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Abstract 

In vitro expansion of large numbers of highly potent tumor-reactive T cells appears a prerequisite for 

effective adoptive cell therapy (ACT) with autologous tumor-infiltrating lymphocytes (TIL) as shown 

in metastatic melanoma (MM). We therefore sought to determine whether renal cell carcinomas (RCC) 

are infiltrated with tumor-reactive T cells that could be efficiently employed for adoptive transfer 

immunotherapy. TILs and autologous tumor cell lines (TCLs) were successfully generated from 22 

(92%) and 17 (77%) of 24 consecutive primary RCC specimens and compared to those generated from 

MM. Immune recognition of autologous TCLs or fresh tumor digests (FTD) was observed in CD8
+
 

TILs from 82% of patients (18/22). Cytotoxicity assays confirmed the tumoricidal capacity of RCC-

TILs. The overall expansion capacity of RCC-TILs was similar to MM-TILs. However, the magnitude, 

poly-functionality, and ability to expand in classical expansion protocols of CD8
+
 T-cell responses was 

lower compared to MM-TILs. The RCC-TILs that did react to the tumor were functional and antigen 

presentation and processing of RCC-tumors was similar to MM-TILs. Direct recognition of tumors 

with cytokine-induced overexpression of human leukocyte antigen (HLA) class II was observed from 

CD4
+
 T cells (6/12; 50%). Thus, TILs from primary RCC specimens could be isolated, expanded, and 

could recognize tumors. However, immune responses of expanded CD8
+
 RCC-TILs were typically 
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weaker than MM-TILs and displayed a mono-/oligo- functional pattern. The ability to select, enrich, 

and expand tumor-reactive poly-functional T cells may be critical in developing effective ACT with 

TILs for RCC. 

 

 

 

 

Main Text  

Introduction  

Adoptive cell therapy (ACT) based on the infusion of expanded autologous tumor-infiltrating 

lymphocytes (TIL) has demonstrated durable complete tumor regressions in metastatic melanoma 

(MM) (1–7). TIL therapy relies on the infusion of potent TILs. In recent years, optimal phenotype, 

differentiation and homing characteristics of TILs to achieve durable cancer regression were described 

(8). Nevertheless, the ability to recognize autologous tumor cells through their T-cell receptor (TCR) 

represents the essential characteristic of effective TILs. 

Whereas tumor-reactive TILs can be generated from the majority of MM-specimens (9,10), the success 

rate appears lower for other cancers (11–15). Results from two recent studies (11,13) indicated that the 

tumor microenvironment (TME) of renal cell carcinoma (RCC) harbors tumor-reactive T cells, but how 

the magnitude and functional quality of these immune responses compare to other tumor types is 

unknown. Previous clinical trials investigating TIL therapy for RCC have shown modest success (16), 

however none of these early trials used current TIL-expansion methods and preparative chemotherapy 
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regimens, opening the possibility to revisit TIL therapy for RCC. Consistent durable objective 

responses achieved in small numbers of patients treated with cytokine-based immunotherapy (17) or 

checkpoint inhibitors (18) demonstrates that immunological control of RCC can be feasible.  

These observations prompted us (i) to characterize the immune responses of TILs generated from 

primary RCC tumors (RCC) from 24 patients, and (ii) to compare RCC-TILs to MM-TILs. T-cell 

responses were detected in the majority of RCC analyzed. Extensive characterization of TILs revealed 

a unique functional pattern, with weaker and mostly mono- or oligo-functional CD8
+
 T-cell responses 

compared to MM. These findings have relevance for the development of ACT for patients with RCC. 

 

 

Materials and methods 

Patients and samples 

24 patients with histologically confirmed RCC, undergoing radical or partial nephrectomy at the 

Department of Urology, Herlev Hospital in the period from October 2013 to November 2015, were 

enrolled in the study. The study was approved by the Ethics Committee of the Capital region of 

Denmark and the Danish Data Protection Agency. All patients signed a written consent form. Tumor 

specimens of at least 1 cm
3
 were obtained from different sites of the primary RCC tumor in order to 

account for intra-tumor heterogeneity (19). Blood samples were collected prior to surgery; peripheral 

blood mononuclear cells (PBMCs) were isolated with standard methods and cryopreserved at -140 

degrees until use. 
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Treatment with autologous TILs resulted in high rates of tumor regression in MM (1). To compare the 

phenotype and functionality of RCC-TILs to a reference tumor histology, we used TILs and matched 

autologous tumor cell lines (TCL) derived from tumor specimens of patients with American Joint 

Committee on Cancer (AJCC) stage IV melanoma enrolled in one of the following clinical trials 

(ClinicalTrials.gov Identifier: NCT00937625 (20); NCT02278887, recruiting; NCT02379195, 

recruiting). TILs and TCLs from MM were established and analyzed in parallel to RCC specimens. 

Due to the limited availability of TILs from MM (most were typically used for clinical application), 

most MM-TIL samples could not be used for all comparison analyses with RCC-TILs. Rather, different 

individual MM-TILs were randomly selected for single comparison analyses. All analyses were 

performed once for each patient. One additional cohort of RCC-TIL (n = 6) obtained from primary 

clear cell RCC tumors from the University of Halle, Germany was shipped to Herlev Hospital and 

cultured as described below and used for additional phenotypic characterization analyses (expression of 

PD-1, LAG-3, TIM-3 and CD57), as described below. 

 

 

Generation of Young-TIL cultures 

Freshly resected tumor specimens were immediately transported to the laboratory in RPMI 1640 

(Thermo Fisher Scientific, Waltham, MA, USA)-based transport media, and cut into 1-3 mm
3
 

fragments that were used for generation of TIL, fresh tumor digests (FTD) or TCL. 48 tumor fragments 

were used for TIL generation and placed in individual wells of 24 well-culture plates (Nunc, Roskilde, 

Denmark) with 2 ml complete medium (CM) consisting of 90% RPMI 1640 (Thermo Fisher), 10% heat 

inactivated AB Human serum (HS; Sigma-Aldrich), 6000 IU/ml IL-2 (Proleukin, Novartis, Basel, 
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Switzerland), penicillin/streptomycin and fungizone (Bristol-Myers Squibb, Virum, Denmark) as 

previously described (21). The plates were placed in a humidified 37°C incubator with 5% CO2. Half 

of the medium was replaced at day 5 and thereafter three times per week. TIL cultures were expanded 

in vitro directly from the tumor fragments according to the “minimally expanded” or “Young-TIL 

method”, by pooling TIL micro-cultures derived from separate tumor fragments, as described 

previously (21). Young-TIL (Y-TIL) cultures were considered established if one pooled bulk TIL 

culture of >100 x 10
6
 cells was obtained within 60 days from surgery. 

 

Rapid expansion protocol (REP) 

To further test the expansion capacity of Y-TILs for clinical application, massive expansion in a 

standard 14 days rapid expansion protocol (REP) was performed on cryopreserved or freshly generated 

Y-TILs. REPs were performed in duplicates and in smaller scale than for patient treatment (test-REPs), 

but otherwise exactly as for clinical application, as previously described (21). Y-TILs were thawed and 

rested in CM for 2 days prior to initiating the REP. 1 x 10
5
 Y-TILs (in duplicates) were expanded in a 

small-scale REP using 30 ng/mL anti-CD3 antibodies (OKT3, from Janssen-Cilag or Miltenyi Biotec), 

irradiated (40 Gy) allogeneic feeder cells (peripheral blood mononuclear cells (PBMC) from at least 

three different healthy donors) in a ratio of 1:200 in medium containing 6000 IU/ml IL-2. The cells 

were incubated upright in 25 cm
2
 tissue culture flasks at 37°C in 5% CO2 (21). Cell concentration was 

determined on day 7, 9, 12 and 14 and cells were split into larger flasks and additional media added as 

needed to maintain cell densities around 1-2 x 10
6
 cells pr. ml. The cells were harvested on day 14 and 

fold expansion calculated. Y-TILs expanded in the REP are referred to as REP-TIL in this manuscript.  
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REPs in very small scale (Mini-REPs) with alternative cytokine combinations were performed in single 

wells in a 96 well plates. Briefly, 5 x 10
3
 Y-TILs (in duplicates) were rapidly expanded as described 

above, using IL-2 alone (6000 IU/ml) or different combinations of IL-2 (6000 IU/ml), IL-7 (100 

ng/ml), IL-15 (100 ng/ml) and IL-21 (100 ng/ml). Cytokines were added on day 0 and every time 

medium was replaced (on day 5 and thereafter approximately every other day). RCC-Y-TILs used were 

elected for their high reactivity but low or absent reactivity after classical REP. The six RCC-Y-TILs 

used were RCC4, RCC6, RCC12, RCC19, RCC23 and RCC26. One initial screening of seven different 

cytokine combinations was made in three RCC-Y-TILs. The following cytokine cocktails were used: 

IL-2; IL-15+IL-2; IL-7+IL-15+IL-21; IL-2+IL-21; IL-2+IL-7+IL-21; IL-2+IL-7; IL-15+IL-21. We 

next performed mini-REPs in three additional patients with only the three cytokine combinations where 

we detected responses after REP in the first screening: IL-2 alone, IL-7+IL-15+IL-21 and IL-15+IL-21.  

 

Autologous fresh tumor digests (FTDs) and tumor cell lines (TCLs) 

Single-cell suspensions were obtained from tumor fragments after overnight digestion. Briefly, after 

overnight incubation with enzyme cocktails (containing 1 mg/ml collagenase type IV, Sigma-Aldrich, 

and 0.0125 mg/ml dornase alpha, Pulmozyme, Roche), the obtained single-cell suspension were passed 

through 70-m strainers and immediately cryopreserved. The cellular composition of the resulting 

single-cell suspensions, which contained uncultured tumor cells and was named fresh tumor digests 

(FTDs), was not further analyzed. For analysis of TIL reactivity against FTDs, the single-cell 

suspensions were thawed and used immediately after a trypan blue viability count. 
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Autologous short-term (<10 in vitro passages) cultured RCC and MM TCLs were generated from fresh 

tumor fragments or from cells recovered from the transport media, as previously described (10). 

Briefly, TCLs were established using standard splitting methods of cancer-like growing adherent cells 

in R10 media (containing RPMI 1640 with 10% fetal bovine serum (FBS) supplemented with 500 

ng/ml Solu-Cortef). All autologous TCLs were established at our laboratory, and initially identified 

from their morphology and in vitro growth patterns. Additional validation of RCC-TCLs was carried 

out following cytospin centrifugation of freshly detached RCC cell lines. A combination of 

morphologic evaluation (according to standard cytologic criteria of malignancy (22) and 

immunohistochemistry (IHC) staining of Formalin-Fixed, Paraffin-Embedded (FFPE) tissue for various 

RCC markers was used. Supplementary Fig. S1 shows a representative image from a representative 

patient (RCC12). In a few cases, where the morphology or growth pattern of MM-TCLs was not typical 

of adherent tumor cell lines, the melanocyte-lineage was confirmed with PCR for melanocyte antigens, 

as previously described (10). TCLs were not otherwise authenticated or tested for Mycoplasma 

infection. The in vitro growth of RCC-TCLs was not always sufficient to carry out all experiments 

described below, but in all cases these experiments were conducted with at least 12 out of 17 RCC-

TCLs generated in this study.  

 

Flow Cytometry: antibodies and stainings 

For phenotype analysis of in vitro expanded TILs, the cells were stained at 4°C for 30 min in phosphate 

buffered saline (PBS, Lonza, Basel, Switzerland), washed and re-suspended in PBS and immediately 

analyzed. The following antibodies were used: CD3-AmCyan, CD4-PerCP, CD45RO-PE, CD45RA-
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APC, CD57-FITC, CD27-PE, CD62L-APCCy7, CD56-PeCy7, CD56-PE (all from BD Bioscience, 

Brøndby, Denmark), CD8-PB (Dako, Glostrup, Denmark), CCR7-FITC (R&D Systems, Minneapolis, 

MN, USA), CD28-APC (Beckman Coulter, Brea, CA, USA). 7-aminoactinomycin D (7-AAD, BD) 

was added as control in a separate tube, to evaluate the amount of dead cells. At least 50 000 TILs were 

acquired with a FACS Canto II (BD). 

For functional characterization and phenotype analysis of tumor-reactive cells, the following antibodies 

were used: CD3-FITC, CD4-PerCP or CD4-Qdot705 (Thermo Fisher), CD8-Qdot605 (Thermo Fisher), 

CD107a-Brilliant Violet 421, (tumor necrosis factor) TNF-APC, (interferon-gamma) IFN-PeCy7, PD-

1-PE (eBiosciences, San Diego, CA, USA), LAG-3-FITC (Thermo Fisher), TIM-3-Qdot 655 and 

CD57-PECF594. The Live/Dead Fixable Near-IR Dead Cell Stain (Thermo Fisher) was used to 

discriminate dead cells. Where not indicated, antibodies were obtained from BD Biosciences (Brøndby, 

Denmark). 

 

Functional characterization of TILs 

In vitro expanded TILs and/or PBMCs were tested for reactivity against autologous short-term cultured 

TCLs (TILs and PBMCs) or autologous FTDs (only TILs) in co-culture assays as previously described 

(23,24). In vitro expanded TILs and/or PBMCs were tested for reactivity against autologous short-term 

cultured TCLs (TILs and PBMCs) or autologous FTDs (only TILs) in co-culture assays, as previously 

described (10,20). Briefly, TILs and PBMCs were thawed and rested overnight in RPMI 1640 + 10% 

HS, thereafter washed twice and co-cultured for 5 hours at 37°C with 5% CO
2
 in the air with 

autologous FTDs (thawed and washed twice) or autologous short-term cultured TCL, pre-treated with 
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100 IU/ml (IFNγ) (Imukin, Boehringer-Ingelheim) for 72 hours or left untreated at an effector/target 

(E/T) ratio of 3:1 to 6:1. Anti-CD107a antibodies and GolgiPlug (BD, dilution of 1:1000) were added 

at the beginning of the incubation. Parallel cultures without cancer cells served as unstimulated control. 

Positive control wells were set up with the addition of Staphylococcus Enterotoxin B (SEB 5g/ml, 

Sigma-Aldrich, Brøndby, Denmark) in selected experiments. After five hours, the cells were washed 

twice with PBS and stained with antibodies directed to surface markers and live/dead reagents. Cells 

were washed one more time, fixed overnight, permeabilized (using the Foxp3/Transcription Factor 

Staining Buffer set, eBiosciences) and subsequently stained with antibodies for intracellular cytokines.  

In selected experiments, a functional analysis was combined with phenotype markers to assess the 

differentiation and dysfunctional state of tumor-reactive TILs. Since IFN production was not observed 

frequently in RCC-TILs (see results), and we generally observed quite high TNF production in 

unstimulated samples (TILs without tumor), in these experiments we gated on CD8
+
CD107a

+
 tumor-

reactive T cells to analyze the phenotype of tumor-reactive TILs. On the basis of these observations, 

CD107a upregulation might be indeed a more reliable marker for T cell reactivity to RCC especially in 

TIL populations with small responses. At least 50 000 (basic functional characterization) or 500 000 

live TILs (phenotype of tumor-reactive TILs) were acquired respectively with a BD FACS Canto II or 

a BD LSRII. 

Tumor reactivity was evaluated by assessing the amount of live CD4
+
 or CD8

+
 T cells expressing at 

least one of the following T-cell functions: TNF, IFN or CD107a (LAMP-1). These three functions 

were chosen on the basis of previous data with MM-reactive TILs, which expressed at least one of 

these three functions in >90% of cases (10). A specific antitumor response was defined as the detection 

of responses larger than twice the background (i.e. unstimulated samples) with a minimum number of 
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50 positive events and at least a difference of 0.5% from the background. The frequency of tumor-

reactive cells in stimulated samples was subtracted from unstimulated samples. 0.5% was the limit of 

significance.  

 

Cytotoxicity assay 

The cytotoxic activity of TILs was tested with a standard chromium 51 (
51

Cr) release assay, as 

described elsewhere (25).  In brief, 5 x 10
3
 
51

Cr-labelled autologous tumor cells (TCL) in duplicates 

were co-cultured with TILs at 37°C for 4 hours (maximum E/T ratio of 90:1 and titrated) in RPMI 

1640 + 10% HS. Thereafter 
51

Cr-release was measured and percentage tumor lysis was calculated using 

the following formula: ((experimental release – spontaneous release)/(maximum release - spontaneous 

release)) x 100. In selected assays, lysis was blocked using anti-HLA class I (W6/32, BioLegend, San 

Diego, CA, USA) antibodies, 20 µg/ml.  

 

Enrichment of tumor-reactive T cells  

Y-TILs were thawed and rested for 48 hours in RPMI 1640 + 10% HS. For autologous tumor cell 

stimulation TILs were co-cultured for 5 hours with autologous TCLs at an E/T ratio of 3:1. Anti-

CD107a antibodies (conjugated with PE or BV421, two different clones, obtained respectively from 

Diaclone and from BD) were added before incubation. After 5 hours of incubation cells were washed 

twice with PBS and stained with CD3 and CD8 antibodies and sorted by FACS using the BD FACS 

aria cell sorter. Sorted CD8
+
CD107a

+
 cells were further expanded 10 + 10 days in two sequential 
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mini/test-REPs (adjusted for the sorted cell numbers) and antitumor-responses tested in co-culture 

assay with autologous TCLs (as described above).  

 

RNA extraction and PCR analysis of HLA class I APM components  

Eleven RCC-TCLs and sixteen MM-TCLs were used for these analyses. All the RCC and MM-TCLs 

were generated and validated in our lab as described above,except for two of the RCC-TCLs included 

in these analyses (Caki-1 and Caki-2) which were obtained directly from American Type Culture 

Collection (ATCC) and passaged for less than 10 times. Total cellular RNA from 1-5 10
5
 cells/sample 

was extracted and subjected to qPCR analysis as recently described (26). The specific primer sequences 

and PCR conditions are given in Supplementary Table S1. Briefly, in vitro transcription was performed 

with 500 ng RNA/sample using the RevertAid H minus first strand cDNA synthesis kit according to 

the supplier’s suggestion (Fermentas, St. Ingbert, Germany) prior to PCR employing respective primers 

(Supplementary Table S1) and the Platinum SYBR Green qPCR SuperMix-UDG (Invitrogen, 

Karlsruhe, Germany) for amplification using 40 cycles, 90
°
C, 15 sec, 58-60

°
C annealing temperature, 

30 sec. Relative mRNA expression levels were calculated with the ∆ct method and normalized to 

actin.     

  

Analysis of HLA and PD-L1 expression on tumor cells 

Semi-quantitative expression of HLA class I and II antigens on TCLs from RCC and MM were 

assessed by staining the freshly detached cancer cells with anti HLA-ABC or HLA-DP, DR, DQ 
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antibodies or relevant isotype controls. Autologous TCLs were pretreated with 100 IU/ml IFN for 72 

hours or were left untreated. The tumor cells were detached, divided in FACS tubes, washed, stained 

with surface antibodies (only one antibody for each FACS tube) and 2l 7-AAD was added to each 

sample 5 minutes before acquisition. To more easily compare the relative marker expression of 

different TCLs, voltage parameters were adjusted for each isotype-stained TCL in order to achieve 

similar mean fluorescence intensities (MFI) in all samples. TCLs were identified as positive for HLA 

class II when the MFI of the studied antibody-sample exceeded at least three times the isotype control 

stained and positive for PD-L1 when the MFI of the studied antibody-sample exceeded at least twice 

the isotype control stained.  

 

Flow cytometry data processing and statistical analysis 

For functional and phenotypic characterization analyses of tumor-reactive cells, data were initially 

analyzed in FlowJo 9.7.1 with Boolean combination gates. For functional characterization boolean 

combination gates were made for the 3 functional markers (CD107a, IFNγ and TNF), generating seven 

gates each showing the percentage of CD8
+
 cells expressing a unique combination of the three markers. 

For phenotypic characterization of tumor-reactive TILs, live CD8
+
 T cells were gated on CD107a

+
, and 

boolean combination gates were made for the four surface markers (PD-1, LAG-3, TIM-3 and CD57) 

resulting in 16 individual gates - each showing the percentage of CD8
+
CD107a

+
 cells expressing a 

unique combination of the 4 markers. TILs from the additional RCC cohort were analyzed for 

expression of the four surface makers in the exact same way, but not gated on CD107a
+
. Data were 

exported into Pestle 1.7 (courtesy of Dr. Roederer, Immunotechnology Section, VRC/NIAID/NIH, 
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Bethesda, MD, USA), formatted and the background was subtracted. Analysis and presentation of 

distributions was performed using Simplified Presentation of Incredibly Complex Evaluations (SPICE) 

5.35, downloaded from http://exon.niaid.nih.gov (27). In SPICE, thresholds were set at 0.1 for 

functional characterization analysis and 0.01 for phenotypic analysis of tumor-reactive cells. 

Comparison of bar charts and pie charts was performed using Wilcoxon signed rank-test and a partial 

permutation test respectively, as previously described (27). Other analyses were carried out with Excel 

2010 or Graphpad Prism 5. The magnitude of tumor responses and HLA class I antigen expression in 

RCC and MM were compared with two-tailed Mann-Whitney U test. The frequency of patients with T-

cell responses in RCC and MM was compared with Fisher’s exact test. IFNtreated or untreated 

samples and mini-REPs with alternative cytokines in RCC were compared using paired Wilcoxon 

signed rank nonparametric tests. In all analyses a two-sided P-value of < 0.05 was considered 

statistically significant and all P values were presented without adjustment for multiple comparisons.  

 

Results  

Expansion and phenotype of TILs 

Y-TIL cultures were established from 22/24 (92%) primary RCC specimens. Patient and tumor 

characteristics are summarized in Supplementary Table S2. Median days in culture of Y-TILs were 28 

days (range 14-60) and median number of TILs recovered was 177x10
6
 (range 100-336x10

6
). 

Establishment of Y-TILs in MM was successful in all cases (17/17 samples), generally faster than RCC 

(median days in culture 20 days, range 13-60, P = 0.047 vs RCC-Y-TILs) and with similar amount of 

cells recovered (median 190x10
6
, range 35-352x10

6
, P = 0.52 vs RCC-Y-TILs). 
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The phenotypic characteristics of Y-TILs from both RCC and MM are shown in Fig. 1. Y-TILs 

consisted mainly of CD3
+
 lymphocytes (87.7% vs 89.4%; P = 0.79), with fewer CD3

-
CD56

+
 NK cells 

(9.6% vs 8.2%; P = 0.9). RCC-Y-TILs contained less CD8
+
 T cells compared to MM-Y-TILs (25.2% 

vs 48.5%; P = 0.007), and showed a higher CD4/CD8 ratio in RCC (2.1 vs 0.8; P = 0.02, Fig. 1A). A 

detailed analysis of the relative distribution of lymphocyte subpopulations in individual RCC-Y-TILs is 

shown in Supplementary Table S3, where the extent of variation between individual patients can be 

appreciated. CD4
+
 and CD8

+
 Y-TILs from both from RCC and MM consisted almost exclusively of 

effector memory cells (TEM: CD45RO
+
, CD45RA

-
, CCR7

-
), with similar median percentages of CD8

+ 

TEM (95.5% vs 95%, Fig. 1B) but higher percentage of CD4
+
 TEM in RCC (98% vs 95%, P = 0.047) 

(Fig. 1C). The expression of CD28, CD56 and CD57 on CD8
+
 Y-TILs appeared similar in both tumor 

types with broad variations among patients (Fig. 1B). However, CD8
+
 and CD4

+
 MM-Y-TILs 

expressed more CD27 (CD8
+
 and CD4

+
, P < 0.01) and CD62L (CD8

+
, P = 0.01; CD4

+
, P < 0.01) (Figs. 

1B, 1C). CD4
+
 MM-Y-TIL expressed more CD57 (P = 0.01) (Fig. 1C).  

All 22 RCC-Y-TILs were further expanded in small-scale REPs. TILs expanded a median of 1693 fold 

(range 530-4395, Supplementary Table S2), which was similar to MM-TILs (Fig. 1D, only 14 RCC 

were tested in parallel with 11 MM). . Retrospectively, we found that randomly selected Y-TILs used 

for comparison of REP-expansions were established faster in MM (median days in culture 17, range 

13-37) compared to RCC (median days in culture 28, range 18-60; P = 0.018).  

As expected, NK cells did not expand during the REP and disappeared from all REP cultures (Fig. 1A 

and Supplementary Table S2). In most cases, the CD4/CD8 ratio in RCC increased after REP, from 

median 2.1 (range 0.3-12.7) in Y-TILs to median 3.6 (range 0.5-56.1; P = 0.02).  
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In conclusion, these observations suggested that some fundamental characteristics of TILs are similar 

between RCC- and MM-TILs (percentage of T cells and of TEM, expansion, large variation between 

individual patients). However, other characteristics (CD4/CD8 ratio, expression of CD27 and CD62L 

on CD8
+
 and CD4

+
 TILs, and expression of CD57 on CD4

+
 TILs) appeared different – however, since 

the time in culture of MM-Y-TILs was shorter than RCC-Y-TILs (20 days vs 28 days, see above), we 

cannot exclude that these differences are due to changes induced by prolonged in vitro culturing. 

 

Tumor-reactive CD8
+
 TIL  

We next investigated the ability of TILs to recognize autologous tumor antigens. Short-term cultured 

autologous TCLs, serving as a source of naturally presented autologous tumor antigens, were generated 

from 17/22 (77%) RCCs. Single-cell suspensions obtained from fresh tumor digests (FTD) were 

available for all RCCs.  

Immune recognition of RCC-TCLs by CD8
+
 Y-TILs was observed in 12/17 (71%) patients and by 

CD8
+
 REP-TILs in 7/17 (35%) patients (Fig. 2). In MM, CD8

+
 Y-TIL responses to autologous TCLs 

were detected in all but one of the 14 Y-TILs analyzed (93%, P = 0.18 vs RCC). The magnitude of 

CD8
+
 T-cell responses was weaker in RCC (in TILs with responses, 2.2% vs 10.8% in MM; P = 

0.0001), as shown in Fig. 2A. CD8
+
 T-cell responses against autologous FTDs were detected in 15/22 

(68%) RCC-Y-TILs and 13/22 (59%) REP-TIL cultures (Figs. 2C, 2D). Although not identical, both 

the frequency and magnitude of CD8
+
 responses against FTDs reflected those observed against short-

term cultured TCLs. Overall, CD8
+
 T-cell responses against autologous tumor antigens (either 

presented in TCLs or in FTDs) were detected in 17/22 (77%) RCC-Y-TILs and 14/22 (64%) RCC-
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REP-TILs. One patient (RCC10) had a very low response detected in REP-TILs only, thus the total 

number of patients with tumor-reactive CD8
+
 TILs was 18/22 (82%; Figs. 2C, 2D). Cytokine 

production (TNF and IFN) and CD107a mobilization in CD8
+
 RCC-Y-TILs after co-culture with 

autologous TCLs are shown in two representative patients in Figs. 2E, 2F. Supplementary Table S4 

shows a summary of tumor-reactivity and HLA expression on RCC TCLs in individual patients. We 

found that TILs that contained tumor-reactive CD8
+
 T cells had spent shorter time in culture compared 

to TILs without tumor-reactive CD8
+
 T cells (P = 0.02). This may be due to heavier T-cell infiltration, 

or alternatively due to a higher proliferation capacity of TILs from patient samples with tumor-

reactivity.  

We and others have reported detectable but low magnitude T-cell responses directed to autologous MM 

antigens in the PBMCs of patients before treatment with immunotherapy (20,28). By screening the 

peripheral blood of six patients with RCC in co-cultures with TCLs (PBMCs from five patients with 

detectable tumor-reactivity in Y-TILs were used), we did not detect responses over the limit of 

detection used in this study (0.5% of either CD4
+
 or CD8

+
 T cells, as shown in Supplementary Fig. S2). 

Thus, tumor-reactive CD8
+
 T cells were enriched in the TME.  

 

Changes in TIL reactivity during massive expansion 

Effective TIL therapy relies on in vitro generation of potent tumor-reactive TILs in numbers sufficient 

for clinical application. This prompted us to determine whether large quantities of tumor-reactive TIL 

could be expanded massively with current protocols used for TIL-expansion (REP). In both TILs from 

RCC and MM, we observed an overall reduced reactivity following REP compared to minimally 
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expanded TILs (Y-TILs) (Supplementary Fig. S3A and Fig. 3C, D). In 5/12 RCC-TILs reactivity was 

lost whereas in 11 MM-TILs tumor-reactivity was never lost completely (Supplementary Fig. S3B). 

The proportion of tumor-reactive CD8
+
 TILs following REP appeared to drop to a larger extent in 

RCC-TILs compared to MM-TILs, as seen from Supplementary Fig. S3B. Nonetheless, these analyses 

could be biased by the low frequencies of tumor-reactive cells in RCC-Y-TILs, which in many cases 

are close to the detection limit – thus a small drop might have resulted in undetectable responses. We 

conducted additional attempts to isolate CD8
+
 tumor-reactive T cells from RCC- and MM-Y-TILs 

(TILs from two patients for each diagnosis) by electronic sorting of tumor-reactive cells (CD107a
+
) and 

REP the sorted cells. Similar approaches were previously conducted with success in MM (29). Despite 

repeated attempts, we could not generate TILs enriched with tumor-reactive CD8
+
 T cells from RCC-

TILs, but the same approach was successful with MM-TILs in 2/2 cases (Supplementary Fig. S4). 

Since previous studies have shown that the use of cytokines other than IL2 during the REP, such as 

IL21, IL15 and IL7, can support the expansion of exhausted T cells (29,30), we tested whether 

combinations of IL21, IL15 and IL7 could support expansion of tumor-reactive CD8
+
 TILs in selected 

RCC-Y-TILs. We observed no difference in the magnitude of tumor-reactivity (Supplementary Fig. S5) 

after mini-REPs with alternative cytokine combinations vs classical REP.  

To verify the cytotoxic potential of TILs, samples from five representative RCCs with detectable CD8
+
 

T-cell responses against autologous TCLs were tested in cytotoxicity assays. Cytotoxicity was detected 

but was typically low and further reduced after REP. In selected experiments, HLA class I blockade 

was tested and almost abrogated cytotoxicity (Supplementary Fig. S6). 
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Polyfunctional characterization of tumor-reactive CD8
+
 T cells 

Polyfunctionality is a desirable feature of potent CD8
+
 T cells, well known in infections (31), but only 

recently described in cancer immunity (10,32). This feature is known to correlate with antigen-

sensitivity and TCR affinity for cognate antigen (33,34), antigen concentration (35) and, partially, 

differentiation status (36). We recently showed that polyfunctional T cells dominate the periphery after 

successful TIL therapy for cancer (37). Thus, we characterized the functional patterns of tumor-reactive 

CD8
+
 T cells. Tumor-reactive CD8

+
 RCC-Y-TILs were less poly-functional compared to 

corresponding MM-Y-TILs, with the majority (>70%) of tumor-reactive CD8
+ 

RCC-Y-TIL generating 

only one T-cell function (monofunctional CD8
+ 

T cells) upon recognition of naturally presented 

autologous tumor antigens, in contrast to around 50% in MM (P = 0.02; Fig. 3A). The pie charts in Fig. 

3B illustrate the relative distribution of TNF, IFN and CD107a for RCC- and MM-reactive CD8
+
 Y-

TILs (P = 0.01). Only few RCC tumor-reactive CD8
+
 Y-TILs produced IFN compared to MM (less 

than 15% vs almost 50%, P = 0.002; Fig. 3C). In contrast, more than 60% of RCC tumor-reactive 

CD8
+
 T cells mobilized CD107a, and more than 40% mobilized CD107a as the only function, 

compared to less than 20% of tumor-reactive cells in MM (P = 0.04; Fig. 3D). TNF production was 

similar in RCC and MM (Fig. 3B), however we also observed high TNF production in unstimulated 

samples (TILs without tumor), indicating that CD107a mobilization might be a more reliable marker 

for T-cell reactivity in populations with small responses in RCC. TNF production in representative 

unstimulated samples are shown in Figs. 2E, 3E and 3F. We therefore focused on the CD8
+
CD107a

+
 

tumor-reactive T cells and as indicated above, this population appeared less polyfunctional in RCC 

compared to in MM (P = 0.07; Supplementary Figs. S7A, S7B). 
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Dysfunctional profile of tumor-reactive CD8
+
 TILs 

Polyfunctionality and proliferative potential can be dependent on the differentiation status of T cells 

(36). Due to quite high TNF production in unstimulated samples (TILs without tumor) and because 

CD8
+
CD107a

+
 T cells appeared less polyfunctional in RCC compared to MM (P = 0.07; 

Supplementary Fig. S7A, S7B), we analyzed the differentiation/dysfunctional status of this tumor-

reactive T-cell population. To this end we analyzed the expression of PD-1, LAG-3, TIM-3 and CD57 

on tumor-reactive CD8
+
 Y-TILs from a smaller cohort of RCC and MM (eight patients in total). The 

relative distribution and combinatorial expression of these markers was similar in RCC and MM 

(Supplementary Fig. S8). Furthermore, we analyzed the expression of PD-1, LAG-3, TIM-3 and CD57 

on unselected CD8
+
 REP-TILs from an additional cohort of RCC and MM specimens as described in 

materials and methods (10 patients in total) and found similar results with no difference in the relative 

distribution of these markers in RCC and MM (Supplementary Fig. S9). 

 

HLA class I expression and immune recognition of autologous TCLs  

Polyfunctionality can be influenced by antigen presentation (35), and altered expression of the HLA 

class I antigen processing and presenting machinery (APM) is an immune escape mechanism in cancer 

(38). We have previously shown that autologous tumor recognition of MM TILs can be increased after 

pretreatment with low-dose IFN, which induce expression of the whole HLA class I APM (9). 

Therefore, we asked whether HLA class I down-regulation could explain the lower magnitude and 

unique functional profile of CD8
+
 T-cell responses observed in RCC compared to MM. We analyzed 

12 RCC and 14 MM-TCLs and found HLA class I to be constitutively expressed in all samples, with a 
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median MFI of HLA class I surface expression in RCC of 15.3 (range 8.6-46-1) versus 12.5 (range 5.4-

25.5) in MM (P = 0.25; Supplementary Fig. S10). This was associated with a constitutive expression 

with major APM components. Although the expression of TAP2, tapasin, 2-microglobulin (2m) and 

the HLA class I heavy chain (HC) was comparable, the TAP1 and LMP2 mRNA levels were expressed 

at higher level in RCC compared to MM (Supplementary Fig. S11). Pre-treatment of TCLs with IFN 

increased HLA class I expression in both RCC and MM with a median MFI in RCC of 35.7 (range 2.4-

80.3) vs 28.6 (range 7.2-48.5) in MM (P = 0.63; Supplementary Fig. S10). The IFN mediated 

upregulation of HLA class I surface antigens was associated with an enhanced expression of all APM 

components analyzed with a similar induction level in both tumor types with the exception of TAP1 

exhibiting only a 50% induction in RCC when compared to MM (Supplementary Figs. S12 and S13). 

This might be due to impaired constitutive but inducible TAP1 in MM. Next, we tested whether pre-

treatment of TCLs with IFN could improve tumor recognition. In RCC, immune recognition of CD8
+
 

T cells did not increase (Y-TILs, P = 0.85; REP-TILs, P = 0.58; Supplementary Figs. S14A, S14B). In 

MM, on the contrary, we have previously shown that responses can be increased after IFN exposure 

(9), however in this small cohort the increase in tumor responses after IFN exposure was not 

statistically significant (P = 0.13; Supplementary Fig. S14C). This difference in upregulation of tumor-

recognition between RCC and MM might be partly explained by constitutive TAP1 deficiencies in MM 

(which may lead to impaired tumor recognition, restored by IFN) but other, unknown factors may play 

a role as well. 

In conclusion and in contrast to MM, these data suggested that a downregulation of HLA class I surface 

antigens due to impaired expression of APM components does not play a major role on CD8
+
 T cell-

mediated recognition of RCC.  
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Tumor-reactive CD4
+
 TILs  

Tumor specific CD4
+
 T-cell responses may contribute to immunological surveillance of cancers (39). 

In MM, CD4
+
 TILs recognize naturally presented tumor antigens, including neoantigens, on MHC 

class II
+
 cancer cells (10,40). In RCC, CD4

+
 T-cell responses against shared tumor antigens were 

previously detected in one patient (41). This prompted us to analyze whether CD4
+
 RCC-TILs 

recognize autologous tumor antigens and how this compared to MM.  

HLA class II was constitutively expressed, though at low levels, in only 2/12 (17%) RCC-TCLs tested. 

In comparison, 50% MM-TCLs tested (7/14) constitutively expressed HLA class II surface antigens, 

which is in line with previous literature (10,42,43) (P = 0.11 vs RCC, Supplementary Fig. S15A). As 

expected almost all RCC (11/12) and MM (13/14) displayed HLA class II up-regulation after treatment 

with IFN (Supplementary Fig. S15B).  

CD4
+
 T-cell responses against untreated autologous TCLs were observed in only 1/17 (6%) RCC 

(RCC19 – HLA II status unknown) compared to 5/14 (36%) MM (P = 0.07; Fig. 4A). Pre-treatment of 

TCLs with IFN, which is known to up-regulate HLA class II presentation, restored tumor recognition 

of CD4
+
 Y-TILs in five additional patients with RCC (6/17, 35%; P = 0.09; Supplementary Fig. 

S16A). This is compared to a higher rate of responders in MM (11/14, 79%; P = 0.03 vs RCC-Y-TILs, 

Fig. 4B and supplementary Fig. S16B), although the frequency of responding patients with MM 

reported here appeared to be higher than previously reported by us in one larger cohort (10). The 

magnitude of CD4
+
 T-cell responses in MM (in TILs with responses; median 4.4% (range 0.7-14.7)) 

was not significantly stronger than in RCC (median 1.6% (range 1.1-4.4); P = 0.08; Fig. 4B). There 
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were no differences in the frequency of CD4
+
 T-cell responses in the RCC-REP-TIL population with or 

without IFN (P = 0.6; Supplementary Fig. S16C). CD4
+
 T-cell responses to RCC-TCLs were only 

observed when tumor cells were either constitutively expressing HLA class II surface molecules or 

upon IFN treatment as previously shown in MM (9).  

CD4
+
 T-cell responses were detected against FTDs in 16/22 (73%) patients RCC-Y-TILs and 14/22 

(64%) RCC-REP-TILs, including 6 patients (RCC2, RCC12, RCC17, RCC18, RCC23 and RCC28), in 

which no CD4 T-cell reactivity against TCLs was found, neither in the absence or presence of IFN 

(Figs. 4C, 4D). FACS plots showing cytokine production (TNF and IFN) from CD4
+
 RCC-Y-TILs 

after co-culture with TCL are shown in a representative patient in Fig. 4E. FTDs may contain other 

stromal elements than solely tumor cells, including antigen presenting cells (APCs). Thus, in theory, 

CD4
+
 T cells may recognize APCs presenting tumor-associated antigens that are not naturally 

processed and presented by tumor cells. For these reasons, we hypothesized that the actual frequency of 

CD4
+
 T cells recognizing tumor-associated antigens may be higher than expected when using TCLs as 

targets.  

Overall, CD4
+
 T-cell responses in RCC-Y-TILs with direct recognition of naturally presented tumor 

antigens on TCLs appeared similar in frequency (77% vs 77%, P = 1) but slightly lower in magnitude 

[median 1.05 (range 0.52-6.6) vs median 1.6 (range 0.6-14.2), P = 0.11] compared to CD8
+
 T-cell 

responses. In the whole cohort, we found only three patients with RCC (3/22, 14%) with no detectable 

CD4
+
 and/or CD8

+
 T-cell responses suggesting that tumor-specific T-cell responses occur in the 

majority of RCC patients (19/22, 86%).  
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Discussion 

The presence of tumor-reactive T cells in the microenvironment of cancers appears a pre-requisite for 

the efficacy of PD-1 blocking agents (44) and adoptive transfer with autologous TILs which is based on 

TIL isolation and expansion. High expression of immune activation markers in situ (45–47) and 

depletion of immunogenic neoepitopes (45) suggested that the TME of primary RCCs might harbor 

tumor-specific T cells with immune-surveillance functions. In comparison, other highly immunogenic 

tumors such as MM, where current immunotherapies with PD-1/PDL1 inhibitors has so far shown the 

highest response rates (48), displayed only average immune activation at the tumor site (45) in spite of 

a higher mutational burden (49). A high proportion and number of indels in RCC tumors providing 

high-affinity neoepitopes may explain the high rate of T cell activation and clinical responses to PD-1 

checkpoint inhibitors in this tumor type (50).  

In this study, MM was chosen as reference comparison primarily because the infusion of autologous 

TILs could cure patients with widely metastatic disease in several independent studies (1,4,6,20). 

Minimally expanded TILs from MM contain large fractions of CD8
+
 and CD4

+
 tumor-reactive T cells 

which recognize different types of antigens, including mutant neoantigens (40,51). Therefore, the 

ability to manufacture TILs with similar features of those observed in MM warrants testing of TIL 

immunotherapy in other tumors. Here, we showed that naturally occurring tumor-reactive T cells can 

be detected, recovered and expanded in vitro from a large fraction of RCC patients. Despite some 

differences such as CD4/CD8 ratio, the phenotype of TILs recovered from RCCs appeared similar to 

MM-TILs. Tumor-reactive T cells were recovered from the TME in 86% of RCCs, with over 50% of 

specimens bearing tumor-reactive CD4
+
 T cells, which in many cases could directly recognize tumor 

cells. However, in comparison to TILs from MM, antitumor responses appeared weaker with typically 
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only a few percent of T cells able to recognize autologous tumor antigens. Other studies have analyzed 

the phenotype and function of TILs in non-melanoma solid tumor histologies. The analysis of TIL 

phenotype showed similar results in most studies published to date, with the majority of expanded cells 

expressing markers consistent with antigen-experienced effector memory cells (14,52). In five recent 

studies from the National Cancer Institute, Surgery Branch (Bethesda, MD, USA), TILs from 

gastrointestinal (GI) cancers were characterized (14,53–56). In two clinical cases, infusion of TILs 

recognizing mutant antigens induced tumor regression (55,56). Nevertheless, although tumors from the 

majority of patients contained tumor-reactive T cells (14,53), the frequency of unselected tumor-

reactive TILs reported in these studies was low (0-3%) compared to MM (14). In another study from 

the same group, Stevanovic and coauthors (15) treated nine patients with cervical cancer with 

autologous TILs. Clinical responses were observed in three patients treated with TILs with high HPV-

reactivity. TIL-reactivity was demonstrated in 6/9 (66%) patients with a CD137 up-regulation assay, 

but it appeared that three patients without clinical responses had low in vitro reactivity. Preliminary 

results in head and neck (57) as well as ovarian cancer (58) sarcoma (59) and uveal melanoma (60) 

demonstrated that tumor-reactive TILs could be recovered from the TME of all these types of tumors. 

Overall, it appears that tumor-reactive TILs can be recovered from most tumor types studied. However, 

the magnitudes of responses appear lower than in MM and can vary between individual patients. Taken 

together, these data warrant further development of methods for enrichment, including selection of TIL 

micro-cultures with particularly high antigen reactivity (55,56), sorting based on activation markers 

upon antigen recognition (61) or streptamer-based enrichment (62). However, in this study we also 

show that classical REP with IL2 or combinations of IL7, IL15 and IL21 does not efficiently support 

the expansion of tumor-reactive TILs from RCC. A dysfunctional profile of tumor-reactive TILs did 
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not appear to be associated with a lower proliferative potential. Thus, further studies should explore 

other ways to expand massively tumor-reactive TILs from RCC.  

Polyfunctionality is a desirable feature of potent CD8
+
 T cells that is often found in infections (31), but 

described less frequently in cancer immunity (10,32). Tumor-reactive CD8
+
 T cells in RCC were less 

polyfunctional compared to their MM counterpart, and especially produced less IFN. These data may 

explain the discrepancy previously observed by Markel et al. (11), who reported data on six pairs of 

TILs and autologous RCC lines with cytotoxicity without IFN production in three of six patients 

analyzed. In our study, lower poly-functionality compared to MM did not appear to associate to a more 

exhausted profile of tumor-reactive CD8
+
 T cells. However, poly-functionality may be a function of the 

intensity of stimulation of the T-cell receptor (TCR), influenced by the densities of  HLA class I-

antigen complexes on the target cells and antigen sensitivity of the effector T cell (35,63). According to 

data obtained with virus-specific CD8
+
 T cells, CD107a mobilization is influenced to a minor extent by 

antigen concentration compared to IFN, and this may explain why RCC-specific CD8
+
 T cells 

mobilized CD107a but did not produce IFN. Since we could not identify target antigens in RCC, we 

were not able to determine whether the RCC-tumor-reactive TILs had lower antigen sensitivity, or their 

cognate antigens were expressed at lower levels on target cells. However, RCC cell lines exhibit 

comparable constitutive and IFN-inducible expression levels of major APM components and HLA 

class I surface molecules when compared to MM. In contrast to MM, global tumor-recognition of 

RCC-TCLs was not increased upon pre-exposure to IFN despite increase of HLA class I surface 

antigens. Thus, universal downregulation of HLA class I antigens did not appear to be a major issue in 

RCC, and is unlikely to be responsible for the mono/oligo-functional responses observed. Further 

studies to determine whether primary functional deficiencies of RCC-tumor reactive CD8
+
 TILs may 
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induce this unique functional profile are ongoing at our laboratory. Nonetheless, these findings provide 

guidance for immuno-monitoring studies in RCC where IFN assays (e.g. IFN ELISPOT or ELISA, 

which are commonly used for this purpose) might not detect otherwise tumor-reactive CD8
+
 T cells. 

The role of tumor-reactive CD4
+
 TILs in cancer is currently a matter of debate. In MM, it was 

demonstrated that the TME of most patients contain CD4
+
 TILs which can recognize tumor-antigens, 

including products of cancer-mutations, presented directly from tumor cells in association with HLA 

class II (10,40,64). Direct infusion of CD4
+
 T cells enriched for recognition of one mutant antigen 

mediated tumor regression of a GI cancer (55). However, the beneficial role of tumor-reactive CD4
+
 T 

cells in MM was recently questioned by our group through the demonstration of a mono-functional 

pattern in most effector cells (10). 50% of MM express constitutively HLA class II molecules (10,42), 

and this is known to associate with stronger tumor-specific CD4
+
 T-cell responses (10). In this study, 

only 2/12 (17%) RCC expressed HLA class II constitutively, but up-regulation of HLA class II 

molecules with cytokines revealed CD4
+
 tumor-recognition in over 50% of patients. These data 

demonstrate that generation of tumor-specific CD4
+
 T cells is a frequent event in primary RCC, but 

therapeutic exploitation of direct CD4
+
 T-cell responses will require up-regulation of HLA class II 

molecules by other means, such as co-transfer of tumor-reactive CD8
+
 T cells to produce IFN in the 

TME.  

This study suffers from two intrinsic drawbacks. First, the samples used in this study were obtained 

from primary RCC, which were compared to metastases of melanoma. Second, RCC lesions are known 

to have high inter- and intra-tumor heterogeneity (19,65). However, a study characterizing the TME 

and its prognostic relevance in primary vs metastatic clear cell RCC found a comparable immune cell 

infiltration pattern in primary to metastatic tumors (66). Third, RCC are generally highly vascularized 
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tumors, which increase the risk for contamination of TIL cultures with PBLs and thereby diluting 

tumor-reactive cells. This might contribute to the low tumor responses observed, but does not explain 

the differences in functionality of CD8
+
 tumor-reactive TILs. If RCC lesions will be used for the 

generation of clinical grade TILs, one would have to be careful to not contaminate TIL cultures with 

PBLs, and thus diluting tumor-reactive cells in the TIL product. 

In conclusion, TILs from RCC can be expanded to clinical relevant numbers using the Young-TIL 

expansion methods, and TILs obtained from most patients contain tumor-reactive CD4
+
 and CD8

+
 T 

cells. However, immune responses of expanded TILs from RCC are on average weaker and less poly-

functional than observed in MM. The ability to select, enrich and expand tumor-reactive poly-

functional T cells may be critical in developing effective ACT with autologous TILs for RCC. 
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Figure legends 

 

 

Figure 1. Phenotypic characterization of Y-TIL and Rapid Expansion Protocol (REP). 

(A, B, C) The figures show the phenotype of in vitro expanded Y-TIL from 22 RCC and 17 MM 

specimens.(A) The pie charts illustrate the phenotype characteristics of all RCC and MM patients 

analyzed. Median values of the proportion of TILs expressing the following surface markers are 

shown: CD3
+
CD8

+
, CD3

+
CD4

+
, CD3

+
CD4

+
CD8

+
, CD3

+
CD4

-
CD8

-
 and CD3

-
CD56

+
). RCC-Y-TILs 

contained less CD8
+
 T-cells (P = 0.007) and more CD4

+
 T cells than MM-Y-TIL, however this 

difference was not statistically significant (P = 0.09). (B, C) Dot plots show the proportion of Y-TILs 

expressing the depicted phenotypic markers on CD8
+
 (B) and CD4

+
 T cells (C) in RCC (n = 22, grey 

dots) and MM  (n = 17, black triangles). Abbreviations: TEM = T effector Memory (CD45RO
+
, 

CD45RA
-
, CCR7

-
). Lines show median values.  *, P < 0.05; **, P ≤ 0.01; ***, P ≤ 0.001. (D) To 

directly compare the expansion capacity in RCC and MM, small scale REPs in 14 randomly selected 

RCC-samples (performed in duplicates) were carried out in parallel with 11 MM samples (performed in 

duplicates). The fold expansion of TILs during REP was similar in RCC (grey dots) and MM (black 
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triangles): median fold expansion on day 7 (P = 0.17), day 9 (P = 0.08), day 12 (P = 0.7) or on day 14 

(P = 0.3). Lines show median values. (E) The FACS plots illustrate the proportion of CD3
+
 TILs 

staining positive for CD4 and CD8 from a representative patient (RCC16). 

 

 

 

 

Figure 2. CD8
+
 T-cell responses in RCC and MM 

The figure shows antitumor CD8
+
 T-cell responses  in RCC- (n = 17) and MM- (n = 14) Y-TILs and 

REP-TILs after co-culture with autologous fresh tumor digests (FTD) or tumor cell lines (TCLs), 

treated with IFN (TCL + IFN) or left untreated (TCL), as described in materials and methods. 

Tumor-reactive T cells are defined as T cells expressing at least one of the following T-cell functions: 

TNF, IFN or CD107a. (A and B) Upper panels: the number/(%) of patients containing Y-TILs with 

(dark grey) or without (light grey) CD8
+
 T-cell responses against TCLs +/- IFNis shown in the pie 

charts. No significant difference was found when comparing CD8
+
 T-cell responses in Y-TILs co-

cultured with untreated TCLs from RCC and MM (P = 0.18), while a higher percentage of MM-TILs 

had CD8
+
 T-cell responses towards TCLs + IFN (P = 0.045). Lower panels: dots and triangles 

represent RCC- and MM-TILs respectively; black and grey symbols represent Y-TILs with or without 

CD8
+
 responses against TCLs +/- IFNrespectively. Limit of detection was 0.5%. Lines show median 

values. The magnitude of CD8
+
 T-cell responses in Y-TILs against autologous TCLs (both untreated 

and treated with IFNwere lower in RCC compared to MM (when only TILs with responses are 

compared: untreated TCLs P = 0.0001; TCLs + IFNP = 0.0007). (C and D) The percentages of 
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tumor-reactive CD8
+
 Y-TILs (C) and CD8

+
 REP-TILs (D) after co-culture with autologous FTDs (light 

grey bars), untreated TCLs (dark grey bars) or TCLs + IFN (black bars) in individual RCC patients are 

shown. In patients where autologous TCLs were not available, TILs were only tested against FTDs 

(RCC3, RCC5, RCC8, RCC10 and RCC11). Dotted line: limit of detection (0.5%). (E and F) The 

FACS plots demonstrate (E) cytokine production (TNF and IFN) and (F) CD107a mobilization in 

CD8
+
 RCC-Y-TILs after co-culture with autologous tumor cells in two representative patients (RCC26 

in E and RCC12 in F). 

 

 

Figure 3. Polyfunctional characterization of CD8
+
 tumor-reactive T cells 

The figure shows a graphical presentation of SPICE data analyses. CD8
+
 Y-TIL subpopulations from 

RCC (n = 12) and MM (n = 13) were gated on cells expressing at least one of the three T-cell functions 

analyzed (IFN, TNF and CD107a) and pie charts and columns illustrate the median values. (A) The 

pie charts show the proportion of tumor-reactive CD8
+
 T cells generating 1, 2 or 3 of the three T-cell 

functions analyzed, in RCC and MM respectively. Tumor-reactive CD8
+
 T cells in RCC-Y-TILs were 

less polyfunctional than MM (P = 0.02). (B, C) The pie charts (B) and bar chart (C) illustrate the 

relative distribution of the seven combinations of the three T-cell functions generated by tumor-reactive 

CD8
+
 T cells in RCC (grey bars) and MM (black bars) respectively. (B) Tumor-reactive CD8

+
 T cells 

in RCC-Y-TILs appeared less polyfunctional compared to MM (P = 0.01, permutation test) and (B and 

C) a larger fraction of T cells mobilized CD107a without production of cytokines (P = 0.04, vs MM, 

corresponding to the purple pie slice). (D) The bar chart shows that a smaller fraction of tumor-reactive 

CD8
+
 T cells in RCC-Y-TILs produced IFN compared to MM (P = 0.002), indicating that IFNwas 
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most typically produced by MM-TILs. (E, F) The FACS plots demonstrate CD107a mobilization and 

cytokine production (TNF and IFN) from CD8
+
 RCC-Y-TILs after co-culture with autologous tumor 

cells in (E) a representative RCC patient (RCC12) and (F) a representative melanoma patient. (E) Only 

17.5% of CD8
+
CD107a

+
 RCC-Y-TILs also produce cytokines whereas (F) 62.1% of CD8

+
CD107a

+
 

RCC-Y-TILs also produce cytokines. 

 

Figure 4. CD4
+
 T-cell responses in RCC and MM. 

The figure shows antitumor CD4
+
 T-cell responses in RCC- (n = 17) and MM- (n = 14) Y-TILs and 

REP-TILs after co-culture with autologous fresh tumor digests (FTD) or tumor cell lines (TCLs), 

treated with IFN (TCL + IFN) or left untreated, as described in materials and methods. Tumor-

reactive T cells are defined as T cells expressing at least one of the following T-cell functions: TNF, 

IFN or CD107a. (A and B) Upper panels: the number/(%) of patients containing Y-TILs with (dark 

grey) or without (light grey) CD4
+
 T-cell responses against TCLs +/- IFNis shown in the pie charts. 

We found no statistically significant difference when comparing Y-TILs co-cultured with untreated 

TCLs from RCC and MM (P = 0.07), whereas a higher percentage of MM-TILs had CD4
+
 T-cell 

responses towards TCLs + IFN compared to RCC-TILs (P = 0.03). Lower panels: dots and triangles 

represent RCC- and MM-TILs respectively; black and grey symbols represent respectively Y-TILs 

with or without CD4
+
 T-cell responses against TCLs +/- IFN. Limit of detection was 0.5%. Lines 

show median values. The magnitude of CD4
+
 T-cell responses in Y-TILs against autologous TCLs 

treated with IFNwas not statistically significantly lower in RCC compared to MM (only TILs with 

responses are compared; P = 0.08). (C and D) The percentages of tumor-reactive CD4
+
 Y-TILs (C) 
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and CD4
+
 REP-TILs (D) after co-culture with autologous FTDs (light grey bars), untreated TCLs (dark 

grey bars) or TCLs + IFN(black bars), in individual RCC patients, are shown. In patients where 

autologous TCLs were not available, TILs were only tested against FTDs (RCC3, RCC5, RCC8, 

RCC10 and RCC11). Dotted line: limit of detection (0.5%). (E) The FACS plots demonstrate cytokine 

production from representative RCC-Y-TILs after co-culture with autologous tumor cells. 
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