

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 10, 2018

Nonlinear Model Predictive Control of a Cable-Robot-Based Motion Simulator

Katliar, Mikhail; Fischer, Joerg; Frison, Gianluca; Diehl, Moritz; Teufel, Harald; Buelthoff, Heinrich H.

Published in:
IFAC-PapersOnLine

Link to article, DOI:
10.1016/j.ifacol.2017.08.901

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Katliar, M., Fischer, J., Frison, G., Diehl, M., Teufel, H., & Buelthoff, H. H. (2017). Nonlinear Model Predictive
Control of a Cable-Robot-Based Motion Simulator. IFAC-PapersOnLine, 50(1), 9833-9839. DOI:
10.1016/j.ifacol.2017.08.901

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Online Research Database In Technology

https://core.ac.uk/display/154333759?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ifacol.2017.08.901
http://orbit.dtu.dk/en/publications/nonlinear-model-predictive-control-of-a-cablerobotbased-motion-simulator(cbf3051b-da7e-4825-be56-2310a1cce1b7).html

IFAC PapersOnLine 50-1 (2017) 9833–9839

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2017.08.901

© 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

10.1016/j.ifacol.2017.08.901 2405-8963

Nonlinear Model Predictive Control of a
Cable-Robot-Based Motion Simulator

Mikhail Katliar ∗ Jörg Fischer ∗∗ Gianluca Frison ∗∗∗,∗∗

Moritz Diehl ∗∗∗∗ Harald Teufel ∗ Heinrich H. Bülthoff ∗

∗ Dept. of Human Perception, Cognition and Action, Max Planck
Institute for Biological Cybernetics, Spemannstr. 38, 72076 Tuebingen,

Germany (e-mail: [mikhail.katliar, harald.teufel,
heinrich.buelthoff]@tuebingen.mpg.de)

∗∗ Dept. of Microsystems Engineering University of Freiburg,
Georges-Koehler-Allee 102, D-79110 Freiburg, Germany (e-mail:

[joerg.fischer]@imtek.uni-freiburg.de)
∗∗∗ Technical University of Denmark, (e-mail: [giaf]@dtu.dk)

∗∗∗∗ Dept. of Microsystems Engineering & Dept. of Mathematics
University of Freiburg, Georges-Koehler-Allee 102, D-79110 Freiburg,

Germany (e-mail: moritz.diehl@imtek.uni-freiburg.de)

Abstract: In this paper we present the implementation of a model-predictive controller (MPC)
for real-time control of a cable-robot-based motion simulator. The controller computes control
inputs such that a desired acceleration and angular velocity at a defined point in simulator’s
cabin are tracked while satisfying constraints imposed by working space and allowed cable
forces of the robot. In order to fully use the simulator capabilities, we propose an approach
that includes the motion platform actuation in the MPC model. The tracking performance
and computation time of the algorithm are investigated in computer simulations. Furthermore,
for motion simulation scenarios where the reference trajectories are not known beforehand, we
derive an estimate on how much motion simulation fidelity can maximally be improved by any
reference prediction scheme compared to the case when no prediction scheme is applied.

Keywords: model predictive control, cable robots, vehicle simulators, motion cueing.

1. INTRODUCTION

Motion simulators are devices for creating an experience
of being inside a moving vehicle. They are widely used
for training of aircraft pilots and racing car drivers, as
well as for studying human motion perception and control
behavior. A motion simulator typically consists of a motion
system (moving platform) and a visualization system. The
human vestibular system senses inertial forces and angular
velocity. We refer to these quantities, as functions of time,
as the “inertial signal”. A control algorithm that drives the
moving platform to reproduce a certain inertial signal is
called motion cueing algorithm (MCA). Different types of
MCAs are reviewed in Garrett and Best (2010). Although
the knowledge about human vestibular system is often
used in MCA design (Telban and Cardullo, 2005), in this
paper we do not consider perceptual aspects and focus on
reproduction of the physical stimulus (inertial signal).

The major difficulty concerning motion cueing is that
the quantities that need to be reproduced (velocities and
accelerations) are 1st and 2nd order derivatives of the
coordinates. If reproduced one-to-one and integrated over
time, this can easily result in coordinates outside the
motion system’s physical limits. Therefore, the inertial
signal in a simulator has to be necessarily distorted, in

order to keep the resulting trajectory within the limits of
the motion system.

The classical way to deal with this problem (Schmidt and
Conrad, 1970; Nahon and Reid, 1990) is to split the accel-
eration signal into a low-frequency and a high-frequency
part. The high-frequency part is reproduced directly by
accelerating the motion platform, while the low-frequency
part is reproduced by tilting the platform so that the
changing direction of the gravity creates an acceleration
which matches the desired one (tilt-coordination). This,
however, creates a rotation which is not present in the
original signal (false cue). To ensure that the motion
system stays within its limits for any anticipated inertial
signal, the reference signal is usually scaled down. As a
consequence, the reproduced forces are reduced and the
realism of the simulation decreases.

Sivan et al. (1982) proposed a solution based on optimal
LQR-control and Nahon et al. (1992) proposed a variation
of the classical algorithm employing adaptive filters. How-
ever, all these solutions require parameter tuning to ensure
that the constraints of the motion system are respected.

Recently, Dagdelen et al. (2009) proposed to use model
predictive control (MPC) for motion simulation. In MPC,
control inputs are calculated at each time step by nu-
merically minimizing a cost function that reflects (among

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 10247

Nonlinear Model Predictive Control of a
Cable-Robot-Based Motion Simulator

Mikhail Katliar ∗ Jörg Fischer ∗∗ Gianluca Frison ∗∗∗,∗∗

Moritz Diehl ∗∗∗∗ Harald Teufel ∗ Heinrich H. Bülthoff ∗

∗ Dept. of Human Perception, Cognition and Action, Max Planck
Institute for Biological Cybernetics, Spemannstr. 38, 72076 Tuebingen,

Germany (e-mail: [mikhail.katliar, harald.teufel,
heinrich.buelthoff]@tuebingen.mpg.de)

∗∗ Dept. of Microsystems Engineering University of Freiburg,
Georges-Koehler-Allee 102, D-79110 Freiburg, Germany (e-mail:

[joerg.fischer]@imtek.uni-freiburg.de)
∗∗∗ Technical University of Denmark, (e-mail: [giaf]@dtu.dk)

∗∗∗∗ Dept. of Microsystems Engineering & Dept. of Mathematics
University of Freiburg, Georges-Koehler-Allee 102, D-79110 Freiburg,

Germany (e-mail: moritz.diehl@imtek.uni-freiburg.de)

Abstract: In this paper we present the implementation of a model-predictive controller (MPC)
for real-time control of a cable-robot-based motion simulator. The controller computes control
inputs such that a desired acceleration and angular velocity at a defined point in simulator’s
cabin are tracked while satisfying constraints imposed by working space and allowed cable
forces of the robot. In order to fully use the simulator capabilities, we propose an approach
that includes the motion platform actuation in the MPC model. The tracking performance
and computation time of the algorithm are investigated in computer simulations. Furthermore,
for motion simulation scenarios where the reference trajectories are not known beforehand, we
derive an estimate on how much motion simulation fidelity can maximally be improved by any
reference prediction scheme compared to the case when no prediction scheme is applied.

Keywords: model predictive control, cable robots, vehicle simulators, motion cueing.

1. INTRODUCTION

Motion simulators are devices for creating an experience
of being inside a moving vehicle. They are widely used
for training of aircraft pilots and racing car drivers, as
well as for studying human motion perception and control
behavior. A motion simulator typically consists of a motion
system (moving platform) and a visualization system. The
human vestibular system senses inertial forces and angular
velocity. We refer to these quantities, as functions of time,
as the “inertial signal”. A control algorithm that drives the
moving platform to reproduce a certain inertial signal is
called motion cueing algorithm (MCA). Different types of
MCAs are reviewed in Garrett and Best (2010). Although
the knowledge about human vestibular system is often
used in MCA design (Telban and Cardullo, 2005), in this
paper we do not consider perceptual aspects and focus on
reproduction of the physical stimulus (inertial signal).

The major difficulty concerning motion cueing is that
the quantities that need to be reproduced (velocities and
accelerations) are 1st and 2nd order derivatives of the
coordinates. If reproduced one-to-one and integrated over
time, this can easily result in coordinates outside the
motion system’s physical limits. Therefore, the inertial
signal in a simulator has to be necessarily distorted, in

order to keep the resulting trajectory within the limits of
the motion system.

The classical way to deal with this problem (Schmidt and
Conrad, 1970; Nahon and Reid, 1990) is to split the accel-
eration signal into a low-frequency and a high-frequency
part. The high-frequency part is reproduced directly by
accelerating the motion platform, while the low-frequency
part is reproduced by tilting the platform so that the
changing direction of the gravity creates an acceleration
which matches the desired one (tilt-coordination). This,
however, creates a rotation which is not present in the
original signal (false cue). To ensure that the motion
system stays within its limits for any anticipated inertial
signal, the reference signal is usually scaled down. As a
consequence, the reproduced forces are reduced and the
realism of the simulation decreases.

Sivan et al. (1982) proposed a solution based on optimal
LQR-control and Nahon et al. (1992) proposed a variation
of the classical algorithm employing adaptive filters. How-
ever, all these solutions require parameter tuning to ensure
that the constraints of the motion system are respected.

Recently, Dagdelen et al. (2009) proposed to use model
predictive control (MPC) for motion simulation. In MPC,
control inputs are calculated at each time step by nu-
merically minimizing a cost function that reflects (among

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 10247

Nonlinear Model Predictive Control of a
Cable-Robot-Based Motion Simulator

Mikhail Katliar ∗ Jörg Fischer ∗∗ Gianluca Frison ∗∗∗,∗∗

Moritz Diehl ∗∗∗∗ Harald Teufel ∗ Heinrich H. Bülthoff ∗

∗ Dept. of Human Perception, Cognition and Action, Max Planck
Institute for Biological Cybernetics, Spemannstr. 38, 72076 Tuebingen,

Germany (e-mail: [mikhail.katliar, harald.teufel,
heinrich.buelthoff]@tuebingen.mpg.de)

∗∗ Dept. of Microsystems Engineering University of Freiburg,
Georges-Koehler-Allee 102, D-79110 Freiburg, Germany (e-mail:

[joerg.fischer]@imtek.uni-freiburg.de)
∗∗∗ Technical University of Denmark, (e-mail: [giaf]@dtu.dk)

∗∗∗∗ Dept. of Microsystems Engineering & Dept. of Mathematics
University of Freiburg, Georges-Koehler-Allee 102, D-79110 Freiburg,

Germany (e-mail: moritz.diehl@imtek.uni-freiburg.de)

Abstract: In this paper we present the implementation of a model-predictive controller (MPC)
for real-time control of a cable-robot-based motion simulator. The controller computes control
inputs such that a desired acceleration and angular velocity at a defined point in simulator’s
cabin are tracked while satisfying constraints imposed by working space and allowed cable
forces of the robot. In order to fully use the simulator capabilities, we propose an approach
that includes the motion platform actuation in the MPC model. The tracking performance
and computation time of the algorithm are investigated in computer simulations. Furthermore,
for motion simulation scenarios where the reference trajectories are not known beforehand, we
derive an estimate on how much motion simulation fidelity can maximally be improved by any
reference prediction scheme compared to the case when no prediction scheme is applied.

Keywords: model predictive control, cable robots, vehicle simulators, motion cueing.

1. INTRODUCTION

Motion simulators are devices for creating an experience
of being inside a moving vehicle. They are widely used
for training of aircraft pilots and racing car drivers, as
well as for studying human motion perception and control
behavior. A motion simulator typically consists of a motion
system (moving platform) and a visualization system. The
human vestibular system senses inertial forces and angular
velocity. We refer to these quantities, as functions of time,
as the “inertial signal”. A control algorithm that drives the
moving platform to reproduce a certain inertial signal is
called motion cueing algorithm (MCA). Different types of
MCAs are reviewed in Garrett and Best (2010). Although
the knowledge about human vestibular system is often
used in MCA design (Telban and Cardullo, 2005), in this
paper we do not consider perceptual aspects and focus on
reproduction of the physical stimulus (inertial signal).

The major difficulty concerning motion cueing is that
the quantities that need to be reproduced (velocities and
accelerations) are 1st and 2nd order derivatives of the
coordinates. If reproduced one-to-one and integrated over
time, this can easily result in coordinates outside the
motion system’s physical limits. Therefore, the inertial
signal in a simulator has to be necessarily distorted, in

order to keep the resulting trajectory within the limits of
the motion system.

The classical way to deal with this problem (Schmidt and
Conrad, 1970; Nahon and Reid, 1990) is to split the accel-
eration signal into a low-frequency and a high-frequency
part. The high-frequency part is reproduced directly by
accelerating the motion platform, while the low-frequency
part is reproduced by tilting the platform so that the
changing direction of the gravity creates an acceleration
which matches the desired one (tilt-coordination). This,
however, creates a rotation which is not present in the
original signal (false cue). To ensure that the motion
system stays within its limits for any anticipated inertial
signal, the reference signal is usually scaled down. As a
consequence, the reproduced forces are reduced and the
realism of the simulation decreases.

Sivan et al. (1982) proposed a solution based on optimal
LQR-control and Nahon et al. (1992) proposed a variation
of the classical algorithm employing adaptive filters. How-
ever, all these solutions require parameter tuning to ensure
that the constraints of the motion system are respected.

Recently, Dagdelen et al. (2009) proposed to use model
predictive control (MPC) for motion simulation. In MPC,
control inputs are calculated at each time step by nu-
merically minimizing a cost function that reflects (among

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 10247

Nonlinear Model Predictive Control of a
Cable-Robot-Based Motion Simulator

Mikhail Katliar ∗ Jörg Fischer ∗∗ Gianluca Frison ∗∗∗,∗∗

Moritz Diehl ∗∗∗∗ Harald Teufel ∗ Heinrich H. Bülthoff ∗

∗ Dept. of Human Perception, Cognition and Action, Max Planck
Institute for Biological Cybernetics, Spemannstr. 38, 72076 Tuebingen,

Germany (e-mail: [mikhail.katliar, harald.teufel,
heinrich.buelthoff]@tuebingen.mpg.de)

∗∗ Dept. of Microsystems Engineering University of Freiburg,
Georges-Koehler-Allee 102, D-79110 Freiburg, Germany (e-mail:

[joerg.fischer]@imtek.uni-freiburg.de)
∗∗∗ Technical University of Denmark, (e-mail: [giaf]@dtu.dk)

∗∗∗∗ Dept. of Microsystems Engineering & Dept. of Mathematics
University of Freiburg, Georges-Koehler-Allee 102, D-79110 Freiburg,

Germany (e-mail: moritz.diehl@imtek.uni-freiburg.de)

Abstract: In this paper we present the implementation of a model-predictive controller (MPC)
for real-time control of a cable-robot-based motion simulator. The controller computes control
inputs such that a desired acceleration and angular velocity at a defined point in simulator’s
cabin are tracked while satisfying constraints imposed by working space and allowed cable
forces of the robot. In order to fully use the simulator capabilities, we propose an approach
that includes the motion platform actuation in the MPC model. The tracking performance
and computation time of the algorithm are investigated in computer simulations. Furthermore,
for motion simulation scenarios where the reference trajectories are not known beforehand, we
derive an estimate on how much motion simulation fidelity can maximally be improved by any
reference prediction scheme compared to the case when no prediction scheme is applied.

Keywords: model predictive control, cable robots, vehicle simulators, motion cueing.

1. INTRODUCTION

Motion simulators are devices for creating an experience
of being inside a moving vehicle. They are widely used
for training of aircraft pilots and racing car drivers, as
well as for studying human motion perception and control
behavior. A motion simulator typically consists of a motion
system (moving platform) and a visualization system. The
human vestibular system senses inertial forces and angular
velocity. We refer to these quantities, as functions of time,
as the “inertial signal”. A control algorithm that drives the
moving platform to reproduce a certain inertial signal is
called motion cueing algorithm (MCA). Different types of
MCAs are reviewed in Garrett and Best (2010). Although
the knowledge about human vestibular system is often
used in MCA design (Telban and Cardullo, 2005), in this
paper we do not consider perceptual aspects and focus on
reproduction of the physical stimulus (inertial signal).

The major difficulty concerning motion cueing is that
the quantities that need to be reproduced (velocities and
accelerations) are 1st and 2nd order derivatives of the
coordinates. If reproduced one-to-one and integrated over
time, this can easily result in coordinates outside the
motion system’s physical limits. Therefore, the inertial
signal in a simulator has to be necessarily distorted, in

order to keep the resulting trajectory within the limits of
the motion system.

The classical way to deal with this problem (Schmidt and
Conrad, 1970; Nahon and Reid, 1990) is to split the accel-
eration signal into a low-frequency and a high-frequency
part. The high-frequency part is reproduced directly by
accelerating the motion platform, while the low-frequency
part is reproduced by tilting the platform so that the
changing direction of the gravity creates an acceleration
which matches the desired one (tilt-coordination). This,
however, creates a rotation which is not present in the
original signal (false cue). To ensure that the motion
system stays within its limits for any anticipated inertial
signal, the reference signal is usually scaled down. As a
consequence, the reproduced forces are reduced and the
realism of the simulation decreases.

Sivan et al. (1982) proposed a solution based on optimal
LQR-control and Nahon et al. (1992) proposed a variation
of the classical algorithm employing adaptive filters. How-
ever, all these solutions require parameter tuning to ensure
that the constraints of the motion system are respected.

Recently, Dagdelen et al. (2009) proposed to use model
predictive control (MPC) for motion simulation. In MPC,
control inputs are calculated at each time step by nu-
merically minimizing a cost function that reflects (among

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 10247

Nonlinear Model Predictive Control of a
Cable-Robot-Based Motion Simulator

Mikhail Katliar ∗ Jörg Fischer ∗∗ Gianluca Frison ∗∗∗,∗∗

Moritz Diehl ∗∗∗∗ Harald Teufel ∗ Heinrich H. Bülthoff ∗

∗ Dept. of Human Perception, Cognition and Action, Max Planck
Institute for Biological Cybernetics, Spemannstr. 38, 72076 Tuebingen,

Germany (e-mail: [mikhail.katliar, harald.teufel,
heinrich.buelthoff]@tuebingen.mpg.de)

∗∗ Dept. of Microsystems Engineering University of Freiburg,
Georges-Koehler-Allee 102, D-79110 Freiburg, Germany (e-mail:

[joerg.fischer]@imtek.uni-freiburg.de)
∗∗∗ Technical University of Denmark, (e-mail: [giaf]@dtu.dk)

∗∗∗∗ Dept. of Microsystems Engineering & Dept. of Mathematics
University of Freiburg, Georges-Koehler-Allee 102, D-79110 Freiburg,

Germany (e-mail: moritz.diehl@imtek.uni-freiburg.de)

Abstract: In this paper we present the implementation of a model-predictive controller (MPC)
for real-time control of a cable-robot-based motion simulator. The controller computes control
inputs such that a desired acceleration and angular velocity at a defined point in simulator’s
cabin are tracked while satisfying constraints imposed by working space and allowed cable
forces of the robot. In order to fully use the simulator capabilities, we propose an approach
that includes the motion platform actuation in the MPC model. The tracking performance
and computation time of the algorithm are investigated in computer simulations. Furthermore,
for motion simulation scenarios where the reference trajectories are not known beforehand, we
derive an estimate on how much motion simulation fidelity can maximally be improved by any
reference prediction scheme compared to the case when no prediction scheme is applied.

Keywords: model predictive control, cable robots, vehicle simulators, motion cueing.

1. INTRODUCTION

Motion simulators are devices for creating an experience
of being inside a moving vehicle. They are widely used
for training of aircraft pilots and racing car drivers, as
well as for studying human motion perception and control
behavior. A motion simulator typically consists of a motion
system (moving platform) and a visualization system. The
human vestibular system senses inertial forces and angular
velocity. We refer to these quantities, as functions of time,
as the “inertial signal”. A control algorithm that drives the
moving platform to reproduce a certain inertial signal is
called motion cueing algorithm (MCA). Different types of
MCAs are reviewed in Garrett and Best (2010). Although
the knowledge about human vestibular system is often
used in MCA design (Telban and Cardullo, 2005), in this
paper we do not consider perceptual aspects and focus on
reproduction of the physical stimulus (inertial signal).

The major difficulty concerning motion cueing is that
the quantities that need to be reproduced (velocities and
accelerations) are 1st and 2nd order derivatives of the
coordinates. If reproduced one-to-one and integrated over
time, this can easily result in coordinates outside the
motion system’s physical limits. Therefore, the inertial
signal in a simulator has to be necessarily distorted, in

order to keep the resulting trajectory within the limits of
the motion system.

The classical way to deal with this problem (Schmidt and
Conrad, 1970; Nahon and Reid, 1990) is to split the accel-
eration signal into a low-frequency and a high-frequency
part. The high-frequency part is reproduced directly by
accelerating the motion platform, while the low-frequency
part is reproduced by tilting the platform so that the
changing direction of the gravity creates an acceleration
which matches the desired one (tilt-coordination). This,
however, creates a rotation which is not present in the
original signal (false cue). To ensure that the motion
system stays within its limits for any anticipated inertial
signal, the reference signal is usually scaled down. As a
consequence, the reproduced forces are reduced and the
realism of the simulation decreases.

Sivan et al. (1982) proposed a solution based on optimal
LQR-control and Nahon et al. (1992) proposed a variation
of the classical algorithm employing adaptive filters. How-
ever, all these solutions require parameter tuning to ensure
that the constraints of the motion system are respected.

Recently, Dagdelen et al. (2009) proposed to use model
predictive control (MPC) for motion simulation. In MPC,
control inputs are calculated at each time step by nu-
merically minimizing a cost function that reflects (among

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 10247

9834	 Mikhail Katliar et al. / IFAC PapersOnLine 50-1 (2017) 9833–9839

others) the deviation of the predicted output trajectory
from the desired reference trajectory over N time steps
(Rawlings and Mayne, 2009), where N is called the horizon
length. A huge advantage of MPC is that it can directly
consider input, state, and output constraints of the plant
in the calculation of the control inputs.

In theory, MPC results in a close to optimal tracking
performance, but comes at the cost of computational com-
plexity and implementation effort. The main parameter
affecting the trade-off between tracking performance and
computation time is the MPC horizon length N : the bigger
N , the better the tracking performance and the longer it
takes to compute the control input.

In a scheme proposed by Dagdelen et al. (2009), an
MCA consists of two parts: an MPC-based feedforward
compensator that defines the trajectory to follow, and a
feedback controller that handles actuator dynamics. This
makes the dynamics of the motion system linear and
decouples them from the dynamics of the actuators. The
same approach is adopted by Fang and Kemeny (2012);
Beghi et al. (2012). However, because the actuators can
have different capabilities depending of the state of the
system, in such implementations, an MPC controller must
be conservative about the actuation system capabilities, so
that the trajectory generated by the MPC can always be
realized by the actuators. We propose an MPC formulation
that includes the actuation of the motion platform. By
doing so, the MPC controller is able to directly handle
the constraints of the actuation system, making full use of
simulator capabilities.

Integrating the actuation dynamics of the platform into
the MPC model increases the dimension of the state space,
and thus increases the size of the optimization problem
solved by the MPC and the required computational effort.
Together with long horizon lengths typically required
for motion simulation applications (Katliar et al., 2015),
it makes the real-time implementation of the proposed
approach challenging.

In this paper, we derive a real-time capable implemen-
tation of a model predictive controller for a cable-robot-
based motion simulator that includes the actuation dy-
namics, and investigate the trade-off between tracking and
computational performance for the derived controller in
simulation. In this context, we also derive an estimate
of how much motion simulation fidelity can maximally
be improved by any reference prediction scheme if the
reference trajectories for the motion simulation are not
known beforehand.

2. THE MPI CABLE ROBOT SIMULATOR

The Cable Robot Simulator (CRS) at the Max Planck In-
stitute for Biological Cybernetics in Tuebingen, Germany,
is used for human motion perception research and virtual
reality experiments. It consists of a mobile platform which
is connected to 8 fixed winches by cables passing through
redirection pulleys (Fig. 1). The winch motors can be con-
trolled independently in velocity- or torque-control mode.
The motors are equipped with encoders providing angular
positions of the rotors. The cable forces are measured by
sensors located in the redirection pulleys. The mobile plat-

Fig. 1. The MPI Cable Robot Simulator. Image credit:
Philipp Miermeister, MPI for Biological Cybernetics.

Max. acceleration [linear, angular] [14m/s2, 100 ◦/s2]
Max. velocity [linear, angular] [5m s−1, 100 ◦ s−1]

Safe translational workspace [X, Y , Z] [4m, 5m, 5m]
Rotational workspace [roll, pitch, yaw] [±40◦, ±40◦, ±5◦]

Feasible cable tension [min, max] [1000N, 14 000N]
Max payload 500 kg

Table 1. Physical constraints of the CRS (from
Miermeister et al. (2016)).

form is equipped with an inertial measurement unit (IMU)
that provides real-time measurements of accelerations and
angular velocities.

The main constraints of the system dictated by its design
and safety requirements are summarized in Table 1. A
detailed description of the setup can be found in (Mier-
meister et al., 2016).

3. THE MODEL PREDICTIVE MOTION CUEING
CONTROLLER

In this section, an MPC controller is derived that calcu-
lates optimal cable forces to be realized by the winch mo-
tors of the cable robot to track a given inertial signal inside
the cabin under satisfaction of all constraints of the robot.
To this end, first a nonlinear dynamical model of the cable
robot is derived (Sec. 3.1). Based on this, the control task
is formulated as a nonlinear receding horizon optimization
problem (Sec. 3.2). Finally, the implementation of a real-
time capable model predictive controller is presented that
numerically solves this optimization problem at each time
sample (Sec 3.3).

3.1 Dynamical model of the CRS

We consider the motion platform to be a rigid body with
a known mass m and inertia tensor I. The mass and
elasticity of the cables, the friction forces, the dynamics
of the motors, winches and pulleys are not included in our
model. The origin of the platform reference frame (PF) is
placed in the center of mass. Let r be the position of the
platform’s center of mass in world coordinate frame (WF),
q be the quaternion that defines the rotation from PF to
WF, v be the velocity of the center of mass in WF, and ω
be the angular velocity of the platform in PF. The state
of the system is

x = [r�,q�,v�, ω�]� ∈ Rnx , nx = 13 . (1)

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

10248

	 Mikhail Katliar et al. / IFAC PapersOnLine 50-1 (2017) 9833–9839	 9835

others) the deviation of the predicted output trajectory
from the desired reference trajectory over N time steps
(Rawlings and Mayne, 2009), where N is called the horizon
length. A huge advantage of MPC is that it can directly
consider input, state, and output constraints of the plant
in the calculation of the control inputs.

In theory, MPC results in a close to optimal tracking
performance, but comes at the cost of computational com-
plexity and implementation effort. The main parameter
affecting the trade-off between tracking performance and
computation time is the MPC horizon length N : the bigger
N , the better the tracking performance and the longer it
takes to compute the control input.

In a scheme proposed by Dagdelen et al. (2009), an
MCA consists of two parts: an MPC-based feedforward
compensator that defines the trajectory to follow, and a
feedback controller that handles actuator dynamics. This
makes the dynamics of the motion system linear and
decouples them from the dynamics of the actuators. The
same approach is adopted by Fang and Kemeny (2012);
Beghi et al. (2012). However, because the actuators can
have different capabilities depending of the state of the
system, in such implementations, an MPC controller must
be conservative about the actuation system capabilities, so
that the trajectory generated by the MPC can always be
realized by the actuators. We propose an MPC formulation
that includes the actuation of the motion platform. By
doing so, the MPC controller is able to directly handle
the constraints of the actuation system, making full use of
simulator capabilities.

Integrating the actuation dynamics of the platform into
the MPC model increases the dimension of the state space,
and thus increases the size of the optimization problem
solved by the MPC and the required computational effort.
Together with long horizon lengths typically required
for motion simulation applications (Katliar et al., 2015),
it makes the real-time implementation of the proposed
approach challenging.

In this paper, we derive a real-time capable implemen-
tation of a model predictive controller for a cable-robot-
based motion simulator that includes the actuation dy-
namics, and investigate the trade-off between tracking and
computational performance for the derived controller in
simulation. In this context, we also derive an estimate
of how much motion simulation fidelity can maximally
be improved by any reference prediction scheme if the
reference trajectories for the motion simulation are not
known beforehand.

2. THE MPI CABLE ROBOT SIMULATOR

The Cable Robot Simulator (CRS) at the Max Planck In-
stitute for Biological Cybernetics in Tuebingen, Germany,
is used for human motion perception research and virtual
reality experiments. It consists of a mobile platform which
is connected to 8 fixed winches by cables passing through
redirection pulleys (Fig. 1). The winch motors can be con-
trolled independently in velocity- or torque-control mode.
The motors are equipped with encoders providing angular
positions of the rotors. The cable forces are measured by
sensors located in the redirection pulleys. The mobile plat-

Fig. 1. The MPI Cable Robot Simulator. Image credit:
Philipp Miermeister, MPI for Biological Cybernetics.

Max. acceleration [linear, angular] [14m/s2, 100 ◦/s2]
Max. velocity [linear, angular] [5m s−1, 100 ◦ s−1]

Safe translational workspace [X, Y , Z] [4m, 5m, 5m]
Rotational workspace [roll, pitch, yaw] [±40◦, ±40◦, ±5◦]

Feasible cable tension [min, max] [1000N, 14 000N]
Max payload 500 kg

Table 1. Physical constraints of the CRS (from
Miermeister et al. (2016)).

form is equipped with an inertial measurement unit (IMU)
that provides real-time measurements of accelerations and
angular velocities.

The main constraints of the system dictated by its design
and safety requirements are summarized in Table 1. A
detailed description of the setup can be found in (Mier-
meister et al., 2016).

3. THE MODEL PREDICTIVE MOTION CUEING
CONTROLLER

In this section, an MPC controller is derived that calcu-
lates optimal cable forces to be realized by the winch mo-
tors of the cable robot to track a given inertial signal inside
the cabin under satisfaction of all constraints of the robot.
To this end, first a nonlinear dynamical model of the cable
robot is derived (Sec. 3.1). Based on this, the control task
is formulated as a nonlinear receding horizon optimization
problem (Sec. 3.2). Finally, the implementation of a real-
time capable model predictive controller is presented that
numerically solves this optimization problem at each time
sample (Sec 3.3).

3.1 Dynamical model of the CRS

We consider the motion platform to be a rigid body with
a known mass m and inertia tensor I. The mass and
elasticity of the cables, the friction forces, the dynamics
of the motors, winches and pulleys are not included in our
model. The origin of the platform reference frame (PF) is
placed in the center of mass. Let r be the position of the
platform’s center of mass in world coordinate frame (WF),
q be the quaternion that defines the rotation from PF to
WF, v be the velocity of the center of mass in WF, and ω
be the angular velocity of the platform in PF. The state
of the system is

x = [r�,q�,v�, ω�]� ∈ Rnx , nx = 13 . (1)

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

10248

The platform is controlled by changing cable tension
forces. We define number of cables as Nc, coordinates
of outlet point of i-th cable in WF as ai, coordinates of
anchor point of i-th cable on the mobile platform in PF
as bi, and let u = [u1, u2, . . . , uNc]

� be the vector of cable
tension forces. The force acting on the platform from i-th
cable, expressed in WF, is

Fi =
li

‖li‖
ui ,

where li = ai−r−R(q)bi is the vector connecting anchor
point of i-th cable with its outlet point (in WF), and R(q)
is the rotation matrix from PF to WF corresponding to
quaternion q. Based on rigid-body dynamics, following
ODEs are derived that describe the dynamics of the
system:

ṙ = v

q̇ =
1

2
G(q)�ω

v̇ =
1

m

Nc∑
i=1

Fi + g

ω̇ = I−1




Nc∑
i=1

bi ×
(
R(q)�Fi

)
− ω × (Iω)


 ,

(2)

where G(q) is given by

G(q) =



−q1 q0 q3 −q2
−q2 −q3 q0 q1
−q3 q2 −q1 q0


 .

Let F (x0,u0, t) be the solution of (2) at time t given
initial condition x(0) = x0 and u(τ) = u0 ∀τ ∈ [0, t).
We discretize the model by assuming piecewise-constant
cable force inputs:

u(t) = uk ∈ Rnu , nu = Nc = 8

kT ≤ t < (k + 1)T, k = 0, 1, 2, . . . ,
(3)

where T is the sampling time. We denote the system state
at sampling point t = kT as

xk = x(kT) .

Then, the ODEs (2) can be converted to the discrete-time
dynamic equations via direct multiple shooting:

xk+1 = F (xk,uk, T), k = 0, 1, 2,

3.2 Formulation of the optimal control problem

In a motion simulator, we want to reproduce inertial forces
and angular velocities in the cabin as close as possible to
a given reference profile. We express these quantities as
functions of system state and control input. Consider a
point mass m attached to the platform at the origin of
PF. −F denotes the platform reaction force acting on the
mass. According to Newton’s 2nd law,

mv̇ = R(q)(−F) +mg , (4)

where −F is expressed in PF. The quantity

f(x,u) :=
F

m
= R(q)�(g − v̇) (5)

is the so called specific force, which is measured in m/s2

and is essentially the “inertial force” in PF divided by
mass. It is the combined result of gravity and accelerated
motion of the platform.

The angular velocity of PF relative to WF, expressed in
PF, is simply ω = ω(x). The total inertial signal produced
by the platform is

y(x,u) = [f(x,u)�, ω(x)�]� ∈ Rny , ny = 6 . (6)

Let x̃0 be the state of the system at current time t0 and
ŷk be the reference inertial signal at time t0 + kT . At
every time sample, the MPC controller solves the following
nonlinear constrained minimization problem:

minimize
u0,u1,...,uN� 1
x0,x1,...,xN

1

N

N−1∑
k=0

lk(xk,uk) + lN (xN)

subject to x0 = x̃0,

xk+1 = F (xk,uk, T), k = 0 . . . N − 1,

xmin ≤ xk ≤ xmax, k = 1 . . . N − 1,

xmin,N ≤ xN ≤ xmax,N ,

umin ≤ uk ≤ umax, k = 0 . . . N − 1
(7)

where

lk(xk,uk) =
∥∥y(xk,uk)− ŷk

∥∥2
Wy

+ ‖xk − x̂k‖2Wx
+ ‖uk − ûk‖2Wu

,
(8)

lN (xN) = ‖xN − x̂N‖2WxN
. (9)

The first term in (8) corresponds to reference signal track-
ing, and Wy defines weighting of different components of
the inertial signal. The second and the third terms allow
the controller to track a given state trajectory x̂k and input
trajectory ûk, and Wx, WxN

, Wu are symmetric positive-
definite weighting matrices. The first term is the most
important for motion simulation applications. However,
by changing the weighting matrices Wy, Wx, Wu, we can
balance between inertial signal tracking, state tracking
and input tracking, without restarting the controller. This
can be necessary, for example, to move the platform to
a desired position, etc.. Furthermore, since the system
is overactuated, the third term is important to guaran-
tee local convexity of the problem (7). The position and
velocity constraints of the system are included in xmin

and xmax, whereas umin, umax correspond to minimum
and maximum feasible cable forces. The bounds xmin,N ,
xmax,N of the terminal state xN are chosen to constrain
the linear and angular velocity of the cabin to small values.
This ensures that the motion can be stopped at the end of
the control horizon.

3.3 Implementation of the MPC controller

The Real Time Iteration (RTI) scheme (Diehl, 2001)
is a Sequential Quadratic Programming (SQP) scheme
that performs a single Newton iteration per sampling
interval. The rationale behind this is that it is better
to return an approximate solution as soon as possible,
than iterating until a high-accuracy solution is found
while the system is changing and the solution is getting
outdated. The RTI scheme is divided into a preparation
step (performing all tasks that can be performed before the
latest state estimate is available, such as model integration,
sensitivity generation and linearization of the objective
and constraints) and a feedback step (comprising initial
value embedding and Quadratic Program (QP) solution).

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

10249

9836	 Mikhail Katliar et al. / IFAC PapersOnLine 50-1 (2017) 9833–9839

At each SQP iteration a QP is solved by a so called QP
solver algorithm. A variety of QP solvers with different
features exist; a good review can be found in Kouzoupis
et al. (2015). We initially considered qpOASES (Ferreau
et al., 2014), qpDUNES (Frasch et al., 2013), HPMPC (Frison
et al., 2014) and FORCES (Domahidi et al., 2012) as solvers
to be used in our MPC controller. These solvers are
tailored for MPC applications, have C interface and a
free license. However, we excluded FORCES because it
requires re-generating and re-compiling the code whenever
the horizon length is changed, which is not feasible within
our software architecture. We also could not use qpDUNES
because of software-related issues which we could not solve
even with the help of qpDUNES developers. Therefore, we
could select either qpOASES or HPMPC to be used by the
controller. The features of the two solvers are outlined
below.

qpOASES implements a general purpose Active Set (AS)
method, and it assumes the Hessian matrix to be dense.
Therefore, it is combined with a condensing algorithm,
that rewrites the large structured KKT matrix of the MPC
problem into a small dense one by removing the states from
the problem formulation. The implemented condensing
algorithm requires O(N3) flops. The Cholesky factoriza-
tion of the dense Hessian matrix requires 1

3 (Nnu)
3 flops,

and therefore in our implementation this approach scales
cubically with the horizon length N . We refer to the com-
bination of the implemented condensing algorithm and the
qpOASES algorithm as qpOASES+C. We perform condensing
during the feedback phase, therefore the feedback phase
time includes execution time of both condensing algorithm
and qpOASES.

HPMPC is a Mehrotra’s type Interior Point (IP) method tai-
lored to MPC problems. It employs a Riccati recursion to
efficiently factorize the KKT matrix of the unconstrained
MPC sub-problems in the computation of the search di-
rection. The Riccati recursion is the most computationally
expensive operation at each IP iteration, and it requires
O(N(nx + nu)

3) flops. It makes use of linear algebra
routines specially tailored to get high-performance also for
small matrices. Therefore, this approach scales linearly in
N and cubically in nx + nu.

Generally speaking, AS methods can be easily and effec-
tively warm started, but in case of a bad initial guess they
may require many iterations to converge. Conversely, IP
methods cannot exploit information about the solution
at the previous sampling time, but they are known to
generally converge in a rather small number of iterations
regardless of the problem instance. We compare the per-
formance of the two solvers in Sec. 4.

The CasADi framework (Andersson, 2013) was used to
generate C code for the ODEs (2), the output function
(6), and the corresponding sensitivities. The differential
equations (2) are integrated using one step of explicit 4-th
order Runge-Kutta method. The Runge-Kutta integrator
and the rest of the controller code was written in C++

and linked to qpOASES and HPMPC libraries. The reference
signal is externally provided to the controller at each
sampling time and is defined by a ny × (N + 1) matrix
[ŷ0, ŷ1, . . . , ŷN].

Sampling time T 50ms
Platform mass m 190 kg

Inertia tensor I

[
82.88 −6.42 1.33
−6.42 82.49 2.20
1.33 2.20 94.98

]
kgm2

For k = 0, 1, . . . , N :
xmin,k [r�min,k,−∞1×4,v�

min,k, ω
�
min,k]

�

xmax,k [r�max,k,∞1×4,v�
max,k, ω

�
max,k]

�

x̂k [0, 0, 2.5m, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]�

For k = 0, 1, . . . , N − 1:
rmin,k [−2,−2, 1]�m
rmax,k [2, 2, 4.]�m
vmin,k −[5, 5, 5]�ms−1

vmax,k [5, 5, 5]�ms−1

ωmin,k −[100, 100, 100]�◦ s−1

ωmax,k [100, 100, 100]�◦ s−1

umin,k [1, 1, 1, 1, 1, 1, 1, 1]�kN
umax,k [9, 9, 9, 9, 9, 9, 9, 9]�kN
ûk [5, 5, 5, 5, 5, 5, 5, 5]�kN
Wx,k 0.001 · 1nx

Terminal state bounds
vmin,N −[0.01, 0.01, 0.01]�ms−1

vmax,N [0.01, 0.01, 0.01]�ms−1

ωmin,N −[0.01, 0.01, 0.01]�rad s−1

ωmax,N [0.01, 0.01, 0.01]�rad s−1

Weighting matrices
WxN 0.001 · 1nx

Wy diag([1, 1, 1, 100, 100, 100])
Wu diag([0.01, 0.01, 0.01, 0.01, 0.01, 0.01])

Table 2. Parameters used in the simulation.

The parameter values used in the simulation are summa-
rized in Table 2. TheWy matrix is chosen to approximately
equalize the variance of specific force in m/s2 and angular
velocity in rad s−1. The reference state x̂k is the same
for all k = 0, 1, . . . , N and corresponds to the “neutral”
position of the cabin in the middle of the workspace and
with the upright orientation. The values ûk = û are chosen
to be equal for all k = 0, 1, . . . , N − 1 where û is set to
prefer cable force values in the middle of the range.

4. PERFORMANCE ASSESMENT

4.1 Tracking performance

The primary objective of the motion simulator is to
reproduce a desired reference inertial signal. As a measure
of the reference tracking performance, we use the root
mean square (RMS) of the following quantities:

ef = ‖f − f̂‖2 (specific force error),

eω = ‖ω − ω̂‖2 (angular velocity error),

ey = ‖y − ŷ‖Wy (total error).

(10)

At each time step the MPC controller needs the reference
signal ŷk, k = 0, 1, . . . , N . However, when a human
operator actively controls the simulated vehicle, the future
inertial signal is not known, because the driver control
action is uncertain. To predict the reference, different
strategies can be employed. Denoting the absolute time
at the beginning of each control cycle as t0, we consider
the two following extreme cases of reference prediction:

(1) The “constant” strategy sets ŷk = ŷtrue(t0) ∀k =
0 . . . N . It corresponds to the case when nothing is
known about the future behavior of ŷ(t).

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

10250

	 Mikhail Katliar et al. / IFAC PapersOnLine 50-1 (2017) 9833–9839	 9837

At each SQP iteration a QP is solved by a so called QP
solver algorithm. A variety of QP solvers with different
features exist; a good review can be found in Kouzoupis
et al. (2015). We initially considered qpOASES (Ferreau
et al., 2014), qpDUNES (Frasch et al., 2013), HPMPC (Frison
et al., 2014) and FORCES (Domahidi et al., 2012) as solvers
to be used in our MPC controller. These solvers are
tailored for MPC applications, have C interface and a
free license. However, we excluded FORCES because it
requires re-generating and re-compiling the code whenever
the horizon length is changed, which is not feasible within
our software architecture. We also could not use qpDUNES
because of software-related issues which we could not solve
even with the help of qpDUNES developers. Therefore, we
could select either qpOASES or HPMPC to be used by the
controller. The features of the two solvers are outlined
below.

qpOASES implements a general purpose Active Set (AS)
method, and it assumes the Hessian matrix to be dense.
Therefore, it is combined with a condensing algorithm,
that rewrites the large structured KKT matrix of the MPC
problem into a small dense one by removing the states from
the problem formulation. The implemented condensing
algorithm requires O(N3) flops. The Cholesky factoriza-
tion of the dense Hessian matrix requires 1

3 (Nnu)
3 flops,

and therefore in our implementation this approach scales
cubically with the horizon length N . We refer to the com-
bination of the implemented condensing algorithm and the
qpOASES algorithm as qpOASES+C. We perform condensing
during the feedback phase, therefore the feedback phase
time includes execution time of both condensing algorithm
and qpOASES.

HPMPC is a Mehrotra’s type Interior Point (IP) method tai-
lored to MPC problems. It employs a Riccati recursion to
efficiently factorize the KKT matrix of the unconstrained
MPC sub-problems in the computation of the search di-
rection. The Riccati recursion is the most computationally
expensive operation at each IP iteration, and it requires
O(N(nx + nu)

3) flops. It makes use of linear algebra
routines specially tailored to get high-performance also for
small matrices. Therefore, this approach scales linearly in
N and cubically in nx + nu.

Generally speaking, AS methods can be easily and effec-
tively warm started, but in case of a bad initial guess they
may require many iterations to converge. Conversely, IP
methods cannot exploit information about the solution
at the previous sampling time, but they are known to
generally converge in a rather small number of iterations
regardless of the problem instance. We compare the per-
formance of the two solvers in Sec. 4.

The CasADi framework (Andersson, 2013) was used to
generate C code for the ODEs (2), the output function
(6), and the corresponding sensitivities. The differential
equations (2) are integrated using one step of explicit 4-th
order Runge-Kutta method. The Runge-Kutta integrator
and the rest of the controller code was written in C++

and linked to qpOASES and HPMPC libraries. The reference
signal is externally provided to the controller at each
sampling time and is defined by a ny × (N + 1) matrix
[ŷ0, ŷ1, . . . , ŷN].

Sampling time T 50ms
Platform mass m 190 kg

Inertia tensor I

[
82.88 −6.42 1.33
−6.42 82.49 2.20
1.33 2.20 94.98

]
kgm2

For k = 0, 1, . . . , N :
xmin,k [r�min,k,−∞1×4,v�

min,k, ω
�
min,k]

�

xmax,k [r�max,k,∞1×4,v�
max,k, ω

�
max,k]

�

x̂k [0, 0, 2.5m, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]�

For k = 0, 1, . . . , N − 1:
rmin,k [−2,−2, 1]�m
rmax,k [2, 2, 4.]�m
vmin,k −[5, 5, 5]�ms−1

vmax,k [5, 5, 5]�ms−1

ωmin,k −[100, 100, 100]�◦ s−1

ωmax,k [100, 100, 100]�◦ s−1

umin,k [1, 1, 1, 1, 1, 1, 1, 1]�kN
umax,k [9, 9, 9, 9, 9, 9, 9, 9]�kN
ûk [5, 5, 5, 5, 5, 5, 5, 5]�kN
Wx,k 0.001 · 1nx

Terminal state bounds
vmin,N −[0.01, 0.01, 0.01]�ms−1

vmax,N [0.01, 0.01, 0.01]�ms−1

ωmin,N −[0.01, 0.01, 0.01]�rad s−1

ωmax,N [0.01, 0.01, 0.01]�rad s−1

Weighting matrices
WxN 0.001 · 1nx

Wy diag([1, 1, 1, 100, 100, 100])
Wu diag([0.01, 0.01, 0.01, 0.01, 0.01, 0.01])

Table 2. Parameters used in the simulation.

The parameter values used in the simulation are summa-
rized in Table 2. TheWy matrix is chosen to approximately
equalize the variance of specific force in m/s2 and angular
velocity in rad s−1. The reference state x̂k is the same
for all k = 0, 1, . . . , N and corresponds to the “neutral”
position of the cabin in the middle of the workspace and
with the upright orientation. The values ûk = û are chosen
to be equal for all k = 0, 1, . . . , N − 1 where û is set to
prefer cable force values in the middle of the range.

4. PERFORMANCE ASSESMENT

4.1 Tracking performance

The primary objective of the motion simulator is to
reproduce a desired reference inertial signal. As a measure
of the reference tracking performance, we use the root
mean square (RMS) of the following quantities:

ef = ‖f − f̂‖2 (specific force error),

eω = ‖ω − ω̂‖2 (angular velocity error),

ey = ‖y − ŷ‖Wy (total error).

(10)

At each time step the MPC controller needs the reference
signal ŷk, k = 0, 1, . . . , N . However, when a human
operator actively controls the simulated vehicle, the future
inertial signal is not known, because the driver control
action is uncertain. To predict the reference, different
strategies can be employed. Denoting the absolute time
at the beginning of each control cycle as t0, we consider
the two following extreme cases of reference prediction:

(1) The “constant” strategy sets ŷk = ŷtrue(t0) ∀k =
0 . . . N . It corresponds to the case when nothing is
known about the future behavior of ŷ(t).

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

10250

(2) The “oracle” strategy sets ŷk = ŷtrue(t0 + kT) ∀k =
0 . . . N when the future reference signal is exactly
known for t ∈ [t0, t0 +NT).

The “constant” strategy is the simplest to implement since
it does not require any knowledge about the driver and
vehicle behavior. On the other hand, the best tracking
performance can be achieved in the case when the future
inertial signal is known exactly, which occurs in practice
when the person is not controlling the simulated vehicle
and a pre-defined motion is played back. For the human-
in-the-loop scenario, a reasonable and practically possible
prediction strategy will result in a tracking performance
somewhere between these two extremes. Comparing the
two extreme cases gives us an idea of the upper bound
of the improvement that can be made by employing a
reference prediction strategy.

4.2 Computational performance

In MPC, the calculation of the control input must be
performed within a single time step. For horizon length
N , the MPC computation time Tmpc(N) is the sum of
RTI preparation phase time Tp(N) and RTI feedback
phase time Tf(N). In general, the computation time may
vary for different input data, depending on the algorithm.
Therefore, it is the maximum (across all possible input
data) computation time that limits realtime-feasibility of
any MPC implementation, which can be estimated as

maxTmpc(N) = maxTp(N) + maxTf(N) . (11)

In order to restrict maximum computation time, a limit
N iter can be set on the number Niter of interior-point
method iterations in HPMPC. The maximum MPC compu-
tation time for the HPMPC-based implementation can be
then estimated as

maxTmpc(N) = maxTp(N) +N iter maxTiter(N) , (12)

where Titer(N) is the time of one interior-point method
iteration in HPMPC.

4.3 Method and dataset

To assess reference tracking performance and computa-
tional effort of the MPC controller, we perform simu-
lations on a set of 12 reference inertial signals, corre-
sponding to typical car and helicopter maneuvers. Most
of the reference signals were recorded in real vehicles
using the VIASync recorder (Venrooij, 2014), which pro-
vides a synchronized recording of visual, inertial and au-
ditory signals onboard a vehicle. We also include 5 ref-
erence signals from car maneuvers generated with the
software CarSim (Mechanical Simulation, US). The to-
tal time of the maneuvers amounts to 277 s for car and
242 s for helicopter. The bandwith of the inertial signals
in the dataset is 10Hz. The dataset is available online
at https://owncloud.tuebingen.mpg.de/public.php?
service=files&t=d81e0425fe350835daa4a92782c5ee24.

The simulation is performed using the Simulink model
shown in Fig. 2. The Controller block wraps the im-
plementation described in Sec. 3.3 in a Simulink C++ S-
function. The cable forces calculated by the Controller
are sent to the CableRobot block, which implements the
state-space model (2) and calculates the output signal (6).

[1x13]

reference

state

input	cable	force

external	force

external	torque

state

output

cable	force

cable	length

CableRobot

1

reference

output

1

output

2

control

input

3

state

ref	state

ref	output

state

input

state	plan

input	plan

CPU	time

num	iter

Controller

4

CPU	time

5

num	iter

Fig. 2. The core part of the Simulink block diagram used
in the simulation.

The state of the plant is sent back to the Controller
block, which closes the control loop. Time measurement
of RTI phases is implemented inside the Controller S-
function using the Linux clock gettime() function which
can provide thread-specific CPU-time clock.

The simulation is run on an Intel Xeon CPU @2.67GHz
for each combination of reference trajectory, reference gen-
eration strategy, and QP solver. Horizon lengths N =
2 . . . 60 are used with HPMPC and N = 2 . . . 30 with
qpOASES+C. In order to evaluate reference tracking per-
formance, the RMS of the quantities defined in (10) is
computed, aggregated across all reference trajectories.

For computational performance evaluation, the RTI prepa-
ration time and feedback time are recorded at every time
step for each simulation run. For HPMPC, the number of
iterations is also recorded. In order to achieve a reliable
time measurement, every simulation is repeated 5 times,
and the minimum value of CPU time at every iteration is
computed between all repetitions. Afterwards, the maxi-
mum and average RTI preparation and feedback time, and
the maximum and average number of HPMPC interior point
method iterations are computed by aggregating the data
across all reference trajectories.

5. RESULTS

5.1 Tracking performance

Fig. 3 shows how reference tracking performance depends
on the horizon length N for the two reference generation
strategies and solvers. The QP solutions calculated by the
two solvers are almost identical, therefore the tracking
performance is identical too. For both reference generation
strategies, the specific force RMS error drops rapidly for
N < 40, and for N > 40 it remains almost constant. For
long horizons, the “oracle” strategy gives an improvement
of a factor of 1.5 in specific force tracking compared to the
“constant” strategy. The angular velocity error exhibits a
different behavior. For the “constant” strategy, it grows
monotonically after N = 3, while for the “oracle” strategy
it first grows, reaches its maximum at N = 19 and
decreases afterwards.

The total tracking error for the “constant” strategy con-
verges after N = 20. For the “oracle” strategy, it keeps
decreasing slowly. The “oracle” strategy gives an improve-
ment in total RMS of a factor 1.1 at N = 20 and factor 1.3
at N = 60. This gives the upper bound of the improvement
that can be achieved by using any reference prediction
strategy compared to the “constant” strategy for this
specific motion simulator and dataset.

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

10251

9838	 Mikhail Katliar et al. / IFAC PapersOnLine 50-1 (2017) 9833–9839

0 10 20 30 40 50 60
0

1

2

3

4

R
M
S
(e

f
)
in

m
/
s2 constant, qpOASES+C

oracle, qpOASES+C
constant, HPMPC
oracle, HPMPC

0 10 20 30 40 50 60
0

0.05

0.1

0.15

R
M
S
(e

ω
)
in

ra
d
/
s

0 10 20 30 40 50 60
0

1

2

3

4

N

R
M
S
(e

y
)

Fig. 3. RMS of error in specific force (ef), error in angular
velocity (eω), and total error (ey) for the two reference
generation strategies and two QP solvers depending
on horizon length N .

5.2 Computational performance

The CPU time data are presented in Fig. 4. The maxi-
mum preparation time increases linearly with N , at a rate
of ≈ 0.05ms per time step. The feedback time of the
qpOASES+C implementation is less than that of HPMPC for
N ≤ 5, equal for N = 5, and larger (and growing quickly)
for N > 5, as expected from an algorithm with O(N3)
complexity. The average feedback time of the HPMPC imple-
mentation grows linearly with N , and the corresponding
maximum feedback time has a peaked pattern with a linear
trend of ≈ 0.4ms per time step.

Fig. 6 shows the average and the maximum number of
interior-point method iterations per time step performed
by the HPMPC solver. While the average number of it-
erations stays around 8 for the entire range of N , the
maximum number of iterations changes irregularly with N
between 12 and 70. The peaks in Fig. 4 correspond to the
peaks the in number of interior-point method iterations in
Fig. 6.

The upper bound of CPU time per MPC step, estimated
according to (12), is shown on Fig. 7. We see that for the
desired N = 40 it can be guaranteed that Tmpc ≤ T if
Niter is restricted to 50.

6. CONCLUSION

Our main finding is that even if the motion platform
actuation is included in the MPC model, which increases
computational demand, it is still possible to run an MPC-

0

1

2

3

T
p
in

m
s avg

max

0 10 20 30 40 50 60
0

20

40

N

T
f
in

m
s

avg, qpOASES+C
max, qpOASES+C
avg, HPMPC
max, HPMPC

Fig. 4. CPU time of preparation phase Tp and feedback
phase Tf depending on horizon length N .

2 3 4 5 6 7 8
0

1

2

N

T
f
in

m
s

avg, qpOASES+C
max, qpOASES+C
avg, HPMPC
max, HPMPC

Fig. 5. CPU time of feedback phase (close-up).

0 10 20 30 40 50 60
0

20

40

60

80

100

N

N
it
e
r

avg, constant
max, constant
avg, oracle
max, oracle

Fig. 6. Number of HPMPC interior-point method iterations.

based MCA in real-time with the use of proper software
and numerical methods.

In order to achieve a good reference tracking performance
with our MPC controller, the horizon length needs to be
N ≥ 20, or ≥ 1 s in terms of time. The feedback time
is ≈ 10 times bigger than the preparation time, therefore

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

10252

	 Mikhail Katliar et al. / IFAC PapersOnLine 50-1 (2017) 9833–9839	 9839

0 10 20 30 40 50 60
0

1

2

3

4

R
M
S
(e

f
)
in

m
/
s2 constant, qpOASES+C

oracle, qpOASES+C
constant, HPMPC
oracle, HPMPC

0 10 20 30 40 50 60
0

0.05

0.1

0.15

R
M
S
(e

ω
)
in

ra
d
/
s

0 10 20 30 40 50 60
0

1

2

3

4

N

R
M
S
(e

y
)

Fig. 3. RMS of error in specific force (ef), error in angular
velocity (eω), and total error (ey) for the two reference
generation strategies and two QP solvers depending
on horizon length N .

5.2 Computational performance

The CPU time data are presented in Fig. 4. The maxi-
mum preparation time increases linearly with N , at a rate
of ≈ 0.05ms per time step. The feedback time of the
qpOASES+C implementation is less than that of HPMPC for
N ≤ 5, equal for N = 5, and larger (and growing quickly)
for N > 5, as expected from an algorithm with O(N3)
complexity. The average feedback time of the HPMPC imple-
mentation grows linearly with N , and the corresponding
maximum feedback time has a peaked pattern with a linear
trend of ≈ 0.4ms per time step.

Fig. 6 shows the average and the maximum number of
interior-point method iterations per time step performed
by the HPMPC solver. While the average number of it-
erations stays around 8 for the entire range of N , the
maximum number of iterations changes irregularly with N
between 12 and 70. The peaks in Fig. 4 correspond to the
peaks the in number of interior-point method iterations in
Fig. 6.

The upper bound of CPU time per MPC step, estimated
according to (12), is shown on Fig. 7. We see that for the
desired N = 40 it can be guaranteed that Tmpc ≤ T if
Niter is restricted to 50.

6. CONCLUSION

Our main finding is that even if the motion platform
actuation is included in the MPC model, which increases
computational demand, it is still possible to run an MPC-

0

1

2

3

T
p
in

m
s avg

max

0 10 20 30 40 50 60
0

20

40

N

T
f
in

m
s

avg, qpOASES+C
max, qpOASES+C
avg, HPMPC
max, HPMPC

Fig. 4. CPU time of preparation phase Tp and feedback
phase Tf depending on horizon length N .

2 3 4 5 6 7 8
0

1

2

N

T
f
in

m
s

avg, qpOASES+C
max, qpOASES+C
avg, HPMPC
max, HPMPC

Fig. 5. CPU time of feedback phase (close-up).

0 10 20 30 40 50 60
0

20

40

60

80

100

N

N
it
e
r

avg, constant
max, constant
avg, oracle
max, oracle

Fig. 6. Number of HPMPC interior-point method iterations.

based MCA in real-time with the use of proper software
and numerical methods.

In order to achieve a good reference tracking performance
with our MPC controller, the horizon length needs to be
N ≥ 20, or ≥ 1 s in terms of time. The feedback time
is ≈ 10 times bigger than the preparation time, therefore

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

10252

0 10 20 30 40 50 60
0

20

40

60

80

100

N

T
m
p
c
,
[m

s]

N iter = 10

N iter = 30

N iter = 50

N iter = 70

Fig. 7. Max CPU time per MPC step with limited number
of interior-point method iterations.

the computational performance is mostly determined by
the QP solver. For N > 5, HPMPC is preferred over
qpOASES+C. In order to keep computation time Tmpc below
the sampling time T , the number of HPMPC interior-point
method iterations must be restricted to 50.

Increasing the horizon length beyond N = 40 does not
change the tracking performance for the “constant” refer-
ence generation strategy. Employing a reference prediction
algorithm can reduce the reference tracking error by a
factor of 1.1 to 1.3. The improvement is higher for longer
horizons.

The final goal is to implement the MPC controller on
the real motion simulator. As an intermediate step, the
controller will first be tested on a scaled down version of
the simulator.

ACKNOWLEDGEMENTS

This research was supported by the EU via ERC-
HIGHWIND (259 166), ITN-TEMPO (607 957), and ITN-
AWESCO (642 682) and by DFG in context of the Re-
search Unit FOR 2401.

REFERENCES

Andersson, J. (2013). A General-Purpose Software Frame-
work for Dynamic Optimization. PhD thesis, Aren-
berg Doctoral School, KU Leuven, Department of Elec-
trical Engineering (ESAT/SCD) and Optimization in
Engineering Center, Kasteelpark Arenberg 10, 3001-
Heverlee, Belgium.

Beghi, A., Bruschetta, M., and Maran, F. (2012). A
real time implementation of MPC based Motion Cueing
strategy for driving simulators. In Proceedings of the
IEEE Conference on Decision and Control, 6340–6345.
doi:10.1109/CDC.2012.6426119.

Dagdelen, M., Reymond, G., Kemeny, A., Bordier, M.,
and Mäızi, N. (2009). Model-based predictive motion
cueing strategy for vehicle driving simulators. Control
Engineering Practice, 17(9), 995–1003. doi:10.1016/j.
conengprac.2009.03.002.

Diehl, M. (2001). Real-Time Optimization for Large
Scale Nonlinear Processes. Ph.D. thesis, Universität
Heidelberg.

Domahidi, A., Zgraggen, A., Zeilinger, M., Morari, M., and
Jones, C. (2012). Efficient interior point methods for
multistage problems arising in receding horizon control.

In IEEE Conference on Decision and Control (CDC),
668 – 674. Maui, HI, USA.

Fang, Z. and Kemeny, A. (2012). Explicit MPC motion
cueing algorithm for real-time driving simulator. In
Conference Proceedings - 2012 IEEE 7th International
Power Electronics and Motion Control Conference -
ECCE Asia, IPEMC 2012, volume 2, 874–878. doi:
10.1109/IPEMC.2012.6258965.

Ferreau, H., Kirches, C., Potschka, A., Bock, H., and Diehl,
M. (2014). qpOASES: A parametric active-set algorithm
for quadratic programming. Mathematical Programming
Computation, 6(4), 327–363.

Frasch, J.V., Sager, S., and Diehl, M. (2013). A Paral-
lel Quadratic Programming Method for Dynamic Opti-
mization Problems. Mathematical Programming Com-
putation. (submitted).

Frison, G., Sørensen, H.B., Dammann, B., and Jørgensen,
J.B. (2014). High-performance small-scale solvers for
linear model predictive control. In Control Conference
(ECC), 2014 European, 128–133. IEEE.

Garrett, N.J.I. and Best, M.C. (2010). Driving simulator
motion cueing algorithmsa survey of the state of the art.
In Proceedings of the 10th International Symposium on
Advanced Vehicle Control (AVEC), 183–188.

Katliar, M., de Winkel, K.N., Venrooij, J., Pretto, P., and
Bülthoff, H.H. (2015). Impact of MPC Prediction Hori-
zon on Motion Cueing Fidelity. In Driving Simulation
Conference & Exhibition 2015, 219–222.

Kouzoupis, D., Zanelli, A., Peyrl, H., and Ferreau, H.J.
(2015). Towards proper assessment of QP algorithms
for embedded model predictive control. In Proceedings
of the European Control Conference (ECC).

Miermeister, P., Lächele, M., Boss, R., Masone, C.,
Schenk, C., Tesch, J., Kerger, M., Teufel, H., Pott, A.,
and Bülthoff, H.H. (2016). The cablerobot simulator
large scale motion platform based on cable robot tech-
nology. IROS.

Nahon, M.A., Reid, L.D., and Kirdeikis, J. (1992). Adap-
tive simulator motion software with supervisory control.
Journal of Guidance, Control, and Dynamics, 15(2),
376–383. doi:10.2514/3.20846.

Nahon, M.A. and Reid, L.D. (1990). Simulator motion-
drive algorithms - A designer’s perspective. Journal of
Guidance, Control, and Dynamics, 13(2), 356–362. doi:
10.2514/3.20557.

Rawlings, J. and Mayne, D. (2009). Model Predictive
Control: Theory and Design. Nob Hill Pub.

Schmidt, S.F. and Conrad, B. (1970). Motion drive signals
for piloted flight simulators. Technical Report NASA-
CR-1601, NASA, Washington, United States.

Sivan, R., Ish-Shalom, J., and Huang, J. (1982). An
Optimal Control Approach to the Design of Moving
Flight Simulators. IEEE Transactions on Systems, Man
and Cybernetics, 12(6), 818–827. doi:10.1109/TSMC.
1982.4308915.

Telban, R.J. and Cardullo, F. (2005). Motion cueing algo-
rithm development: Human-centered linear and nonlin-
ear approaches. NASA TechReport, (May), CR–2005–
213747.

Venrooij, J. (2014). VIA-Sync: A novel vehicle motion
recording platform for synchronised visuo-inertial play-
back. In Vehicle Dynamics Conference 2014.

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

10253

