··cl σs
unfolding subst cls lists def comp substs def map zip map map zip map2 map zip assoc
by (simp add : split def )
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lemma subst cls mset comp subst [simp]: CC ·cm (τ � σ) = CC ·cm τ ·cm σ
unfolding subst cls mset def by auto

7.3.4 “Commutativity” of Membership and Substitution

lemma Melem subst atm mset [simp]: A ∈# AA ·am σ ←→ (∃B . B ∈# AA ∧ A = B ·a σ)
unfolding subst atm mset def by auto

lemma Melem subst cls[simp]: L ∈# C · σ ←→ (∃M . M ∈# C ∧ L = M ·l σ)
unfolding subst cls def by auto

lemma Melem subst cls mset [simp]: AA ∈# CC ·cm σ ←→ (∃BB . BB ∈# CC ∧ AA = BB · σ)
unfolding subst cls mset def by auto

7.3.5 Signs and Substitutions

lemma subst lit is neg [simp]: is neg (L ·l σ) = is neg L
unfolding subst lit def by auto

lemma subst lit is pos[simp]: is pos (L ·l σ) = is pos L
unfolding subst lit def by auto

lemma subst minus[simp]: (− L) ·l µ = − (L ·l µ)
by (simp add : literal .map sel subst lit def uminus literal def )

7.3.6 Substitution on Literal(s)

lemma eql neg lit eql atm[simp]: (Neg A ′ ·l η) = Neg A ←→ A ′ ·a η = A
by (simp add : subst lit def )

lemma eql pos lit eql atm[simp]: (Pos A ′ ·l η) = Pos A ←→ A ′ ·a η = A
by (simp add : subst lit def )

lemma subst cls negs[simp]: (negs AA) · σ = negs (AA ·am σ)
unfolding subst cls def subst lit def subst atm mset def by auto

lemma subst cls poss[simp]: (poss AA) · σ = poss (AA ·am σ)
unfolding subst cls def subst lit def subst atm mset def by auto

lemma atms of subst atms: atms of C ·as σ = atms of (C · σ)
proof −

have atms of (C · σ) = set mset (image mset atm of (image mset (map literal (λA. A ·a σ)) C ))
unfolding subst cls def subst atms def subst lit def atms of def by auto

also have ... = set mset (image mset (λA. A ·a σ) (image mset atm of C ))
by simp (meson literal .map sel)

finally show atms of C ·as σ = atms of (C · σ)
unfolding subst atms def atms of def by auto

qed

lemma in image Neg is neg [simp]: L ·l σ ∈ Neg ‘ AA =⇒ is neg L
by (metis bex imageD literal .disc(2 ) literal .map disc iff subst lit def )

lemma subst lit in negs subst is neg : L ·l σ ∈# (negs AA) · τ =⇒ is neg L
by simp

lemma subst lit in negs is neg : L ·l σ ∈# negs AA =⇒ is neg L
by simp

7.3.7 Substitution on Empty

lemma subst atms empty [simp]: {} ·as σ = {}
unfolding subst atms def by auto

lemma subst atmss empty [simp]: {} ·ass σ = {}
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unfolding subst atmss def by auto

lemma comp substs empty iff [simp]: σs �s ηs = [] ←→ σs = [] ∨ ηs = []
using comp substs def map2 empty iff by auto

lemma subst atm list empty [simp]: [] ·al σ = []
unfolding subst atm list def by auto

lemma subst atm mset empty [simp]: {#} ·am σ = {#}
unfolding subst atm mset def by auto

lemma subst atm mset list empty [simp]: [] ·aml σ = []
unfolding subst atm mset list def by auto

lemma subst atm mset lists empty [simp]: [] ··aml σs = []
unfolding subst atm mset lists def by auto

lemma subst cls empty [simp]: {#} · σ = {#}
unfolding subst cls def by auto

lemma subst clss empty [simp]: {} ·cs σ = {}
unfolding subst clss def by auto

lemma subst cls list empty [simp]: [] ·cl σ = []
unfolding subst cls list def by auto

lemma subst cls lists empty [simp]: [] ··cl σs = []
unfolding subst cls lists def by auto

lemma subst scls mset empty [simp]: {#} ·cm σ = {#}
unfolding subst cls mset def by auto

lemma subst atms empty iff [simp]: AA ·as η = {} ←→ AA = {}
unfolding subst atms def by auto

lemma subst atmss empty iff [simp]: AAA ·ass η = {} ←→ AAA = {}
unfolding subst atmss def by auto

lemma subst atm list empty iff [simp]: As ·al η = [] ←→ As = []
unfolding subst atm list def by auto

lemma subst atm mset empty iff [simp]: AA ·am η = {#} ←→ AA = {#}
unfolding subst atm mset def by auto

lemma subst atm mset list empty iff [simp]: AAs ·aml η = [] ←→ AAs = []
unfolding subst atm mset list def by auto

lemma subst atm mset lists empty iff [simp]: AAs ··aml ηs = [] ←→ (AAs = [] ∨ ηs = [])
using map2 empty iff subst atm mset lists def by auto

lemma subst cls empty iff [simp]: C · η = {#} ←→ C = {#}
unfolding subst cls def by auto

lemma subst clss empty iff [simp]: CC ·cs η = {} ←→ CC = {}
unfolding subst clss def by auto

lemma subst cls list empty iff [simp]: Cs ·cl η = [] ←→ Cs = []
unfolding subst cls list def by auto

lemma subst cls lists empty iff [simp]: Cs ··cl ηs = [] ←→ (Cs = [] ∨ ηs = [])
using map2 empty iff subst cls lists def by auto

lemma subst cls mset empty iff [simp]: CC ·cm η = {#} ←→ CC = {#}
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unfolding subst cls mset def by auto

7.3.8 Substitution on a Union

lemma subst atms union[simp]: (AA ∪ BB) ·as σ = AA ·as σ ∪ BB ·as σ
unfolding subst atms def by auto

lemma subst atmss union[simp]: (AAA ∪ BBB) ·ass σ = AAA ·ass σ ∪ BBB ·ass σ
unfolding subst atmss def by auto

lemma subst atm list append [simp]: (As @ Bs) ·al σ = As ·al σ @ Bs ·al σ
unfolding subst atm list def by auto

lemma subst atm mset union[simp]: (AA + BB) ·am σ = AA ·am σ + BB ·am σ
unfolding subst atm mset def by auto

lemma subst atm mset list append [simp]: (AAs @ BBs) ·aml σ = AAs ·aml σ @ BBs ·aml σ
unfolding subst atm mset list def by auto

lemma subst cls union[simp]: (C + D) · σ = C · σ + D · σ
unfolding subst cls def by auto

lemma subst clss union[simp]: (CC ∪ DD) ·cs σ = CC ·cs σ ∪ DD ·cs σ
unfolding subst clss def by auto

lemma subst cls list append [simp]: (Cs @ Ds) ·cl σ = Cs ·cl σ @ Ds ·cl σ
unfolding subst cls list def by auto

lemma subst cls mset union[simp]: (CC + DD) ·cm σ = CC ·cm σ + DD ·cm σ
unfolding subst cls mset def by auto

7.3.9 Substitution on a Singleton

lemma subst atms single[simp]: {A} ·as σ = {A ·a σ}
unfolding subst atms def by auto

lemma subst atmss single[simp]: {AA} ·ass σ = {AA ·as σ}
unfolding subst atmss def by auto

lemma subst atm list single[simp]: [A] ·al σ = [A ·a σ]
unfolding subst atm list def by auto

lemma subst atm mset single[simp]: {#A#} ·am σ = {#A ·a σ#}
unfolding subst atm mset def by auto

lemma subst atm mset list [simp]: [AA] ·aml σ = [AA ·am σ]
unfolding subst atm mset list def by auto

lemma subst cls single[simp]: {#L#} · σ = {#L ·l σ#}
by simp

lemma subst clss single[simp]: {C} ·cs σ = {C · σ}
unfolding subst clss def by auto

lemma subst cls list single[simp]: [C ] ·cl σ = [C · σ]
unfolding subst cls list def by auto

lemma subst cls mset single[simp]: {#C #} ·cm σ = {#C · σ#}
by simp

7.3.10 Substitution on op #

lemma subst atm list Cons[simp]: (A # As) ·al σ = A ·a σ # As ·al σ
unfolding subst atm list def by auto
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lemma subst atm mset list Cons[simp]: (A # As) ·aml σ = A ·am σ # As ·aml σ
unfolding subst atm mset list def by auto

lemma subst atm mset lists Cons[simp]: (C # Cs) ··aml (σ # σs) = C ·am σ # Cs ··aml σs
unfolding subst atm mset lists def by auto

lemma subst cls list Cons[simp]: (C # Cs) ·cl σ = C · σ # Cs ·cl σ
unfolding subst cls list def by auto

lemma subst cls lists Cons[simp]: (C # Cs) ··cl (σ # σs) = C · σ # Cs ··cl σs
unfolding subst cls lists def by auto

7.3.11 Substitution on tl

lemma subst atm list tl [simp]: tl (As ·al η) = tl As ·al η
by (induction As) auto

lemma subst atm mset list tl [simp]: tl (AAs ·aml η) = tl AAs ·aml η
by (induction AAs) auto

7.3.12 Substitution on op !

lemma comp substs nth[simp]:
length τs = length σs =⇒ i < length τs =⇒ (τs �s σs) ! i = (τs ! i) � (σs ! i)
by (simp add : comp substs def )

lemma subst atm list nth[simp]: i < length As =⇒ (As ·al τ) ! i = As ! i ·a τ
unfolding subst atm list def using less Suc eq 0 disj nth map by force

lemma subst atm mset list nth[simp]: i < length AAs =⇒ (AAs ·aml η) ! i = (AAs ! i) ·am η
unfolding subst atm mset list def by auto

lemma subst atm mset lists nth[simp]:
length AAs = length σs =⇒ i < length AAs =⇒ (AAs ··aml σs) ! i = (AAs ! i) ·am (σs ! i)
unfolding subst atm mset lists def by auto

lemma subst cls list nth[simp]: i < length Cs =⇒ (Cs ·cl τ) ! i = (Cs ! i) · τ
unfolding subst cls list def using less Suc eq 0 disj nth map by (induction Cs) auto

lemma subst cls lists nth[simp]:
length Cs = length σs =⇒ i < length Cs =⇒ (Cs ··cl σs) ! i = (Cs ! i) · (σs ! i)
unfolding subst cls lists def by auto

7.3.13 Substitution on Various Other Functions

lemma subst clss image[simp]: image f X ·cs σ = {f x · σ | x . x ∈ X }
unfolding subst clss def by auto

lemma subst cls mset image mset [simp]: image mset f X ·cm σ = {# f x · σ. x ∈# X #}
unfolding subst cls mset def by auto

lemma mset subst atm list subst atm mset [simp]: mset (As ·al σ) = mset (As) ·am σ
unfolding subst atm list def subst atm mset def by auto

lemma mset subst cls list subst cls mset : mset (Cs ·cl σ) = (mset Cs) ·cm σ
unfolding subst cls mset def subst cls list def by auto

lemma sum list subst cls list subst cls[simp]: sum list (Cs ·cl η) = sum list Cs · η
unfolding subst cls list def by (induction Cs) auto

lemma set mset subst cls mset subst clss: set mset (CC ·cm µ) = (set mset CC ) ·cs µ
by (simp add : subst cls mset def subst clss def )
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lemma Neg Melem subst atm subst cls[simp]: Neg A ∈# C =⇒ Neg (A ·a σ) ∈# C · σ
by (metis Melem subst cls eql neg lit eql atm)

lemma Pos Melem subst atm subst cls[simp]: Pos A ∈# C =⇒ Pos (A ·a σ) ∈# C · σ
by (metis Melem subst cls eql pos lit eql atm)

lemma in atms of subst [simp]: B ∈ atms of C =⇒ B ·a σ ∈ atms of (C · σ)
by (metis atms of subst atms image iff subst atms def )

7.3.14 Renamings

lemma is renaming id subst [simp]: is renaming id subst
unfolding is renaming def by simp

lemma is renamingD : is renaming σ =⇒ (∀A1 A2 . A1 ·a σ = A2 ·a σ ←→ A1 = A2 )
by (metis is renaming def subst atm comp subst subst atm id subst)

lemma inv renaming cancel r [simp]: is renaming r =⇒ r � inv renaming r = id subst
unfolding inv renaming def is renaming def by (metis (mono tags) someI ex )

lemma inv renaming cancel r list [simp]:
is renaming list rs =⇒ rs �s map inv renaming rs = replicate (length rs) id subst
unfolding is renaming list def by (induction rs) (auto simp add : comp substs def )

lemma Nil comp substs[simp]: [] �s s = []
unfolding comp substs def by auto

lemma comp substs Nil [simp]: s �s [] = []
unfolding comp substs def by auto

lemma is renaming idempotent id subst : is renaming r =⇒ r � r = r =⇒ r = id subst
by (metis comp subst assoc comp subst id subst inv renaming cancel r)

lemma is renaming left id subst right id subst :
is renaming r =⇒ s � r = id subst =⇒ r � s = id subst
by (metis comp subst assoc comp subst id subst is renaming def )

lemma is renaming closure: is renaming r1 =⇒ is renaming r2 =⇒ is renaming (r1 � r2 )
unfolding is renaming def by (metis comp subst assoc comp subst id subst)

lemma is renaming inv renaming cancel atm[simp]: is renaming % =⇒ A ·a % ·a inv renaming % = A
by (metis inv renaming cancel r subst atm comp subst subst atm id subst)

lemma is renaming inv renaming cancel atms[simp]: is renaming % =⇒ AA ·as % ·as inv renaming % = AA
by (metis inv renaming cancel r subst atms comp subst subst atms id subst)

lemma is renaming inv renaming cancel atmss[simp]: is renaming % =⇒ AAA ·ass % ·ass inv renaming % = AAA
by (metis inv renaming cancel r subst atmss comp subst subst atmss id subst)

lemma is renaming inv renaming cancel atm list [simp]: is renaming % =⇒ As ·al % ·al inv renaming % = As
by (metis inv renaming cancel r subst atm list comp subst subst atm list id subst)

lemma is renaming inv renaming cancel atm mset [simp]: is renaming % =⇒ AA ·am % ·am inv renaming % = AA
by (metis inv renaming cancel r subst atm mset comp subst subst atm mset id subst)

lemma is renaming inv renaming cancel atm mset list [simp]: is renaming % =⇒ (AAs ·aml %) ·aml inv renaming %
= AAs

by (metis inv renaming cancel r subst atm mset list comp subst subst atm mset list id subst)

lemma is renaming list inv renaming cancel atm mset lists[simp]:
length AAs = length %s =⇒ is renaming list %s =⇒ AAs ··aml %s ··aml map inv renaming %s = AAs
by (metis inv renaming cancel r list subst atm mset lists comp substs subst atm mset lists id subst)

lemma is renaming inv renaming cancel lit [simp]: is renaming % =⇒ (L ·l %) ·l inv renaming % = L

33



by (metis inv renaming cancel r subst lit comp subst subst lit id subst)

lemma is renaming inv renaming cancel cls[simp]: is renaming % =⇒ C · % · inv renaming % = C
by (metis inv renaming cancel r subst cls comp subst subst cls id subst)

lemma is renaming inv renaming cancel clss[simp]: is renaming % =⇒ CC ·cs % ·cs inv renaming % = CC
by (metis inv renaming cancel r subst clss id subst subst clsscomp subst)

lemma is renaming inv renaming cancel cls list [simp]: is renaming % =⇒ Cs ·cl % ·cl inv renaming % = Cs
by (metis inv renaming cancel r subst cls list comp subst subst cls list id subst)

lemma is renaming list inv renaming cancel cls list [simp]:
length Cs = length %s =⇒ is renaming list %s =⇒ Cs ··cl %s ··cl map inv renaming %s = Cs
by (metis inv renaming cancel r list subst cls lists comp substs subst cls lists id subst)

lemma is renaming inv renaming cancel cls mset [simp]: is renaming % =⇒ CC ·cm % ·cm inv renaming % = CC
by (metis inv renaming cancel r subst cls mset comp subst subst cls mset id subst)

7.3.15 Monotonicity

lemma subst cls mono: set mset C ⊆ set mset D =⇒ set mset (C · σ) ⊆ set mset (D · σ)
by force

lemma subst cls mono mset : C ⊆# D =⇒ C · σ ⊆# D · σ
unfolding subst clss def by (metis mset subset eq exists conv subst cls union)

lemma subst subset mono: D ⊂# C =⇒ D · σ ⊂# C · σ
unfolding subst cls def by (simp add : image mset subset mono)

7.3.16 Size after Substitution

lemma size subst [simp]: size (D · σ) = size D
unfolding subst cls def by auto

lemma subst atm list length[simp]: length (As ·al σ) = length As
unfolding subst atm list def by auto

lemma length subst atm mset list [simp]: length (AAs ·aml η) = length AAs
unfolding subst atm mset list def by auto

lemma subst atm mset lists length[simp]: length (AAs ··aml σs) = min (length AAs) (length σs)
unfolding subst atm mset lists def by auto

lemma subst cls list length[simp]: length (Cs ·cl σ) = length Cs
unfolding subst cls list def by auto

lemma comp substs length[simp]: length (τs �s σs) = min (length τs) (length σs)
unfolding comp substs def by auto

lemma subst cls lists length[simp]: length (Cs ··cl σs) = min (length Cs) (length σs)
unfolding subst cls lists def by auto

7.3.17 Variable Disjointness

lemma var disjoint clauses:
assumes var disjoint Cs
shows ∀σs. length σs = length Cs −→ (∃ τ . Cs ··cl σs = Cs ·cl τ)

proof clarify
fix σs :: ′s list
assume a: length σs = length Cs
then obtain τ where ∀ i < length Cs. ∀S . S ⊆# Cs ! i −→ S · σs ! i = S · τ

using assms unfolding var disjoint def by blast
then have ∀ i < length Cs. (Cs ! i) · σs ! i = (Cs ! i) · τ

by auto
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then have Cs ··cl σs = Cs ·cl τ
using a by (simp add : nth equalityI )

then show ∃ τ . Cs ··cl σs = Cs ·cl τ
by auto

qed

7.3.18 Ground Expressions and Substitutions

lemma ex ground subst : ∃σ. is ground subst σ
using make ground subst [of {#}]
by (simp add : is ground cls def )

lemma is ground cls list Cons[simp]:
is ground cls list (C # Cs) = (is ground cls C ∧ is ground cls list Cs)
unfolding is ground cls list def by auto

Ground union lemma is ground atms union[simp]: is ground atms (AA ∪ BB) ←→ is ground atms AA ∧
is ground atms BB

unfolding is ground atms def by auto

lemma is ground atm mset union[simp]:
is ground atm mset (AA + BB) ←→ is ground atm mset AA ∧ is ground atm mset BB
unfolding is ground atm mset def by auto

lemma is ground cls union[simp]: is ground cls (C + D) ←→ is ground cls C ∧ is ground cls D
unfolding is ground cls def by auto

lemma is ground clss union[simp]:
is ground clss (CC ∪ DD) ←→ is ground clss CC ∧ is ground clss DD
unfolding is ground clss def by auto

lemma is ground cls list is ground cls sum list [simp]:
is ground cls list Cs =⇒ is ground cls (sum list Cs)
by (meson in mset sum list2 is ground cls def is ground cls list def )

Ground mono lemma is ground cls mono: C ⊆# D =⇒ is ground cls D =⇒ is ground cls C
unfolding is ground cls def by (metis set mset mono subsetD)

lemma is ground clss mono: CC ⊆ DD =⇒ is ground clss DD =⇒ is ground clss CC
unfolding is ground clss def by blast

lemma grounding of clss mono: CC ⊆ DD =⇒ grounding of clss CC ⊆ grounding of clss DD
using grounding of clss def by auto

lemma sum list subseteq mset is ground cls list [simp]:
sum list Cs ⊆# sum list Ds =⇒ is ground cls list Ds =⇒ is ground cls list Cs
by (meson in mset sum list is ground cls def is ground cls list is ground cls sum list

is ground cls mono is ground cls list def )

Substituting on ground expression preserves ground lemma is ground comp subst [simp]: is ground subst
σ =⇒ is ground subst (τ � σ)

unfolding is ground subst def is ground atm def by auto

lemma ground subst ground atm[simp]: is ground subst σ =⇒ is ground atm (A ·a σ)
by (simp add : is ground subst def )

lemma ground subst ground lit [simp]: is ground subst σ =⇒ is ground lit (L ·l σ)
unfolding is ground lit def subst lit def by (cases L) auto

lemma ground subst ground cls[simp]: is ground subst σ =⇒ is ground cls (C · σ)
unfolding is ground cls def by auto

lemma ground subst ground clss[simp]: is ground subst σ =⇒ is ground clss (CC ·cs σ)
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unfolding is ground clss def subst clss def by auto

lemma ground subst ground cls list [simp]: is ground subst σ =⇒ is ground cls list (Cs ·cl σ)
unfolding is ground cls list def subst cls list def by auto

lemma ground subst ground cls lists[simp]:
∀σ ∈ set σs. is ground subst σ =⇒ is ground cls list (Cs ··cl σs)
unfolding is ground cls list def subst cls lists def by (auto simp: set zip)

Substituting on ground expression has no effect lemma is ground subst atm[simp]: is ground atm A
=⇒ A ·a σ = A

unfolding is ground atm def by simp

lemma is ground subst atms[simp]: is ground atms AA =⇒ AA ·as σ = AA
unfolding is ground atms def subst atms def image def by auto

lemma is ground subst atm mset [simp]: is ground atm mset AA =⇒ AA ·am σ = AA
unfolding is ground atm mset def subst atm mset def by auto

lemma is ground subst atm list [simp]: is ground atm list As =⇒ As ·al σ = As
unfolding is ground atm list def subst atm list def by (auto intro: nth equalityI )

lemma is ground subst atm list member [simp]:
is ground atm list As =⇒ i < length As =⇒ As ! i ·a σ = As ! i
unfolding is ground atm list def by auto

lemma is ground subst lit [simp]: is ground lit L =⇒ L ·l σ = L
unfolding is ground lit def subst lit def by (cases L) simp all

lemma is ground subst cls[simp]: is ground cls C =⇒ C · σ = C
unfolding is ground cls def subst cls def by simp

lemma is ground subst clss[simp]: is ground clss CC =⇒ CC ·cs σ = CC
unfolding is ground clss def subst clss def image def by auto

lemma is ground subst cls lists[simp]:
assumes length P = length Cs and is ground cls list Cs
shows Cs ··cl P = Cs
using assms by (metis is ground cls list def is ground subst cls min.idem nth equalityI nth mem

subst cls lists nth subst cls lists length)

lemma is ground subst lit iff : is ground lit L ←→ (∀σ. L = L ·l σ)
using is ground atm def is ground lit def subst lit def by (cases L) auto

lemma is ground subst cls iff : is ground cls C ←→ (∀σ. C = C · σ)
by (metis ex ground subst ground subst ground cls is ground subst cls)

Members of ground expressions are ground lemma is ground cls as atms: is ground cls C ←→ (∀A ∈
atms of C . is ground atm A)

by (auto simp: atms of def is ground cls def is ground lit def )

lemma is ground cls imp is ground lit : L ∈# C =⇒ is ground cls C =⇒ is ground lit L
by (simp add : is ground cls def )

lemma is ground cls imp is ground atm: A ∈ atms of C =⇒ is ground cls C =⇒ is ground atm A
by (simp add : is ground cls as atms)

lemma is ground cls is ground atms atms of [simp]: is ground cls C =⇒ is ground atms (atms of C )
by (simp add : is ground cls imp is ground atm is ground atms def )

lemma grounding ground : C ∈ grounding of clss M =⇒ is ground cls C
unfolding grounding of clss def grounding of cls def by auto
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lemma in subset eq grounding of clss is ground cls[simp]:
C ∈ CC =⇒ CC ⊆ grounding of clss DD =⇒ is ground cls C
unfolding grounding of clss def grounding of cls def by auto

lemma is ground cls empty [simp]: is ground cls {#}
unfolding is ground cls def by simp

lemma grounding of cls ground : is ground cls C =⇒ grounding of cls C = {C}
unfolding grounding of cls def by (simp add : ex ground subst)

lemma grounding of cls empty [simp]: grounding of cls {#} = {{#}}
by (simp add : grounding of cls ground)

7.3.19 Subsumption

lemma subsumes empty left [simp]: subsumes {#} C
unfolding subsumes def subst cls def by simp

lemma strictly subsumes empty left [simp]: strictly subsumes {#} C ←→ C 6= {#}
unfolding strictly subsumes def subsumes def subst cls def by simp

7.3.20 Unifiers

lemma card le one alt : finite X =⇒ card X ≤ 1 ←→ X = {} ∨ (∃ x . X = {x})
by (induct rule: finite induct) auto

lemma is unifier subst atm eqI :
assumes finite AA
shows is unifier σ AA =⇒ A ∈ AA =⇒ B ∈ AA =⇒ A ·a σ = B ·a σ
unfolding is unifier def subst atms def card le one alt [OF finite imageI [OF assms]]
by (metis equals0D imageI insert iff )

lemma is unifier alt :
assumes finite AA
shows is unifier σ AA ←→ (∀A ∈ AA. ∀B ∈ AA. A ·a σ = B ·a σ)
unfolding is unifier def subst atms def card le one alt [OF finite imageI [OF assms(1 )]]
by (rule iffI , metis empty iff insert iff insert image, blast)

lemma is unifiers subst atm eqI :
assumes finite AA is unifiers σ AAA AA ∈ AAA A ∈ AA B ∈ AA
shows A ·a σ = B ·a σ
by (metis assms is unifiers def is unifier subst atm eqI )

theorem is unifiers comp:
is unifiers σ (set mset ‘ set (map2 add mset As Bs) ·ass η) ←→
is unifiers (η � σ) (set mset ‘ set (map2 add mset As Bs))

unfolding is unifiers def is unifier def subst atmss def by auto

7.3.21 Most General Unifier

lemma is mgu is unifiers: is mgu σ AAA =⇒ is unifiers σ AAA
using is mgu def by blast

lemma is mgu is most general : is mgu σ AAA =⇒ is unifiers τ AAA =⇒ ∃ γ. τ = σ � γ
using is mgu def by blast

lemma is unifiers is unifier : is unifiers σ AAA =⇒ AA ∈ AAA =⇒ is unifier σ AA
using is unifiers def by simp

7.3.22 Generalization and Subsumption

lemma variants iff subsumes: variants C D ←→ subsumes C D ∧ subsumes D C
proof

assume variants C D
then show subsumes C D ∧ subsumes D C
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unfolding variants def generalizes cls def subsumes def by (metis subset mset .order .refl)
next

assume sub: subsumes C D ∧ subsumes D C
then have size C = size D

unfolding subsumes def by (metis antisym size mset mono size subst)
then show variants C D

using sub unfolding subsumes def variants def generalizes cls def
by (metis leD mset subset size size mset mono size subst

subset mset .order .not eq order implies strict)
qed

lemma wf strictly generalizes cls: wfP strictly generalizes cls
proof −
{

assume ∃C at . ∀ i . strictly generalizes cls (C at (Suc i)) (C at i)
then obtain C at :: nat ⇒ ′a clause where

sg C :
∧

i . strictly generalizes cls (C at (Suc i)) (C at i)
by blast

define n :: nat where
n = size (C at 0 )

have sz C : size (C at i) = n for i
proof (induct i)

case (Suc i)
then show ?case

using sg C [of i ] unfolding strictly generalizes cls def generalizes cls def subst cls def
by (metis size image mset)

qed (simp add : n def )

obtain σ at :: nat ⇒ ′s where
C σ:

∧
i . image mset (λL. L ·l σ at i) (C at (Suc i)) = C at i

using sg C [unfolded strictly generalizes cls def generalizes cls def subst cls def ] by metis

define Ls at :: nat ⇒ ′a literal list where
Ls at = rec nat (SOME Ls. mset Ls = C at 0 )

(λi Lsi . SOME Ls. mset Ls = C at (Suc i) ∧ map (λL. L ·l σ at i) Ls = Lsi)

have
Ls at 0 : Ls at 0 = (SOME Ls. mset Ls = C at 0 ) and
Ls at Suc:

∧
i . Ls at (Suc i) =

(SOME Ls. mset Ls = C at (Suc i) ∧ map (λL. L ·l σ at i) Ls = Ls at i)
unfolding Ls at def by simp+

have mset Lt at 0 : mset (Ls at 0 ) = C at 0
unfolding Ls at 0 by (rule someI ex ) (metis list of mset exi)

have mset (Ls at (Suc i)) = C at (Suc i) ∧ map (λL. L ·l σ at i) (Ls at (Suc i)) = Ls at i
for i

proof (induct i)
case 0
then show ?case

by (simp add : Ls at Suc, rule someI ex ,
metis C σ image mset of subset list mset Lt at 0 )

next
case Suc
then show ?case

by (subst (1 2 ) Ls at Suc) (rule someI ex , metis C σ image mset of subset list)
qed
note mset Ls = this[THEN conjunct1 ] and Ls σ = this[THEN conjunct2 ]

have len Ls:
∧

i . length (Ls at i) = n
by (metis mset Ls mset Lt at 0 not0 implies Suc size mset sz C )
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have is pos Ls:
∧

i j . j < n =⇒ is pos (Ls at (Suc i) ! j ) ←→ is pos (Ls at i ! j )
using Ls σ len Ls by (metis literal .map disc iff nth map subst lit def )

have Ls τ strict lit :
∧

i τ . map (λL. L ·l τ) (Ls at i) 6= Ls at (Suc i)
by (metis C σ mset Ls Ls σ mset map sg C generalizes cls def strictly generalizes cls def

subst cls def )

have Ls τ strict tm:
map ((λt . t ·a τ) ◦ atm of ) (Ls at i) 6= map atm of (Ls at (Suc i)) for i τ

proof −
obtain j :: nat where

j lt : j < n and
j τ : Ls at i ! j ·l τ 6= Ls at (Suc i) ! j
using Ls τ strict lit [of τ i ] len Ls
by (metis (no types, lifting) length map list eq iff nth eq nth map)

have atm of (Ls at i ! j ) ·a τ 6= atm of (Ls at (Suc i) ! j )
using j τ is pos Ls[OF j lt ]
by (metis (mono guards) literal .expand literal .map disc iff literal .map sel subst lit def )

then show ?thesis
using j lt len Ls by (metis nth map o apply)

qed

define tm at :: nat ⇒ ′a where∧
i . tm at i = atm of atms (map atm of (Ls at i))

have
∧

i . generalizes atm (tm at (Suc i)) (tm at i)
unfolding tm at def generalizes atm def atm of atms subst
using Ls σ[THEN arg cong , of map atm of ] by (auto simp: comp def )

moreover have
∧

i . ¬ generalizes atm (tm at i) (tm at (Suc i))
unfolding tm at def generalizes atm def atm of atms subst by (simp add : Ls τ strict tm)

ultimately have
∧

i . strictly generalizes atm (tm at (Suc i)) (tm at i)
unfolding strictly generalizes atm def by blast

then have False
using wf strictly generalizes atm[unfolded wfP def wf iff no infinite down chain] by blast

}
then show wfP (strictly generalizes cls :: ′a clause ⇒ ⇒ )

unfolding wfP def by (blast intro: wf iff no infinite down chain[THEN iffD2 ])
qed

lemma strict subset subst strictly subsumes:
assumes cη sub: C · η ⊂# D
shows strictly subsumes C D
by (metis cη sub leD mset subset size size mset mono size subst strictly subsumes def

subset mset .dual order .strict implies order substitution ops.subsumes def )

lemma subsumes trans: subsumes C D =⇒ subsumes D E =⇒ subsumes C E
unfolding subsumes def
by (metis (no types) subset mset .order .trans subst cls comp subst subst cls mono mset)

lemma subset strictly subsumes: C ⊂# D =⇒ strictly subsumes C D
using strict subset subst strictly subsumes[of C id subst ] by auto

lemma strictly subsumes neq : strictly subsumes D ′ D =⇒ D ′ 6= D · σ
unfolding strictly subsumes def subsumes def by blast

lemma strictly subsumes has minimum:
assumes CC 6= {}
shows ∃C ∈ CC . ∀D ∈ CC . ¬ strictly subsumes D C

proof (rule ccontr)
assume ¬ (∃C ∈ CC . ∀D∈CC . ¬ strictly subsumes D C )
then have ∀C ∈ CC . ∃D ∈ CC . strictly subsumes D C
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by blast
then obtain f where

f p: ∀C ∈ CC . f C ∈ CC ∧ strictly subsumes (f C ) C
by metis

from assms obtain C where
C p: C ∈ CC
by auto

define c :: nat ⇒ ′a clause where∧
n. c n = (f ˆˆ n) C

have incc: c i ∈ CC for i
by (induction i) (auto simp: c def f p C p)

have ps: ∀ i . strictly subsumes (c (Suc i)) (c i)
using incc f p unfolding c def by auto

have ∀ i . size (c i) ≥ size (c (Suc i))
using ps unfolding strictly subsumes def subsumes def by (metis size mset mono size subst)

then have lte: ∀ i . (size ◦ c) i ≥ (size ◦ c) (Suc i)
unfolding comp def .

then have ∃ l . ∀ l ′ ≥ l . size (c l ′) = size (c (Suc l ′))
using f Suc decr eventually const comp def by auto

then obtain l where
l p: ∀ l ′ ≥ l . size (c l ′) = size (c (Suc l ′))
by metis

then have ∀ l ′ ≥ l . strictly generalizes cls (c (Suc l ′)) (c l ′)
using ps unfolding strictly generalizes cls def generalizes cls def
by (metis size subst less irrefl strictly subsumes def mset subset size

subset mset def subsumes def strictly subsumes neq)
then have ∀ i . strictly generalizes cls (c (Suc i + l)) (c (i + l))

unfolding strictly generalizes cls def generalizes cls def by auto
then have ∃ f . ∀ i . strictly generalizes cls (f (Suc i)) (f i)

by (rule exI [of λx . c (x + l)])
then show False

using wf strictly generalizes cls
wf iff no infinite down chain[of {(x , y). strictly generalizes cls x y}]

unfolding wfP def by auto
qed

end

7.4 Most General Unifiers

locale mgu = substitution subst atm id subst comp subst atm of atms renamings apart
for

subst atm :: ′a ⇒ ′s ⇒ ′a and
id subst :: ′s and
comp subst :: ′s ⇒ ′s ⇒ ′s and
atm of atms :: ′a list ⇒ ′a and
renamings apart :: ′a literal multiset list ⇒ ′s list +

fixes
mgu :: ′a set set ⇒ ′s option

assumes
mgu sound : finite AAA =⇒ (∀AA ∈ AAA. finite AA) =⇒ mgu AAA = Some σ =⇒ is mgu σ AAA and
mgu complete:

finite AAA =⇒ (∀AA ∈ AAA. finite AA) =⇒ is unifiers σ AAA =⇒ ∃ τ . mgu AAA = Some τ
begin

lemmas is unifiers mgu = mgu sound [unfolded is mgu def , THEN conjunct1 ]
lemmas is mgu most general = mgu sound [unfolded is mgu def , THEN conjunct2 ]

lemma mgu unifier :
assumes

aslen: length As = n and
aaslen: length AAs = n and

40



mgu: Some σ = mgu (set mset ‘ set (map2 add mset As AAs)) and
i lt : i < n and
a in: A ∈# AAs ! i

shows A ·a σ = As ! i ·a σ
proof −

from mgu have is mgu σ (set mset ‘ set (map2 add mset As AAs))
using mgu sound by auto

then have is unifiers σ (set mset ‘ set (map2 add mset As AAs))
using is mgu is unifiers by auto

then have is unifier σ (set mset (add mset (As ! i) (AAs ! i)))
using i lt aslen aaslen unfolding is unifiers def is unifier def
by simp (metis length zip min.idem nth mem nth zip prod .case set mset add mset insert)

then show ?thesis
using aslen aaslen a in is unifier subst atm eqI
by (metis finite set mset insertCI set mset add mset insert)

qed

end

end

8 Refutational Inference Systems

theory Inference System
imports Herbrand Interpretation

begin

This theory gathers results from Section 2.4 (“Refutational Theorem Proving”), 3 (“Standard Resolution”),
and 4.2 (“Counterexample-Reducing Inference Systems”) of Bachmair and Ganzinger’s chapter.

8.1 Preliminaries

Inferences have one distinguished main premise, any number of side premises, and a conclusion.

datatype ′a inference =
Infer (side prems of : ′a clause multiset) (main prem of : ′a clause) (concl of : ′a clause)

abbreviation prems of :: ′a inference ⇒ ′a clause multiset where
prems of γ ≡ side prems of γ + {#main prem of γ#}

abbreviation concls of :: ′a inference set ⇒ ′a clause set where
concls of Γ ≡ concl of ‘ Γ

definition infer from :: ′a clause set ⇒ ′a inference ⇒ bool where
infer from CC γ ←→ set mset (prems of γ) ⊆ CC

locale inference system =
fixes Γ :: ′a inference set

begin

definition inferences from :: ′a clause set ⇒ ′a inference set where
inferences from CC = {γ. γ ∈ Γ ∧ infer from CC γ}

definition inferences between :: ′a clause set ⇒ ′a clause ⇒ ′a inference set where
inferences between CC C = {γ. γ ∈ Γ ∧ infer from (CC ∪ {C}) γ ∧ C ∈# prems of γ}

lemma inferences from mono: CC ⊆ DD =⇒ inferences from CC ⊆ inferences from DD
unfolding inferences from def infer from def by fast

definition saturated :: ′a clause set ⇒ bool where
saturated N ←→ concls of (inferences from N ) ⊆ N
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lemma saturatedD :
assumes

satur : saturated N and
inf : Infer CC D E ∈ Γ and
cc subs n: set mset CC ⊆ N and
d in n: D ∈ N

shows E ∈ N
proof −

have Infer CC D E ∈ inferences from N
unfolding inferences from def infer from def using inf cc subs n d in n by simp

then have E ∈ concls of (inferences from N )
unfolding image iff by (metis inference.sel(3 ))

then show E ∈ N
using satur unfolding saturated def by blast

qed

end

Satisfiability preservation is a weaker requirement than soundness.

locale sat preserving inference system = inference system +
assumes Γ sat preserving : satisfiable N =⇒ satisfiable (N ∪ concls of (inferences from N ))

locale sound inference system = inference system +
assumes Γ sound : Infer CC D E ∈ Γ =⇒ I |=m CC =⇒ I |= D =⇒ I |= E

begin

lemma Γ sat preserving :
assumes sat n: satisfiable N
shows satisfiable (N ∪ concls of (inferences from N ))

proof −
obtain I where i : I |=s N

using sat n by blast
then have

∧
CC D E . Infer CC D E ∈ Γ =⇒ set mset CC ⊆ N =⇒ D ∈ N =⇒ I |= E

using Γ sound unfolding true clss def true cls mset def by (simp add : subset eq)
then have

∧
γ. γ ∈ Γ =⇒ infer from N γ =⇒ I |= concl of γ

unfolding infer from def by (case tac γ) clarsimp
then have I |=s concls of (inferences from N )

unfolding inferences from def image def true clss def infer from def by blast
then have I |=s N ∪ concls of (inferences from N )

using i by simp
then show ?thesis

by blast
qed

sublocale sat preserving inference system
by unfold locales (erule Γ sat preserving)

end

locale reductive inference system = inference system Γ for Γ :: ( ′a :: wellorder) inference set +
assumes Γ reductive: γ ∈ Γ =⇒ concl of γ < main prem of γ

8.2 Refutational Completeness

Refutational completeness can be established once and for all for counterexample-reducing inference systems.
The material formalized here draws from both the general framework of Section 4.2 and the concrete instances
of Section 3.

locale counterex reducing inference system =
inference system Γ for Γ :: ( ′a :: wellorder) inference set +
fixes I of :: ′a clause set ⇒ ′a interp
assumes Γ counterex reducing :
{#} /∈ N =⇒ D ∈ N =⇒ ¬ I of N |= D =⇒ (

∧
C . C ∈ N =⇒ ¬ I of N |= C =⇒ D ≤ C ) =⇒

∃CC E . set mset CC ⊆ N ∧ I of N |=m CC ∧ Infer CC D E ∈ Γ ∧ ¬ I of N |= E ∧ E < D
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begin

lemma ex min counterex :
fixes N :: ( ′a :: wellorder) clause set
assumes ¬ I |=s N
shows ∃C ∈ N . ¬ I |= C ∧ (∀D ∈ N . D < C −→ I |= D)

proof −
obtain C where C ∈ N and ¬ I |= C

using assms unfolding true clss def by auto
then have c in: C ∈ {C ∈ N . ¬ I |= C}

by blast
show ?thesis

using wf eq minimal [THEN iffD1 , rule format , OF wf less multiset c in] by blast
qed

theorem saturated model :
assumes

satur : saturated N and
ec ni n: {#} /∈ N

shows I of N |=s N
proof −

have ec ni n: {#} /∈ N
using ec ni n by auto

{
assume ¬ I of N |=s N
then obtain D where

d in n: D ∈ N and
d cex : ¬ I of N |= D and
d min:

∧
C . C ∈ N =⇒ C < D =⇒ I of N |= C

by (meson ex min counterex )
then obtain CC E where

cc subs n: set mset CC ⊆ N and
inf e: Infer CC D E ∈ Γ and
e cex : ¬ I of N |= E and
e lt d : E < D
using Γ counterex reducing [OF ec ni n] not less by metis

from cc subs n inf e have E ∈ N
using d in n satur by (blast dest : saturatedD)

then have False
using e cex e lt d d min not less by blast

}
then show ?thesis

by satx
qed

Cf. Corollary 3.10:

corollary saturated complete: saturated N =⇒ ¬ satisfiable N =⇒ {#} ∈ N
using saturated model by blast

end

8.3 Compactness

Bachmair and Ganzinger claim that compactness follows from refutational completeness but leave the proof
to the readers’ imagination. Our proof relies on an inductive definition of saturation in terms of a base set
of clauses.

context inference system
begin

inductive-set saturate :: ′a clause set ⇒ ′a clause set for CC :: ′a clause set where
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base: C ∈ CC =⇒ C ∈ saturate CC
| step: Infer CC ′ D E ∈ Γ =⇒ (

∧
C ′. C ′ ∈# CC ′ =⇒ C ′ ∈ saturate CC ) =⇒ D ∈ saturate CC =⇒

E ∈ saturate CC

lemma saturate mono: C ∈ saturate CC =⇒ CC ⊆ DD =⇒ C ∈ saturate DD
by (induct rule: saturate.induct) (auto intro: saturate.intros)

lemma saturated saturate[simp, intro]: saturated (saturate N )
unfolding saturated def inferences from def infer from def image def
by clarify (rename tac x , case tac x , auto elim!: saturate.step)

lemma saturate finite: C ∈ saturate CC =⇒ ∃DD . DD ⊆ CC ∧ finite DD ∧ C ∈ saturate DD
proof (induct rule: saturate.induct)

case (base C )
then have {C} ⊆ CC and finite {C} and C ∈ saturate {C}

by (auto intro: saturate.intros)
then show ?case

by blast
next

case (step CC ′ D E)
obtain DD of where∧

C . C ∈# CC ′ =⇒ DD of C ⊆ CC ∧ finite (DD of C ) ∧ C ∈ saturate (DD of C )
using step(3 ) by metis

then have
(
⋃

C ∈ set mset CC ′. DD of C ) ⊆ CC
finite (

⋃
C ∈ set mset CC ′. DD of C ) ∧ set mset CC ′ ⊆ saturate (

⋃
C ∈ set mset CC ′. DD of C )

by (auto intro: saturate mono)
then obtain DD where

d sub: DD ⊆ CC and d fin: finite DD and in sat d : set mset CC ′ ⊆ saturate DD
by blast

obtain EE where
e sub: EE ⊆ CC and e fin: finite EE and in sat ee: D ∈ saturate EE
using step(5 ) by blast

have DD ∪ EE ⊆ CC
using d sub e sub step(1 ) by fast

moreover have finite (DD ∪ EE)
using d fin e fin by fast

moreover have E ∈ saturate (DD ∪ EE)
using in sat d in sat ee step.hyps(1 )
by (blast intro: inference system.saturate.step saturate mono)

ultimately show ?case
by blast

qed

end

context sound inference system
begin

theorem saturate sound : C ∈ saturate CC =⇒ I |=s CC =⇒ I |= C
by (induct rule: saturate.induct) (auto simp: true cls mset def true clss def Γ sound)

end

context sat preserving inference system
begin

This result surely holds, but we have yet to prove it. The challenge is: Every time a new clause is introduced,
we also get a new interpretation (by the definition of sat preserving inference system). But the interpretation
we want here is then the one that exists ”at the limit”. Maybe we can use compactness to prove it.

theorem saturate sat preserving : satisfiable CC =⇒ satisfiable (saturate CC )
oops
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end

locale sound counterex reducing inference system =
counterex reducing inference system + sound inference system

begin

Compactness of clausal logic is stated as Theorem 3.12 for the case of unordered ground resolution. The
proof below is a generalization to any sound counterexample-reducing inference system. The actual theorem
will become available once the locale has been instantiated with a concrete inference system.

theorem clausal logic compact :
fixes N :: ( ′a :: wellorder) clause set
shows ¬ satisfiable N ←→ (∃DD ⊆ N . finite DD ∧ ¬ satisfiable DD)

proof
assume ¬ satisfiable N
then have {#} ∈ saturate N

using saturated complete saturated saturate saturate.base unfolding true clss def by meson
then have ∃DD ⊆ N . finite DD ∧ {#} ∈ saturate DD

using saturate finite by fastforce
then show ∃DD ⊆ N . finite DD ∧ ¬ satisfiable DD

using saturate sound by auto
next

assume ∃DD ⊆ N . finite DD ∧ ¬ satisfiable DD
then show ¬ satisfiable N

by (blast intro: true clss mono)
qed

end

end

9 Candidate Models for Ground Resolution

theory Ground Resolution Model
imports Herbrand Interpretation

begin

The proofs of refutational completeness for the two resolution inference systems presented in Section 3
(“Standard Resolution”) of Bachmair and Ganzinger’s chapter share mostly the same candidate model
construction. The literal selection capability needed for the second system is ignored by the first one, by
taking λ . {} as instantiation for the S parameter.

locale selection =
fixes S :: ′a clause ⇒ ′a clause
assumes

S selects subseteq : S C ⊆# C and
S selects neg lits: L ∈# S C =⇒ is neg L

locale ground resolution with selection = selection S
for S :: ( ′a :: wellorder) clause ⇒ ′a clause

begin

The following commands corresponds to Definition 3.14, which generalizes Definition 3.1. production C is
denoted εC in the chapter; interp C is denoted IC ; Interp C is denoted IC ; and Interp N is denoted IN .
The mutually recursive definition from the chapter is massaged to simplify the termination argument. The
production unfold lemma below gives the intended characterization.

context
fixes N :: ′a clause set

begin

function production :: ′a clause ⇒ ′a interp where
production C =
{A. C ∈ N ∧ C 6= {#} ∧ Max mset C = Pos A ∧ ¬ (

⋃
D ∈ {D . D < C}. production D) |= C ∧ S C = {#}}
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by auto
termination by (rule termination[OF wf , simplified ])

declare production.simps [simp del ]

definition interp :: ′a clause ⇒ ′a interp where
interp C = (

⋃
D ∈ {D . D < C}. production D)

lemma production unfold :
production C = {A. C ∈ N ∧ C 6= {#} ∧ Max mset C = Pos A ∧ ¬ interp C |= C ∧ S C = {#}}
unfolding interp def by (rule production.simps)

abbreviation productive :: ′a clause ⇒ bool where
productive C ≡ production C 6= {}

abbreviation produces :: ′a clause ⇒ ′a ⇒ bool where
produces C A ≡ production C = {A}

lemma producesD : produces C A =⇒ C ∈ N ∧ C 6= {#} ∧ Pos A = Max mset C ∧ ¬ interp C |= C ∧ S C = {#}
unfolding production unfold by auto

definition Interp :: ′a clause ⇒ ′a interp where
Interp C = interp C ∪ production C

lemma interp subseteq Interp[simp]: interp C ⊆ Interp C
by (simp add : Interp def )

lemma Interp as UNION : Interp C = (
⋃

D ∈ {D . D ≤ C}. production D)
unfolding Interp def interp def less eq multiset def by fast

lemma productive not empty : productive C =⇒ C 6= {#}
unfolding production unfold by simp

lemma productive imp produces Max literal : productive C =⇒ produces C (atm of (Max mset C ))
unfolding production unfold by (auto simp del : atm of Max lit)

lemma productive imp produces Max atom: productive C =⇒ produces C (Max (atms of C ))
unfolding atms of def Max atm of set mset commute[OF productive not empty ]
by (rule productive imp produces Max literal)

lemma produces imp Max literal : produces C A =⇒ A = atm of (Max mset C )
using productive imp produces Max literal by auto

lemma produces imp Max atom: produces C A =⇒ A = Max (atms of C )
using producesD produces imp Max literal by auto

lemma produces imp Pos in lits: produces C A =⇒ Pos A ∈# C
by (simp add : producesD)

lemma productive in N : productive C =⇒ C ∈ N
unfolding production unfold by simp

lemma produces imp atms leq : produces C A =⇒ B ∈ atms of C =⇒ B ≤ A
using Max .coboundedI produces imp Max atom by blast

lemma produces imp neg notin lits: produces C A =⇒ ¬ Neg A ∈# C
by (simp add : pos Max imp neg notin producesD)

lemma less eq imp interp subseteq interp: C ≤ D =⇒ interp C ⊆ interp D
unfolding interp def by auto (metis order .strict trans2 )

lemma less eq imp interp subseteq Interp: C ≤ D =⇒ interp C ⊆ Interp D
unfolding Interp def using less eq imp interp subseteq interp by blast
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lemma less imp production subseteq interp: C < D =⇒ production C ⊆ interp D
unfolding interp def by fast

lemma less eq imp production subseteq Interp: C ≤ D =⇒ production C ⊆ Interp D
unfolding Interp def using less imp production subseteq interp
by (metis le imp less or eq le supI1 sup ge2 )

lemma less imp Interp subseteq interp: C < D =⇒ Interp C ⊆ interp D
by (simp add : Interp def less eq imp interp subseteq interp less imp production subseteq interp)

lemma less eq imp Interp subseteq Interp: C ≤ D =⇒ Interp C ⊆ Interp D
using Interp def less eq imp interp subseteq Interp less eq imp production subseteq Interp by auto

lemma not Interp to interp imp less: A /∈ Interp C =⇒ A ∈ interp D =⇒ C < D
using less eq imp interp subseteq Interp not less by blast

lemma not interp to interp imp less: A /∈ interp C =⇒ A ∈ interp D =⇒ C < D
using less eq imp interp subseteq interp not less by blast

lemma not Interp to Interp imp less: A /∈ Interp C =⇒ A ∈ Interp D =⇒ C < D
using less eq imp Interp subseteq Interp not less by blast

lemma not interp to Interp imp le: A /∈ interp C =⇒ A ∈ Interp D =⇒ C ≤ D
using less imp Interp subseteq interp not less by blast

definition INTERP :: ′a interp where
INTERP = (

⋃
C ∈ N . production C )

lemma interp subseteq INTERP : interp C ⊆ INTERP
unfolding interp def INTERP def by (auto simp: production unfold)

lemma production subseteq INTERP : production C ⊆ INTERP
unfolding INTERP def using production unfold by blast

lemma Interp subseteq INTERP : Interp C ⊆ INTERP
by (simp add : Interp def interp subseteq INTERP production subseteq INTERP)

lemma produces imp in interp:
assumes a in c: Neg A ∈# C and d : produces D A
shows A ∈ interp C
by (metis Interp def Max pos neg less multiset UnCI a in c d

not interp to Interp imp le not less producesD singletonI )

lemma neg notin Interp not produce: Neg A ∈# C =⇒ A /∈ Interp D =⇒ C ≤ D =⇒ ¬ produces D ′′ A
using less eq imp interp subseteq Interp produces imp in interp by blast

lemma in production imp produces: A ∈ production C =⇒ produces C A
using productive imp produces Max atom by fastforce

lemma not produces imp notin production: ¬ produces C A =⇒ A /∈ production C
using in production imp produces by blast

lemma not produces imp notin interp: (
∧

D . ¬ produces D A) =⇒ A /∈ interp C
unfolding interp def by (fast intro!: in production imp produces)

The results below corresponds to Lemma 3.4.

lemma Interp imp general :
assumes

c le d : C ≤ D and
d lt d ′: D < D ′ and
c at d : Interp D |= C and
subs: interp D ′ ⊆ (

⋃
C ∈ CC . production C )
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shows (
⋃

C ∈ CC . production C ) |= C
proof (cases ∃A. Pos A ∈# C ∧ A ∈ Interp D)

case True
then obtain A where a in c: Pos A ∈# C and a at d : A ∈ Interp D

by blast
from a at d have A ∈ interp D ′

using d lt d ′ less imp Interp subseteq interp by blast
then show ?thesis

using subs a in c by (blast dest : contra subsetD)
next

case False
then obtain A where a in c: Neg A ∈# C and A /∈ Interp D

using c at d unfolding true cls def by blast
then have

∧
D ′′. ¬ produces D ′′ A

using c le d neg notin Interp not produce by simp
then show ?thesis

using a in c subs not produces imp notin production by auto
qed

lemma Interp imp interp: C ≤ D =⇒ D < D ′ =⇒ Interp D |= C =⇒ interp D ′ |= C
using interp def Interp imp general by simp

lemma Interp imp Interp: C ≤ D =⇒ D ≤ D ′ =⇒ Interp D |= C =⇒ Interp D ′ |= C
using Interp as UNION interp subseteq Interp Interp imp general by (metis antisym conv2 )

lemma Interp imp INTERP : C ≤ D =⇒ Interp D |= C =⇒ INTERP |= C
using INTERP def interp subseteq INTERP Interp imp general [OF le multiset right total ] by simp

lemma interp imp general :
assumes

c le d : C ≤ D and
d le d ′: D ≤ D ′ and
c at d : interp D |= C and
subs: interp D ′ ⊆ (

⋃
C ∈ CC . production C )

shows (
⋃

C ∈ CC . production C ) |= C
proof (cases ∃A. Pos A ∈# C ∧ A ∈ interp D)

case True
then obtain A where a in c: Pos A ∈# C and a at d : A ∈ interp D

by blast
from a at d have A ∈ interp D ′

using d le d ′ less eq imp interp subseteq interp by blast
then show ?thesis

using subs a in c by (blast dest : contra subsetD)
next

case False
then obtain A where a in c: Neg A ∈# C and A /∈ interp D

using c at d unfolding true cls def by blast
then have

∧
D ′′. ¬ produces D ′′ A

using c le d by (auto dest : produces imp in interp less eq imp interp subseteq interp)
then show ?thesis

using a in c subs not produces imp notin production by auto
qed

lemma interp imp interp: C ≤ D =⇒ D ≤ D ′ =⇒ interp D |= C =⇒ interp D ′ |= C
using interp def interp imp general by simp

lemma interp imp Interp: C ≤ D =⇒ D ≤ D ′ =⇒ interp D |= C =⇒ Interp D ′ |= C
using Interp as UNION interp subseteq Interp[of D ′] interp imp general by simp

lemma interp imp INTERP : C ≤ D =⇒ interp D |= C =⇒ INTERP |= C
using INTERP def interp subseteq INTERP interp imp general linear by metis

lemma productive imp not interp: productive C =⇒ ¬ interp C |= C
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unfolding production unfold by simp

This corresponds to Lemma 3.3:

lemma productive imp Interp:
assumes productive C
shows Interp C |= C

proof −
obtain A where a: produces C A

using assms productive imp produces Max atom by blast
then have a in c: Pos A ∈# C

by (rule produces imp Pos in lits)
moreover have A ∈ Interp C

using a less eq imp production subseteq Interp by blast
ultimately show ?thesis

by fast
qed

lemma productive imp INTERP : productive C =⇒ INTERP |= C
by (fast intro: productive imp Interp Interp imp INTERP)

This corresponds to Lemma 3.5:

lemma max pos imp Interp:
assumes C ∈ N and C 6= {#} and Max mset C = Pos A and S C = {#}
shows Interp C |= C

proof (cases productive C )
case True
then show ?thesis

by (fast intro: productive imp Interp)
next

case False
then have interp C |= C

using assms unfolding production unfold by simp
then show ?thesis

unfolding Interp def using False by auto
qed

The following results correspond to Lemma 3.6:

lemma max atm imp Interp:
assumes

c in n: C ∈ N and
pos in: Pos A ∈# C and
max atm: A = Max (atms of C ) and
s c e: S C = {#}

shows Interp C |= C
proof (cases Neg A ∈# C )

case True
then show ?thesis

using pos in pos neg in imp true by metis
next

case False
moreover have ne: C 6= {#}

using pos in by auto
ultimately have Max mset C = Pos A

using max atm using Max in lits Max lit eq pos or neg Max atm by metis
then show ?thesis

using ne c in n s c e by (blast intro: max pos imp Interp)
qed

lemma not Interp imp general :
assumes

d ′ le d : D ′ ≤ D and
in n or max gt : D ′ ∈ N ∧ S D ′ = {#} ∨ Max (atms of D ′) < Max (atms of D) and
d ′ at d : ¬ Interp D |= D ′ and
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d lt c: D < C and
subs: interp C ⊆ (

⋃
C ∈ CC . production C )

shows ¬ (
⋃

C ∈ CC . production C ) |= D ′

proof −
{

assume cc blw d ′: (
⋃

C ∈ CC . production C ) |= D ′

have Interp D ⊆ (
⋃

C ∈ CC . production C )
using less imp Interp subseteq interp d lt c subs by blast

then obtain A where a in d ′: Pos A ∈# D ′ and a blw cc: A ∈ (
⋃

C ∈ CC . production C )
using cc blw d ′ d ′ at d false to true imp ex pos by metis

from a in d ′ have a at d : A /∈ Interp D
using d ′ at d by fast

from a blw cc obtain C ′ where prod c ′: production C ′ = {A}
by (fast intro!: in production imp produces)

have max c ′: Max (atms of C ′) = A
using prod c ′ productive imp produces Max atom by force

have leq dc ′: D ≤ C ′

using a at d d ′ at d prod c ′ by (auto simp: Interp def intro: not interp to Interp imp le)
then have D ′ ≤ C ′

using d ′ le d order trans by blast
then have max d ′: Max (atms of D ′) = A

using a in d ′ max c ′ by (fast intro: pos lit in atms of le multiset Max in imp Max )

{
assume D ′ ∈ N ∧ S D ′ = {#}
then have Interp D ′ |= D ′

using a in d ′ max d ′ by (blast intro: max atm imp Interp)
then have Interp D |= D ′

using d ′ le d by (auto intro: Interp imp Interp simp: less eq multiset def )
then have False

using d ′ at d by satx
}
moreover
{

assume Max (atms of D ′) < Max (atms of D)
then have False

using max d ′ leq dc ′ max c ′ d ′ le d
by (metis le imp less or eq le multiset empty right less eq Max atms of less imp not less)

}
ultimately have False

using in n or max gt by satx
}
then show ?thesis

by satx
qed

lemma not Interp imp not interp:
D ′ ≤ D =⇒ D ′ ∈ N ∧ S D ′ = {#} ∨ Max (atms of D ′) < Max (atms of D) =⇒ ¬ Interp D |= D ′ =⇒
D < C =⇒ ¬ interp C |= D ′

using interp def not Interp imp general by simp

lemma not Interp imp not Interp:
D ′ ≤ D =⇒ D ′ ∈ N ∧ S D ′ = {#} ∨ Max (atms of D ′) < Max (atms of D) =⇒ ¬ Interp D |= D ′ =⇒
D < C =⇒ ¬ Interp C |= D ′

using Interp as UNION interp subseteq Interp not Interp imp general by metis

lemma not Interp imp not INTERP :
D ′ ≤ D =⇒ D ′ ∈ N ∧ S D ′ = {#} ∨ Max (atms of D ′) < Max (atms of D) =⇒ ¬ Interp D |= D ′ =⇒
¬ INTERP |= D ′

using INTERP def interp subseteq INTERP not Interp imp general [OF le multiset right total ]
by simp

Lemma 3.7 is a problem child. It is stated below but not proved; instead, a counterexample is displayed.
This is not much of a problem, because it is not invoked in the rest of the chapter.
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lemma
assumes D ∈ N and

∧
D ′. D ′ < D =⇒ Interp D ′ |= C

shows interp D |= C
oops

lemma
assumes d : D = {#} and n: N = {D , C} and c: C = {#Pos A#}
shows D ∈ N and

∧
D ′. D ′ < D =⇒ Interp D ′ |= C and ¬ interp D |= C

using n unfolding d c interp def by auto

end

end

end

10 Ground Unordered Resolution Calculus

theory Unordered Ground Resolution
imports Inference System Ground Resolution Model

begin

Unordered ground resolution is one of the two inference systems studied in Section 3 (“Standard Resolution”)
of Bachmair and Ganzinger’s chapter.

10.1 Inference Rule

Unordered ground resolution consists of a single rule, called unord resolve below, which is sound and
counterexample-reducing.

locale ground resolution without selection
begin

sublocale ground resolution with selection where S = λ . {#}
by unfold locales auto

inductive unord resolve :: ′a clause ⇒ ′a clause ⇒ ′a clause ⇒ bool where
unord resolve (C + replicate mset (Suc n) (Pos A)) (add mset (Neg A) D) (C + D)

lemma unord resolve sound : unord resolve C D E =⇒ I |= C =⇒ I |= D =⇒ I |= E
using unord resolve.cases by fastforce

The following result corresponds to Theorem 3.8, except that the conclusion is strengthened slightly to make
it fit better with the counterexample-reducing inference system framework.

theorem unord resolve counterex reducing :
assumes

ec ni n: {#} /∈ N and
c in n: C ∈ N and
c cex : ¬ INTERP N |= C and
c min:

∧
D . D ∈ N =⇒ ¬ INTERP N |= D =⇒ C ≤ D

obtains D E where
D ∈ N
INTERP N |= D
productive N D
unord resolve D C E
¬ INTERP N |= E
E < C

proof −
have c ne: C 6= {#}

using c in n ec ni n by blast
have ∃A. A ∈ atms of C ∧ A = Max (atms of C )

using c ne by (blast intro: Max in lits atm of Max lit atm of lit in atms of )
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then have ∃A. Neg A ∈# C
using c ne c in n c cex c min Max in lits Max lit eq pos or neg Max atm max pos imp Interp

Interp imp INTERP by metis
then obtain A where neg a in c: Neg A ∈# C

by blast
then obtain C ′ where c: C = add mset (Neg A) C ′

using insert DiffM by metis
have A ∈ INTERP N

using neg a in c c cex [unfolded true cls def ] by fast
then obtain D where d0 : produces N D A

unfolding INTERP def by (metis UN E not produces imp notin production)
have prod d : productive N D

unfolding d0 by simp
then have d in n: D ∈ N

using productive in N by fast
have d true: INTERP N |= D

using prod d productive imp INTERP by blast

obtain D ′ AAA where
d : D = D ′ + AAA and
d ′: D ′ = {#L ∈# D . L 6= Pos A#} and
aa: AAA = {#L ∈# D . L = Pos A#}
using multiset partition union commute by metis

have d ′ subs: set mset D ′ ⊆ set mset D
unfolding d ′ by auto

have ¬ Neg A ∈# D
using d0 by (blast dest : produces imp neg notin lits)

then have neg a ni d ′: ¬ Neg A ∈# D ′

using d ′ subs by auto
have a ni d ′: A /∈ atms of D ′

using d ′ neg a ni d ′ by (auto dest : atm imp pos or neg lit)
have ∃n. AAA = replicate mset (Suc n) (Pos A)

using aa d0 not0 implies Suc produces imp Pos in lits[of N ]
by (simp add : filter eq replicate mset del : replicate mset Suc)

then have res e: unord resolve D C (D ′ + C ′)
unfolding c d by (fastforce intro: unord resolve.intros)

have d ′ le d : D ′ ≤ D
unfolding d by simp

have a max d : A = Max (atms of D)
using d0 productive imp produces Max atom by auto

then have D ′ 6= {#} =⇒ Max (atms of D ′) ≤ A
using d ′ le d by (blast intro: less eq Max atms of )

moreover have D ′ 6= {#} =⇒ Max (atms of D ′) 6= A
using a ni d ′ Max in by (blast intro: atms empty iff empty [THEN iffD1 ])

ultimately have max d ′ lt a: D ′ 6= {#} =⇒ Max (atms of D ′) < A
using dual order .strict iff order by blast

have ¬ interp N D |= D
using d0 productive imp not interp by blast

then have ¬ Interp N D |= D ′

unfolding d0 d ′ Interp def true cls def by (auto simp: true lit def simp del : not gr zero)
then have ¬ INTERP N |= D ′

using a max d d ′ le d max d ′ lt a not Interp imp not INTERP by blast
moreover have ¬ INTERP N |= C ′

using c cex unfolding c by simp
ultimately have e cex : ¬ INTERP N |= D ′ + C ′

by simp

have
∧

B . B ∈ atms of D ′ =⇒ B ≤ A
using d0 d ′ subs contra subsetD lits subseteq imp atms subseteq produces imp atms leq by metis

then have
∧

L. L ∈# D ′ =⇒ L < Neg A
using neg a ni d ′ antisym conv1 atms less eq imp lit less eq neg by metis
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then have lt cex : D ′ + C ′ < C
by (force intro: add .commute simp: c less multisetDM intro: exI [of {#Neg A#}])

from d in n d true prod d res e e cex lt cex show ?thesis ..
qed

10.2 Inference System

Lemma 3.9 and Corollary 3.10 are subsumed in the counterexample-reducing inference system framework,
which is instantiated below.

definition unord Γ :: ′a inference set where
unord Γ = {Infer {#C #} D E | C D E . unord resolve C D E}

sublocale unord Γ sound counterex reducing? :
sound counterex reducing inference system unord Γ INTERP

proof unfold locales
fix D E and N :: ( ′b :: wellorder) clause set
assume {#} /∈ N and D ∈ N and ¬ INTERP N |= D and

∧
C . C ∈ N =⇒ ¬ INTERP N |= C =⇒ D ≤ C

then obtain C E where
c in n: C ∈ N and
c true: INTERP N |= C and
res e: unord resolve C D E and
e cex : ¬ INTERP N |= E and
e lt d : E < D
using unord resolve counterex reducing by (metis (no types))

from c in n have set mset {#C #} ⊆ N
by auto

moreover have Infer {#C #} D E ∈ unord Γ
unfolding unord Γ def using res e by blast

ultimately show
∃CC E . set mset CC ⊆ N ∧ INTERP N |=m CC ∧ Infer CC D E ∈ unord Γ ∧ ¬ INTERP N |= E ∧ E < D
using c in n c true e cex e lt d by blast

next
fix CC D E and I :: ′b interp
assume Infer CC D E ∈ unord Γ and I |=m CC and I |= D
then show I |= E

by (clarsimp simp: unord Γ def true cls mset def ) (erule unord resolve sound , auto)
qed

lemmas clausal logic compact = unord Γ sound counterex reducing .clausal logic compact

end

Theorem 3.12, compactness of clausal logic, has finally been derived for a concrete inference system:

lemmas clausal logic compact = ground resolution without selection.clausal logic compact

end

11 Ground Ordered Resolution Calculus with Selection

theory Ordered Ground Resolution
imports Inference System Ground Resolution Model

begin

Ordered ground resolution with selection is the second inference system studied in Section 3 (“Standard
Resolution”) of Bachmair and Ganzinger’s chapter.

11.1 Inference Rule

Ordered ground resolution consists of a single rule, called ord resolve below. Like unord resolve, the rule is
sound and counterexample-reducing. In addition, it is reductive.
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context ground resolution with selection
begin

The following inductive definition corresponds to Figure 2.

definition maximal wrt :: ′a ⇒ ′a literal multiset ⇒ bool where
maximal wrt A DA ≡ A = Max (atms of DA)

definition strictly maximal wrt :: ′a ⇒ ′a literal multiset ⇒ bool where
strictly maximal wrt A CA ←→ (∀B ∈ atms of CA. B < A)

inductive eligible :: ′a list ⇒ ′a clause ⇒ bool where
eligible: (S DA = negs (mset As)) ∨ (S DA = {#} ∧ length As = 1 ∧ maximal wrt (As ! 0 ) DA) =⇒

eligible As DA

lemma (S DA = negs (mset As) ∨ S DA = {#} ∧ length As = 1 ∧ maximal wrt (As ! 0 ) DA) ←→
eligible As DA

using eligible.intros ground resolution with selection.eligible.cases ground resolution with selection axioms by blast

inductive
ord resolve :: ′a clause list ⇒ ′a clause ⇒ ′a multiset list ⇒ ′a list ⇒ ′a clause ⇒ bool

where
ord resolve:

length CAs = n =⇒
length Cs = n =⇒
length AAs = n =⇒
length As = n =⇒
n 6= 0 =⇒
(∀ i < n. CAs ! i = Cs ! i + poss (AAs ! i)) =⇒
(∀ i < n. AAs ! i 6= {#}) =⇒
(∀ i < n. ∀A ∈# AAs ! i . A = As ! i) =⇒
eligible As (D + negs (mset As)) =⇒
(∀ i < n. strictly maximal wrt (As ! i) (Cs ! i)) =⇒
(∀ i < n. S (CAs ! i) = {#}) =⇒
ord resolve CAs (D + negs (mset As)) AAs As (

⋃
# mset Cs + D)

lemma ord resolve sound :
assumes

res e: ord resolve CAs DA AAs As E and
cc true: I |=m mset CAs and
d true: I |= DA

shows I |= E
using res e

proof (cases rule: ord resolve.cases)
case (ord resolve n Cs D)
note DA = this(1 ) and e = this(2 ) and cas len = this(3 ) and cs len = this(4 ) and

as len = this(6 ) and cas = this(8 ) and aas ne = this(9 ) and a eq = this(10 )

show ?thesis
proof (cases ∀A ∈ set As. A ∈ I )

case True
then have ¬ I |= negs (mset As)

unfolding true cls def by fastforce
then have I |= D

using d true DA by fast
then show ?thesis

unfolding e by blast
next

case False
then obtain i where

a in aa: i < n and
a false: As ! i /∈ I
using cas len as len by (metis in set conv nth)
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have ¬ I |= poss (AAs ! i)
using a false a eq aas ne a in aa unfolding true cls def by auto

moreover have I |= CAs ! i
using a in aa cc true unfolding true cls mset def using cas len by auto

ultimately have I |= Cs ! i
using cas a in aa by auto

then show ?thesis
using a in aa cs len unfolding e true cls def
by (meson in Union mset iff nth mem mset union iff )

qed
qed

lemma filter neg atm of S : {#Neg (atm of L). L ∈# S C #} = S C
by (simp add : S selects neg lits)

This corresponds to Lemma 3.13:

lemma ord resolve reductive:
assumes ord resolve CAs DA AAs As E
shows E < DA
using assms

proof (cases rule: ord resolve.cases)
case (ord resolve n Cs D)
note DA = this(1 ) and e = this(2 ) and cas len = this(3 ) and cs len = this(4 ) and

ai len = this(6 ) and nz = this(7 ) and cas = this(8 ) and maxim = this(12 )

show ?thesis
proof (cases

⋃
# mset Cs = {#})

case True
have negs (mset As) 6= {#}

using nz ai len by auto
then show ?thesis

unfolding True e DA by auto
next

case False

define max A of Cs where max A of Cs = Max (atms of (
⋃

# mset Cs))

have
mc in: max A of Cs ∈ atms of (

⋃
# mset Cs) and

mc max :
∧

B . B ∈ atms of (
⋃

# mset Cs) =⇒ B ≤ max A of Cs
using max A of Cs def False by auto

then have ∃C max ∈ set Cs. max A of Cs ∈ atms of (C max )
by (metis atm imp pos or neg lit in Union mset iff neg lit in atms of pos lit in atms of

set mset mset)
then obtain max i where

cm in cas: max i < length CAs and
mc in cm: max A of Cs ∈ atms of (Cs ! max i)
using in set conv nth[of CAs] by (metis cas len cs len in set conv nth)

define CA max where CA max = CAs ! max i
define A max where A max = As ! max i
define C max where C max = Cs ! max i

have mc lt ma: max A of Cs < A max
using maxim cm in cas mc in cm cas len unfolding strictly maximal wrt def A max def by auto

then have ucas ne neg aa: (
⋃

# mset Cs) 6= negs (mset As)
using mc in mc max mc lt ma cm in cas cas len ai len unfolding A max def
by (metis atms of negs nth mem set mset mset leD)

moreover have ucas lt ma: ∀B ∈ atms of (
⋃

# mset Cs). B < A max
using mc max mc lt ma by fastforce

moreover have ¬ Neg A max ∈# (
⋃

# mset Cs)
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using ucas lt ma neg lit in atms of [of A max
⋃

# mset Cs] by auto
moreover have Neg A max ∈# negs (mset As)

using cm in cas cas len ai len A max def by auto
ultimately have (

⋃
# mset Cs) < negs (mset As)

unfolding less multisetHO

by (metis (no types) atms less eq imp lit less eq neg count greater zero iff
count inI le imp less or eq less imp not less not le)

then show ?thesis
unfolding e DA by auto

qed
qed

This corresponds to Theorem 3.15:

theorem ord resolve counterex reducing :
assumes

ec ni n: {#} /∈ N and
d in n: DA ∈ N and
d cex : ¬ INTERP N |= DA and
d min:

∧
C . C ∈ N =⇒ ¬ INTERP N |= C =⇒ DA ≤ C

obtains CAs AAs As E where
set CAs ⊆ N
INTERP N |=m mset CAs∧

CA. CA ∈ set CAs =⇒ productive N CA
ord resolve CAs DA AAs As E
¬ INTERP N |= E
E < DA

proof −
have d ne: DA 6= {#}

using d in n ec ni n by blast
have ∃As. As 6= [] ∧ negs (mset As) ≤# DA ∧ eligible As DA
proof (cases S DA = {#})

assume s d e: S DA = {#}

define A where A = Max (atms of DA)
define As where As = [A]
define D where D = DA−{#Neg A #}

have na in d : Neg A ∈# DA
unfolding A def using s d e d ne d in n d cex d min
by (metis Max in lits Max lit eq pos or neg Max atm max pos imp Interp Interp imp INTERP)

then have das: DA = D + negs (mset As) unfolding D def As def by auto
moreover from na in d have negs (mset As) ⊆# DA

by (simp add : As def )
moreover have As ! 0 = Max (atms of (D + negs (mset As)))

using A def As def das by auto
then have eligible As DA

using eligible s d e As def das maximal wrt def by auto
ultimately show ?thesis

using As def by blast
next

assume s d e: S DA 6= {#}

define As :: ′a list where
As = list of mset {#atm of L. L ∈# S DA#}

define D :: ′a clause where
D = DA − negs {#atm of L. L ∈# S DA#}

have As 6= [] unfolding As def using s d e
by (metis image mset is empty iff list of mset empty)

moreover have da sub as: negs {#atm of L. L ∈# S DA#} ⊆# DA
using S selects subseteq by (auto simp: filter neg atm of S)

then have negs (mset As) ⊆# DA
unfolding As def by auto
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moreover have das: DA = D + negs (mset As)
using da sub as unfolding D def As def by auto

moreover have S DA = negs {#atm of L. L ∈# S DA#}
by (auto simp: filter neg atm of S)

then have S DA = negs (mset As)
unfolding As def by auto

then have eligible As DA
unfolding das using eligible by auto

ultimately show ?thesis
by blast

qed
then obtain As :: ′a list where

as ne: As 6= [] and
negs as le d : negs (mset As) ≤# DA and
s d : eligible As DA
by blast

define D :: ′a clause where
D = DA − negs (mset As)

have set As ⊆ INTERP N
using d cex negs as le d by force

then have prod ex : ∀A ∈ set As. ∃D . produces N D A
unfolding INTERP def
by (metis (no types, lifting) INTERP def subsetCE UN E not produces imp notin production)

then have
∧

A. ∃D . produces N D A −→ A ∈ set As
using ec ni n by (auto intro: productive in N )

then have
∧

A. ∃D . produces N D A ←→ A ∈ set As
using prod ex by blast

then obtain CA of where c of0 :
∧

A. produces N (CA of A) A ←→ A ∈ set As
by metis

then have prod c0 : ∀A ∈ set As. produces N (CA of A) A
by blast

define C of where∧
A. C of A = {#L ∈# CA of A. L 6= Pos A#}

define Aj of where∧
A. Aj of A = image mset atm of {#L ∈# CA of A. L = Pos A#}

have pospos:
∧

LL A. {#Pos (atm of x ). x ∈# {#L ∈# LL. L = Pos A#}#} = {#L ∈# LL. L = Pos A#}
by (metis (mono tags, lifting) image filter cong literal .sel(1 ) multiset .map ident)

have ca of c of aj of :
∧

A. CA of A = C of A + poss (Aj of A)
using pospos[of CA of ] by (simp add : C of def Aj of def add .commute multiset partition)

define n :: nat where
n = length As

define Cs :: ′a clause list where
Cs = map C of As

define AAs :: ′a multiset list where
AAs = map Aj of As

define CAs :: ′a literal multiset list where
CAs = map CA of As

have m nz :
∧

A. A ∈ set As =⇒ Aj of A 6= {#}
unfolding Aj of def using prod c0 produces imp Pos in lits
by (metis (full types) filter mset empty conv image mset is empty iff )

have prod c: productive N CA if ca in: CA ∈ set CAs for CA
proof −

obtain i where i p: i < length CAs CAs ! i = CA
using ca in by (meson in set conv nth)

have production N (CA of (As ! i)) = {As ! i}
using i p CAs def prod c0 by auto
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then show productive N CA
using i p CAs def by auto

qed
then have cs subs n: set CAs ⊆ N

using productive in N by auto
have cs true: INTERP N |=m mset CAs

unfolding true cls mset def using prod c productive imp INTERP by auto

have
∧

A. A ∈ set As =⇒ ¬ Neg A ∈# CA of A
using prod c0 produces imp neg notin lits by auto

then have a ni c ′:
∧

A. A ∈ set As =⇒ A /∈ atms of (C of A)
unfolding C of def using atm imp pos or neg lit by force

have c ′ le c:
∧

A. C of A ≤ CA of A
unfolding C of def by (auto intro: subset eq imp le multiset)

have a max c:
∧

A. A ∈ set As =⇒ A = Max (atms of (CA of A))
using prod c0 productive imp produces Max atom[of N ] by auto

then have
∧

A. A ∈ set As =⇒ C of A 6= {#} =⇒ Max (atms of (C of A)) ≤ A
using c ′ le c by (metis less eq Max atms of )

moreover have
∧

A. A ∈ set As =⇒ C of A 6= {#} =⇒ Max (atms of (C of A)) 6= A
using a ni c ′ Max in by (metis (no types) atms empty iff empty finite atms of )

ultimately have max c ′ lt a:
∧

A. A ∈ set As =⇒ C of A 6= {#} =⇒ Max (atms of (C of A)) < A
by (metis order .strict iff order)

have le cs as: length CAs = length As
unfolding CAs def by simp

have length CAs = n
by (simp add : le cs as n def )

moreover have length Cs = n
by (simp add : Cs def n def )

moreover have length AAs = n
by (simp add : AAs def n def )

moreover have length As = n
using n def by auto

moreover have n 6= 0
by (simp add : as ne n def )

moreover have ∀ i . i < length AAs −→ (∀A ∈# AAs ! i . A = As ! i)
using AAs def Aj of def by auto

have
∧

x B . production N (CA of x ) = {x} =⇒ B ∈# CA of x =⇒ B 6= Pos x =⇒ atm of B < x
by (metis atm of lit in atms of insert not empty le imp less or eq Pos atm of iff

Neg atm of iff pos neg in imp true produces imp Pos in lits produces imp atms leq
productive imp not interp)

then have
∧

B A. A∈set As =⇒ B ∈# CA of A =⇒ B 6= Pos A =⇒ atm of B < A
using prod c0 by auto

have ∀ i . i < length AAs −→ AAs ! i 6= {#}
unfolding AAs def using m nz by simp

have ∀ i < n. CAs ! i = Cs ! i + poss (AAs ! i)
unfolding CAs def Cs def AAs def using ca of c of aj of by (simp add : n def )

moreover have ∀ i < n. AAs ! i 6= {#}
using 〈∀ i < length AAs. AAs ! i 6= {#}〉 calculation(3 ) by blast

moreover have ∀ i < n. ∀A ∈# AAs ! i . A = As ! i
by (simp add : 〈∀ i < length AAs. ∀A ∈# AAs ! i . A = As ! i〉 calculation(3 ))

moreover have eligible As DA
using s d by auto

then have eligible As (D + negs (mset As))
using D def negs as le d by auto

moreover have
∧

i . i < length AAs =⇒ strictly maximal wrt (As ! i) ((Cs ! i))
by (simp add : C of def Cs def 〈

∧
x B . [[production N (CA of x ) = {x}; B ∈# CA of x ; B 6= Pos x ]] =⇒ atm of

B < x 〉 atms of def calculation(3 ) n def prod c0 strictly maximal wrt def )

have ∀ i < n. strictly maximal wrt (As ! i) (Cs ! i)
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by (simp add : 〈
∧

i . i < length AAs =⇒ strictly maximal wrt (As ! i) (Cs ! i)〉 calculation(3 ))
moreover have ∀CA ∈ set CAs. S CA = {#}

using prod c producesD productive imp produces Max literal by blast
have ∀CA∈set CAs. S CA = {#}

using 〈∀CA∈set CAs. S CA = {#}〉 by simp
then have ∀ i < n. S (CAs ! i) = {#}

using 〈length CAs = n〉 nth mem by blast
ultimately have res e: ord resolve CAs (D + negs (mset As)) AAs As (

⋃
# mset Cs + D)

using ord resolve by auto

have
∧

A. A ∈ set As =⇒ ¬ interp N (CA of A) |= CA of A
by (simp add : prod c0 producesD)

then have
∧

A. A ∈ set As =⇒ ¬ Interp N (CA of A) |= C of A
unfolding prod c0 C of def Interp def true cls def using true lit def not gr zero prod c0
by auto

then have c ′ at n:
∧

A. A ∈ set As =⇒ ¬ INTERP N |= C of A
using a max c c ′ le c max c ′ lt a not Interp imp not INTERP unfolding true cls def
by (metis true cls def true cls empty)

have ¬ INTERP N |=
⋃

# mset Cs
unfolding Cs def true cls def by (auto dest !: c ′ at n)

moreover have ¬ INTERP N |= D
using d cex by (metis D def add diff cancel right ′ negs as le d subset mset .add diff assoc2

true cls def union iff )
ultimately have e cex : ¬ INTERP N |=

⋃
# mset Cs + D

by simp

have set CAs ⊆ N
by (simp add : cs subs n)

moreover have INTERP N |=m mset CAs
by (simp add : cs true)

moreover have
∧

CA. CA ∈ set CAs =⇒ productive N CA
by (simp add : prod c)

moreover have ord resolve CAs DA AAs As (
⋃

# mset Cs + D)
using D def negs as le d res e by auto

moreover have ¬ INTERP N |=
⋃

# mset Cs + D
using e cex by simp

moreover have (
⋃

# mset Cs + D) < DA
using calculation(4 ) ord resolve reductive by auto

ultimately show thesis
..

qed

lemma ord resolve atms of concl subset :
assumes ord resolve CAs DA AAs As E
shows atms of E ⊆ (

⋃
C ∈ set CAs. atms of C ) ∪ atms of DA

using assms
proof (cases rule: ord resolve.cases)

case (ord resolve n Cs D)
note DA = this(1 ) and e = this(2 ) and cas len = this(3 ) and cs len = this(4 ) and cas = this(8 )

have ∀ i < n. set mset (Cs ! i) ⊆ set mset (CAs ! i)
using cas by auto

then have ∀ i < n. Cs ! i ⊆#
⋃

# mset CAs
by (metis cas cas len mset subset eq add left nth mem mset sum mset .remove union assoc)

then have ∀C ∈ set Cs. C ⊆#
⋃

# mset CAs
using cs len in set conv nth[of Cs] by auto

then have set mset (
⋃

# mset Cs) ⊆ set mset (
⋃

# mset CAs)
by auto (meson in mset sum list2 mset subset eqD)

then have atms of (
⋃

# mset Cs) ⊆ atms of (
⋃

# mset CAs)
by (meson lits subseteq imp atms subseteq mset subset eqD subsetI )

moreover have atms of (
⋃

# mset CAs) = (
⋃

CA ∈ set CAs. atms of CA)
by (intro set eqI iffI , simp all ,
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metis in mset sum list2 atm imp pos or neg lit neg lit in atms of pos lit in atms of ,
metis in mset sum list atm imp pos or neg lit neg lit in atms of pos lit in atms of )

ultimately have atms of (
⋃

# mset Cs) ⊆ (
⋃

CA ∈ set CAs. atms of CA)
by auto

moreover have atms of D ⊆ atms of DA
using DA by auto

ultimately show ?thesis
unfolding e by auto

qed

11.2 Inference System

Theorem 3.16 is subsumed in the counterexample-reducing inference system framework, which is instantiated
below. Unlike its unordered cousin, ordered resolution is additionally a reductive inference system.

definition ord Γ :: ′a inference set where
ord Γ = {Infer (mset CAs) DA E | CAs DA AAs As E . ord resolve CAs DA AAs As E}

sublocale ord Γ sound counterex reducing? :
sound counterex reducing inference system ground resolution with selection.ord Γ S

ground resolution with selection.INTERP S +
reductive inference system ground resolution with selection.ord Γ S

proof unfold locales
fix DA :: ′a clause and N :: ′a clause set
assume {#} /∈ N and DA ∈ N and ¬ INTERP N |= DA and

∧
C . C ∈ N =⇒ ¬ INTERP N |= C =⇒ DA ≤

C
then obtain CAs AAs As E where

dd sset n: set CAs ⊆ N and
dd true: INTERP N |=m mset CAs and
res e: ord resolve CAs DA AAs As E and
e cex : ¬ INTERP N |= E and
e lt c: E < DA
using ord resolve counterex reducing [of N DA thesis] by auto

have Infer (mset CAs) DA E ∈ ord Γ
using res e unfolding ord Γ def by (metis (mono tags, lifting) mem Collect eq)

then show ∃CC E . set mset CC ⊆ N ∧ INTERP N |=m CC ∧ Infer CC DA E ∈ ord Γ
∧ ¬ INTERP N |= E ∧ E < DA
using dd sset n dd true e cex e lt c by (metis set mset mset)

qed (auto simp: ord Γ def intro: ord resolve sound ord resolve reductive)

lemmas clausal logic compact = ord Γ sound counterex reducing .clausal logic compact

end

A second proof of Theorem 3.12, compactness of clausal logic:

lemmas clausal logic compact = ground resolution with selection.clausal logic compact

end

12 Theorem Proving Processes

theory Proving Process
imports Unordered Ground Resolution Lazy List Chain

begin

This material corresponds to Section 4.1 (“Theorem Proving Processes”) of Bachmair and Ganzinger’s
chapter.

The locale assumptions below capture conditions R1 to R3 of Definition 4.1. Rf denotes RF ; Ri denotes
RI .

locale redundancy criterion = inference system +
fixes
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Rf :: ′a clause set ⇒ ′a clause set and
Ri :: ′a clause set ⇒ ′a inference set

assumes
Ri subset Γ: Ri N ⊆ Γ and
Rf mono: N ⊆ N ′ =⇒ Rf N ⊆ Rf N ′ and
Ri mono: N ⊆ N ′ =⇒ Ri N ⊆ Ri N ′ and
Rf indep: N ′ ⊆ Rf N =⇒ Rf N ⊆ Rf (N − N ′) and
Ri indep: N ′ ⊆ Rf N =⇒ Ri N ⊆ Ri (N − N ′) and
Rf sat : satisfiable (N − Rf N ) =⇒ satisfiable N

begin

definition saturated upto :: ′a clause set ⇒ bool where
saturated upto N ←→ inferences from (N − Rf N ) ⊆ Ri N

inductive derive :: ′a clause set ⇒ ′a clause set ⇒ bool (infix . 50 ) where
deduction deletion: N − M ⊆ concls of (inferences from M ) =⇒ M − N ⊆ Rf N =⇒ M . N

lemma derive subset : M . N =⇒ N ⊆ M ∪ concls of (inferences from M )
by (meson Diff subset conv derive.cases)

end

locale sat preserving redundancy criterion =
sat preserving inference system Γ :: ( ′a :: wellorder) inference set + redundancy criterion

begin

lemma deriv sat preserving :
assumes

deriv : chain (op .) Ns and
sat n0 : satisfiable (lhd Ns)

shows satisfiable (Sup llist Ns)
proof −

have ns0 : lnth Ns 0 = lhd Ns
using deriv by (metis chain not lnull lhd conv lnth)

have len ns: llength Ns > 0
using deriv by (case tac Ns) simp+

{
fix DD
assume fin: finite DD and sset lun: DD ⊆ Sup llist Ns
then obtain k where dd sset : DD ⊆ Sup upto llist Ns k

using finite Sup llist imp Sup upto llist by blast
have satisfiable (Sup upto llist Ns k)
proof (induct k)

case 0
then show ?case

using len ns ns0 sat n0 unfolding Sup upto llist def true clss def by auto
next

case (Suc k)
show ?case
proof (cases enat (Suc k) ≥ llength Ns)

case True
then have Sup upto llist Ns k = Sup upto llist Ns (Suc k)

unfolding Sup upto llist def using le Suc eq not less by blast
then show ?thesis

using Suc by simp
next

case False
then have lnth Ns k . lnth Ns (Suc k)

using deriv by (auto simp: chain lnth rel)
then have lnth Ns (Suc k) ⊆ lnth Ns k ∪ concls of (inferences from (lnth Ns k))

by (rule derive subset)
moreover have lnth Ns k ⊆ Sup upto llist Ns k

unfolding Sup upto llist def using False Suc ile eq linear by blast
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ultimately have lnth Ns (Suc k)
⊆ Sup upto llist Ns k ∪ concls of (inferences from (Sup upto llist Ns k))
by clarsimp (metis UnCI UnE image Un inferences from mono le iff sup)

moreover have Sup upto llist Ns (Suc k) = Sup upto llist Ns k ∪ lnth Ns (Suc k)
unfolding Sup upto llist def using False by (force elim: le SucE)

moreover have
satisfiable (Sup upto llist Ns k ∪ concls of (inferences from (Sup upto llist Ns k)))
using Suc Γ sat preserving unfolding sat preserving inference system def by simp

ultimately show ?thesis
by (metis le iff sup true clss union)

qed
qed
then have satisfiable DD

using dd sset unfolding Sup upto llist def by (blast intro: true clss mono)
}
then show ?thesis

using ground resolution without selection.clausal logic compact [THEN iffD1 ] by metis
qed

This corresponds to Lemma 4.2:

lemma
assumes deriv : chain (op .) Ns
shows

Rf Sup subset Rf Liminf : Rf (Sup llist Ns) ⊆ Rf (Liminf llist Ns) and
Ri Sup subset Ri Liminf : Ri (Sup llist Ns) ⊆ Ri (Liminf llist Ns) and
sat deriv Liminf iff : satisfiable (Liminf llist Ns) ←→ satisfiable (lhd Ns)

proof −
{

fix C i j
assume

c in: C ∈ lnth Ns i and
c ni : C /∈ Rf (Sup llist Ns) and
j : j ≥ i and
j ′: enat j < llength Ns

from c ni have c ni ′:
∧

i . enat i < llength Ns =⇒ C /∈ Rf (lnth Ns i)
using Rf mono lnth subset Sup llist Sup llist def by (blast dest : contra subsetD)

have C ∈ lnth Ns j
using j j ′

proof (induct j )
case 0
then show ?case

using c in by blast
next

case (Suc k)
then show ?case
proof (cases i < Suc k)

case True
have i ≤ k

using True by linarith
moreover have enat k < llength Ns

using Suc.prems(2 ) Suc ile eq by (blast intro: dual order .strict implies order)
ultimately have c in k : C ∈ lnth Ns k

using Suc.hyps by blast
have rel : lnth Ns k . lnth Ns (Suc k)

using Suc.prems deriv by (auto simp: chain lnth rel)
then show ?thesis

using c in k c ni ′ Suc.prems(2 ) by cases auto
next

case False
then show ?thesis

using Suc c in by auto
qed

qed
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}
then have lu ll : Sup llist Ns − Rf (Sup llist Ns) ⊆ Liminf llist Ns

unfolding Sup llist def Liminf llist def by blast
have rf : Rf (Sup llist Ns − Rf (Sup llist Ns)) ⊆ Rf (Liminf llist Ns)

using lu ll Rf mono by simp
have ri : Ri (Sup llist Ns − Rf (Sup llist Ns)) ⊆ Ri (Liminf llist Ns)

using lu ll Ri mono by simp
show Rf (Sup llist Ns) ⊆ Rf (Liminf llist Ns)

using rf Rf indep by blast
show Ri (Sup llist Ns) ⊆ Ri (Liminf llist Ns)

using ri Ri indep by blast

show satisfiable (Liminf llist Ns) ←→ satisfiable (lhd Ns)
proof

assume satisfiable (lhd Ns)
then have satisfiable (Sup llist Ns)

using deriv deriv sat preserving by simp
then show satisfiable (Liminf llist Ns)

using true clss mono[OF Liminf llist subset Sup llist ] by blast
next

assume satisfiable (Liminf llist Ns)
then have satisfiable (Sup llist Ns − Rf (Sup llist Ns))

using true clss mono[OF lu ll ] by blast
then have satisfiable (Sup llist Ns)

using Rf sat by blast
then show satisfiable (lhd Ns)

using deriv true clss mono lhd subset Sup llist chain not lnull by metis
qed

qed

lemma
assumes chain (op .) Ns
shows

Rf Liminf eq Rf Sup: Rf (Liminf llist Ns) = Rf (Sup llist Ns) and
Ri Liminf eq Ri Sup: Ri (Liminf llist Ns) = Ri (Sup llist Ns)

using assms
by (auto simp: Rf Sup subset Rf Liminf Rf mono Ri Sup subset Ri Liminf Ri mono

Liminf llist subset Sup llist subset antisym)

end

The assumption below corresponds to condition R4 of Definition 4.1.

locale effective redundancy criterion = redundancy criterion +
assumes Ri effective: γ ∈ Γ =⇒ concl of γ ∈ N ∪ Rf N =⇒ γ ∈ Ri N

begin

definition fair clss seq :: ′a clause set llist ⇒ bool where
fair clss seq Ns ←→ (let N ′ = Liminf llist Ns − Rf (Liminf llist Ns) in

concls of (inferences from N ′ − Ri N ′) ⊆ Sup llist Ns ∪ Rf (Sup llist Ns))

end

locale sat preserving effective redundancy criterion =
sat preserving inference system Γ :: ( ′a :: wellorder) inference set +
effective redundancy criterion

begin

sublocale sat preserving redundancy criterion
..

The result below corresponds to Theorem 4.3.

theorem fair derive saturated upto:
assumes
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deriv : chain (op .) Ns and
fair : fair clss seq Ns

shows saturated upto (Liminf llist Ns)
unfolding saturated upto def

proof
fix γ
let ?N ′ = Liminf llist Ns − Rf (Liminf llist Ns)
assume γ: γ ∈ inferences from ?N ′

show γ ∈ Ri (Liminf llist Ns)
proof (cases γ ∈ Ri ?N ′)

case True
then show ?thesis

using Ri mono by blast
next

case False
have concls of (inferences from ?N ′ − Ri ?N ′) ⊆ Sup llist Ns ∪ Rf (Sup llist Ns)

using fair unfolding fair clss seq def Let def .
then have concl of γ ∈ Sup llist Ns ∪ Rf (Sup llist Ns)

using False γ by auto
moreover
{

assume concl of γ ∈ Sup llist Ns
then have γ ∈ Ri (Sup llist Ns)

using γ Ri effective inferences from def by blast
then have γ ∈ Ri (Liminf llist Ns)

using deriv Ri Sup subset Ri Liminf by fast
}
moreover
{

assume concl of γ ∈ Rf (Sup llist Ns)
then have concl of γ ∈ Rf (Liminf llist Ns)

using deriv Rf Sup subset Rf Liminf by blast
then have γ ∈ Ri (Liminf llist Ns)

using γ Ri effective inferences from def by auto
}
ultimately show γ ∈ Ri (Liminf llist Ns)

by blast
qed

qed

end

This corresponds to the trivial redundancy criterion defined on page 36 of Section 4.1.

locale trivial redundancy criterion = inference system
begin

definition Rf :: ′a clause set ⇒ ′a clause set where
Rf = {}

definition Ri :: ′a clause set ⇒ ′a inference set where
Ri N = {γ. γ ∈ Γ ∧ concl of γ ∈ N }

sublocale effective redundancy criterion Γ Rf Ri
by unfold locales (auto simp: Rf def Ri def )

lemma saturated upto iff : saturated upto N ←→ concls of (inferences from N ) ⊆ N
unfolding saturated upto def inferences from def Rf def Ri def by auto

end

The following lemmas corresponds to the standard extension of a redundancy criterion defined on page 38
of Section 4.1.

lemma redundancy criterion standard extension:
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assumes Γ ⊆ Γ ′ and redundancy criterion Γ Rf Ri
shows redundancy criterion Γ ′ Rf (λN . Ri N ∪ (Γ ′ − Γ))
using assms unfolding redundancy criterion def by (intro conjI ) ((auto simp: rev subsetD)[5 ], sat)

lemma redundancy criterion standard extension saturated upto iff :
assumes Γ ⊆ Γ ′ and redundancy criterion Γ Rf Ri
shows redundancy criterion.saturated upto Γ Rf Ri M ←→

redundancy criterion.saturated upto Γ ′ Rf (λN . Ri N ∪ (Γ ′ − Γ)) M
using assms redundancy criterion.saturated upto def redundancy criterion.saturated upto def

redundancy criterion standard extension
unfolding inference system.inferences from def by blast

lemma redundancy criterion standard extension effective:
assumes Γ ⊆ Γ ′ and effective redundancy criterion Γ Rf Ri
shows effective redundancy criterion Γ ′ Rf (λN . Ri N ∪ (Γ ′ − Γ))
using assms redundancy criterion standard extension[of Γ]
unfolding effective redundancy criterion def effective redundancy criterion axioms def by auto

lemma redundancy criterion standard extension fair iff :
assumes Γ ⊆ Γ ′ and effective redundancy criterion Γ Rf Ri
shows effective redundancy criterion.fair clss seq Γ ′ Rf (λN . Ri N ∪ (Γ ′ − Γ)) Ns ←→

effective redundancy criterion.fair clss seq Γ Rf Ri Ns
using assms redundancy criterion standard extension effective[of Γ Γ ′ Rf Ri ]

effective redundancy criterion.fair clss seq def [of Γ Rf Ri Ns]
effective redundancy criterion.fair clss seq def [of Γ ′ Rf (λN . Ri N ∪ (Γ ′ − Γ)) Ns]

unfolding inference system.inferences from def Let def by auto

theorem redundancy criterion standard extension fair derive saturated upto:
assumes

subs: Γ ⊆ Γ ′ and
red : redundancy criterion Γ Rf Ri and
red ′: sat preserving effective redundancy criterion Γ ′ Rf (λN . Ri N ∪ (Γ ′ − Γ)) and
deriv : chain (redundancy criterion.derive Γ ′ Rf ) Ns and
fair : effective redundancy criterion.fair clss seq Γ ′ Rf (λN . Ri N ∪ (Γ ′ − Γ)) Ns

shows redundancy criterion.saturated upto Γ Rf Ri (Liminf llist Ns)
proof −

have redundancy criterion.saturated upto Γ ′ Rf (λN . Ri N ∪ (Γ ′ − Γ)) (Liminf llist Ns)
by (rule sat preserving effective redundancy criterion.fair derive saturated upto

[OF red ′ deriv fair ])
then show ?thesis

by (rule redundancy criterion standard extension saturated upto iff [THEN iffD2 , OF subs red ])
qed

end

13 The Standard Redundancy Criterion

theory Standard Redundancy
imports Proving Process

begin

This material is based on Section 4.2.2 (“The Standard Redundancy Criterion”) of Bachmair and Ganzinger’s
chapter.

locale standard redundancy criterion =
inference system Γ for Γ :: ( ′a :: wellorder) inference set

begin

abbreviation redundant infer :: ′a clause set ⇒ ′a inference ⇒ bool where
redundant infer N γ ≡
∃DD . set mset DD ⊆ N ∧ (∀ I . I |=m DD + side prems of γ −→ I |= concl of γ)
∧ (∀D . D ∈# DD −→ D < main prem of γ)
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definition Rf :: ′a clause set ⇒ ′a clause set where
Rf N = {C . ∃DD . set mset DD ⊆ N ∧ (∀ I . I |=m DD −→ I |= C ) ∧ (∀D . D ∈# DD −→ D < C )}

definition Ri :: ′a clause set ⇒ ′a inference set where
Ri N = {γ ∈ Γ. redundant infer N γ}

lemma tautology redundant :
assumes Pos A ∈# C
assumes Neg A ∈# C
shows C ∈ Rf N

proof −
have set mset {#} ⊆ N ∧ (∀ I . I |=m {#} −→ I |= C ) ∧ (∀D . D ∈# {#} −→ D < C )

using assms by auto
then show C ∈ Rf N

unfolding Rf def by blast
qed

lemma contradiction Rf : {#} ∈ N =⇒ Rf N = UNIV − {{#}}
unfolding Rf def by force

The following results correspond to Lemma 4.5. The lemma wlog non Rf generalizes the core of the argu-
ment.

lemma Rf mono: N ⊆ N ′ =⇒ Rf N ⊆ Rf N ′

unfolding Rf def by auto

lemma wlog non Rf :
assumes ex : ∃DD . set mset DD ⊆ N ∧ (∀ I . I |=m DD + CC −→ I |= E) ∧ (∀D ′. D ′ ∈# DD −→ D ′ < D)
shows ∃DD . set mset DD ⊆ N − Rf N ∧ (∀ I . I |=m DD + CC −→ I |= E) ∧ (∀D ′. D ′ ∈# DD −→ D ′ < D)

proof −
from ex obtain DD0 where

dd0 : DD0 ∈ {DD . set mset DD ⊆ N ∧ (∀ I . I |=m DD + CC −→ I |= E) ∧ (∀D ′. D ′ ∈# DD −→ D ′ < D)}
by blast

have ∃DD . set mset DD ⊆ N ∧ (∀ I . I |=m DD + CC −→ I |= E) ∧ (∀D ′. D ′ ∈# DD −→ D ′ < D) ∧
(∀DD ′. set mset DD ′ ⊆ N ∧ (∀ I . I |=m DD ′ + CC −→ I |= E) ∧ (∀D ′. D ′ ∈# DD ′ −→ D ′ < D) −→

DD ≤ DD ′)
using wf eq minimal [THEN iffD1 , rule format , OF wf less multiset dd0 ]
unfolding not le[symmetric] by blast

then obtain DD where
dd subs n: set mset DD ⊆ N and
ddcc imp e: ∀ I . I |=m DD + CC −→ I |= E and
dd lt d : ∀D ′. D ′ ∈# DD −→ D ′ < D and
d min: ∀DD ′. set mset DD ′ ⊆ N ∧ (∀ I . I |=m DD ′ + CC −→ I |= E) ∧ (∀D ′. D ′ ∈# DD ′ −→ D ′ < D) −→

DD ≤ DD ′

by blast

have ∀Da. Da ∈# DD −→ Da /∈ Rf N
proof clarify

fix Da
assume

da in dd : Da ∈# DD and
da rf : Da ∈ Rf N

from da rf obtain DD ′ where
dd ′ subs n: set mset DD ′ ⊆ N and
dd ′ imp da: ∀ I . I |=m DD ′ −→ I |= Da and
dd ′ lt da: ∀D ′. D ′ ∈# DD ′ −→ D ′ < Da
unfolding Rf def by blast

define DDa where
DDa = DD − {#Da#} + DD ′

have set mset DDa ⊆ N
unfolding DDa def using dd subs n dd ′ subs n
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by (meson contra subsetD in diffD subsetI union iff )
moreover have ∀ I . I |=m DDa + CC −→ I |= E

using dd ′ imp da ddcc imp e da in dd unfolding DDa def true cls mset def
by (metis in remove1 mset neq union iff )

moreover have ∀D ′. D ′ ∈# DDa −→ D ′ < D
using dd lt d dd ′ lt da da in dd unfolding DDa def
by (metis insert DiffM2 order .strict trans union iff )

moreover have DDa < DD
unfolding DDa def
by (meson da in dd dd ′ lt da mset lt single right iff single subset iff union le diff plus)

ultimately show False
using d min unfolding less eq multiset def by (auto intro!: antisym)

qed
then show ?thesis

using dd subs n ddcc imp e dd lt d by auto
qed

lemma Rf imp ex non Rf :
assumes C ∈ Rf N
shows ∃CC . set mset CC ⊆ N − Rf N ∧ (∀ I . I |=m CC −→ I |= C ) ∧ (∀C ′. C ′ ∈# CC −→ C ′ < C )
using assms by (auto simp: Rf def intro: wlog non Rf [of {#}, simplified ])

lemma Rf subs Rf diff Rf : Rf N ⊆ Rf (N − Rf N )
proof

fix C
assume c rf : C ∈ Rf N
then obtain CC where

cc subs: set mset CC ⊆ N − Rf N and
cc imp c: ∀ I . I |=m CC −→ I |= C and
cc lt c: ∀C ′. C ′ ∈# CC −→ C ′ < C
using Rf imp ex non Rf by blast

have ∀D . D ∈# CC −→ D /∈ Rf N
using cc subs by (simp add : subset iff )

then have cc nr :∧
C DD . C ∈# CC =⇒ set mset DD ⊆ N =⇒ ∀ I . I |=m DD −→ I |= C =⇒ ∃D . D ∈# DD ∧ ∼ D < C
unfolding Rf def by auto metis

have set mset CC ⊆ N
using cc subs by auto

then have set mset CC ⊆
N − {C . ∃DD . set mset DD ⊆ N ∧ (∀ I . I |=m DD −→ I |= C ) ∧ (∀D . D ∈# DD −→ D < C )}
using cc nr by auto

then show C ∈ Rf (N − Rf N )
using cc imp c cc lt c unfolding Rf def by auto

qed

lemma Rf eq Rf diff Rf : Rf N = Rf (N − Rf N )
by (metis Diff subset Rf mono Rf subs Rf diff Rf subset antisym)

The following results correspond to Lemma 4.6.

lemma Ri mono: N ⊆ N ′ =⇒ Ri N ⊆ Ri N ′

unfolding Ri def by auto

lemma Ri subs Ri diff Rf : Ri N ⊆ Ri (N − Rf N )
proof

fix γ
assume γ ri : γ ∈ Ri N
then obtain CC D E where γ: γ = Infer CC D E

by (cases γ)
have cc: CC = side prems of γ and d : D = main prem of γ and e: E = concl of γ

unfolding γ by simp all
obtain DD where

set mset DD ⊆ N and ∀ I . I |=m DD + CC −→ I |= E and ∀C . C ∈# DD −→ C < D
using γ ri unfolding Ri def cc d e by blast
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then obtain DD ′ where
set mset DD ′ ⊆ N − Rf N and ∀ I . I |=m DD ′ + CC −→ I |= E and ∀D ′. D ′ ∈# DD ′ −→ D ′ < D
using wlog non Rf by atomize elim blast

then show γ ∈ Ri (N − Rf N )
using γ ri unfolding Ri def d cc e by blast

qed

lemma Ri eq Ri diff Rf : Ri N = Ri (N − Rf N )
by (metis Diff subset Ri mono Ri subs Ri diff Rf subset antisym)

lemma Ri subset Γ: Ri N ⊆ Γ
unfolding Ri def by blast

lemma Rf indep: N ′ ⊆ Rf N =⇒ Rf N ⊆ Rf (N − N ′)
by (metis Diff cancel Diff eq empty iff Diff mono Rf eq Rf diff Rf Rf mono)

lemma Ri indep: N ′ ⊆ Rf N =⇒ Ri N ⊆ Ri (N − N ′)
by (metis Diff mono Ri eq Ri diff Rf Ri mono order refl)

lemma Rf model :
assumes I |=s N − Rf N
shows I |=s N

proof −
have I |=s Rf (N − Rf N )

unfolding true clss def
by (subst Rf def , simp add : true cls mset def , metis assms subset eq true clss def )

then have I |=s Rf N
using Rf subs Rf diff Rf true clss mono by blast

then show ?thesis
using assms by (metis Un Diff cancel true clss union)

qed

lemma Rf sat : satisfiable (N − Rf N ) =⇒ satisfiable N
by (metis Rf model)

The following corresponds to Theorem 4.7:

sublocale redundancy criterion Γ Rf Ri
by unfold locales (rule Ri subset Γ, (elim Rf mono Ri mono Rf indep Ri indep Rf sat)+)

end

locale standard redundancy criterion reductive =
standard redundancy criterion + reductive inference system

begin

The following corresponds to Theorem 4.8:

lemma Ri effective:
assumes

in γ: γ ∈ Γ and
concl of in n un rf n: concl of γ ∈ N ∪ Rf N

shows γ ∈ Ri N
proof −

obtain CC D E where
γ: γ = Infer CC D E
by (cases γ)

then have cc: CC = side prems of γ and d : D = main prem of γ and e: E = concl of γ
unfolding γ by simp all

note e in n un rf n = concl of in n un rf n[folded e]

{
assume E ∈ N
moreover have E < D

using Γ reductive e d in γ by auto
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ultimately have
set mset {#E#} ⊆ N and ∀ I . I |=m {#E#} + CC −→ I |= E and ∀D ′. D ′ ∈# {#E#} −→ D ′ < D
by simp all

then have redundant infer N γ
using cc d e by blast

}
moreover
{

assume E ∈ Rf N
then obtain DD where

dd sset : set mset DD ⊆ N and
dd imp e: ∀ I . I |=m DD −→ I |= E and
dd lt e: ∀C ′. C ′ ∈# DD −→ C ′ < E
unfolding Rf def by blast

from dd lt e have ∀Da. Da ∈# DD −→ Da < D
using d e in γ Γ reductive less trans by blast

then have redundant infer N γ
using dd sset dd imp e cc d e by blast

}
ultimately show γ ∈ Ri N

using in γ e in n un rf n unfolding Ri def by blast
qed

sublocale effective redundancy criterion Γ Rf Ri
unfolding effective redundancy criterion def
by (intro conjI redundancy criterion axioms, unfold locales, rule Ri effective)

lemma contradiction Rf : {#} ∈ N =⇒ Ri N = Γ
unfolding Ri def using Γ reductive le multiset empty right
by (force intro: exI [of {#{#}#}] le multiset empty left)

end

locale standard redundancy criterion counterex reducing =
standard redundancy criterion + counterex reducing inference system

begin

The following result corresponds to Theorem 4.9.

lemma saturated upto complete if :
assumes

satur : saturated upto N and
unsat : ¬ satisfiable N

shows {#} ∈ N
proof (rule ccontr)

assume ec ni n: {#} /∈ N

define M where
M = N − Rf N

have ec ni m: {#} /∈ M
unfolding M def using ec ni n by fast

have I of M |=s M
proof (rule ccontr)

assume ¬ I of M |=s M
then obtain D where

d in m: D ∈ M and
d cex : ¬ I of M |= D and
d min:

∧
C . C ∈ M =⇒ C < D =⇒ I of M |= C

using ex min counterex by meson
then obtain γ CC E where
γ: γ = Infer CC D E and
cc subs m: set mset CC ⊆ M and
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cc true: I of M |=m CC and
γ in: γ ∈ Γ and
e cex : ¬ I of M |= E and
e lt d : E < D
using Γ counterex reducing [OF ec ni m] not less by metis

have cc: CC = side prems of γ and d : D = main prem of γ and e: E = concl of γ
unfolding γ by simp all

have γ ∈ Ri N
by (rule set mp[OF satur [unfolded saturated upto def inferences from def infer from def ]])

(simp add : γ in d in m cc subs m cc[symmetric] d [symmetric] M def [symmetric])
then have γ ∈ Ri M

unfolding M def using Ri indep by fast
then obtain DD where

dd subs m: set mset DD ⊆ M and
dd cc imp d : ∀ I . I |=m DD + CC −→ I |= E and
dd lt d : ∀C . C ∈# DD −→ C < D
unfolding Ri def cc d e by blast

from dd subs m dd lt d have I of M |=m DD
using d min unfolding true cls mset def by (metis contra subsetD)

then have I of M |= E
using dd cc imp d cc true by auto

then show False
using e cex by auto

qed
then have I of M |=s N

using M def Rf model by blast
then show False

using unsat by blast
qed

theorem saturated upto complete:
assumes saturated upto N
shows ¬ satisfiable N ←→ {#} ∈ N
using assms saturated upto complete if true clss def by auto

end

end

14 First-Order Ordered Resolution Calculus with Selection

theory FO Ordered Resolution
imports Abstract Substitution Ordered Ground Resolution Standard Redundancy

begin

This material is based on Section 4.3 (“A Simple Resolution Prover for First-Order Clauses”) of Bachmair
and Ganzinger’s chapter. Specifically, it formalizes the ordered resolution calculus for first-order standard
clauses presented in Figure 4 and its related lemmas and theorems, including soundness and Lemma 4.12
(the lifting lemma).

The following corresponds to pages 41–42 of Section 4.3, until Figure 5 and its explanation.

locale FO resolution = mgu subst atm id subst comp subst atm of atms renamings apart mgu
for

subst atm :: ′a :: wellorder ⇒ ′s ⇒ ′a and
id subst :: ′s and
comp subst :: ′s ⇒ ′s ⇒ ′s and
renamings apart :: ′a literal multiset list ⇒ ′s list and
atm of atms :: ′a list ⇒ ′a and
mgu :: ′a set set ⇒ ′s option +

fixes
less atm :: ′a ⇒ ′a ⇒ bool

assumes
less atm stable: less atm A B =⇒ less atm (A ·a σ) (B ·a σ)
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begin

14.1 Library

lemma Bex cartesian product : (∃ xy ∈ A × B . P xy) ≡ (∃ x ∈ A. ∃ y ∈ B . P (x , y))
by simp

lemma length sorted list of multiset [simp]: length (sorted list of multiset A) = size A
by (metis mset sorted list of multiset size mset)

lemma eql map neg lit eql atm:
assumes map (λL. L ·l η) (map Neg As ′) = map Neg As
shows As ′ ·al η = As
using assms by (induction As ′ arbitrary : As) auto

lemma instance list :
assumes negs (mset As) = SDA ′ · η
shows ∃As ′. negs (mset As ′) = SDA ′ ∧ As ′ ·al η = As

proof −
from assms have negL: ∀L ∈# SDA ′. is neg L

using Melem subst cls subst lit in negs is neg by metis

from assms have {#L ·l η. L ∈# SDA ′#} = mset (map Neg As)
using subst cls def by auto

then have ∃NAs ′. map (λL. L ·l η) NAs ′ = map Neg As ∧ mset NAs ′ = SDA ′

using image mset of subset list [of λL. L ·l η SDA ′ map Neg As] by auto
then obtain As ′ where As ′ p:

map (λL. L ·l η) (map Neg As ′) = map Neg As ∧ mset (map Neg As ′) = SDA ′

by (metis (no types, lifting) Neg atm of iff negL ex map conv set mset mset)

have negs (mset As ′) = SDA ′

using As ′ p by auto
moreover have map (λL. L ·l η) (map Neg As ′) = map Neg As

using As ′ p by auto
then have As ′ ·al η = As

using eql map neg lit eql atm by auto
ultimately show ?thesis

by blast
qed

14.2 First-Order Logic

inductive true fo cls :: ′a interp ⇒ ′a clause ⇒ bool (infix |=fo 50 ) where
true fo cls: (

∧
σ. is ground subst σ =⇒ I |= C · σ) =⇒ I |=fo C

lemma true fo cls inst : I |=fo C =⇒ is ground subst σ =⇒ I |= C · σ
by (rule true fo cls.induct)

inductive true fo cls mset :: ′a interp ⇒ ′a clause multiset ⇒ bool (infix |=fom 50 ) where
true fo cls mset : (

∧
σ. is ground subst σ =⇒ I |=m CC ·cm σ) =⇒ I |=fom CC

lemma true fo cls mset inst : I |=fom C =⇒ is ground subst σ =⇒ I |=m C ·cm σ
by (rule true fo cls mset .induct)

lemma true fo cls mset def2 : I |=fom CC ←→ (∀C ∈# CC . I |=fo C )
unfolding true fo cls mset .simps true fo cls.simps true cls mset def by force

context
fixes S :: ′a clause ⇒ ′a clause

begin
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14.3 Calculus

The following corresponds to Figure 4.

definition maximal wrt :: ′a ⇒ ′a literal multiset ⇒ bool where
maximal wrt A C ←→ (∀B ∈ atms of C . ¬ less atm A B)

definition strictly maximal wrt :: ′a ⇒ ′a literal multiset ⇒ bool where
strictly maximal wrt A C ≡ ∀B ∈ atms of C . A 6= B ∧ ¬ less atm A B

lemma strictly maximal wrt maximal wrt : strictly maximal wrt A C =⇒ maximal wrt A C
unfolding maximal wrt def strictly maximal wrt def by auto

inductive eligible :: ′s ⇒ ′a list ⇒ ′a clause ⇒ bool where
eligible:

S DA = negs (mset As) ∨ S DA = {#} ∧ length As = 1 ∧ maximal wrt (As ! 0 ·a σ) (DA · σ) =⇒
eligible σ As DA

inductive
ord resolve
:: ′a clause list ⇒ ′a clause ⇒ ′a multiset list ⇒ ′a list ⇒ ′s ⇒ ′a clause ⇒ bool

where
ord resolve:

length CAs = n =⇒
length Cs = n =⇒
length AAs = n =⇒
length As = n =⇒
n 6= 0 =⇒
(∀ i < n. CAs ! i = Cs ! i + poss (AAs ! i)) =⇒
(∀ i < n. AAs ! i 6= {#}) =⇒
Some σ = mgu (set mset ‘ set (map2 add mset As AAs)) =⇒
eligible σ As (D + negs (mset As)) =⇒
(∀ i < n. strictly maximal wrt (As ! i ·a σ) (Cs ! i · σ)) =⇒
(∀ i < n. S (CAs ! i) = {#}) =⇒
ord resolve CAs (D + negs (mset As)) AAs As σ (((

⋃
# mset Cs) + D) · σ)

inductive
ord resolve rename
:: ′a clause list ⇒ ′a clause ⇒ ′a multiset list ⇒ ′a list ⇒ ′s ⇒ ′a clause ⇒ bool

where
ord resolve rename:

length CAs = n =⇒
length AAs = n =⇒
length As = n =⇒
(∀ i < n. poss (AAs ! i) ⊆# CAs ! i) =⇒
negs (mset As) ⊆# DA =⇒
% = hd (renamings apart (DA # CAs)) =⇒
%s = tl (renamings apart (DA # CAs)) =⇒
ord resolve (CAs ··cl %s) (DA · %) (AAs ··aml %s) (As ·al %) σ E =⇒
ord resolve rename CAs DA AAs As σ E

lemma ord resolve empty main prem: ¬ ord resolve Cs {#} AAs As σ E
by (simp add : ord resolve.simps)

lemma ord resolve rename empty main prem: ¬ ord resolve rename Cs {#} AAs As σ E
by (simp add : ord resolve empty main prem ord resolve rename.simps)

14.4 Soundness

Soundness is not discussed in the chapter, but it is an important property. The following lemma is used to
prove soundness. It is also used to prove Lemma 4.10, which is used to prove completeness.

lemma ord resolve ground inst sound :
assumes
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res e: ord resolve CAs DA AAs As σ E and
cc inst true: I |=m mset CAs ·cm σ ·cm η and
d inst true: I |= DA · σ · η and
ground subst η: is ground subst η

shows I |= E · η
using res e

proof (cases rule: ord resolve.cases)
case (ord resolve n Cs D)
note da = this(1 ) and e = this(2 ) and cas len = this(3 ) and cs len = this(4 ) and

aas len = this(5 ) and as len = this(6 ) and cas = this(8 ) and mgu = this(10 ) and
len = this(1 )

have len: length CAs = length As
using as len cas len by auto

have is ground subst (σ � η)
using ground subst η by (rule is ground comp subst)

then have cc true: I |=m mset CAs ·cm σ ·cm η and d true: I |= DA · σ · η
using cc inst true d inst true by auto

from mgu have unif : ∀ i < n. ∀A∈#AAs ! i . A ·a σ = As ! i ·a σ
using mgu unifier as len aas len by blast

show I |= E · η
proof (cases ∀A ∈ set As. A ·a σ ·a η ∈ I )

case True
then have ¬ I |= negs (mset As) · σ · η

unfolding true cls def [of I ] by auto
then have I |= D · σ · η

using d true da by auto
then show ?thesis

unfolding e by auto
next

case False
then obtain i where a in aa: i < length CAs and a false: (As ! i) ·a σ ·a η /∈ I

using da len by (metis in set conv nth)
define C where C ≡ Cs ! i
define BB where BB ≡ AAs ! i
have c cf ′: C ⊆#

⋃
# mset CAs

unfolding C def using a in aa cas cas len
by (metis less subset eq Union mset mset subset eq add left subset mset .order .trans)

have c in cc: C + poss BB ∈# mset CAs
using C def BB def a in aa cas len in set conv nth cas by fastforce

{
fix B
assume B ∈# BB
then have B ·a σ = (As ! i) ·a σ

using unif a in aa cas len unfolding BB def by auto
}
then have ¬ I |= poss BB · σ · η

using a false by (auto simp: true cls def )
moreover have I |= (C + poss BB) · σ · η

using c in cc cc true true cls mset true cls[of I mset CAs ·cm σ ·cm η] by force
ultimately have I |= C · σ · η

by simp
then show ?thesis

unfolding e subst cls union using c cf ′ C def a in aa cas len cs len
by (metis (no types, lifting) mset subset eq add left nth mem mset set mset mono sum mset .remove true cls mono

subst cls mono)
qed

qed

lemma ord resolve sound :
assumes
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res e: ord resolve CAs DA AAs As σ E and
cc d true: I |=fom mset CAs + {#DA#}

shows I |=fo E
proof (rule true fo cls, use res e in 〈cases rule: ord resolve.cases〉)

fix η
assume ground subst η: is ground subst η
case (ord resolve n Cs D)
note da = this(1 ) and e = this(2 ) and cas len = this(3 ) and cs len = this(4 )

and aas len = this(5 ) and as len = this(6 ) and cas = this(8 ) and mgu = this(10 )

have is ground subst (σ � η)
using ground subst η by (rule is ground comp subst)

then have cas true: I |=m mset CAs ·cm σ ·cm η and da true: I |= DA · σ · η
using true fo cls mset inst [OF cc d true, of σ � η] by auto

show I |= E · η
using ord resolve ground inst sound [OF res e cas true da true] ground subst η by auto

qed

lemma subst sound : I |=fo C =⇒ I |=fo (C · %)
by (metis is ground comp subst subst cls comp subst true fo cls true fo cls inst)

lemma true fo cls mset true fo cls: I |=fom CC =⇒ C ∈# CC =⇒ I |=fo C
using true fo cls mset def2 by auto

lemma subst sound scl :
assumes

len: length P = length CAs and
true cas: I |=fom mset CAs

shows I |=fom mset (CAs ··cl P)
proof −

from true cas have ∀CA. CA∈# mset CAs −→ I |=fo CA
using true fo cls mset true fo cls by auto

then have ∀ i < length CAs. I |=fo CAs ! i
using in set conv nth by auto

then have true cp: ∀ i < length CAs. I |=fo CAs ! i · P ! i
using subst sound len by auto

{
fix CA
assume CA ∈# mset (CAs ··cl P)
then obtain i where

i x : i < length (CAs ··cl P) CA = (CAs ··cl P) ! i
by (metis in mset conv nth)

then have I |=fo CA
using true cp unfolding subst cls lists def by (simp add : len)

}
then show ?thesis

unfolding true fo cls mset def2 by auto
qed

This is a lemma needed to prove Lemma 4.11.

lemma ord resolve rename ground inst sound :
assumes

ord resolve rename CAs DA AAs As σ E and
%s = tl (renamings apart (DA # CAs)) and
% = hd (renamings apart (DA # CAs)) and
I |=m (mset (CAs ··cl %s)) ·cm σ ·cm η and
I |= DA · % · σ · η and
is ground subst η

shows I |= E · η
using assms by (cases rule: ord resolve rename.cases) (fast intro: ord resolve ground inst sound)

lemma ord resolve rename sound :
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assumes
res e: ord resolve rename CAs DA AAs As σ E and
cc d true: I |=fom (mset CAs) + {#DA#}

shows I |=fo E
using res e

proof (cases rule: ord resolve rename.cases)
case (ord resolve rename n % %s)
note %s = this(7 ) and res = this(8 )
have len: length %s = length CAs

using %s renames apart by auto
have I |=fom mset (CAs ··cl %s) + {#DA · %#}

using subst sound scl [OF len, of I ] subst sound cc d true by (simp add : true fo cls mset def2 )
then show I |=fo E

using ord resolve sound [OF res] by simp
qed

14.5 Other Basic Properties

lemma ord resolve unique:
assumes

ord resolve CAs DA AAs As σ E and
ord resolve CAs DA AAs As σ ′ E ′

shows σ = σ ′ ∧ E = E ′

using assms
proof (cases rule: ord resolve.cases[case product ord resolve.cases], intro conjI )

case (ord resolve ord resolve CAs n Cs AAs As σ ′′ DA CAs ′ n ′ Cs ′ AAs ′ As ′ σ ′′′ DA ′)
note res = this(1−17 ) and res ′ = this(18−34 )

show σ: σ = σ ′

using res(3−5 ,14 ) res ′(3−5 ,14 ) by (metis option.inject)

have Cs = Cs ′

using res(1 ,3 ,7 ,8 ,12 ) res ′(1 ,3 ,7 ,8 ,12 ) by (metis add right imp eq nth equalityI )
moreover have DA = DA ′

using res(2 ,4 ) res ′(2 ,4 ) by fastforce
ultimately show E = E ′

using res(5 ,6 ) res ′(5 ,6 ) σ by blast
qed

lemma ord resolve rename unique:
assumes

ord resolve rename CAs DA AAs As σ E and
ord resolve rename CAs DA AAs As σ ′ E ′

shows σ = σ ′ ∧ E = E ′

using assms unfolding ord resolve rename.simps using ord resolve unique by meson

lemma ord resolve max side prems: ord resolve CAs DA AAs As σ E =⇒ length CAs ≤ size DA
by (auto elim!: ord resolve.cases)

lemma ord resolve rename max side prems:
ord resolve rename CAs DA AAs As σ E =⇒ length CAs ≤ size DA
by (elim ord resolve rename.cases, drule ord resolve max side prems, simp add : renames apart)

14.6 Inference System

definition ord FO Γ :: ′a inference set where
ord FO Γ = {Infer (mset CAs) DA E | CAs DA AAs As σ E . ord resolve rename CAs DA AAs As σ E}

interpretation ord FO resolution: inference system ord FO Γ .

lemma exists compose: ∃ x . P (f x ) =⇒ ∃ y . P y
by meson

lemma finite ord FO resolution inferences between:
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assumes fin cc: finite CC
shows finite (ord FO resolution.inferences between CC C )

proof −
let ?CCC = CC ∪ {C}

define all AA where all AA = (
⋃

D ∈ ?CCC . atms of D)
define max ary where max ary = Max (size ‘ ?CCC )
define CAS where CAS = {CAs. CAs ∈ lists ?CCC ∧ length CAs ≤ max ary}
define AS where AS = {As. As ∈ lists all AA ∧ length As ≤ max ary}
define AAS where AAS = {AAs. AAs ∈ lists (mset ‘ AS) ∧ length AAs ≤ max ary}

note defs = all AA def max ary def CAS def AS def AAS def

let ?infer of =
λCAs DA AAs As. Infer (mset CAs) DA (THE E . ∃σ. ord resolve rename CAs DA AAs As σ E)

let ?Z = {γ | CAs DA AAs As σ E γ. γ = Infer (mset CAs) DA E
∧ ord resolve rename CAs DA AAs As σ E ∧ infer from ?CCC γ ∧ C ∈# prems of γ}

let ?Y = {Infer (mset CAs) DA E | CAs DA AAs As σ E .
ord resolve rename CAs DA AAs As σ E ∧ set CAs ∪ {DA} ⊆ ?CCC}

let ?X = {?infer of CAs DA AAs As | CAs DA AAs As. CAs ∈ CAS ∧ DA ∈ ?CCC ∧ AAs ∈ AAS ∧ As ∈ AS}
let ?W = CAS × ?CCC × AAS × AS

have fin w : finite ?W
unfolding defs using fin cc by (simp add : finite lists length le lists eq set)

have ?Z ⊆ ?Y
by (force simp: infer from def )

also have . . . ⊆ ?X
proof −
{

fix CAs DA AAs As σ E
assume

res e: ord resolve rename CAs DA AAs As σ E and
da in: DA ∈ ?CCC and
cas sub: set CAs ⊆ ?CCC

have E = (THE E . ∃σ. ord resolve rename CAs DA AAs As σ E)
∧ CAs ∈ CAS ∧ AAs ∈ AAS ∧ As ∈ AS (is ?e ∧ ?cas ∧ ?aas ∧ ?as)

proof (intro conjI )
show ?e

using res e ord resolve rename unique by (blast intro: the equality [symmetric])
next

show ?cas
unfolding CAS def max ary def using cas sub

ord resolve rename max side prems[OF res e] da in fin cc
by (auto simp add : Max ge iff )

next
show ?aas

using res e
proof (cases rule: ord resolve rename.cases)

case (ord resolve rename n % %s)
note len cas = this(1 ) and len aas = this(2 ) and len as = this(3 ) and

aas sub = this(4 ) and as sub = this(5 ) and res e ′ = this(8 )

show ?thesis
unfolding AAS def

proof (clarify , intro conjI )
show AAs ∈ lists (mset ‘ AS)

unfolding AS def image def
proof clarsimp

fix AA
assume AA ∈ set AAs
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then obtain i where
i lt : i < n and
aa: AA = AAs ! i
by (metis in set conv nth len aas)

have casi in: CAs ! i ∈ ?CCC
using i lt len cas cas sub nth mem by blast

have pos aa sub: poss AA ⊆# CAs ! i
using aa aas sub i lt by blast

then have set mset AA ⊆ atms of (CAs ! i)
by (metis atms of poss lits subseteq imp atms subseteq set mset mono)

also have aa sub: . . . ⊆ all AA
unfolding all AA def using casi in by force

finally have aa sub: set mset AA ⊆ all AA
.

have size AA = size (poss AA)
by simp

also have . . . ≤ size (CAs ! i)
by (rule size mset mono[OF pos aa sub])

also have . . . ≤ max ary
unfolding max ary def using fin cc casi in by auto

finally have sz aa: size AA ≤ max ary
.

let ?As ′ = sorted list of multiset AA

have ?As ′ ∈ lists all AA
using aa sub by auto

moreover have length ?As ′ ≤ max ary
using sz aa by simp

moreover have AA = mset ?As ′

by simp
ultimately show ∃ xa. xa ∈ lists all AA ∧ length xa ≤ max ary ∧ AA = mset xa

by blast
qed

next
have length AAs = length As

unfolding len aas len as ..
also have . . . ≤ size DA

using as sub size mset mono by fastforce
also have . . . ≤ max ary

unfolding max ary def using fin cc da in by auto
finally show length AAs ≤ max ary

.
qed

qed
next

show ?as
unfolding AS def

proof (clarify , intro conjI )
have set As ⊆ atms of DA

using res e[simplified ord resolve rename.simps]
by (metis atms of negs lits subseteq imp atms subseteq set mset mono set mset mset)

also have . . . ⊆ all AA
unfolding all AA def using da in by blast

finally show As ∈ lists all AA
unfolding lists eq set by simp

next
have length As ≤ size DA

using res e[simplified ord resolve rename.simps]
ord resolve rename max side prems[OF res e] by auto
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also have size DA ≤ max ary
unfolding max ary def using fin cc da in by auto

finally show length As ≤ max ary
.

qed
qed

}
then show ?thesis

by simp fast
qed
also have . . . ⊆ (λ(CAs, DA, AAs, As). ?infer of CAs DA AAs As) ‘ ?W

unfolding image def Bex cartesian product by fast
finally show ?thesis

unfolding inference system.inferences between def ord FO Γ def mem Collect eq
by (fast intro: rev finite subset [OF finite imageI [OF fin w ]])

qed

lemma ord FO resolution inferences between empty empty :
ord FO resolution.inferences between {} {#} = {}
unfolding ord FO resolution.inferences between def inference system.inferences between def

infer from def ord FO Γ def
using ord resolve rename empty main prem by auto

14.7 Lifting

The following corresponds to the passage between Lemmas 4.11 and 4.12.

context
fixes M :: ′a clause set
assumes select : selection S

begin

interpretation selection
by (rule select)

definition S M :: ′a literal multiset ⇒ ′a literal multiset where
S M C =
(if C ∈ grounding of clss M then

(SOME C ′. ∃D σ. D ∈ M ∧ C = D · σ ∧ C ′ = S D · σ ∧ is ground subst σ)
else

S C )

lemma S M grounding of clss:
assumes C ∈ grounding of clss M
obtains D σ where

D ∈ M ∧ C = D · σ ∧ S M C = S D · σ ∧ is ground subst σ
proof (atomize elim, unfold S M def eqTrueI [OF assms] if True, rule someI ex )

from assms show ∃C ′ D σ. D ∈ M ∧ C = D · σ ∧ C ′ = S D · σ ∧ is ground subst σ
by (auto simp: grounding of clss def grounding of cls def )

qed

lemma S M not grounding of clss: C /∈ grounding of clss M =⇒ S M C = S C
unfolding S M def by simp

lemma S M selects subseteq : S M C ⊆# C
by (metis S M grounding of clss S M not grounding of clss S selects subseteq subst cls mono mset)

lemma S M selects neg lits: L ∈# S M C =⇒ is neg L
by (metis Melem subst cls S M grounding of clss S M not grounding of clss S selects neg lits

subst lit is neg)

end

end
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The following corresponds to Lemma 4.12:

lemma map2 add mset map:
assumes length AAs ′ = n and length As ′ = n
shows map2 add mset (As ′ ·al η) (AAs ′ ·aml η) = map2 add mset As ′ AAs ′ ·aml η
using assms

proof (induction n arbitrary : AAs ′ As ′)
case (Suc n)
then have map2 add mset (tl (As ′ ·al η)) (tl (AAs ′ ·aml η)) = map2 add mset (tl As ′) (tl AAs ′) ·aml η

by simp
moreover
have Succ: length (As ′ ·al η) = Suc n length (AAs ′ ·aml η) = Suc n

using Suc(3 ) Suc(2 ) by auto
then have length (tl (As ′ ·al η)) = n length (tl (AAs ′ ·aml η)) = n

by auto
then have length (map2 add mset (tl (As ′ ·al η)) (tl (AAs ′ ·aml η))) = n

length (map2 add mset (tl As ′) (tl AAs ′) ·aml η) = n
using Suc(2 ,3 ) by auto

ultimately have ∀ i < n. tl (map2 add mset ( (As ′ ·al η)) ((AAs ′ ·aml η))) ! i =
tl (map2 add mset (As ′) (AAs ′) ·aml η) ! i
using Suc(2 ,3 ) Succ by (simp add : map2 tl map tl subst atm mset list def del : subst atm list tl)

moreover have nn: length (map2 add mset ((As ′ ·al η)) ((AAs ′ ·aml η))) = Suc n
length (map2 add mset (As ′) (AAs ′) ·aml η) = Suc n
using Succ Suc by auto

ultimately have ∀ i . i < Suc n −→ i > 0 −→
map2 add mset (As ′ ·al η) (AAs ′ ·aml η) ! i = (map2 add mset As ′ AAs ′ ·aml η) ! i
by (auto simp: subst atm mset list def gr0 conv Suc subst atm mset def )

moreover have add mset (hd As ′ ·a η) (hd AAs ′ ·am η) = add mset (hd As ′) (hd AAs ′) ·am η
unfolding subst atm mset def by auto

then have (map2 add mset (As ′ ·al η) (AAs ′ ·aml η)) ! 0 = (map2 add mset (As ′) (AAs ′) ·aml η) ! 0
using Suc by (simp add : Succ(2 ) subst atm mset def )

ultimately have ∀ i < Suc n. (map2 add mset (As ′ ·al η) (AAs ′ ·aml η)) ! i =
(map2 add mset (As ′) (AAs ′) ·aml η) ! i
using Suc by auto

then show ?case
using nn list eq iff nth eq by metis

qed auto

lemma maximal wrt subst : maximal wrt (A ·a σ) (C · σ) =⇒ maximal wrt A C
unfolding maximal wrt def using in atms of subst less atm stable by blast

lemma strictly maximal wrt subst : strictly maximal wrt (A ·a σ) (C · σ) =⇒ strictly maximal wrt A C
unfolding strictly maximal wrt def using in atms of subst less atm stable by blast

lemma ground resolvent subset :
assumes

gr cas: is ground cls list CAs and
gr da: is ground cls DA and
res e: ord resolve S CAs DA AAs As σ E

shows E ⊆# (
⋃

# mset CAs) + DA
using res e

proof (cases rule: ord resolve.cases)
case (ord resolve n Cs D)
note da = this(1 ) and e = this(2 ) and cas len = this(3 ) and cs len = this(4 )

and aas len = this(5 ) and as len = this(6 ) and cas = this(8 ) and mgu = this(10 )
then have cs sub cas:

⋃
# mset Cs ⊆#

⋃
# mset CAs

using subseteq list Union mset cas len cs len by force
then have cs sub cas:

⋃
# mset Cs ⊆#

⋃
# mset CAs

using subseteq list Union mset cas len cs len by force
then have gr cs: is ground cls list Cs

using gr cas by simp
have d sub da: D ⊆# DA

by (simp add : da)
then have gr d : is ground cls D

79



using gr da is ground cls mono by auto

have is ground cls (
⋃

# mset Cs + D)
using gr cs gr d by auto

with e have E = (
⋃

# mset Cs + D)
by auto

then show ?thesis
using cs sub cas d sub da by (auto simp: subset mset .add mono)

qed

lemma ord resolve obtain clauses:
assumes

res e: ord resolve (S M S M ) CAs DA AAs As σ E and
select : selection S and
grounding : {DA} ∪ set CAs ⊆ grounding of clss M and
n: length CAs = n and
d : DA = D + negs (mset As) and
c: (∀ i < n. CAs ! i = Cs ! i + poss (AAs ! i)) length Cs = n length AAs = n

obtains DA ′′ η ′′ CAs ′′ ηs ′′ As ′′ AAs ′′ D ′′ Cs ′′ where
length CAs ′′ = n
length ηs ′′ = n
DA ′′ ∈ M
DA ′′ · η ′′ = DA
S DA ′′ · η ′′ = S M S M DA
∀CA ′′ ∈ set CAs ′′. CA ′′ ∈ M
CAs ′′ ··cl ηs ′′ = CAs
map S CAs ′′ ··cl ηs ′′ = map (S M S M ) CAs
is ground subst η ′′

is ground subst list ηs ′′

As ′′ ·al η ′′ = As
AAs ′′ ··aml ηs ′′ = AAs
length As ′′ = n
D ′′ · η ′′ = D
DA ′′ = D ′′ + (negs (mset As ′′))
S M S M (D + negs (mset As)) 6= {#} =⇒ negs (mset As ′′) = S DA ′′

length Cs ′′ = n
Cs ′′ ··cl ηs ′′ = Cs
∀ i < n. CAs ′′ ! i = Cs ′′ ! i + poss (AAs ′′ ! i)
length AAs ′′ = n

using res e
proof (cases rule: ord resolve.cases)

case (ord resolve n twin Cs twins D twin)
note da = this(1 ) and e = this(2 ) and cas = this(8 ) and mgu = this(10 ) and eligible = this(11 )
from ord resolve have n twin = n D twin = D

using n d by auto
moreover have Cs twins = Cs

using c cas n calculation(1 ) 〈length Cs twins = n twin〉 by (auto simp add : nth equalityI )
ultimately
have nz : n 6= 0 and cs len: length Cs = n and aas len: length AAs = n and as len: length As = n

and da: DA = D + negs (mset As) and eligible: eligible (S M S M ) σ As (D + negs (mset As))
and cas: ∀ i<n. CAs ! i = Cs ! i + poss (AAs ! i)
using ord resolve by force+

note n = 〈n 6= 0 〉 〈length CAs = n〉 〈length Cs = n〉 〈length AAs = n〉 〈length As = n〉

interpret S : selection S by (rule select)

— Obtain FO side premises
have ∀CA ∈ set CAs. ∃CA ′′ ηc ′′. CA ′′ ∈ M ∧ CA ′′ · ηc ′′ = CA ∧ S CA ′′ · ηc ′′ = S M S M CA ∧ is ground subst
ηc ′′

using grounding S M grounding of clss select by (metis (no types) le supE subset iff )
then have ∀ i < n. ∃CA ′′ ηc ′′. CA ′′ ∈ M ∧ CA ′′ · ηc ′′ = (CAs ! i) ∧ S CA ′′ · ηc ′′ = S M S M (CAs ! i) ∧

is ground subst ηc ′′
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using n by force
then obtain ηs ′′f CAs ′′f where f p:
∀ i < n. CAs ′′f i ∈ M
∀ i < n. (CAs ′′f i) · (ηs ′′f i) = (CAs ! i)
∀ i < n. S (CAs ′′f i) · (ηs ′′f i) = S M S M (CAs ! i)
∀ i < n. is ground subst (ηs ′′f i)
using n by (metis (no types))

define ηs ′′ where
ηs ′′ = map ηs ′′f [0 ..<n]

define CAs ′′ where
CAs ′′ = map CAs ′′f [0 ..<n]

have length ηs ′′ = n length CAs ′′ = n
unfolding ηs ′′ def CAs ′′ def by auto

note n = 〈length ηs ′′ = n〉 〈length CAs ′′ = n〉 n

— The properties we need of the FO side premises
have CAs ′′ in M : ∀CA ′′ ∈ set CAs ′′. CA ′′ ∈ M

unfolding CAs ′′ def using f p(1 ) by auto
have CAs ′′ to CAs: CAs ′′ ··cl ηs ′′ = CAs

unfolding CAs ′′ def ηs ′′ def using f p(2 ) by (auto simp: n intro: nth equalityI )
have SCAs ′′ to SMCAs: (map S CAs ′′) ··cl ηs ′′ = map (S M S M ) CAs

unfolding CAs ′′ def ηs ′′ def using f p(3 ) n by (force intro: nth equalityI )
have sub ground : ∀ ηc ′′ ∈ set ηs ′′. is ground subst ηc ′′

unfolding ηs ′′ def using f p n by force
then have is ground subst list ηs ′′

using n unfolding is ground subst list def by auto

— Split side premises CAs” into Cs” and AAs”
obtain AAs ′′ Cs ′′ where AAs ′′ Cs ′′ p:
AAs ′′ ··aml ηs ′′ = AAs length Cs ′′ = n Cs ′′ ··cl ηs ′′ = Cs
∀ i < n. CAs ′′ ! i = Cs ′′ ! i + poss (AAs ′′ ! i) length AAs ′′ = n

proof −
have ∀ i < n. ∃AA ′′. AA ′′ ·am ηs ′′ ! i = AAs ! i ∧ poss AA ′′ ⊆# CAs ′′ ! i
proof (rule, rule)

fix i
assume i < n
have CAs ′′ ! i · ηs ′′ ! i = CAs ! i

using 〈i < n〉 〈CAs ′′ ··cl ηs ′′ = CAs〉 n by force
moreover have poss (AAs ! i) ⊆# CAs !i

using 〈i < n〉 cas by auto
ultimately obtain poss AA ′′ where

nn: poss AA ′′ · ηs ′′ ! i = poss (AAs ! i) ∧ poss AA ′′ ⊆# CAs ′′ ! i
using cas image mset of subset unfolding subst cls def by metis

then have l : ∀L ∈# poss AA ′′. is pos L
unfolding subst cls def by (metis Melem subst cls imageE literal .disc(1 )

literal .map disc iff set image mset subst cls def subst lit def )

define AA ′′ where
AA ′′ = image mset atm of poss AA ′′

have na: poss AA ′′ = poss AA ′′

using l unfolding AA ′′ def by auto
then have AA ′′ ·am ηs ′′ ! i = AAs ! i

using nn by (metis (mono tags) literal .inject(1 ) multiset .inj map strong subst cls poss)
moreover have poss AA ′′ ⊆# CAs ′′ ! i

using na nn by auto
ultimately show ∃AA ′. AA ′ ·am ηs ′′ ! i = AAs ! i ∧ poss AA ′ ⊆# CAs ′′ ! i

by blast
qed
then obtain AAs ′′f where

AAs ′′f p: ∀ i < n. AAs ′′f i ·am ηs ′′ ! i = AAs ! i ∧ (poss (AAs ′′f i)) ⊆# CAs ′′ ! i
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by metis

define AAs ′′ where AAs ′′ = map AAs ′′f [0 ..<n]

then have length AAs ′′ = n
by auto

note n = n 〈length AAs ′′ = n〉

from AAs ′′ def have ∀ i < n. AAs ′′ ! i ·am ηs ′′ ! i = AAs ! i
using AAs ′′f p by auto

then have AAs ′ AAs: AAs ′′ ··aml ηs ′′ = AAs
using n by (auto intro: nth equalityI )

from AAs ′′ def have AAs ′′ in CAs ′′: ∀ i < n. poss (AAs ′′ ! i) ⊆# CAs ′′ ! i
using AAs ′′f p by auto

define Cs ′′ where
Cs ′′ = map2 (op −) CAs ′′ (map poss AAs ′′)

have length Cs ′′ = n
using Cs ′′ def n by auto

note n = n 〈length Cs ′′ = n〉

have ∀ i < n. CAs ′′ ! i = Cs ′′ ! i + poss (AAs ′′ ! i)
using AAs ′′ in CAs ′′ Cs ′′ def n by auto

then have Cs ′′ ··cl ηs ′′ = Cs
using 〈CAs ′′ ··cl ηs ′′ = CAs〉 AAs ′ AAs cas n by (auto intro: nth equalityI )

show ?thesis
using that

〈AAs ′′ ··aml ηs ′′ = AAs〉 〈Cs ′′ ··cl ηs ′′ = Cs〉 〈∀ i < n. CAs ′′ ! i = Cs ′′ ! i + poss (AAs ′′ ! i)〉
〈length AAs ′′ = n〉 〈length Cs ′′ = n〉

by blast
qed

— Obtain FO main premise
have ∃DA ′′ η ′′. DA ′′ ∈ M ∧ DA = DA ′′ · η ′′ ∧ S DA ′′ · η ′′ = S M S M DA ∧ is ground subst η ′′

using grounding S M grounding of clss select by (metis le supE singletonI subsetCE)
then obtain DA ′′ η ′′ where

DA ′′ η ′′ p: DA ′′ ∈ M ∧ DA = DA ′′ · η ′′ ∧ S DA ′′ · η ′′ = S M S M DA ∧ is ground subst η ′′

by auto
— The properties we need of the FO main premise
have DA ′′ in M : DA ′′ ∈ M

using DA ′′ η ′′ p by auto
have DA ′′ to DA: DA ′′ · η ′′ = DA

using DA ′′ η ′′ p by auto
have SDA ′′ to SMDA: S DA ′′ · η ′′ = S M S M DA

using DA ′′ η ′′ p by auto
have is ground subst η ′′

using DA ′′ η ′′ p by auto

— Split main premise DA” into D” and As”
obtain D ′′ As ′′ where D ′′As ′′ p:

As ′′ ·al η ′′ = As length As ′′ = n D ′′ · η ′′ = D DA ′′ = D ′′ + (negs (mset As ′′))
S M S M (D + negs (mset As)) 6= {#} =⇒ negs (mset As ′′) = S DA ′′

proof −
{

assume a: S M S M (D + negs (mset As)) = {#} ∧ length As = (Suc 0 )
∧ maximal wrt (As ! 0 ·a σ) ((D + negs (mset As)) · σ)

then have as: mset As = {#As ! 0#}
by (auto intro: nth equalityI )

then have negs (mset As) = {#Neg (As ! 0 )#}
by (simp add : 〈mset As = {#As ! 0#}〉)
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then have DA = D + {#Neg (As ! 0 )#}
using da by auto

then obtain L where L ∈# DA ′′ ∧ L ·l η ′′ = Neg (As ! 0 )
using DA ′′ to DA by (metis Melem subst cls mset subset eq add right single subset iff )

then have Neg (atm of L) ∈# DA ′′ ∧ Neg (atm of L) ·l η ′′ = Neg (As ! 0 )
by (metis Neg atm of iff literal .sel(2 ) subst lit is pos)

then have [atm of L] ·al η ′′ = As ∧ negs (mset [atm of L]) ⊆# DA ′′

using as subst lit def by auto
then have ∃As ′. As ′ ·al η ′′ = As ∧ negs (mset As ′) ⊆# DA ′′

∧ (S M S M (D + negs (mset As)) 6= {#} −→ negs (mset As ′) = S DA ′′)
using a by blast

}
moreover
{

assume S M S M (D + negs (mset As)) = negs (mset As)
then have negs (mset As) = S DA ′′ · η ′′

using da 〈S DA ′′ · η ′′ = S M S M DA〉 by auto
then have ∃As ′. negs (mset As ′) = S DA ′′ ∧ As ′ ·al η ′′ = As

using instance list [of As S DA ′′ η ′′] S .S selects neg lits by auto
then have ∃As ′. As ′ ·al η ′′ = As ∧ negs (mset As ′) ⊆# DA ′′

∧ (S M S M (D + negs (mset As)) 6= {#} −→ negs (mset As ′) = S DA ′′)
using S .S selects subseteq by auto

}
ultimately have ∃As ′′. As ′′ ·al η ′′ = As ∧ (negs (mset As ′′)) ⊆# DA ′′

∧ (S M S M (D + negs (mset As)) 6= {#} −→ negs (mset As ′′) = S DA ′′)
using eligible unfolding eligible.simps by auto

then obtain As ′′ where
As ′ p: As ′′ ·al η ′′ = As ∧ negs (mset As ′′) ⊆# DA ′′

∧ (S M S M (D + negs (mset As)) 6= {#} −→ negs (mset As ′′) = S DA ′′)
by blast

then have length As ′′ = n
using as len by auto

note n = n this

have As ′′ ·al η ′′ = As
using As ′ p by auto

define D ′′ where
D ′′ = DA ′′ − negs (mset As ′′)

then have DA ′′ = D ′′ + negs (mset As ′′)
using As ′ p by auto

then have D ′′ · η ′′ = D
using DA ′′ to DA da As ′ p by auto

have S M S M (D + negs (mset As)) 6= {#} =⇒ negs (mset As ′′) = S DA ′′

using As ′ p by blast
then show ?thesis

using that 〈As ′′ ·al η ′′ = As〉 〈D ′′ · η ′′= D〉 〈DA ′′ = D ′′ + (negs (mset As ′′))〉 〈length As ′′ = n〉

by metis
qed

show ?thesis
using that [OF n(2 ,1 ) DA ′′ in M DA ′′ to DA SDA ′′ to SMDA CAs ′′ in M CAs ′′ to CAs SCAs ′′ to SMCAs

〈is ground subst η ′′〉 〈is ground subst list ηs ′′〉 〈As ′′ ·al η ′′ = As〉

〈AAs ′′ ··aml ηs ′′ = AAs〉

〈length As ′′ = n〉

〈D ′′ · η ′′ = D〉

〈DA ′′ = D ′′ + (negs (mset As ′′))〉
〈S M S M (D + negs (mset As)) 6= {#} =⇒ negs (mset As ′′) = S DA ′′〉
〈length Cs ′′ = n〉

〈Cs ′′ ··cl ηs ′′ = Cs〉

〈∀ i < n. CAs ′′ ! i = Cs ′′ ! i + poss (AAs ′′ ! i)〉
〈length AAs ′′ = n〉]
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by auto
qed

lemma
assumes Pos A ∈# C
shows A ∈ atms of C
using assms
by (simp add : atm iff pos or neg lit)

lemma ord resolve rename lifting :
assumes

sel stable:
∧
% C . is renaming % =⇒ S (C · %) = S C · % and

res e: ord resolve (S M S M ) CAs DA AAs As σ E and
select : selection S and
grounding : {DA} ∪ set CAs ⊆ grounding of clss M

obtains ηs η η2 CAs ′′ DA ′′ AAs ′′ As ′′ E ′′ τ where
is ground subst η
is ground subst list ηs
is ground subst η2
ord resolve rename S CAs ′′ DA ′′ AAs ′′ As ′′ τ E ′′

CAs ′′ ··cl ηs = CAs DA ′′ · η = DA E ′′ · η2 = E
{DA ′′} ∪ set CAs ′′ ⊆ M

using res e
proof (cases rule: ord resolve.cases)

case (ord resolve n Cs D)
note da = this(1 ) and e = this(2 ) and cas len = this(3 ) and cs len = this(4 ) and

aas len = this(5 ) and as len = this(6 ) and nz = this(7 ) and cas = this(8 ) and
aas not empt = this(9 ) and mgu = this(10 ) and eligible = this(11 ) and str max = this(12 ) and
sel empt = this(13 )

have sel ren list inv :∧
%s Cs. length %s = length Cs =⇒ is renaming list %s =⇒ map S (Cs ··cl %s) = map S Cs ··cl %s

using sel stable unfolding is renaming list def by (auto intro: nth equalityI )

note n = 〈n 6= 0 〉 〈length CAs = n〉 〈length Cs = n〉 〈length AAs = n〉 〈length As = n〉

interpret S : selection S by (rule select)

obtain DA ′′ η ′′ CAs ′′ ηs ′′ As ′′ AAs ′′ D ′′ Cs ′′ where as ′′:
length CAs ′′ = n
length ηs ′′ = n
DA ′′ ∈ M
DA ′′ · η ′′ = DA
S DA ′′ · η ′′ = S M S M DA
∀CA ′′ ∈ set CAs ′′. CA ′′ ∈ M
CAs ′′ ··cl ηs ′′ = CAs
map S CAs ′′ ··cl ηs ′′ = map (S M S M ) CAs
is ground subst η ′′

is ground subst list ηs ′′

As ′′ ·al η ′′ = As
AAs ′′ ··aml ηs ′′ = AAs
length As ′′ = n
D ′′ · η ′′ = D
DA ′′ = D ′′ + (negs (mset As ′′))
S M S M (D + negs (mset As)) 6= {#} =⇒ negs (mset As ′′) = S DA ′′

length Cs ′′ = n
Cs ′′ ··cl ηs ′′ = Cs
∀ i < n. CAs ′′ ! i = Cs ′′ ! i + poss (AAs ′′ ! i)
length AAs ′′ = n
using ord resolve obtain clauses[of S M CAs DA, OF res e select grounding n(2 ) 〈DA = D + negs (mset As)〉

〈∀ i<n. CAs ! i = Cs ! i + poss (AAs ! i)〉 〈length Cs = n〉 〈length AAs = n〉, of thesis] by blast
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note n = 〈length CAs ′′ = n〉 〈length ηs ′′ = n〉 〈length As ′′ = n〉 〈length AAs ′′ = n〉 〈length Cs ′′ = n〉 n

have length (renamings apart (DA ′′ # CAs ′′)) = Suc n
using n renames apart by auto

note n = this n

define % where
% = hd (renamings apart (DA ′′ # CAs ′′))

define %s where
%s = tl (renamings apart (DA ′′ # CAs ′′))

define DA ′ where
DA ′ = DA ′′ · %

define D ′ where
D ′ = D ′′ · %

define As ′ where
As ′ = As ′′ ·al %

define CAs ′ where
CAs ′ = CAs ′′ ··cl %s

define Cs ′ where
Cs ′ = Cs ′′ ··cl %s

define AAs ′ where
AAs ′ = AAs ′′ ··aml %s

define η ′ where
η ′ = inv renaming % � η ′′

define ηs ′ where
ηs ′ = map inv renaming %s �s ηs ′′

have renames DA ′′: is renaming %
using renames apart unfolding % def
by (metis length greater 0 conv list .exhaust sel list .set intros(1 ) list .simps(3 ))

have renames CAs ′′: is renaming list %s
using renames apart unfolding %s def
by (metis is renaming list def length greater 0 conv list .set sel(2 ) list .simps(3 ))

have length %s = n
unfolding %s def using n by auto

note n = n 〈length %s = n〉

have length As ′ = n
unfolding As ′ def using n by auto

have length CAs ′ = n
using as ′′(1 ) n unfolding CAs ′ def by auto

have length Cs ′ = n
unfolding Cs ′ def using n by auto

have length AAs ′ = n
unfolding AAs ′ def using n by auto

have length ηs ′ = n
using as ′′(2 ) n unfolding ηs ′ def by auto

note n = 〈length CAs ′ = n〉 〈length ηs ′ = n〉 〈length As ′ = n〉 〈length AAs ′ = n〉 〈length Cs ′ = n〉 n

have DA ′ DA: DA ′ · η ′ = DA
using as ′′(4 ) unfolding η ′ def DA ′ def using renames DA ′′ by simp

have D ′ D : D ′ · η ′ = D
using as ′′(14 ) unfolding η ′ def D ′ def using renames DA ′′ by simp

have As ′ As: As ′ ·al η ′ = As
using as ′′(11 ) unfolding η ′ def As ′ def using renames DA ′′ by auto

have S DA ′ · η ′ = S M S M DA
using as ′′(5 ) unfolding η ′ def DA ′ def using renames DA ′′ sel stable by auto

have CAs ′ CAs: CAs ′ ··cl ηs ′ = CAs
using as ′′(7 ) unfolding CAs ′ def ηs ′ def using renames apart renames CAs ′′ n by auto

have Cs ′ Cs: Cs ′ ··cl ηs ′ = Cs
using as ′′(18 ) unfolding Cs ′ def ηs ′ def using renames apart renames CAs ′′ n by auto
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have AAs ′ AAs: AAs ′ ··aml ηs ′ = AAs
using as ′′(12 ) unfolding ηs ′ def AAs ′ def using renames CAs ′′ using n by auto

have map S CAs ′ ··cl ηs ′ = map (S M S M ) CAs
unfolding CAs ′ def ηs ′ def using as ′′(8 ) n renames CAs ′′ sel ren list inv by auto

have DA ′ split : DA ′ = D ′ + negs (mset As ′)
using as ′′(15 ) DA ′ def D ′ def As ′ def by auto

then have D ′ subset DA ′: D ′ ⊆# DA ′

by auto
from DA ′ split have negs As ′ subset DA ′: negs (mset As ′) ⊆# DA ′

by auto

have CAs ′ split : ∀ i<n. CAs ′ ! i = Cs ′ ! i + poss (AAs ′ ! i)
using as ′′(19 ) CAs ′ def Cs ′ def AAs ′ def n by auto

then have ∀ i<n. Cs ′ ! i ⊆# CAs ′ ! i
by auto

from CAs ′ split have poss AAs ′ subset CAs ′: ∀ i<n. poss (AAs ′ ! i) ⊆# CAs ′ ! i
by auto

then have AAs ′ in atms of CAs ′: ∀ i < n. ∀A∈#AAs ′ ! i . A ∈ atms of (CAs ′ ! i)
by (auto simp add : atm iff pos or neg lit)

have as ′:
S M S M (D + negs (mset As)) 6= {#} =⇒ negs (mset As ′) = S DA ′

proof −
assume a: S M S M (D + negs (mset As)) 6= {#}
then have negs (mset As ′′) · % = S DA ′′ · %

using as ′′(16 ) unfolding % def by metis
then show negs (mset As ′) = S DA ′

using As ′ def DA ′ def using sel stable[of % DA ′′] renames DA ′′ by auto
qed

have vd : var disjoint (DA ′ # CAs ′)
unfolding DA ′ def CAs ′ def using renames apart [of DA ′′ # CAs ′′]
unfolding % def %s def
by (metis length greater 0 conv list .exhaust sel n(6 ) substitution.subst cls lists Cons

substitution axioms zero less Suc)

— Introduce ground substitution
from vd DA ′ DA CAs ′ CAs have ∃ η. ∀ i < Suc n. ∀S . S ⊆# (DA ′ # CAs ′) ! i −→ S · (η ′#ηs ′) ! i = S · η

unfolding var disjoint def using n by auto
then obtain η where η p: ∀ i < Suc n. ∀S . S ⊆# (DA ′ # CAs ′) ! i −→ S · (η ′#ηs ′) ! i = S · η

by auto
have η p lit : ∀ i < Suc n. ∀L. L ∈# (DA ′ # CAs ′) ! i −→ L ·l (η ′#ηs ′) ! i = L ·l η
proof (rule, rule, rule, rule)

fix i :: nat and L :: ′a literal
assume a:

i < Suc n
L ∈# (DA ′ # CAs ′) ! i

then have ∀S . S ⊆# (DA ′ # CAs ′) ! i −→ S · (η ′ # ηs ′) ! i = S · η
using η p by auto

then have {# L #} · (η ′ # ηs ′) ! i = {# L #} · η
using a by (meson single subset iff )

then show L ·l (η ′ # ηs ′) ! i = L ·l η by auto
qed
have η p atm: ∀ i < Suc n. ∀A. A ∈ atms of ((DA ′ # CAs ′) ! i) −→ A ·a (η ′#ηs ′) ! i = A ·a η
proof (rule, rule, rule, rule)

fix i :: nat and A :: ′a
assume a:

i < Suc n
A ∈ atms of ((DA ′ # CAs ′) ! i)

then obtain L where L p: atm of L = A ∧ L ∈# (DA ′ # CAs ′) ! i
unfolding atms of def by auto

then have L ·l (η ′#ηs ′) ! i = L ·l η
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using η p lit a by auto
then show A ·a (η ′ # ηs ′) ! i = A ·a η

using L p unfolding subst lit def by (cases L) auto
qed

have DA ′ DA: DA ′ · η = DA
using DA ′ DA η p by auto

have D ′ · η = D using η p D ′ D n D ′ subset DA ′ by auto
have As ′ ·al η = As
proof (rule nth equalityI )

show length (As ′ ·al η) = length As
using n by auto

next
show ∀ i<length (As ′ ·al η). (As ′ ·al η) ! i = As ! i
proof (rule, rule)

fix i :: nat
assume a: i < length (As ′ ·al η)
have A eq : ∀A. A ∈ atms of DA ′ −→ A ·a η ′ = A ·a η

using η p atm n by force
have As ′ ! i ∈ atms of DA ′

using negs As ′ subset DA ′ unfolding atms of def
using a n by force

then have As ′ ! i ·a η ′ = As ′ ! i ·a η
using A eq by simp

then show (As ′ ·al η) ! i = As ! i
using As ′ As 〈length As ′ = n〉 a by auto

qed
qed

have S DA ′ · η = S M S M DA
using 〈S DA ′ · η ′ = S M S M DA〉 η p S .S selects subseteq by auto

from η p have η p CAs ′: ∀ i < n. (CAs ′ ! i) · (ηs ′ ! i) = (CAs ′! i) · η
using n by auto

then have CAs ′ ··cl ηs ′ = CAs ′ ·cl η
using n by (auto intro: nth equalityI )

then have CAs ′ η fo CAs: CAs ′ ·cl η = CAs
using CAs ′ CAs η p n by auto

from η p have ∀ i < n. S (CAs ′ ! i) · ηs ′ ! i = S (CAs ′ ! i) · η
using S .S selects subseteq n by auto

then have map S CAs ′ ··cl ηs ′ = map S CAs ′ ·cl η
using n by (auto intro: nth equalityI )

then have SCAs ′ η fo SMCAs: map S CAs ′ ·cl η = map (S M S M ) CAs
using 〈map S CAs ′ ··cl ηs ′ = map (S M S M ) CAs〉 by auto

have Cs ′ ·cl η = Cs
proof (rule nth equalityI )

show length (Cs ′ ·cl η) = length Cs
using n by auto

next
show ∀ i<length (Cs ′ ·cl η). (Cs ′ ·cl η) ! i = Cs ! i
proof (rule, rule)

fix i :: nat
assume i < length (Cs ′ ·cl η)
then have a: i < n

using n by force
have (Cs ′ ··cl ηs ′) ! i = Cs ! i

using Cs ′ Cs a n by force
moreover
have η p CAs ′: ∀S . S ⊆# CAs ′ ! i −→ S · ηs ′ ! i = S · η

using η p a by force
have Cs ′ ! i · ηs ′ ! i = (Cs ′ ·cl η) ! i
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using η p CAs ′ 〈∀ i<n. Cs ′ ! i ⊆# CAs ′ ! i〉 a n by force
then have (Cs ′ ··cl ηs ′) ! i = (Cs ′ ·cl η) ! i

using a n by force
ultimately show (Cs ′ ·cl η) ! i = Cs ! i

by auto
thm Cs ′ Cs η p 〈∀ i<n. Cs ′ ! i ⊆# CAs ′ ! i〉 a

qed
qed

have AAs ′ AAs: AAs ′ ·aml η = AAs
proof (rule nth equalityI )

show length (AAs ′ ·aml η) = length AAs
using n by auto

next
show ∀ i<length (AAs ′ ·aml η). (AAs ′ ·aml η) ! i = AAs ! i
proof (rule, rule)

fix i :: nat
assume a: i < length (AAs ′ ·aml η)
then have i < n

using n by force
then have ∀A. A ∈ atms of ((DA ′ # CAs ′) ! Suc i) −→ A ·a (η ′ # ηs ′) ! Suc i = A ·a η

using η p atm n by force
then have A eq : ∀A. A ∈ atms of (CAs ′ ! i) −→ A ·a ηs ′ ! i = A ·a η

by auto
have AAs CAs ′: ∀A ∈# AAs ′ ! i . A ∈ atms of (CAs ′ ! i)

using AAs ′ in atms of CAs ′ unfolding atms of def
using a n by force

then have AAs ′ ! i ·am ηs ′ ! i = AAs ′ ! i ·am η
unfolding subst atm mset def using A eq unfolding subst atm mset def by auto

then show (AAs ′ ·aml η) ! i = AAs ! i
using AAs ′ AAs 〈length AAs ′ = n〉 〈length ηs ′ = n〉 a by auto

qed
qed

— Obtain MGU and substitution
obtain τ ϕ where τϕ:

Some τ = mgu (set mset ‘ set (map2 add mset As ′ AAs ′))
τ � ϕ = η � σ

proof −
have uu: is unifiers σ (set mset ‘ set (map2 add mset (As ′ ·al η) (AAs ′ ·aml η)))

using mgu mgu sound is mgu def unfolding 〈AAs ′ ·aml η = AAs〉 using 〈As ′ ·al η = As〉 by auto
have ησuni : is unifiers (η � σ) (set mset ‘ set (map2 add mset As ′ AAs ′))
proof −

have set mset ‘ set (map2 add mset As ′ AAs ′ ·aml η) =
set mset ‘ set (map2 add mset As ′ AAs ′) ·ass η
unfolding subst atmss def subst atm mset list def using subst atm mset def subst atms def
by (simp add : image image subst atm mset def subst atms def )

then have is unifiers σ (set mset ‘ set (map2 add mset As ′ AAs ′) ·ass η)
using uu by (auto simp: n map2 add mset map)

then show ?thesis
using is unifiers comp by auto

qed
then obtain τ where
τ p: Some τ = mgu (set mset ‘ set (map2 add mset As ′ AAs ′))
using mgu complete
by (metis (mono tags, hide lams) List .finite set finite imageI finite set mset image iff )

moreover then obtain ϕ where ϕ p: τ � ϕ = η � σ
by (metis (mono tags, hide lams) finite set ησuni finite imageI finite set mset image iff

mgu sound set mset mset substitution ops.is mgu def )
ultimately show thesis

using that by auto
qed
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— Lifting eligibility
have eligible ′: eligible S τ As ′ (D ′ + negs (mset As ′))
proof −

have S M S M (D + negs (mset As)) = negs (mset As) ∨ S M S M (D + negs (mset As)) = {#} ∧
length As = 1 ∧ maximal wrt (As ! 0 ·a σ) ((D + negs (mset As)) · σ)
using eligible unfolding eligible.simps by auto

then show ?thesis
proof

assume S M S M (D + negs (mset As)) = negs (mset As)
then have S M S M (D + negs (mset As)) 6= {#}

using n by force
then have S (D ′ + negs (mset As ′)) = negs (mset As ′)

using as ′ DA ′ split by auto
then show ?thesis

unfolding eligible.simps[simplified ] by auto
next

assume asm: S M S M (D + negs (mset As)) = {#} ∧ length As = 1 ∧
maximal wrt (As ! 0 ·a σ) ((D + negs (mset As)) · σ)

then have S (D ′ + negs (mset As ′)) = {#}
using 〈D ′ · η = D〉[symmetric] 〈As ′ ·al η = As〉[symmetric] 〈S (DA ′) · η = S M S M (DA)〉

da DA ′ split subst cls empty iff by metis
moreover from asm have l : length As ′ = 1

using 〈As ′ ·al η = As〉 by auto
moreover from asm have maximal wrt (As ′ ! 0 ·a (τ � ϕ)) ((D ′ + negs (mset As ′)) · (τ � ϕ))

using 〈As ′ ·al η = As〉 〈D ′ · η = D〉 using l τϕ by auto
then have maximal wrt (As ′ ! 0 ·a τ ·a ϕ) ((D ′ + negs (mset As ′)) · τ · ϕ)

by auto
then have maximal wrt (As ′ ! 0 ·a τ) ((D ′ + negs (mset As ′)) · τ)

using maximal wrt subst by blast
ultimately show ?thesis

unfolding eligible.simps[simplified ] by auto
qed

qed

— Lifting maximality
have maximality : ∀ i < n. strictly maximal wrt (As ′ ! i ·a τ) (Cs ′ ! i · τ)

proof −
from str max have ∀ i < n. strictly maximal wrt ((As ′ ·al η) ! i ·a σ) ((Cs ′ ·cl η) ! i · σ)

using 〈As ′ ·al η = As〉 〈Cs ′ ·cl η = Cs〉 by simp
then have ∀ i < n. strictly maximal wrt (As ′ ! i ·a (τ � ϕ)) (Cs ′ ! i · (τ � ϕ))

using n τϕ by simp
then have ∀ i < n. strictly maximal wrt (As ′ ! i ·a τ ·a ϕ) (Cs ′ ! i · τ · ϕ)

by auto
then show ∀ i < n. strictly maximal wrt (As ′ ! i ·a τ) (Cs ′ ! i · τ)

using strictly maximal wrt subst τϕ by blast
qed

— Lifting nothing being selected
have nothing selected : ∀ i < n. S (CAs ′ ! i) = {#}
proof −

have ∀ i < n. (map S CAs ′ ·cl η) ! i = map (S M S M ) CAs ! i
by (simp add : 〈map S CAs ′ ·cl η = map (S M S M ) CAs〉)

then have ∀ i < n. S (CAs ′ ! i) · η = S M S M (CAs ! i)
using n by auto

then have ∀ i < n. S (CAs ′ ! i) · η = {#}
using sel empt 〈∀ i < n. S (CAs ′ ! i) · η = S M S M (CAs ! i)〉 by auto

then show ∀ i < n. S (CAs ′ ! i) = {#}
using subst cls empty iff by blast

qed

— Lifting AAs’s non-emptiness
have ∀ i < n. AAs ′ ! i 6= {#}
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using n aas not empt 〈AAs ′ ·aml η = AAs〉 by auto

— Resolve the lifted clauses
define E ′ where

E ′ = ((
⋃

# mset Cs ′) + D ′) · τ

have res e ′: ord resolve S CAs ′ DA ′ AAs ′ As ′ τ E ′

using ord resolve.intros[of CAs ′ n Cs ′ AAs ′ As ′ τ S D ′,
OF 〈∀ i < n. AAs ′ ! i 6= {#}〉 τϕ(1 ) eligible ′

〈∀ i < n. strictly maximal wrt (As ′ ! i ·a τ) (Cs ′ ! i · τ)〉 〈∀ i < n. S (CAs ′ ! i) = {#}〉]
unfolding E ′ def using DA ′ split n 〈∀ i<n. CAs ′ ! i = Cs ′ ! i + poss (AAs ′ ! i)〉 by blast

— Prove resolvent instantiates to ground resolvent
have e ′ϕe: E ′ · ϕ = E
proof −

have E ′ · ϕ = ((
⋃

# mset Cs ′) + D ′) · (τ � ϕ)
unfolding E ′ def by auto

also have . . . = (
⋃

# mset Cs ′ + D ′) · (η � σ)
using τϕ by auto

also have . . . = (
⋃

# mset Cs + D) · σ
using 〈Cs ′ ·cl η = Cs〉 〈D ′ · η = D〉 by auto

also have . . . = E
using e by auto

finally show e ′ϕe: E ′ · ϕ = E
.

qed

— Replace ϕ with a true ground substitution
obtain η2 where

ground η2 : is ground subst η2 E ′ · η2 = E
proof −

have is ground cls list CAs is ground cls DA
using grounding grounding ground unfolding is ground cls list def by auto

then have is ground cls E
using res e ground resolvent subset by (force intro: is ground cls mono)

then show thesis
using that e ′ϕe make ground subst by auto

qed

— Wrap up the proof
have ord resolve S (CAs ′′ ··cl %s) (DA ′′ · %) (AAs ′′ ··aml %s) (As ′′ ·al %) τ E ′

using res e ′ As ′ def % def AAs ′ def %s def DA ′ def % def CAs ′ def %s def by simp
moreover have ∀ i<n. poss (AAs ′′ ! i) ⊆# CAs ′′ ! i

using as ′′(19 ) by auto
moreover have negs (mset As ′′) ⊆# DA ′′

using local .as ′′(15 ) by auto
ultimately have ord resolve rename S CAs ′′ DA ′′ AAs ′′ As ′′ τ E ′

using ord resolve rename[of CAs ′′ n AAs ′′ As ′′ DA ′′ % %s S τ E ′] % def %s def n by auto
then show thesis

using that [of η ′′ ηs ′′ η2 CAs ′′ DA ′′] 〈is ground subst η ′′〉 〈is ground subst list ηs ′′〉
〈is ground subst η2 〉 〈CAs ′′ ··cl ηs ′′ = CAs〉 〈DA ′′ · η ′′ = DA〉 〈E ′ · η2 = E 〉 〈DA ′′ ∈ M 〉

〈∀CA ∈ set CAs ′′. CA ∈ M 〉 by blast
qed

end

end

15 An Ordered Resolution Prover for First-Order Clauses

theory FO Ordered Resolution Prover
imports FO Ordered Resolution
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begin

This material is based on Section 4.3 (“A Simple Resolution Prover for First-Order Clauses”) of Bachmair
and Ganzinger’s chapter. Specifically, it formalizes the RP prover defined in Figure 5 and its related lemmas
and theorems, including Lemmas 4.10 and 4.11 and Theorem 4.13 (completeness).

definition is least :: (nat ⇒ bool) ⇒ nat ⇒ bool where
is least P n ←→ P n ∧ (∀n ′ < n. ¬ P n ′)

lemma least exists: P n =⇒ ∃n. is least P n
using exists least iff unfolding is least def by auto

The following corresponds to page 42 and 43 of Section 4.3, from the explanation of RP to Lemma 4.10.

type-synonym ′a state = ′a clause set × ′a clause set × ′a clause set

locale FO resolution prover =
FO resolution subst atm id subst comp subst renamings apart atm of atms mgu less atm +
selection S
for

S :: ( ′a :: wellorder) clause ⇒ ′a clause and
subst atm :: ′a ⇒ ′s ⇒ ′a and
id subst :: ′s and
comp subst :: ′s ⇒ ′s ⇒ ′s and
renamings apart :: ′a clause list ⇒ ′s list and
atm of atms :: ′a list ⇒ ′a and
mgu :: ′a set set ⇒ ′s option and
less atm :: ′a ⇒ ′a ⇒ bool +

assumes
sel stable:

∧
% C . is renaming % =⇒ S (C · %) = S C · % and

less atm ground : is ground atm A =⇒ is ground atm B =⇒ less atm A B =⇒ A < B
begin

fun N of state :: ′a state ⇒ ′a clause set where
N of state (N , P , Q) = N

fun P of state :: ′a state ⇒ ′a clause set where
P of state (N , P , Q) = P

O denotes relation composition in Isabelle, so the formalization uses Q instead.

fun Q of state :: ′a state ⇒ ′a clause set where
Q of state (N , P , Q) = Q

definition clss of state :: ′a state ⇒ ′a clause set where
clss of state St = N of state St ∪ P of state St ∪ Q of state St

abbreviation grounding of state :: ′a state ⇒ ′a clause set where
grounding of state St ≡ grounding of clss (clss of state St)

interpretation ord FO resolution: inference system ord FO Γ S .

The following inductive predicate formalizes the resolution prover in Figure 5.

inductive RP :: ′a state ⇒ ′a state ⇒ bool (infix  50 ) where
tautology deletion: Neg A ∈# C =⇒ Pos A ∈# C =⇒ (N ∪ {C}, P , Q)  (N , P , Q)
| forward subsumption: D ∈ P ∪ Q =⇒ subsumes D C =⇒ (N ∪ {C}, P , Q)  (N , P , Q)
| backward subsumption P : D ∈ N =⇒ strictly subsumes D C =⇒ (N , P ∪ {C}, Q)  (N , P , Q)
| backward subsumption Q : D ∈ N =⇒ strictly subsumes D C =⇒ (N , P , Q ∪ {C})  (N , P , Q)
| forward reduction: D + {#L ′#} ∈ P ∪ Q =⇒ − L = L ′ ·l σ =⇒ D · σ ⊆# C =⇒

(N ∪ {C + {#L#}}, P , Q)  (N ∪ {C}, P , Q)
| backward reduction P : D + {#L ′#} ∈ N =⇒ − L = L ′ ·l σ =⇒ D · σ ⊆# C =⇒

(N , P ∪ {C + {#L#}}, Q)  (N , P ∪ {C}, Q)
| backward reduction Q : D + {#L ′#} ∈ N =⇒ − L = L ′ ·l σ =⇒ D · σ ⊆# C =⇒

(N , P , Q ∪ {C + {#L#}})  (N , P ∪ {C}, Q)
| clause processing : (N ∪ {C}, P , Q)  (N , P ∪ {C}, Q)
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| inference computation: N = concls of (ord FO resolution.inferences between Q C ) =⇒
({}, P ∪ {C}, Q)  (N , P , Q ∪ {C})

lemma final RP : ¬ ({}, {}, Q)  St
by (auto elim: RP .cases)

definition Sup state :: ′a state llist ⇒ ′a state where
Sup state Sts =
(Sup llist (lmap N of state Sts), Sup llist (lmap P of state Sts),
Sup llist (lmap Q of state Sts))

definition Liminf state :: ′a state llist ⇒ ′a state where
Liminf state Sts =
(Liminf llist (lmap N of state Sts), Liminf llist (lmap P of state Sts),
Liminf llist (lmap Q of state Sts))

context
fixes Sts Sts ′ :: ′a state llist
assumes Sts: lfinite Sts lfinite Sts ′ ¬ lnull Sts ¬ lnull Sts ′ llast Sts ′ = llast Sts

begin

lemma
N of Liminf state fin: N of state (Liminf state Sts ′) = N of state (Liminf state Sts) and
P of Liminf state fin: P of state (Liminf state Sts ′) = P of state (Liminf state Sts) and
Q of Liminf state fin: Q of state (Liminf state Sts ′) = Q of state (Liminf state Sts)
using Sts by (simp all add : Liminf state def lfinite Liminf llist llast lmap)

lemma Liminf state fin: Liminf state Sts ′ = Liminf state Sts
using N of Liminf state fin P of Liminf state fin Q of Liminf state fin
by (simp add : Liminf state def )

end

context
fixes Sts Sts ′ :: ′a state llist
assumes Sts: ¬ lfinite Sts emb Sts Sts ′

begin

lemma
N of Liminf state inf : N of state (Liminf state Sts ′) ⊆ N of state (Liminf state Sts) and
P of Liminf state inf : P of state (Liminf state Sts ′) ⊆ P of state (Liminf state Sts) and
Q of Liminf state inf : Q of state (Liminf state Sts ′) ⊆ Q of state (Liminf state Sts)
using Sts by (simp all add : Liminf state def emb Liminf llist infinite emb lmap)

lemma clss of Liminf state inf :
clss of state (Liminf state Sts ′) ⊆ clss of state (Liminf state Sts)
unfolding clss of state def
using N of Liminf state inf P of Liminf state inf Q of Liminf state inf by blast

end

definition fair state seq :: ′a state llist ⇒ bool where
fair state seq Sts ←→ N of state (Liminf state Sts) = {} ∧ P of state (Liminf state Sts) = {}

The following formalizes Lemma 4.10.

context
fixes

Sts :: ′a state llist
assumes

deriv : chain (op  ) Sts and
empty Q0 : Q of state (lhd Sts) = {}

begin
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lemmas lhd lmap Sts = llist .map sel(1 )[OF chain not lnull [OF deriv ]]

definition S Q :: ′a clause ⇒ ′a clause where
S Q = S M S (Q of state (Liminf state Sts))

interpretation sq : selection S Q
unfolding S Q def using S M selects subseteq S M selects neg lits selection axioms
by unfold locales auto

interpretation gr : ground resolution with selection S Q
by unfold locales

interpretation sr : standard redundancy criterion reductive gr .ord Γ
by unfold locales

interpretation sr : standard redundancy criterion counterex reducing gr .ord Γ
ground resolution with selection.INTERP S Q
by unfold locales

The extension of ordered resolution mentioned in 4.10. We let it consist of all sound rules.

definition ground sound Γ:: ′a inference set where
ground sound Γ = {Infer CC D E | CC D E . (∀ I . I |=m CC −→ I |= D −→ I |= E)}

We prove that we indeed defined an extension.

lemma gd ord Γ ngd ord Γ: gr .ord Γ ⊆ ground sound Γ
unfolding ground sound Γ def using gr .ord Γ def gr .ord resolve sound by fastforce

lemma sound ground sound Γ: sound inference system ground sound Γ
unfolding sound inference system def ground sound Γ def by auto

lemma sat preserving ground sound Γ: sat preserving inference system ground sound Γ
using sound ground sound Γ sat preserving inference system.intro

sound inference system.Γ sat preserving by blast

definition sr ext Ri :: ′a clause set ⇒ ′a inference set where
sr ext Ri N = sr .Ri N ∪ (ground sound Γ − gr .ord Γ)

interpretation sr ext :
sat preserving redundancy criterion ground sound Γ sr .Rf sr ext Ri
unfolding sat preserving redundancy criterion def sr ext Ri def
using sat preserving ground sound Γ redundancy criterion standard extension gd ord Γ ngd ord Γ

sr .redundancy criterion axioms by auto

lemma strict subset subsumption redundant clause:
assumes

sub: D · σ ⊂# C and
ground σ: is ground subst σ

shows C ∈ sr .Rf (grounding of cls D)
proof −

from sub have ∀ I . I |= D · σ −→ I |= C
unfolding true cls def by blast

moreover have C > D · σ
using sub by (simp add : subset imp less mset)

moreover have D · σ ∈ grounding of cls D
using ground σ by (metis (mono tags, lifting) mem Collect eq substitution ops.grounding of cls def )

ultimately have set mset {#D · σ#} ⊆ grounding of cls D
(∀ I . I |=m {#D · σ#} −→ I |= C )
(∀D ′. D ′ ∈# {#D · σ#} −→ D ′ < C )
by auto

then show ?thesis
using sr .Rf def by blast

qed
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lemma strict subset subsumption redundant state:
assumes

D · σ ⊂# C and
is ground subst σ and
D ∈ clss of state St

shows C ∈ sr .Rf (grounding of state St)
using assms

proof (induction St)
case (fields N P Q)
note sub = this(1 ) and gr = this(2 ) and d in = this(3 )

have C ∈ sr .Rf (grounding of cls D)
by (rule strict subset subsumption redundant clause[OF sub gr ])

then show ?case
using d in unfolding clss of state def grounding of clss def
by (metis (no types) sr .Rf mono sup ge1 SUP absorb contra subsetD)

qed

lemma subst cls eq grounding of cls subset eq :
assumes D · σ = C
shows grounding of cls C ⊆ grounding of cls D

proof
fix Cσ ′

assume Cσ ′ ∈ grounding of cls C
then obtain σ ′ where

Cσ ′: C · σ ′ = Cσ ′ is ground subst σ ′

unfolding grounding of cls def by auto
then have C · σ ′ = D · σ · σ ′ ∧ is ground subst (σ � σ ′)

using assms by auto
then show Cσ ′ ∈ grounding of cls D

unfolding grounding of cls def using Cσ ′(1 ) by force
qed

The following corresponds the part of Lemma 4.10 that states we have a theorem proving process:

lemma resolution prover ground derive:
St  St ′ =⇒ sr ext .derive (grounding of state St) (grounding of state St ′)

proof (induction rule: RP .induct)
case (tautology deletion A C N P Q)
{

fix Cσ
assume Cσ ∈ grounding of cls C
then obtain σ where

Cσ = C · σ
unfolding grounding of cls def by auto

then have Neg (A ·a σ) ∈# Cσ ∧ Pos (A ·a σ) ∈# Cσ
using tautology deletion Neg Melem subst atm subst cls Pos Melem subst atm subst cls by auto

then have Cσ ∈ sr .Rf (grounding of state (N , P , Q))
using sr .tautology redundant by auto

}
then have grounding of state (N ∪ {C}, P , Q) − grounding of state (N , P , Q)
⊆ sr .Rf (grounding of state (N , P , Q))
unfolding clss of state def grounding of clss def by auto

moreover have grounding of state (N , P , Q) − grounding of state (N ∪ {C}, P , Q) = {}
unfolding clss of state def grounding of clss def by auto

ultimately show ?case
using sr ext .derive.intros[of grounding of state (N , P , Q) grounding of state (N ∪ {C}, P , Q)]
by auto

next
case (forward subsumption D P Q C N )
note D p = this
then obtain σ where

D · σ = C ∨ D · σ ⊂# C
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by (auto simp: subsumes def subset mset def )
then have D · σ = C ∨ D · σ ⊂# C

by (simp add : subset mset def )
then show ?case
proof

assume D · σ = C
then have grounding of cls C ⊆ grounding of cls D

using subst cls eq grounding of cls subset eq by simp
then have grounding of state (N ∪ {C}, P , Q) = grounding of state (N , P , Q)

using D p unfolding clss of state def grounding of clss def by auto
then show ?case

by (auto intro: sr ext .derive.intros)
next

assume a: D · σ ⊂# C
have grounding of cls C ⊆ sr .Rf (grounding of state (N , P , Q))
proof

fix Cµ
assume Cµ ∈ grounding of cls C
then obtain µ where
µ p: Cµ = C · µ ∧ is ground subst µ
unfolding grounding of cls def by auto

have DσµCµ: D · σ · µ ⊂# C · µ
using a subst subset mono by auto

then show Cµ ∈ sr .Rf (grounding of state (N , P , Q))
using µ p strict subset subsumption redundant state[of D σ � µ C · µ (N , P , Q)] D p
unfolding clss of state def by auto

qed
then show ?case

unfolding clss of state def grounding of clss def by (force intro: sr ext .derive.intros)
qed

next
case (backward subsumption P D N C P Q)

note D p = this
then obtain σ where

D · σ = C ∨ D · σ ⊂# C
by (auto simp: strictly subsumes def subsumes def subset mset def )

then show ?case
proof

assume D · σ = C
then have grounding of cls C ⊆ grounding of cls D

using subst cls eq grounding of cls subset eq by simp
then have grounding of state (N , P ∪ {C}, Q) = grounding of state (N , P , Q)

using D p unfolding clss of state def grounding of clss def by auto
then show ?case

by (auto intro: sr ext .derive.intros)
next

assume a: D · σ ⊂# C
have grounding of cls C ⊆ sr .Rf (grounding of state (N , P , Q))
proof

fix Cµ
assume Cµ ∈ grounding of cls C
then obtain µ where
µ p: Cµ = C · µ ∧ is ground subst µ
unfolding grounding of cls def by auto

have DσµCµ: D · σ · µ ⊂# C · µ
using a subst subset mono by auto

then show Cµ ∈ sr .Rf (grounding of state (N , P , Q))
using µ p strict subset subsumption redundant state[of D σ � µ C · µ (N , P , Q)] D p
unfolding clss of state def by auto

qed
then show ?case

unfolding clss of state def grounding of clss def by (force intro: sr ext .derive.intros)
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qed
next

case (backward subsumption Q D N C P Q)
note D p = this
then obtain σ where

D · σ = C ∨ D · σ ⊂# C
by (auto simp: strictly subsumes def subsumes def subset mset def )

then show ?case
proof

assume D · σ = C
then have grounding of cls C ⊆ grounding of cls D

using subst cls eq grounding of cls subset eq by simp
then have grounding of state (N , P , Q ∪ {C}) = grounding of state (N , P , Q)

using D p unfolding clss of state def grounding of clss def by auto
then show ?case

by (auto intro: sr ext .derive.intros)
next

assume a: D · σ ⊂# C
have grounding of cls C ⊆ sr .Rf (grounding of state (N , P , Q))
proof

fix Cµ
assume Cµ ∈ grounding of cls C
then obtain µ where
µ p: Cµ = C · µ ∧ is ground subst µ
unfolding grounding of cls def by auto

have DσµCµ: D · σ · µ ⊂# C · µ
using a subst subset mono by auto

then show Cµ ∈ sr .Rf (grounding of state (N , P , Q))
using µ p strict subset subsumption redundant state[of D σ � µ C · µ (N , P , Q)] D p
unfolding clss of state def by auto

qed
then show ?case

unfolding clss of state def grounding of clss def by (force intro: sr ext .derive.intros)
qed

next
case (forward reduction D L ′ P Q L σ C N )
note DL ′ p = this
{

fix Cµ
assume Cµ ∈ grounding of cls C
then obtain µ where
µ p: Cµ = C · µ ∧ is ground subst µ
unfolding grounding of cls def by auto

define γ where
γ = Infer {#(C + {#L#})· µ#} ((D + {#L ′#}) · σ · µ) (C · µ)

have (D + {#L ′#}) · σ · µ ∈ grounding of state (N ∪ {C + {#L#}}, P , Q)
unfolding clss of state def grounding of clss def grounding of cls def
by (rule UN I [of D + {#L ′#}], use DL ′ p(1 ) in simp,

metis (mono tags, lifting) µ p is ground comp subst mem Collect eq subst cls comp subst)
moreover have (C + {#L#}) · µ ∈ grounding of state (N ∪ {C + {#L#}}, P , Q)

using µ p unfolding clss of state def grounding of clss def grounding of cls def by auto
moreover have ∀ I . I |= D · σ · µ + {#− (L ·l µ)#} −→ I |= C · µ + {#L ·l µ#} −→ I |= D · σ · µ + C

· µ
by auto

then have ∀ I . I |= (D + {#L ′#}) · σ · µ −→ I |= (C + {#L#}) · µ −→ I |= D · σ · µ + C · µ
using DL ′ p
by (metis add mset add single subst cls add mset subst cls union subst minus)

then have ∀ I . I |= (D + {#L ′#}) · σ · µ −→ I |= (C + {#L#}) · µ −→ I |= C · µ
using DL ′ p by (metis (no types, lifting) subset mset .le iff add subst cls union true cls union)

then have ∀ I . I |=m {#(D + {#L ′#}) · σ · µ#} −→ I |= (C + {#L#}) · µ −→ I |= C · µ
by (meson true cls mset singleton)
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ultimately have γ ∈ sr ext .inferences from (grounding of state (N ∪ {C + {#L#}}, P , Q))
unfolding sr ext .inferences from def unfolding ground sound Γ def infer from def γ def by auto

then have C · µ ∈ concls of (sr ext .inferences from (grounding of state (N ∪ {C + {#L#}}, P , Q)))
using image iff unfolding γ def by fastforce

then have Cµ ∈ concls of (sr ext .inferences from (grounding of state (N ∪ {C + {#L#}}, P , Q)))
using µ p by auto

}
then have grounding of state (N ∪ {C}, P , Q) − grounding of state (N ∪ {C + {#L#}}, P , Q)
⊆ concls of (sr ext .inferences from (grounding of state (N ∪ {C + {#L#}}, P , Q)))
unfolding grounding of clss def clss of state def by auto

moreover
{

fix CLµ
assume CLµ ∈ grounding of cls (C + {#L#})
then obtain µ where
µ def : CLµ = (C + {#L#}) · µ ∧ is ground subst µ
unfolding grounding of cls def by auto

have Cµ CLµ: C · µ ⊂# (C + {#L#}) · µ
by auto

then have (C + {#L#}) · µ ∈ sr .Rf (grounding of state (N ∪ {C}, P , Q))
using sr .Rf def [of grounding of cls C ]
using strict subset subsumption redundant state[of C µ (C + {#L#}) · µ (N ∪ {C}, P , Q)] µ def
unfolding clss of state def by force

then have CLµ ∈ sr .Rf (grounding of state (N ∪ {C}, P , Q))
using µ def by auto

}
then have grounding of state (N ∪ {C + {#L#}}, P , Q) − grounding of state (N ∪ {C}, P , Q)
⊆ sr .Rf (grounding of state (N ∪ {C}, P , Q))
unfolding clss of state def grounding of clss def by auto

ultimately show ?case
using sr ext .derive.intros[of grounding of state (N ∪ {C}, P , Q)

grounding of state (N ∪ {C + {#L#}}, P , Q)]
by auto

next
case (backward reduction P D L ′ N L σ C P Q)
note DL ′ p = this
{

fix Cµ
assume Cµ ∈ grounding of cls C
then obtain µ where
µ p: Cµ = C · µ ∧ is ground subst µ
unfolding grounding of cls def by auto

define γ where
γ = Infer {#(C + {#L#})· µ#} ((D + {#L ′#}) · σ · µ) (C · µ)

have (D + {#L ′#}) · σ · µ ∈ grounding of state (N , P ∪ {C + {#L#}}, Q)
unfolding clss of state def grounding of clss def grounding of cls def
by (rule UN I [of D + {#L ′#}], use DL ′ p(1 ) in simp,

metis (mono tags, lifting) µ p is ground comp subst mem Collect eq subst cls comp subst)
moreover have (C + {#L#}) · µ ∈ grounding of state (N , P ∪ {C + {#L#}}, Q)

using µ p unfolding clss of state def grounding of clss def grounding of cls def by auto
moreover have ∀ I . I |= D · σ · µ + {#− (L ·l µ)#} −→ I |= C · µ + {#L ·l µ#} −→ I |= D · σ · µ + C

· µ
by auto

then have ∀ I . I |= (D + {#L ′#}) · σ · µ −→ I |= (C + {#L#}) · µ −→ I |= D · σ · µ + C · µ
using DL ′ p
by (metis add mset add single subst cls add mset subst cls union subst minus)

then have ∀ I . I |= (D + {#L ′#}) · σ · µ −→ I |= (C + {#L#}) · µ −→ I |= C · µ
using DL ′ p by (metis (no types, lifting) subset mset .le iff add subst cls union true cls union)

then have ∀ I . I |=m {#(D + {#L ′#}) · σ · µ#} −→ I |= (C + {#L#}) · µ −→ I |= C · µ
by (meson true cls mset singleton)

ultimately have γ ∈ sr ext .inferences from (grounding of state (N , P ∪ {C + {#L#}}, Q))
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unfolding sr ext .inferences from def unfolding ground sound Γ def infer from def γ def by simp
then have C · µ ∈ concls of (sr ext .inferences from (grounding of state (N , P ∪ {C + {#L#}}, Q)))

using image iff unfolding γ def by fastforce
then have Cµ ∈ concls of (sr ext .inferences from (grounding of state (N , P ∪ {C + {#L#}}, Q)))

using µ p by auto
}
then have grounding of state (N , P ∪ {C}, Q) − grounding of state (N , P ∪ {C + {#L#}}, Q)
⊆ concls of (sr ext .inferences from (grounding of state (N , P ∪ {C + {#L#}}, Q)))
unfolding grounding of clss def clss of state def by auto

moreover
{

fix CLµ
assume CLµ ∈ grounding of cls (C + {#L#})
then obtain µ where
µ def : CLµ = (C + {#L#}) · µ ∧ is ground subst µ
unfolding grounding of cls def by auto

have Cµ CLµ: C · µ ⊂# (C + {#L#}) · µ
by auto

then have (C + {#L#}) · µ ∈ sr .Rf (grounding of state (N , P∪ {C}, Q))
using sr .Rf def [of grounding of cls C ]
using strict subset subsumption redundant state[of C µ (C + {#L#}) · µ (N , P ∪ {C}, Q)] µ def
unfolding clss of state def by force

then have CLµ ∈ sr .Rf (grounding of state (N , P ∪ {C}, Q))
using µ def by auto

}
then have grounding of state (N , P ∪ {C + {#L#}}, Q) − grounding of state (N , P ∪ {C}, Q)
⊆ sr .Rf (grounding of state (N , P ∪ {C}, Q))
unfolding clss of state def grounding of clss def by auto

ultimately show ?case
using sr ext .derive.intros[of grounding of state (N , P ∪ {C}, Q)

grounding of state (N , P ∪ {C + {#L#}}, Q)]
by auto

next
case (backward reduction Q D L ′ N L σ C P Q)
note DL ′ p = this
{

fix Cµ
assume Cµ ∈ grounding of cls C
then obtain µ where
µ p: Cµ = C · µ ∧ is ground subst µ
unfolding grounding of cls def by auto

define γ where
γ = Infer {#(C + {#L#})· µ#} ((D + {#L ′#}) · σ · µ) (C · µ)

have (D + {#L ′#}) · σ · µ ∈ grounding of state (N , P , Q ∪ {C + {#L#}})
unfolding clss of state def grounding of clss def grounding of cls def
by (rule UN I [of D + {#L ′#}], use DL ′ p(1 ) in simp,

metis (mono tags, lifting) µ p is ground comp subst mem Collect eq subst cls comp subst)
moreover have (C + {#L#}) · µ ∈ grounding of state (N , P , Q ∪ {C + {#L#}})

using µ p unfolding clss of state def grounding of clss def grounding of cls def by auto
moreover have ∀ I . I |= D · σ · µ + {#− (L ·l µ)#} −→ I |= C · µ + {#L ·l µ#} −→ I |= D · σ · µ + C

· µ
by auto

then have ∀ I . I |= (D + {#L ′#}) · σ · µ −→ I |= (C + {#L#}) · µ −→ I |= D · σ · µ + C · µ
using DL ′ p
by (metis add mset add single subst cls add mset subst cls union subst minus)

then have ∀ I . I |= (D + {#L ′#}) · σ · µ −→ I |= (C + {#L#}) · µ −→ I |= C · µ
using DL ′ p by (metis (no types, lifting) subset mset .le iff add subst cls union true cls union)

then have ∀ I . I |=m {#(D + {#L ′#}) · σ · µ#} −→ I |= (C + {#L#}) · µ −→ I |= C · µ
by (meson true cls mset singleton)

ultimately have γ ∈ sr ext .inferences from (grounding of state (N , P , Q ∪ {C + {#L#}}))
unfolding sr ext .inferences from def unfolding ground sound Γ def infer from def γ def by simp
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then have C · µ ∈ concls of (sr ext .inferences from (grounding of state (N , P , Q ∪ {C + {#L#}})))
using image iff unfolding γ def by fastforce

then have Cµ ∈ concls of (sr ext .inferences from (grounding of state (N , P , Q ∪ {C + {#L#}})))
using µ p by auto

}
then have grounding of state (N , P ∪ {C}, Q) − grounding of state (N , P , Q ∪ {C + {#L#}})
⊆ concls of (sr ext .inferences from (grounding of state (N , P , Q ∪ {C + {#L#}})))
unfolding grounding of clss def clss of state def by auto

moreover
{

fix CLµ
assume CLµ ∈ grounding of cls (C + {#L#})
then obtain µ where
µ def : CLµ = (C + {#L#}) · µ ∧ is ground subst µ
unfolding grounding of cls def by auto

have Cµ CLµ: C · µ ⊂# (C + {#L#}) · µ
by auto

then have (C + {#L#}) · µ ∈ sr .Rf (grounding of state (N , P∪ {C}, Q))
using sr .Rf def [of grounding of cls C ]
using strict subset subsumption redundant state[of C µ (C + {#L#}) · µ (N , P ∪ {C}, Q)] µ def
unfolding clss of state def by force

then have CLµ ∈ sr .Rf (grounding of state (N , P ∪ {C}, Q))
using µ def by auto

}
then have grounding of state (N , P , Q ∪ {C + {#L#}}) − grounding of state (N , P ∪ {C}, Q)
⊆ sr .Rf (grounding of state (N , P ∪ {C}, Q))
unfolding clss of state def grounding of clss def by auto

ultimately show ?case
using sr ext .derive.intros[of grounding of state (N , P ∪ {C}, Q)

grounding of state (N , P , Q ∪ {C + {#L#}})]
by auto

next
case (clause processing N C P Q)
then show ?case

unfolding clss of state def using sr ext .derive.intros by auto
next

case (inference computation N Q C P)
{

fix Eµ
assume Eµ ∈ grounding of clss N
then obtain µ E where

E µ p: Eµ = E · µ ∧ E ∈ N ∧ is ground subst µ
unfolding grounding of clss def grounding of cls def by auto

then have E concl : E ∈ concls of (ord FO resolution.inferences between Q C )
using inference computation by auto

then obtain γ where
γ p: γ ∈ ord FO Γ S ∧ infer from (Q ∪ {C}) γ ∧ C ∈# prems of γ ∧ concl of γ = E
unfolding ord FO resolution.inferences between def by auto

then obtain CC CAs D AAs As σ where
γ p2 : γ = Infer CC D E ∧ ord resolve rename S CAs D AAs As σ E ∧ mset CAs = CC
unfolding ord FO Γ def by auto

define % where
% = hd (renamings apart (D # CAs))

define %s where
%s = tl (renamings apart (D # CAs))

define γ ground where
γ ground = Infer (mset (CAs ··cl %s) ·cm σ ·cm µ) (D · % · σ · µ) (E · µ)

have ∀ I . I |=m mset (CAs ··cl %s) ·cm σ ·cm µ −→ I |= D · % · σ · µ −→ I |= E · µ
using ord resolve rename ground inst sound [of µ] % def %s def E µ p γ p2
by auto

then have γ ground ∈ {Infer cc d e | cc d e. ∀ I . I |=m cc −→ I |= d −→ I |= e}
unfolding γ ground def by auto

moreover have set mset (prems of γ ground) ⊆ grounding of state ({}, P ∪ {C}, Q)
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proof −
have D = C ∨ D ∈ Q

unfolding γ ground def using E µ p γ p2 γ p unfolding infer from def
unfolding clss of state def grounding of clss def
unfolding grounding of cls def
by simp

then have D · % · σ · µ ∈ grounding of cls C ∨ (∃ x ∈ Q . D · % · σ · µ ∈ grounding of cls x )
using E µ p
unfolding grounding of cls def
by (metis (mono tags, lifting) is ground comp subst mem Collect eq subst cls comp subst)

then have (D · % · σ · µ ∈ grounding of cls C ∨
(∃ x ∈ P . D · % · σ · µ ∈ grounding of cls x ) ∨
(∃ x ∈ Q . D · % · σ · µ ∈ grounding of cls x ))
by metis

moreover have ∀ i < length (CAs ··cl %s ·cl σ ·cl µ). ((CAs ··cl %s ·cl σ ·cl µ) ! i) ∈
{C · σ |σ. is ground subst σ} ∪
((
⋃

C ∈ P . {C · σ | σ. is ground subst σ}) ∪ (
⋃

C∈Q . {C · σ | σ. is ground subst σ}))
proof (rule, rule)

fix i
assume i < length (CAs ··cl %s ·cl σ ·cl µ)
then have a: i < length CAs ∧ i < length %s

by simp
moreover from a have CAs ! i ∈ {C} ∪ Q

using γ p2 γ p unfolding infer from def
by (metis (no types, lifting) Un subset iff inference.sel(1 ) set mset union

sup commute nth mem mset subsetCE)
ultimately have (CAs ··cl %s ·cl σ ·cl µ) ! i ∈
{C · σ |σ. is ground subst σ} ∨
((CAs ··cl %s ·cl σ ·cl µ) ! i ∈ (

⋃
C∈P . {C · σ |σ. is ground subst σ}) ∨

(CAs ··cl %s ·cl σ ·cl µ) ! i ∈ (
⋃

C ∈ Q . {C · σ | σ. is ground subst σ}))
unfolding γ ground def using E µ p γ p2 γ p unfolding infer from def
unfolding clss of state def grounding of clss def
unfolding grounding of cls def
apply −
apply (cases CAs ! i = C )
subgoal

apply (rule disjI1 )
apply (rule Set .CollectI )
apply (rule tac x=(%s ! i) � σ � µ in exI )
using %s def using renames apart apply (auto;fail)
done

subgoal
apply (rule disjI2 )
apply (rule disjI2 )
apply (rule tac a=CAs ! i in UN I )
subgoal

apply blast
done

subgoal
apply (rule Set .CollectI )
apply (rule tac x=(%s ! i) � σ � µ in exI )
using %s def using renames apart apply (auto;fail)
done

done
done

then show (CAs ··cl %s ·cl σ ·cl µ) ! i ∈ {C · σ |σ. is ground subst σ} ∪
((
⋃

C ∈ P . {C · σ |σ. is ground subst σ}) ∪ (
⋃

C ∈ Q . {C · σ |σ. is ground subst σ}))
by blast

qed
then have ∀ x ∈# mset (CAs ··cl %s ·cl σ ·cl µ). x ∈ {C · σ |σ. is ground subst σ} ∪

((
⋃

C ∈ P . {C · σ |σ. is ground subst σ}) ∪ (
⋃

C ∈ Q . {C · σ |σ. is ground subst σ}))
by (metis (lifting) in set conv nth set mset mset)

then have set mset (mset (CAs ··cl %s) ·cm σ ·cm µ) ⊆
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grounding of cls C ∪ grounding of clss P ∪ grounding of clss Q
unfolding grounding of cls def grounding of clss def
using mset subst cls list subst cls mset by auto

ultimately show ?thesis
unfolding γ ground def clss of state def grounding of clss def by auto

qed
ultimately have E · µ ∈ concls of (sr ext .inferences from (grounding of state ({}, P ∪ {C}, Q)))

unfolding sr ext .inferences from def inference system.inferences from def ground sound Γ def infer from def
using γ ground def by (metis (no types, lifting) imageI inference.sel(3 ) mem Collect eq)

then have Eµ ∈ concls of (sr ext .inferences from (grounding of state ({}, P ∪ {C}, Q)))
using E µ p by auto

}
then have grounding of state (N , P , Q ∪ {C}) − grounding of state ({}, P ∪ {C}, Q)
⊆ concls of (sr ext .inferences from (grounding of state ({}, P ∪ {C}, Q)))
unfolding clss of state def grounding of clss def by auto

moreover have grounding of state ({}, P ∪ {C}, Q) − grounding of state (N , P , Q ∪ {C}) = {}
unfolding clss of state def grounding of clss def by auto

ultimately show ?case
using sr ext .derive.intros[of (grounding of state (N , P , Q ∪ {C}))

(grounding of state ({}, P ∪ {C}, Q))] by auto
qed

A useful consequence:

lemma RP model : St  St ′ =⇒ I |=s grounding of state St ′ ←→ I |=s grounding of state St
proof (drule resolution prover ground derive, erule sr ext .derive.cases, hypsubst)

let
?gSt = grounding of state St and
?gSt ′ = grounding of state St ′

assume
deduct : ?gSt ′ − ?gSt ⊆ concls of (sr ext .inferences from ?gSt) (is ⊆ ?concls) and
delete: ?gSt − ?gSt ′ ⊆ sr .Rf ?gSt ′

show I |=s ?gSt ′ ←→ I |=s ?gSt
proof

assume bef : I |=s ?gSt
then have I |=s ?concls

unfolding ground sound Γ def inference system.inferences from def true clss def true cls mset def
by (auto simp add : image def infer from def dest !: spec[of I ])

then have diff : I |=s ?gSt ′ − ?gSt
using deduct by (blast intro: true clss mono)

then show I |=s ?gSt ′

using bef unfolding true clss def by blast
next

assume aft : I |=s ?gSt ′

have I |=s ?gSt ′ ∪ sr .Rf ?gSt ′

by (rule sr .Rf model) (metis aft sr .Rf mono[OF Un upper1 ] Diff eq empty iff Diff subset
Un Diff true clss mono true clss union)

then have I |=s sr .Rf ?gSt ′

using true clss union by blast
then have diff : I |=s ?gSt − ?gSt ′

using delete by (blast intro: true clss mono)
then show I |=s ?gSt

using aft unfolding true clss def by blast
qed

qed

Another formulation of the part of Lemma 4.10 that states we have a theorem proving process:

lemma resolution prover ground derivation:
chain (op  ) Sts =⇒ chain sr ext .derive (lmap grounding of state Sts)
using resolution prover ground derive by (simp add : chain lmap[of op  ])

The following is used prove to Lemma 4.11:
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lemma in Sup llist in nth: C ∈ Sup llist Ns =⇒ ∃ j . enat j < llength Ns ∧ C ∈ lnth Ns j
unfolding Sup llist def by auto

lemma Sup llist grounding of state ground :
assumes C ∈ Sup llist (lmap grounding of state Sts)
shows is ground cls C

proof −
have ∃ j . enat j < llength (lmap grounding of state Sts) ∧ C ∈ lnth (lmap grounding of state Sts) j

using assms in Sup llist in nth by metis
then obtain j where

enat j < llength (lmap grounding of state Sts)
C ∈ lnth (lmap grounding of state Sts) j
by blast

then show ?thesis
unfolding grounding of clss def grounding of cls def by auto

qed

lemma Liminf grounding of state ground :
C ∈ Liminf llist (lmap grounding of state Sts) =⇒ is ground cls C
using Liminf llist subset Sup llist [of lmap grounding of state Sts]

Sup llist grounding of state ground
by blast

lemma in Sup llist in Sup state:
assumes C ∈ Sup llist (lmap grounding of state Sts)
shows ∃D σ. D ∈ clss of state (Sup state Sts) ∧ D · σ = C ∧ is ground subst σ

proof −
from assms obtain i where

i p: enat i < llength Sts ∧ C ∈ lnth (lmap grounding of state Sts) i
using in Sup llist in nth by fastforce

then obtain D σ where
D ∈ clss of state (lnth Sts i) ∧ D · σ = C ∧ is ground subst σ
using assms unfolding grounding of clss def grounding of cls def by fastforce

then have D ∈ clss of state (Sup state Sts) ∧ D · σ = C ∧ is ground subst σ
using i p unfolding Sup state def clss of state def
by (metis (no types, lifting) UnCI UnE contra subsetD N of state.simps P of state.simps

Q of state.simps llength lmap lnth lmap lnth subset Sup llist)
then show ?thesis

by auto
qed

lemma
N of state Liminf : N of state (Liminf state Sts) = Liminf llist (lmap N of state Sts) and
P of state Liminf : P of state (Liminf state Sts) = Liminf llist (lmap P of state Sts)
unfolding Liminf state def by auto

lemma eventually removed from N :
assumes

d in: D ∈ N of state (lnth Sts i) and
fair : fair state seq Sts and
i Sts: enat i < llength Sts

shows ∃ l . D ∈ N of state (lnth Sts l) ∧ D /∈ N of state (lnth Sts (Suc l)) ∧ i ≤ l ∧ enat (Suc l) < llength Sts
proof (rule ccontr)

assume a: ¬ ?thesis
have i ≤ l =⇒ enat l < llength Sts =⇒ D ∈ N of state (lnth Sts l) for l

using d in by (induction l , blast , metis a Suc ile eq le SucE less imp le)
then have D ∈ Liminf llist (lmap N of state Sts)

unfolding Liminf llist def using i Sts by auto
then show False

using fair unfolding fair state seq def by (simp add : N of state Liminf )
qed

lemma eventually removed from P :
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assumes
d in: D ∈ P of state (lnth Sts i) and
fair : fair state seq Sts and
i Sts: enat i < llength Sts

shows ∃ l . D ∈ P of state (lnth Sts l) ∧ D /∈ P of state (lnth Sts (Suc l)) ∧ i ≤ l ∧ enat (Suc l) < llength Sts
proof (rule ccontr)

assume a: ¬ ?thesis
have i ≤ l =⇒ enat l < llength Sts =⇒ D ∈ P of state (lnth Sts l) for l

using d in by (induction l , blast , metis a Suc ile eq le SucE less imp le)
then have D ∈ Liminf llist (lmap P of state Sts)

unfolding Liminf llist def using i Sts by auto
then show False

using fair unfolding fair state seq def by (simp add : P of state Liminf )
qed

lemma instance if subsumed and in limit :
assumes

ns: Ns = lmap grounding of state Sts and
c: C ∈ Liminf llist Ns − sr .Rf (Liminf llist Ns) and

d : D ∈ N of state (lnth Sts i) ∪ P of state (lnth Sts i) ∪ Q of state (lnth Sts i)
enat i < llength Sts subsumes D C

shows ∃σ. D · σ = C ∧ is ground subst σ
proof −

let ?Ps = λi . P of state (lnth Sts i)
let ?Qs = λi . Q of state (lnth Sts i)

have ground C : is ground cls C
using c using Liminf grounding of state ground ns by auto

have derivns: chain sr ext .derive Ns
using resolution prover ground derivation deriv ns by auto

have ∃σ. D · σ = C
proof (rule ccontr)

assume @σ. D · σ = C
moreover from d(3 ) obtain τ proto where

D · τ proto ⊆# C unfolding subsumes def
by blast

then obtain τ where
τ p: D · τ ⊆# C ∧ is ground subst τ
using ground C by (metis is ground cls mono make ground subst subset mset .order refl)

ultimately have subsub: D · τ ⊂# C
using subset mset .le imp less or eq by auto

moreover have is ground subst τ
using τ p by auto

moreover have D ∈ clss of state (lnth Sts i)
using d unfolding clss of state def by auto

ultimately have C ∈ sr .Rf (grounding of state (lnth Sts i))
using strict subset subsumption redundant state[of D τ C lnth Sts i ] by auto

then have C ∈ sr .Rf (Sup llist Ns)
using d ns by (metis contra subsetD llength lmap lnth lmap lnth subset Sup llist sr .Rf mono)

then have C ∈ sr .Rf (Liminf llist Ns)
unfolding ns using local .sr ext .Rf Sup subset Rf Liminf derivns ns by auto

then show False
using c by auto

qed
then obtain σ where

D · σ = C ∧ is ground subst σ
using ground C by (metis make ground subst)

then show ?thesis
by auto
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qed

lemma from Q to Q inf :
assumes

fair : fair state seq Sts and
ns: Ns = lmap grounding of state Sts and
c: C ∈ Liminf llist Ns − sr .Rf (Liminf llist Ns) and
d : D ∈ Q of state (lnth Sts i) enat i < llength Sts subsumes D C and
d least : ∀E ∈ {E . E ∈ (clss of state (Sup state Sts)) ∧ subsumes E C}. ¬ strictly subsumes E D

shows D ∈ Q of state (Liminf state Sts)
proof −

let ?Ps = λi . P of state (lnth Sts i)
let ?Qs = λi . Q of state (lnth Sts i)

have ground C : is ground cls C
using c using Liminf grounding of state ground ns by auto

have derivns: chain sr ext .derive Ns
using resolution prover ground derivation deriv ns by auto

have ∃σ. D · σ = C ∧ is ground subst σ
using instance if subsumed and in limit ns c d by blast

then obtain σ where
σ: D · σ = C is ground subst σ
by auto

from deriv have four ten: chain sr ext .derive Ns
using resolution prover ground derivation ns by auto

have in Sts in Sts Suc:
∀ l ≥ i . enat (Suc l) < llength Sts −→ D ∈ Q of state (lnth Sts l) −→ D ∈ Q of state (lnth Sts (Suc l))

proof (rule, rule, rule, rule)
fix l
assume

len: i ≤ l and
llen: enat (Suc l) < llength Sts and
d in q : D ∈ Q of state (lnth Sts l)

have lnth Sts l  lnth Sts (Suc l)
using llen deriv chain lnth rel by blast

then show D ∈ Q of state (lnth Sts (Suc l))
proof (cases rule: RP .cases)

case (backward subsumption Q D ′ N D removed P Q)
moreover
{

assume D removed = D
then obtain D subsumes where

D subsumes p: D subsumes ∈ N ∧ strictly subsumes D subsumes D
using backward subsumption Q by auto

moreover from D subsumes p have subsumes D subsumes C
using d subsumes trans unfolding strictly subsumes def by blast

moreover from backward subsumption Q have D subsumes ∈ clss of state (Sup state Sts)
using D subsumes p llen
by (metis (no types) UnI1 clss of state def N of state.simps llength lmap lnth lmap

lnth subset Sup llist rev subsetD Sup state def )
ultimately have False

using d least unfolding subsumes def by auto
}
ultimately show ?thesis

using d in q by auto
next

case (backward reduction Q E L ′ N L σ D ′ P Q)
{
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assume D ′ + {#L#} = D
then have D ′ p: strictly subsumes D ′ D ∧ D ′ ∈ ?Ps (Suc l)

using subset strictly subsumes[of D ′ D ] backward reduction Q by auto
then have subc: subsumes D ′ C

using d(3 ) subsumes trans unfolding strictly subsumes def by auto
from D ′ p have D ′ ∈ clss of state (Sup state Sts)

using llen by (metis (no types) UnI1 clss of state def P of state.simps llength lmap
lnth lmap lnth subset Sup llist subsetCE sup ge2 Sup state def )

then have False
using d least D ′ p subc by auto

}
then show ?thesis

using backward reduction Q d in q by auto
qed (use d in q in auto)

qed
have D in Sts: D ∈ Q of state (lnth Sts l) and D in Sts Suc: D ∈ Q of state (lnth Sts (Suc l))

if l i : l ≥ i and enat : enat (Suc l) < llength Sts for l
proof −

show D ∈ Q of state (lnth Sts l)
using l i enat
apply (induction l − i arbitrary : l)
subgoal using d by auto
subgoal using d(1 ) in Sts in Sts Suc

by (metis (no types, lifting) Suc ile eq add Suc right add diff cancel left ′ le SucE
le Suc ex less imp le)

done
then show D ∈ Q of state (lnth Sts (Suc l))

using l i enat in Sts in Sts Suc by blast
qed
have i ≤ x =⇒ enat x < llength Sts =⇒ D ∈ Q of state (lnth Sts x ) for x

apply (cases x )
subgoal using d(1 ) by (auto intro!: exI [of i ] simp: less Suc eq)
subgoal for x ′

using d(1 ) D in Sts Suc[of x ′] by (cases 〈i ≤ x ′〉) (auto simp: not less eq eq)
done

then have D ∈ Liminf llist (lmap Q of state Sts)
unfolding Liminf llist def by (auto intro!: exI [of i ] simp: d)

then show ?thesis
unfolding Liminf state def by auto

qed

lemma from P to Q :
assumes

fair : fair state seq Sts and
ns: Ns = lmap grounding of state Sts and
c: C ∈ Liminf llist Ns − sr .Rf (Liminf llist Ns) and
d : D ∈ P of state (lnth Sts i) enat i < llength Sts subsumes D C and
d least : ∀E ∈ {E . E ∈ (clss of state (Sup state Sts)) ∧ subsumes E C}. ¬ strictly subsumes E D

shows ∃ l . D ∈ Q of state (lnth Sts l) ∧ enat l < llength Sts
proof −

let ?Ns = λi . N of state (lnth Sts i)
let ?Ps = λi . P of state (lnth Sts i)
let ?Qs = λi . Q of state (lnth Sts i)

have ground C : is ground cls C
using c using Liminf grounding of state ground ns by auto

have derivns: chain sr ext .derive Ns
using resolution prover ground derivation deriv ns by auto

have ∃σ. D · σ = C ∧ is ground subst σ
using instance if subsumed and in limit ns c d by blast

then obtain σ where
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σ: D · σ = C is ground subst σ
by auto

from deriv have four ten: chain sr ext .derive Ns
using resolution prover ground derivation ns by auto

obtain l where
l p: D ∈ P of state (lnth Sts l) ∧ D /∈ P of state (lnth Sts (Suc l)) ∧ i ≤ l ∧ enat (Suc l) < llength Sts
using fair using eventually removed from P d unfolding ns by auto

then have l Ns: enat (Suc l) < llength Ns
using ns by auto

from l p have lnth Sts l  lnth Sts (Suc l)
using deriv using chain lnth rel by auto

then show ?thesis
proof (cases rule: RP .cases)

case (backward subsumption P D ′ N D twin P Q)
note lrhs = this(1 ,2 ) and D ′ p = this(3 ,4 )
then have twins: D twin = D ?Ns (Suc l) = N ?Ns l = N ?Ps (Suc l) = P

?Ps l = P ∪ {D twin} ?Qs (Suc l) = Q ?Qs l = Q
using l p by auto

note D ′ p = D ′ p[unfolded twins(1 )]
then have subc: subsumes D ′ C

unfolding strictly subsumes def subsumes def using σ
by (metis subst cls comp subst subst cls mono mset)

from D ′ p have D ′ ∈ clss of state (Sup state Sts)
unfolding twins(2 )[symmetric] using l p
by (metis (no types) UnI1 clss of state def N of state.simps llength lmap lnth lmap

lnth subset Sup llist subsetCE Sup state def )
then have False

using d least D ′ p subc by auto
then show ?thesis

by auto
next

case (backward reduction P E L ′ N L σ D ′ P Q)
then have twins: D ′ + {#L#} = D ?Ns (Suc l) = N ?Ns l = N ?Ps (Suc l) = P ∪ {D ′}

?Ps l = P ∪ {D ′ + {#L#}} ?Qs (Suc l) = Q ?Qs l = Q
using l p by auto

then have D ′ p: strictly subsumes D ′ D ∧ D ′ ∈ ?Ps (Suc l)
using subset strictly subsumes[of D ′ D ] by auto

then have subc: subsumes D ′ C
using d(3 ) subsumes trans unfolding strictly subsumes def by auto

from D ′ p have D ′ ∈ clss of state (Sup state Sts)
using l p by (metis (no types) UnI1 clss of state def P of state.simps llength lmap lnth lmap

lnth subset Sup llist subsetCE sup ge2 Sup state def )
then have False

using d least D ′ p subc by auto
then show ?thesis

by auto
next

case (inference computation N Q D twin P)
then have twins: D twin = D ?Ps (Suc l) = P ?Ps l = P ∪ {D twin}

?Qs (Suc l) = Q ∪ {D twin} ?Qs l = Q
using l p by auto

then show ?thesis
using d σ l p by auto

qed (use l p in auto)
qed

lemma variants sym: variants D D ′ ←→ variants D ′ D
unfolding variants def by auto

lemma variants imp exists subtitution: variants D D ′ =⇒ ∃σ. D · σ = D ′

unfolding variants iff subsumes subsumes def
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by (meson strictly subsumes def subset mset def strict subset subst strictly subsumes subsumes def )

lemma properly subsume variants:
assumes strictly subsumes E D and variants D D ′

shows strictly subsumes E D ′

proof −
from assms obtain σ σ ′ where
σ σ ′ p: D · σ = D ′ ∧ D ′ · σ ′ = D
using variants imp exists subtitution variants sym by metis

from assms obtain σ ′′ where
E · σ ′′ ⊆# D
unfolding strictly subsumes def subsumes def by auto

then have E · σ ′′ · σ ⊆# D · σ
using subst cls mono mset by blast

then have E · (σ ′′ � σ) ⊆# D ′

using σ σ ′ p by auto
moreover from assms have n: (@σ. D · σ ⊆# E)

unfolding strictly subsumes def subsumes def by auto
have @σ. D ′ · σ ⊆# E
proof

assume ∃σ ′′′. D ′ · σ ′′′ ⊆# E
then obtain σ ′′′ where

D ′ · σ ′′′ ⊆# E
by auto

then have D · (σ � σ ′′′) ⊆# E
using σ σ ′ p by auto

then show False
using n by metis

qed
ultimately show ?thesis

unfolding strictly subsumes def subsumes def by metis
qed

lemma neg properly subsume variants:
assumes ¬ strictly subsumes E D and variants D D ′

shows ¬ strictly subsumes E D ′

using assms properly subsume variants variants sym by auto

lemma from N to P or Q :
assumes

fair : fair state seq Sts and
ns: Ns = lmap grounding of state Sts and
c: C ∈ Liminf llist Ns − sr .Rf (Liminf llist Ns) and
d : D ∈ N of state (lnth Sts i) enat i < llength Sts subsumes D C and
d least : ∀E ∈ {E . E ∈ (clss of state (Sup state Sts)) ∧ subsumes E C}. ¬ strictly subsumes E D

shows ∃ l D ′ σ ′. D ′ ∈ P of state (lnth Sts l) ∪ Q of state (lnth Sts l) ∧
enat l < llength Sts ∧
(∀E ∈ {E . E ∈ (clss of state (Sup state Sts)) ∧ subsumes E C}. ¬ strictly subsumes E D ′) ∧
D ′ · σ ′ = C ∧ is ground subst σ ′ ∧ subsumes D ′ C

proof −
let ?Ns = λi . N of state (lnth Sts i)
let ?Ps = λi . P of state (lnth Sts i)
let ?Qs = λi . Q of state (lnth Sts i)

have ground C : is ground cls C
using c using Liminf grounding of state ground ns by auto

have derivns: chain sr ext .derive Ns
using resolution prover ground derivation deriv ns by auto

have ∃σ. D · σ = C ∧ is ground subst σ
using instance if subsumed and in limit ns c d by blast
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then obtain σ where
σ: D · σ = C is ground subst σ
by auto

from c have no taut : ¬ (∃A. Pos A ∈# C ∧ Neg A ∈# C )
using sr .tautology redundant by auto

from deriv have four ten: chain sr ext .derive Ns
using resolution prover ground derivation ns by auto

have ∃ l . D ∈ N of state (lnth Sts l) ∧ D /∈ N of state (lnth Sts (Suc l)) ∧ i ≤ l ∧ enat (Suc l) < llength Sts
using fair using eventually removed from N d unfolding ns by auto

then obtain l where
l p: D ∈ N of state (lnth Sts l) ∧ D /∈ N of state (lnth Sts (Suc l)) ∧ i ≤ l ∧ enat (Suc l) < llength Sts
by auto

then have l Ns: enat (Suc l) < llength Ns
using ns by auto

from l p have lnth Sts l  lnth Sts (Suc l)
using deriv using chain lnth rel by auto

then show ?thesis
proof (cases rule: RP .cases)

case (tautology deletion A D twin N P Q)
then have D twin = D

using l p by auto
then have Pos (A ·a σ) ∈# C ∧ Neg (A ·a σ) ∈# C

using tautology deletion(3 ,4 ) σ
by (metis Melem subst cls eql neg lit eql atm eql pos lit eql atm)

then have False
using no taut by metis

then show ?thesis
by blast

next
case (forward subsumption D ′ P Q D twin N )
note lrhs = this(1 ,2 ) and D ′ p = this(3 ,4 )
then have twins: D twin = D ?Ns (Suc l) = N ?Ns l = N ∪ {D twin} ?Ps (Suc l) = P

?Ps l = P ?Qs (Suc l) = Q ?Qs l = Q
using l p by auto

note D ′ p = D ′ p[unfolded twins(1 )]
from D ′ p(2 ) have subs: subsumes D ′ C

using d(3 ) by (blast intro: subsumes trans)
moreover have D ′ ∈ clss of state (Sup state Sts)

using twins D ′ p l p unfolding clss of state def Sup state def
by simp (metis (no types) contra subsetD llength lmap lnth lmap lnth subset Sup llist)

ultimately have ¬ strictly subsumes D ′ D
using d least by auto

then have subsumes D D ′

unfolding strictly subsumes def using D ′ p by auto
then have v : variants D D ′

using D ′ p unfolding variants iff subsumes by auto
then have mini : ∀E ∈ {E ∈ clss of state (Sup state Sts). subsumes E C}. ¬ strictly subsumes E D ′

using d least D ′ p neg properly subsume variants[of D D ′] by auto

from v have ∃σ ′. D ′ · σ ′ = C
using σ variants imp exists subtitution variants sym by (metis subst cls comp subst)

then have ∃σ ′. D ′ · σ ′ = C ∧ is ground subst σ ′

using ground C by (meson make ground subst refl)
then obtain σ ′ where
σ ′ p: D ′ · σ ′ = C ∧ is ground subst σ ′

by metis

show ?thesis
using D ′ p twins l p subs mini σ ′ p by auto

next
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case (forward reduction E L ′ P Q L σ D ′ N )
then have twins: D ′ + {#L#} = D ?Ns (Suc l) = N ∪ {D ′} ?Ns l = N ∪ {D ′ + {#L#}}

?Ps (Suc l) = P ?Ps l = P ?Qs (Suc l) = Q ?Qs l = Q
using l p by auto

then have D ′ p: strictly subsumes D ′ D ∧ D ′ ∈ ?Ns (Suc l)
using subset strictly subsumes[of D ′ D ] by auto

then have subc: subsumes D ′ C
using d(3 ) subsumes trans unfolding strictly subsumes def by blast

from D ′ p have D ′ ∈ clss of state (Sup state Sts)
using l p by (metis (no types) UnI1 clss of state def N of state.simps llength lmap lnth lmap

lnth subset Sup llist subsetCE Sup state def )
then have False

using d least D ′ p subc by auto
then show ?thesis

by auto
next

case (clause processing N D twin P Q)
then have twins: D twin = D ?Ns (Suc l) = N ?Ns l = N ∪ {D} ?Ps (Suc l) = P ∪ {D}

?Ps l = P ?Qs (Suc l) = Q ?Qs l = Q
using l p by auto

then show ?thesis
using d σ l p d least by blast

qed (use l p in auto)
qed

lemma eventually in Qinf :
assumes

D p: D ∈ clss of state (Sup state Sts)
subsumes D C ∀E ∈ {E . E ∈ (clss of state (Sup state Sts)) ∧ subsumes E C}. ¬ strictly subsumes E D and

fair : fair state seq Sts and

ns: Ns = lmap grounding of state Sts and
c: C ∈ Liminf llist Ns − sr .Rf (Liminf llist Ns) and
ground C : is ground cls C

shows ∃D ′ σ ′. D ′ ∈ Q of state (Liminf state Sts) ∧ D ′ · σ ′ = C ∧ is ground subst σ ′

proof −
let ?Ns = λi . N of state (lnth Sts i)
let ?Ps = λi . P of state (lnth Sts i)
let ?Qs = λi . Q of state (lnth Sts i)

from D p obtain i where
i p: i < llength Sts D ∈ ?Ns i ∨ D ∈ ?Ps i ∨ D ∈ ?Qs i
unfolding clss of state def Sup state def
by simp all (metis (no types) in Sup llist in nth llength lmap lnth lmap)

have derivns: chain sr ext .derive Ns using resolution prover ground derivation deriv ns by auto

have ∃σ. D · σ = C ∧ is ground subst σ
using instance if subsumed and in limit [OF ns c] D p i p by blast

then obtain σ where
σ: D · σ = C is ground subst σ
by blast

{
assume a: D ∈ ?Ns i
then obtain D ′ σ ′ l where D ′ p:

D ′ ∈ ?Ps l ∪ ?Qs l
D ′ · σ ′ = C
enat l < llength Sts
is ground subst σ ′

∀E ∈ {E . E ∈ (clss of state (Sup state Sts)) ∧ subsumes E C}. ¬ strictly subsumes E D ′

subsumes D ′ C
using from N to P or Q deriv fair ns c i p(1 ) D p(2 ) D p(3 ) by blast
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then obtain l ′ where
l ′ p: D ′ ∈ ?Qs l ′ l ′ < llength Sts
using from P to Q [OF fair ns c D ′ p(3 ) D ′ p(6 ) D ′ p(5 )] by blast

then have D ′ ∈ Q of state (Liminf state Sts)
using from Q to Q inf [OF fair ns c l ′ p(2 )] D ′ p by auto

then have ?thesis
using D ′ p by auto

}
moreover
{

assume a: D ∈ ?Ps i
then obtain l ′ where

l ′ p: D ∈ ?Qs l ′ l ′ < llength Sts
using from P to Q [OF fair ns c a i p(1 ) D p(2 ) D p(3 )] by auto

then have D ∈ Q of state (Liminf state Sts)
using from Q to Q inf [OF fair ns c l ′ p(1 ) l ′ p(2 )] D p(3 ) σ(1 ) σ(2 ) D p(2 ) by auto

then have ?thesis
using D p σ by auto

}
moreover
{

assume a: D ∈ ?Qs i
then have D ∈ Q of state (Liminf state Sts)

using from Q to Q inf [OF fair ns c a i p(1 )] σ D p(2 ,3 ) by auto
then have ?thesis

using D p σ by auto
}
ultimately show ?thesis

using i p by auto
qed

The following corresponds to Lemma 4.11:

lemma fair imp Liminf minus Rf subset ground Liminf state:
assumes

deriv : chain (op  ) Sts and
fair : fair state seq Sts and
ns: Ns = lmap grounding of state Sts

shows Liminf llist Ns − sr .Rf (Liminf llist Ns) ⊆ grounding of clss (Q of state (Liminf state Sts))
proof

let ?Ns = λi . N of state (lnth Sts i)
let ?Ps = λi . P of state (lnth Sts i)
let ?Qs = λi . Q of state (lnth Sts i)

have SQinf : clss of state (Liminf state Sts) = Liminf llist (lmap Q of state Sts)
using fair unfolding fair state seq def Liminf state def clss of state def by auto

fix C
assume C p: C ∈ Liminf llist Ns − sr .Rf (Liminf llist Ns)
then have C ∈ Sup llist Ns

using Liminf llist subset Sup llist [of Ns] by blast
then obtain D proto where

D proto ∈ clss of state (Sup state Sts) ∧ subsumes D proto C
using in Sup llist in Sup state unfolding ns subsumes def by blast

then obtain D where
D p: D ∈ clss of state (Sup state Sts)
subsumes D C
∀E ∈ {E . E ∈ clss of state (Sup state Sts) ∧ subsumes E C}. ¬ strictly subsumes E D
using strictly subsumes has minimum[of {E . E ∈ clss of state (Sup state Sts) ∧ subsumes E C}]
by auto

have ground C : is ground cls C
using C p using Liminf grounding of state ground ns by auto
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have ∃D ′ σ ′. D ′ ∈ Q of state (Liminf state Sts) ∧ D ′ · σ ′ = C ∧ is ground subst σ ′

using eventually in Qinf [of D C Ns] using D p(1 ) D p(2 ) D p(3 ) fair ns C p ground C by auto
then obtain D ′ σ ′ where

D ′ p: D ′ ∈ Q of state (Liminf state Sts) ∧ D ′ · σ ′ = C ∧ is ground subst σ ′

by blast
then have D ′ ∈ clss of state (Liminf state Sts)

by (simp add : clss of state def )
then have C ∈ grounding of state (Liminf state Sts)

unfolding grounding of clss def grounding of cls def using D ′ p by auto
then show C ∈ grounding of clss (Q of state (Liminf state Sts))

using SQinf clss of state def fair fair state seq def by auto
qed

The following corresponds to (one direction of) Theorem 4.13:

lemma ground subclauses:
assumes
∀ i < length CAs. CAs ! i = Cs ! i + poss (AAs ! i) and
length Cs = length CAs and
is ground cls list CAs

shows is ground cls list Cs
unfolding is ground cls list def
by (metis assms in set conv nth is ground cls list def is ground cls union)

lemma subseteq Liminf state eventually always:
fixes CC
assumes

finite CC and
CC 6= {} and
CC ⊆ Q of state (Liminf state Sts)

shows ∃ j . enat j < llength Sts ∧ (∀ j ′ ≥ enat j . j ′ < llength Sts −→ CC ⊆ Q of state (lnth Sts j ′))
proof −

from assms(3 ) have ∀C ∈ CC . ∃ j . enat j < llength Sts ∧
(∀ j ′ ≥ enat j . j ′ < llength Sts −→ C ∈ Q of state (lnth Sts j ′))
unfolding Liminf state def Liminf llist def by force

then obtain f where
f p: ∀C ∈ CC . f C < llength Sts ∧ (∀ j ′ ≥ enat (f C ). j ′ < llength Sts −→ C ∈ Q of state (lnth Sts j ′))
by moura

define j :: nat where
j = Max (f ‘ CC )

have enat j < llength Sts
unfolding j def using f p assms(1 )
by (metis (mono tags) Max in assms(2 ) finite imageI imageE image is empty)

moreover have ∀C j ′. C ∈ CC −→ enat j ≤ j ′ −→ j ′ < llength Sts −→ C ∈ Q of state (lnth Sts j ′)
proof (intro allI impI )

fix C :: ′a clause and j ′ :: nat
assume a: C ∈ CC enat j ≤ enat j ′ enat j ′ < llength Sts
then have f C ≤ j ′

unfolding j def using assms(1 ) Max .bounded iff by auto
then show C ∈ Q of state (lnth Sts j ′)

using f p a by auto
qed
ultimately show ?thesis

by auto
qed

lemma empty clause in Q of Liminf state:
assumes

empty in: {#} ∈ Liminf llist (lmap grounding of state Sts) and
fair : fair state seq Sts

shows {#} ∈ Q of state (Liminf state Sts)
proof −
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define Ns :: ′a clause set llist where
ns: Ns = lmap grounding of state Sts

from empty in have in Liminf not Rf : {#} ∈ Liminf llist Ns − sr .Rf (Liminf llist Ns)
unfolding ns sr .Rf def by auto

from assms obtain i where
i p: enat i < llength (lmap grounding of state Sts)
{#} ∈ lnth (lmap grounding of state Sts) i
unfolding Liminf llist def by force

then have {#} ∈ grounding of state (lnth Sts i)
by auto

then have {#} ∈ clss of state (lnth Sts i)
unfolding grounding of clss def grounding of cls def by auto

then have in Sup state: {#} ∈ clss of state (Sup state Sts)
using i p(1 ) unfolding Sup state def clss of state def
by simp (metis llength lmap lnth lmap lnth subset Sup llist set mp)

then have ∃D ′ σ ′. D ′ ∈ Q of state (Liminf state Sts) ∧ D ′ · σ ′ = {#} ∧ is ground subst σ ′

using eventually in Qinf [of {#} {#} Ns, OF in Sup state fair ns in Liminf not Rf ]
unfolding is ground cls def strictly subsumes def subsumes def by simp

then show ?thesis
by simp

qed

lemma grounding of state Liminf state subseteq :
grounding of state (Liminf state Sts) ⊆ Liminf llist (lmap grounding of state Sts)

proof
fix C :: ′a clause
assume C ∈ grounding of state (Liminf state Sts)
then obtain D σ where

D σ p: D ∈ clss of state (Liminf state Sts) D · σ = C is ground subst σ
unfolding clss of state def grounding of clss def grounding of cls def by auto

then have ii : D ∈ Liminf llist (lmap N of state Sts) ∨
D ∈ Liminf llist (lmap P of state Sts) ∨
D ∈ Liminf llist (lmap Q of state Sts)
unfolding clss of state def Liminf state def by simp

then have C ∈ Liminf llist (lmap grounding of clss (lmap N of state Sts)) ∨
C ∈ Liminf llist (lmap grounding of clss (lmap P of state Sts)) ∨
C ∈ Liminf llist (lmap grounding of clss (lmap Q of state Sts))
unfolding Liminf llist def grounding of clss def grounding of cls def
apply −
apply (erule disjE)
subgoal

apply (rule disjI1 )
using D σ p by auto

subgoal
apply (erule HOL.disjE)
subgoal

apply (rule disjI2 )
apply (rule disjI1 )
using D σ p by auto

subgoal
apply (rule disjI2 )
apply (rule disjI2 )
using D σ p by auto

done
done

then show C ∈ Liminf llist (lmap grounding of state Sts)
unfolding Liminf llist def clss of state def grounding of clss def by auto

qed

theorem RP sound :
assumes {#} ∈ clss of state (Liminf state Sts)
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shows ¬ satisfiable (grounding of state (lhd Sts))
proof −

from assms have {#} ∈ grounding of state (Liminf state Sts)
unfolding grounding of clss def by (force intro: ex ground subst)

then have ¬ satisfiable (grounding of state (Liminf state Sts))
unfolding true clss def by auto

then have ¬ satisfiable (Liminf llist (lmap grounding of state Sts))
using grounding of state Liminf state subseteq true clss mono by blast

then have ¬ satisfiable (lhd (lmap grounding of state Sts))
using sr ext .sat deriv Liminf iff [of lmap grounding of state Sts]
by (metis deriv resolution prover ground derivation)

then show ?thesis
unfolding lhd lmap Sts .

qed

theorem RP saturated if fair :
assumes fair : fair state seq Sts
shows sr .saturated upto (Liminf llist (lmap grounding of state Sts))

proof −
define Ns :: ′a clause set llist where

ns: Ns = lmap grounding of state Sts

let ?N = λi . grounding of state (lnth Sts i)

let ?Ns = λi . N of state (lnth Sts i)
let ?Ps = λi . P of state (lnth Sts i)
let ?Qs = λi . Q of state (lnth Sts i)

have ground ns in ground limit st :
Liminf llist Ns − sr .Rf (Liminf llist Ns) ⊆ grounding of clss (Q of state (Liminf state Sts))
using fair deriv fair imp Liminf minus Rf subset ground Liminf state ns by blast

have derivns: chain sr ext .derive Ns
using resolution prover ground derivation deriv ns by auto

{
fix γ :: ′a inference
assume γ p: γ ∈ gr .ord Γ
let ?CC = side prems of γ
let ?DA = main prem of γ
let ?E = concl of γ
assume a: set mset ?CC ∪ {?DA}
⊆ Liminf llist (lmap grounding of state Sts) − sr .Rf (Liminf llist (lmap grounding of state Sts))

have ground ground Liminf : is ground clss (Liminf llist (lmap grounding of state Sts))
using Liminf grounding of state ground unfolding is ground clss def by auto

have ground cc: is ground clss (set mset ?CC )
using a ground ground Liminf is ground clss def by auto

have ground da: is ground cls ?DA
using a grounding ground singletonI ground ground Liminf
by (simp add : Liminf grounding of state ground)

from γ p obtain CAs AAs As where
CAs p: gr .ord resolve CAs ?DA AAs As ?E ∧ mset CAs = ?CC
unfolding gr .ord Γ def by auto

have DA CAs in ground Liminf :
{?DA} ∪ set CAs ⊆ grounding of clss (Q of state (Liminf state Sts))
using a CAs p unfolding clss of state def using fair unfolding fair state seq def
by (metis (no types, lifting) Un empty left ground ns in ground limit st a clss of state def

ns set mset mset subset trans sup commute)
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then have ground cas: is ground cls list CAs
using CAs p unfolding is ground cls list def by auto

have ground e: is ground cls ?E
proof −

have a1 : atms of ?E ⊆ (
⋃

CA ∈ set CAs. atms of CA) ∪ atms of ?DA
using γ p ground cc ground da gr .ord resolve atms of concl subset [of CAs ?DA ?E ] CAs p
by auto

{
fix L :: ′a literal
assume L ∈# concl of γ
then have atm of L ∈ atms of (concl of γ)

by (meson atm of lit in atms of )
then have is ground atm (atm of L)

using a1 ground cas ground da is ground cls imp is ground atm is ground cls list def
by auto

}
then show ?thesis

unfolding is ground cls def is ground lit def by simp
qed

have ∃AAs As σ. ord resolve (S M S (Q of state (Liminf state Sts))) CAs ?DA AAs As σ ?E
using CAs p[THEN conjunct1 ]

proof (cases rule: gr .ord resolve.cases)
case (ord resolve n Cs D)
note DA = this(1 ) and e = this(2 ) and cas len = this(3 ) and cs len = this(4 ) and

aas len = this(5 ) and as len = this(6 ) and nz = this(7 ) and cas = this(8 ) and
aas not empt = this(9 ) and as aas = this(10 ) and eligibility = this(11 ) and
str max = this(12 ) and sel empt = this(13 )

have len aas len as: length AAs = length As
using aas len as len by auto

from as aas have ∀ i<n. ∀A ∈# add mset (As ! i) (AAs ! i). A = As ! i
using ord resolve by simp

then have ∀ i < n. card (set mset (add mset (As ! i) (AAs ! i))) ≤ Suc 0
using all the same by metis

then have ∀ i < length AAs. card (set mset (add mset (As ! i) (AAs ! i))) ≤ Suc 0
using aas len by auto

then have ∀AA ∈ set (map2 add mset As AAs). card (set mset AA) ≤ Suc 0
using set map2 ex [of AAs As add mset , OF len aas len as] by auto

then have is unifiers id subst (set mset ‘ set (map2 add mset As AAs))
unfolding is unifiers def is unifier def by auto

moreover have finite (set mset ‘ set (map2 add mset As AAs))
by auto

moreover have ∀AA ∈ set mset ‘ set (map2 add mset As AAs). finite AA
by auto

ultimately obtain σ where
σ p: Some σ = mgu (set mset ‘ set (map2 add mset As AAs))
using mgu complete by metis

have ground elig : gr .eligible As (D + negs (mset As))
using ord resolve by simp

have ground cs: ∀ i < n. is ground cls (Cs ! i)
using ord resolve(8 ) ord resolve(3 ,4 ) ground cas
using ground subclauses[of CAs Cs AAs] unfolding is ground cls list def by auto

have ground set as: is ground atms (set As)
using ord resolve(1 ) ground da
by (metis atms of negs is ground cls union set mset mset is ground cls is ground atms atms of )

then have ground mset as: is ground atm mset (mset As)
unfolding is ground atm mset def is ground atms def by auto

have ground as: is ground atm list As
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using ground set as is ground atm list def is ground atms def by auto
have ground d : is ground cls D

using ground da ord resolve by simp

from as len nz have atms of D ∪ set As 6= {} finite (atms of D ∪ set As)
by auto

then have Max (atms of D ∪ set As) ∈ atms of D ∪ set As
using Max in by metis

then have is ground Max : is ground atm (Max (atms of D ∪ set As))
using ground d ground mset as is ground cls imp is ground atm
unfolding is ground atm mset def by auto

then have Maxσ is Max : ∀σ. Max (atms of D ∪ set As) ·a σ = Max (atms of D ∪ set As)
by auto

have ann1 : maximal wrt (Max (atms of D ∪ set As)) (D + negs (mset As))
unfolding maximal wrt def
by clarsimp (metis Max less iff UnCI 〈atms of D ∪ set As 6= {}〉

〈finite (atms of D ∪ set As)〉 ground d ground set as infinite growing is ground Max
is ground atms def is ground cls imp is ground atm less atm ground)

from ground elig have ann2 :
Max (atms of D ∪ set As) ·a σ = Max (atms of D ∪ set As)
D · σ + negs (mset As ·am σ) = D + negs (mset As)
using is ground Max ground mset as ground d by auto

from ground elig have fo elig :
eligible (S M S (Q of state (Liminf state Sts))) σ As (D + negs (mset As))
unfolding gr .eligible.simps eligible.simps gr .maximal wrt def using ann1 ann2
by (auto simp: S Q def )

have l : ∀ i < n. gr .strictly maximal wrt (As ! i) (Cs ! i)
using ord resolve by simp

then have ∀ i < n. strictly maximal wrt (As ! i) (Cs ! i)
unfolding gr .strictly maximal wrt def strictly maximal wrt def
using ground as[unfolded is ground atm list def ] ground cs as len less atm ground
by clarsimp (fastforce simp: is ground cls as atms)+

then have ll : ∀ i < n. strictly maximal wrt (As ! i ·a σ) (Cs ! i · σ)
by (simp add : ground as ground cs as len)

have m: ∀ i < n. S Q (CAs ! i) = {#}
using ord resolve by simp

have ground e: is ground cls (
⋃

#mset Cs + D)
using ground d ground cs ground e e by simp

show ?thesis
using ord resolve.intros[OF cas len cs len aas len as len nz cas aas not empt σ p fo elig ll ] m DA e ground e
unfolding S Q def by auto

qed
then obtain AAs As σ where
σ p: ord resolve (S M S (Q of state (Liminf state Sts))) CAs ?DA AAs As σ ?E
by auto

then obtain ηs ′ η ′ η2 ′ CAs ′ DA ′ AAs ′ As ′ τ ′ E ′ where s p:
is ground subst η ′

is ground subst list ηs ′

is ground subst η2 ′

ord resolve rename S CAs ′ DA ′ AAs ′ As ′ τ ′ E ′

CAs ′ ··cl ηs ′ = CAs
DA ′ · η ′ = ?DA
E ′ · η2 ′ = ?E
{DA ′} ∪ set CAs ′ ⊆ Q of state (Liminf state Sts)
using ord resolve rename lifting [OF sel stable, of Q of state (Liminf state Sts) CAs ?DA]
σ p selection axioms DA CAs in ground Liminf by metis
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from this(8 ) have ∃ j . enat j < llength Sts ∧ (set CAs ′ ∪ {DA ′} ⊆ ?Qs j )
unfolding Liminf llist def
using subseteq Liminf state eventually always[of {DA ′} ∪ set CAs ′] by auto

then obtain j where
j p: is least (λj . enat j < llength Sts ∧ set CAs ′ ∪ {DA ′} ⊆ ?Qs j ) j
using least exists[of λj . enat j < llength Sts ∧ set CAs ′ ∪ {DA ′} ⊆ ?Qs j ] by force

then have j p ′: enat j < llength Sts set CAs ′ ∪ {DA ′} ⊆ ?Qs j
unfolding is least def by auto

then have jn0 : j 6= 0
using empty Q0 by (metis bot eq sup iff gr implies not zero insert not empty llength lnull

lnth 0 conv lhd sup.orderE)
then have j adds CAs ′: ¬ set CAs ′ ∪ {DA ′} ⊆ ?Qs (j − 1 ) set CAs ′ ∪ {DA ′} ⊆ ?Qs j

using j p unfolding is least def
apply (metis (no types) One nat def Suc diff Suc Suc ile eq diff diff cancel diff zero

less imp le less one neq0 conv zero less diff )
using j p ′(2 ) by blast

have lnth Sts (j − 1 )  lnth Sts j
using j p ′(1 ) jn0 deriv chain lnth rel [of j − 1 ] by force

then obtain C ′ where C ′ p:
?Ns (j − 1 ) = {}
?Ps (j − 1 ) = ?Ps j ∪ {C ′}
?Qs j = ?Qs (j − 1 ) ∪ {C ′}
?Ns j = concls of (ord FO resolution.inferences between (?Qs (j − 1 )) C ′)
C ′ ∈ set CAs ′ ∪ {DA ′}
C ′ /∈ ?Qs (j − 1 )
using j adds CAs ′ by (induction rule: RP .cases) auto

then have ihih: set CAs ′ ∪ {DA ′} − {C ′} ⊆ ?Qs (j − 1 )
using j adds CAs ′ by auto

have E ′ ∈ ?Ns j
proof −

have E ′ ∈ concls of (ord FO resolution.inferences between (Q of state (lnth Sts (j − 1 ))) C ′)
unfolding infer from def ord FO Γ def unfolding inference system.inferences between def
apply (rule tac x = Infer (mset CAs ′) DA ′ E ′ in image eqI )
subgoal by auto
subgoal

using s p(4 )
unfolding infer from def
apply (rule ord resolve rename.cases)
using s p(4 )
using C ′ p(3 ) C ′ p(5 ) j p ′(2 ) apply force
done

done
then show ?thesis

using C ′ p(4 ) by auto
qed
then have E ′ ∈ clss of state (lnth Sts j )

using j p ′ unfolding clss of state def by auto
then have ?E ∈ grounding of state (lnth Sts j )

using s p(7 ) s p(3 ) unfolding grounding of clss def grounding of cls def by force
then have γ ∈ sr .Ri (grounding of state (lnth Sts j ))

using sr .Ri effective γ p by auto
then have γ ∈ sr ext Ri (?N j )

unfolding sr ext Ri def by auto
then have γ ∈ sr ext Ri (Sup llist (lmap grounding of state Sts))

using j p ′ contra subsetD llength lmap lnth lmap lnth subset Sup llist sr ext .Ri mono by metis
then have γ ∈ sr ext Ri (Liminf llist (lmap grounding of state Sts))

using sr ext .Ri Sup subset Ri Liminf [of Ns] derivns ns by blast
}
then have sr ext .saturated upto (Liminf llist (lmap grounding of state Sts))

unfolding sr ext .saturated upto def sr ext .inferences from def infer from def sr ext Ri def
by auto

then show ?thesis
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using gd ord Γ ngd ord Γ sr .redundancy criterion axioms
redundancy criterion standard extension saturated upto iff [of gr .ord Γ]

unfolding sr ext Ri def by auto
qed

corollary RP complete if fair :
assumes

fair : fair state seq Sts and
unsat : ¬ satisfiable (grounding of state (lhd Sts))

shows {#} ∈ Q of state (Liminf state Sts)
proof −

have ¬ satisfiable (Liminf llist (lmap grounding of state Sts))
unfolding sr ext .sat deriv Liminf iff [OF resolution prover ground derivation[OF deriv ]]
by (rule unsat [folded lhd lmap Sts[of grounding of state]])

moreover have sr .saturated upto (Liminf llist (lmap grounding of state Sts))
by (rule RP saturated if fair [OF fair , simplified ])

ultimately have {#} ∈ Liminf llist (lmap grounding of state Sts)
using sr .saturated upto complete if by auto

then show ?thesis
using empty clause in Q of Liminf state fair by auto

qed

end

end

end
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