

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 01, 2019

Patmos: a time-predictable microprocessor

Schoeberl, Martin; Puffitsch, Wolfgang; Hepp, Stefan; Huber, Benedikt; Prokesch, Daniel

Published in:
Real-Time Systems

Link to article, DOI:
10.1007/s11241-018-9300-4

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Schoeberl, M., Puffitsch, W., Hepp, S., Huber, B., & Prokesch, D. (2018). Patmos: a time-predictable
microprocessor. Real-Time Systems, 54(2), 1-35. DOI: 10.1007/s11241-018-9300-4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/154333750?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/s11241-018-9300-4
http://orbit.dtu.dk/en/publications/patmos-a-timepredictable-microprocessor(196ffdfb-27af-4452-8e56-ed46a1015e37).html

Noname manuscript No.
(will be inserted by the editor)

Patmos: A Time-predictable Microprocessor

Martin Schoeberl · Wolfgang Puffitsch ·
Stefan Hepp · Benedikt Huber · Daniel
Prokesch

Received: date / Accepted: date

Abstract Current processors provide high average-case performance, as they
are optimized for general purpose computing. However, those optimizations
often lead to a high worst-case execution time (WCET). WCET analysis tools
model the architectural features that increase average-case performance. To
keep analysis complexity manageable, those models need to abstract from
implementation details. This abstraction further increases the WCET bound.

This paper presents a way out of this dilemma: a processor designed for
real-time systems. We design and optimize a processor, called Patmos, for low
WCET bounds rather than for high average-case performance. Patmos is a
dual-issue, statically scheduled RISC processor. A method cache serves as the
cache for the instructions and a split cache organization simplifies the WCET
analysis of the data cache. To fill the dual-issue pipeline with enough useful
instructions, Patmos relies on a customized compiler. The compiler also plays a
central role in optimizing the application for the WCET instead of average-case
performance.

Keywords Real-time systems · Time-predictable architecture · Worst-case
execution time

1 Introduction

Analyzing the timing properties of an application is of major importance for
real-time systems. Only a time-predictable platform can enable the computation
of safe yet tight bounds on the worst-case execution time (WCET). Therefore,
real-time systems need time-predictable processors.

Martin Schoeberl
Department of Applied Mathematics and Computer Science
Technical University of Denmark
E-mail: masca@dtu.dk

2 Martin Schoeberl et al.

This paper presents a time-predictable processor, Patmos, which is opti-
mized for real-time systems. Its design enables the computation of tight WCET
bounds, while at the same time providing good performance. First concepts of
Patmos have been presented in prior work [62].

The contributions of this paper and the Patmos project in general are:

1. The design and implementation of a time-predictable processor
2. A compiler supporting the processor
3. A WCET analysis tool for Patmos
4. The evaluation of the performance and size of Patmos

Processors for future embedded systems need to be time-predictable and
provide reasonable worst-case performance. We present the time-predictable
processor Patmos, which simplifies the usually complex WCET analysis. Patmos
is a statically scheduled, dual-issue RISC processor that is optimized for real-
time systems. Instruction delays are well defined and visible through the
instruction set architecture (ISA). This design simplifies the WCET analysis
and helps to reduce the overestimation caused by imprecise information.

The dual-issue pipeline, with specially designed caches, provides good
single-thread performance. The chip-multicore version of Patmos provides a
time-predictable execution platform for multi-threaded applications.

A major challenge for the WCET analysis is the memory hierarchy with
multiple levels of caches. We tackle this issue through caches especially designed
for WCET analysis. For instructions, we adopt the method cache [51], which
operates on entire functions/methods and thus simplifies the modeling for
WCET analysis. Furthermore, we propose a split cache architecture for data [53,
60], offering dedicated caches for the stack [1] and for other data. Patmos also
supports scratchpad memories for instructions and data.

In addition to the hardware implementation of Patmos, we also present a
compiler for the development of real-time applications. As Patmos is designed
to facilitate WCET analysis, its internal operation is thus well defined in
terms of timing behavior and explicitly made visible on the ISA level. Features
that are hard to predict are avoided, instead replaced by more predictable
alternatives, some of which rely on the (low-level) programmer or compiler for
achieving optimal results, i.e., low actual WCET and good WCET bounds.
We provide a WCET-aware software development environment that tightly
integrates WCET tools and the compiler [48,9].

The processor and its software environment are intended as a platform for
exploring various time-predictable design trade-offs and their interaction with
WCET analysis techniques and WCET-aware compilation. We propose the
co-design of time-predictable processor features with the WCET analysis tool,
like the work by Huber et al. [27] on the caching of heap-allocated objects in
a Java processor. Only features for which we can provide a static program
analysis will be added to the processor.

Patmos: A Time-predictable Microprocessor 3

Patmos and its tool chain are open source; the hardware implementation is
available under the BSD license.1 Detailed descriptions of the instruction set
and the build process are available in the Patmos handbook [57].

The presented processor is named after the Greek island Patmos, where the
first sketches of the architecture have been drawn; not in sand, but in a (paper)
notebook. If you use the open-source design of Patmos for further research, we
would suggest that you visit and enjoy the island Patmos. Consider writing a
postcard from there to the authors of this paper.

This paper is organized in 8 sections: The following section, Section 2,
presents related work. Section 3 provides background information on the T-
CREST project, where Patmos is the processing node for a multicore processor.
Section 4 presents the design of Patmos. Section 5 describes our adaption
of the LLVM compiler for Patmos and the integration with WCET analysis.
Section 6 presents the concrete implementation of Patmos in an FPGA. Section 7
evaluates the design. Section 8 concludes.

2 Related Work

Digital hardware is in principle perfectly predictable: with the same hardware
start state and the same input data, two runs of a program will result in
the same result and execution time. However, the unknown initial hardware
state makes WCET analysis for modern processors very difficult. To solve
this problem, several research groups have started to investigate predictable
processors and memory hierarchies.

Thiele and Wilhelm argue that a new research discipline is needed for
time-predictable embedded systems [66]. Edwards and Lee state: “It is time
for a new era of processors whose temporal behavior is as easily controlled as
their logical function” [14]. In line with these arguments, we consider Patmos
a design that implements a time-predictable processor.

The focus of the precision timed (PRET) machine [14] is primarily on
repeatable timing. However, repeatable timing with predictable programming
can also lead to time predictability. A deadline instruction can be used for
enforcing the repeatable timing of a task. A first simulation of the PRET
architecture is presented by Lickly et al. [35]. The first hardware implementation
of PRET implements the ARM instruction set [38,37]. PRET implements a
RISC pipeline and performs chip-level multithreading for four threads to
eliminate data forwarding and branch prediction [39]. Scratchpad memories
are used instead of instruction and data caches. The shared main memory
is accessed via a time-division multiplexing (TDM) scheme, called “memory
wheel.”

PRET [13] ensures time-predictable access to SDRAM by assigning each
thread a dedicated bank in the memory chips. The access to the individual
banks is pipelined, and the access time is fixed. As the memory banks are not

1 see: https://github.com/t-crest/patmos

https://github.com/t-crest/patmos

4 Martin Schoeberl et al.

shared between threads, thread communication must be performed via the
shared scratchpad memory.

A recent version of PRET, FlexPRET [73], extends PRET to support mixed-
criticality systems. FlexPRET supports two different thread types, hard and
soft real-time threads, directly in the hardware. Both thread types have fixed
slots assigned in the fine-grained thread scheduling. However, slots not used by
a thread (e.g., because of stalling or because a thread has finished its current
release) can be used by the soft real-time threads. FlexPRET implements the
RISC V instruction set.

In contrast to the PRET approach, we use a dual-issue pipeline for maxi-
mum single-thread performance. For multi-threaded applications, we provide a
multicore version of Patmos.

Within the FP-7 project MERASA (Multi-Core Execution of Hard Real-
Time Applications Supporting Analysability) [67], the real-time processor
CarCore [42] was developed. CarCore is a simultaneous multi-threading version
of the TriCore processor. The CarCore is a two-way, five-stage pipeline with
separate address and data paths. This architecture allows that the fetch stage
issues an address-related instruction (load/store) and an integer instruction
within one cycle. CarCore supports a single hard real-time thread to be executed
with several non-real-time threads running concurrently in the background.
The real-time thread uses a dynamic instruction scratchpad [41] that caches
full functions. This approach is like the method cache [51] used in JOP [52] and
in Patmos. Stack-allocated data is stored in a data scratchpad memory. The
non-real-time threads are served by conventional instruction and data caches.

We share the same vision as the MERASA project: building hardware to
support real-time systems and WCET analysis. In contrast to the MERASA
processor core, Patmos focuses on single-thread real-time performance. To
benefit from thread-level parallelism, we replicate the simple pipeline to build
a chip-multiprocessor system. For time-predictable multi-threading, almost
all resources (e.g., thread-local caches and register files) need duplication.
Therefore, we believe that a multicore system is more efficient than simultaneous
multi-threading.

The SPEAR (Scalable Processor for Embedded Applications in Real-time
Environments) processor was designed to be time-predictable. SPEAR avoids
caches and has a constant execution time for each instruction [12]. SPEAR
supports single-path programming with a conditional move. In contrast to
SPEAR, Patmos contains time-predictable caches and supports single-path
programming with a fully predicated instruction set.

The JOP project explored time-predictable architectures within the context
of a Java processor [52]. The pipeline and the microcode have been designed
to avoid timing dependencies between bytecode instructions. JOP uses split
load instructions to partially hide memory latencies. Caches are designed to be
time-predictable and analyzable [51,53,61,27,60]. With Patmos we build on
our experience with JOP and implemented a similar, but more general, cache
structure.

Patmos: A Time-predictable Microprocessor 5

The FP-7 project JEOPARD (Java Environment for Parallel Realtime De-
velopment) investigated architectures and tools for real-time Java on multicore
systems. Within the hardware architecture work package, JOP was extended
to support time-predictable execution of Java applications on a multicore.
The TDM-based memory access arbitration [43] was incorporated into JOP’s
WCET analysis tool. For Patmos we extended the idea of TDM-based memory
arbitration to a distributed TDM memory arbiter [59].

Whitham argues that the execution time of a basic block must be indepen-
dent of the execution history [68]. To reduce the WCET, Whitham proposes
implementing the time critical functions in microcode on a reconfigurable
function unit. Whitham and Audsley extend the MCGREP architecture with
a trace scratchpad [69], which caches microcode and is placed after the decode
stage. A software tool extracts instruction-level parallelism at the microcode
level and schedules the instructions statically.

Starke, Carminati, and Oliveira present a VLIW processor for real-time
systems [65,64]. The processor implements a four-issue pipeline, supports static
branch prediction, and predication. For the memory hierarchy, the processor
uses a direct mapped instruction cache and a scratchpad memory for data.
The processor has been implemented in a Cyclone IV FPGA, consumes 21,220
logic cells and can be clocked at 93 MHz. The processor is in the same spirit
as the Patmos approach by being designed for real-time system using a simple
pipeline, but supporting multiple instruction issue.

Falk et al. [15,16] developed the WCET-driven compiler WCC, guided by
the results of the aiT WCET analysis tool [22] WCC optimizes the worst-case
path. With our LLVM-based compiler, we also have a tight integration with
the aiT WCET analysis tool.

General suggestions for future architectures of memory hierarchies are given
by Wilhelm et al. [71]. A collection of features for time-predictable systems
starting from the hardware, suggesting synchronous programming languages,
and presenting WCET-aware compilation are presented by Axer et al. [5].

A WCET-predictable super-scalar processor that includes a mechanism
to avoid long timing effects is proposed by Rochange and Sainrat [50]. Their
idea is to restrict the fetch stage to fetch multiple instructions only from the
same basic block. For the detection of basic blocks in the hardware, additional
compiler-inserted branches or special instructions are suggested.

3 T-CREST: Time-predictable Multicore Architecture for
Embedded Systems

The processor Patmos we present in this paper is one component in the T-
CREST2 project [56], funded by the European Commission. Its goal is to
develop a time-predictable multicore processor. The project aims at developing
time-predictable solutions for a processor core, the on-chip interconnect, the

2 see http://www.t-crest.org/

http://www.t-crest.org/

6 Martin Schoeberl et al.

NI NI

R

NI

R

Memory
Tree

Memory
Controller

SDRAM
Memory

R

Patmos
Processor

Patmos
Processor

Patmos
Processor

Fig. 1 The T-CREST platform consisting of Patmos processor nodes that are connected
via a NoC for message passing and a memory tree for shared memory access.

memory hierarchy, and the compiler and WCET analysis. This section provides
background information on T-CREST and gives an overview of the vision of
the T-CREST project.

The T-CREST approach is to design computer architectures where pre-
dictable timing is a first-order design factor [55]. For real-time systems, we
thus propose to design architectures with a new paradigm [54]:

Make the worst-case fast and the whole system easy to analyze.

Time-predictable caching and time-predictable chip-multiprocessing provide
a solution for the increased processing power needs in the real-time domain.
T-CREST covers technologies at different levels: (1) the chip level design
(processor, memory, asynchronous network-on-chip), (2) compiler technologies
with WCET optimization and single-path code generation, (3) WCET analysis
tools, and (4) system evaluation. For the system evaluation, T-CREST includes
a port of a real-time operating system and two industry use cases, one from
the avionics domain and one from the railway domain.

Figure 1 shows the T-CREST platform. Several Patmos processors are
connected via a memory tree [19] to a real-time memory controller [2,33,20].
The memory controller is connected to an external SDRAM memory. Therefore,
main memory is shared between processor cores. For efficient core-to-core
communication, each processor is connected to a time-predictable network-on-
chip (NoC) [58]. A Patmos processor is connected to a network interface (NI).

Patmos: A Time-predictable Microprocessor 7

Each NI is itself connected to a router (R). The routers are connected to their
neighbor routers. These on-chip communication channels reduce the pressure
on the shared memory bandwidth.

Most of the T-CREST hardware is open-source under the industry-friendly
simplified BSD license. The build instructions for the whole platform can be
found at https://github.com/t-crest/patmos and in more detail in the
Patmos handbook [57].

3.1 The Interconnect

To build a chip-multiprocessor system out of Patmos processor cores, we
need a suitable interconnect—a network-on-chip (NoC). The Patmos multi-
processor platform includes distributed local memories that are connected to
each processor. The NoC supports time-predictable data movement between
these local memories.

To enable time-predictable usage of a shared resource, the resource arbitra-
tion must be time-predictable. For a NoC, statically scheduled time-division
multiplexing (TDM) is a time-predictable solution [58]. This static schedule
is repeated, and the length of the schedule is called the period. Like tasks
in real-time systems, the communication is also organized in periods. The T-
CREST NoC uses TDM from end to end, including the network interface. This
approach also results in an efficient implementation of the network interface [63].
The latest T-CREST NoC, which is called Argo, uses a globally asynchronous
locally synchronous hardware design with asynchronous routers [30].

3.2 Memory Hierarchy

Cache memories for instructions and data are classic examples of the paradigm
“make the common case fast.” A great deal of effort has gone into researching
the integration of the instruction cache into the timing analysis [4] and the
integration of the cache analysis with the pipeline analysis [21]. The influence
of different cache architectures on WCET analysis is described by Heckmann
et al. [23]. Within T-CREST we explore time-predictable caches for Patmos.
Furthermore, we also consider the integration of program- or compiler-managed
scratchpad memories (SPMs).

Even for embedded systems, the on-chip available memory is usually too
small to hold all code and data. Therefore, an off-chip SDRAM serves as a
shared main memory for the multicore processor. Access time to the SDRAM
depends on the history of former accesses (e.g., open rows). This optimization
improves the average case execution time—but not the WCET. Therefore, the
T-CREST team developed real-time memory controllers [2,33,20]. The cores
are connected to the memory controller through a memory tree, known as
the “Bluetree” [19]. The Bluetree communication tree is built out of two input
multiplexers with arbitration. A tree out of these two input circuits connects

https://github.com/t-crest/patmos

8 Martin Schoeberl et al.

all processors to a single memory controller. Arbitration is priority based, i.e.,
the left input has priority over the right input. That means processors have
different priorities towards the memory, depending on their position. To avoid
starvation, the left channel is only allowed an upper bound of requests before
the right channel is served. In effect, when the system is light loaded this tree
structure allows quick service and on heavy load there is an upper bound on
the waiting time till service. The Bluetree avoids unused slots as would emerge
on TDM arbitration when one processor has no outstanding memory request.

Even on a multicore system, the combination of the time-predictable memory
tree [19,59] and the time-predictable memory controller allows us to provide
upper bounds on memory transactions. This upper bound enables the WCET
analysis of individual tasks being executed on a multicore system.

3.3 Compiler and WCET Analysis

In addition to the hardware, the T-CREST team has developed a compiler
infrastructure. The compiler for Patmos is an adaption of the LLVM com-
piler infrastructure [48,26]. The time-predictable processor Patmos, with the
available timing model, allows the development of WCET-aware optimization
methods.

Within the project two WCET analysis tools that support Patmos have
been used. The commercial WCET analysis tool aiT [22] from AbsInt has
been adapted to support Patmos. The WCET-oriented optimization in the
compiler is tightly integrated with the WCET analysis tool [48], which provides
information on the worst-case path and basic block timings for guiding the
optimization process. Furthermore, a tool called platin has been developed.
The role of platin is twofold: (1) being the interface between the compiler
and the aiT tool and (2) providing a set of analyses and transformations for
WCET analysis itself.

3.4 Operating Systems for Patmos

Although not directly covered by the T-CREST project, three real-time operat-
ing systems (RTOS) have been ported to Patmos: (1) the Real-Time Executive
for Multiprocessor Systems (RTEMS), (2) the time-composable operating sys-
tem (TiCOS) [7], and (3) the research prototype of MOSSCA [31]. RTEMS
is an open source RTOS, popular in avionics.3 T-CREST with RTEMS has
been used for the T-CREST evaluated with an avionic use case [49]. TiCOS
is based on the open-source RTOS POK [11]. TiCOS and POK implement a
two-level partitioned scheduler and provide an API according to the ARINC653
standard. Ziccardi ported TiCOS to Patmos [72].4 MOSSCA is an operating
system for safety-critical applications on manycore processors. The port to

3 The port of RTEMS is available at https://github.com/t-crest/rtems.
4 TiCOS is available at https://github.com/t-crest/ospat.

https://github.com/t-crest/rtems
https://github.com/t-crest/ospat

Patmos: A Time-predictable Microprocessor 9

Patmos [32] explores the multicore version of Patmos and the usage of the
SPMs.

4 The Architecture of Patmos

Patmos is a 32-bit RISC-style microprocessor optimized for time-predictable
execution of real-time applications. To provide high performance for single-
threaded code, we chose a two-way parallel architecture. To save hardware
resources, Patmos is configurable as a two-way or single-way pipeline. For multi-
threaded code, we provide a chip-multiprocessor system with TDM arbitration
of the access to shared main memory.

Patmos is a statically scheduled, dual-issue RISC microprocessor. The
processor supports bundles that are 32 or 64 bits wide. All instruction delays
are explicitly visible at the ISA level. The compiler needs to respect the exposed
delays from the pipeline to generate correct code. Knowing all pipeline delays
and the conditions under which they occur simplifies the processor model
required for WCET analysis and helps to improve accuracy. Furthermore, no
instruction timing depends on either an operand value (e.g., a variable latency
multiplication) or the execution of an earlier instruction, as even all cache
misses are handled in the same pipeline stage. All instructions, except missing
in the cache, have a constant execution time. These properties greatly simplify
the computation of the WCET of basic blocks as there is no need to model the
pipeline and instruction dependencies.

The modeling of memory hierarchies with multiple levels of caches is critical
for practical WCET analysis. Patmos simplifies this task by offering caches
specifically designed for WCET analysis. Accesses to different data areas are
very different with respect to WCET analysis. Static data, constants, and stack-
allocated data can easily be tracked by static program analysis. In contrast,
heap-allocated data, to be analyzable, demands different caching techniques [27].
Therefore, Patmos contains two data caches, one for stack cache and one for
other data. As the data cache will then cache unpredictable accesses to heap
allocated data and to static data, we support cache bypassing load and store
instructions for unpredictable data accesses. The WCET analysis tool aiT
delivers the information on unpredictable data accesses back to the compiler.
On a second compile run this information is used to generate cache bypassing
load and store instructions. Furthermore, these instructions can also be used
manually by the programmer.

4.1 Fully Predicated Instruction Set

The instruction set for Patmos is a RISC-style load/store instruction set
that takes at most three register operands. However, in contrast to common
RISC architectures, all instructions are fully predicated. While control-flow
instructions and instructions that access memory can be executed only in

10 Martin Schoeberl et al.

the first pipeline, arithmetic and logic instructions can be executed in both
pipelines.

The first instruction of an instruction bundle contains a bit to encode the
length of the bundle (32 or 64 bits). Register addresses are at fixed positions
to allow reading the register file parallel to instruction decoding. The main
pressure on the instruction coding comes from the size of constant fields and
branch offsets. However, as we support fetching of up to two 32-bits words for
the dual-issue pipeline, we use this feature to support ALU operations with
32-bit constants. The constant is encoded in the second instruction slot. Doing
so enables the loading of 32-bit constants in a single cycle. Furthermore, most
ALU instructions can be performed with a 12-bit constant operand, saving
code space and leaving the second instruction slot free for other instructions.
Patmos implements conditional and unconditional branches with a 22-bit offset.
A register-indirect call instruction supports function calls to a 32-bit address.

To reduce the number of conditional branches and to support the single-path
programming paradigm [46,47], Patmos supports fully predicated instructions.
Predicates are set with compare instructions, which can also be predicated.
Patmos has 8 predicate registers.

Access to the different data areas (e.g., stack data) is explicitly encoded
with the load and store instructions. This feature helps the WCET analysis to
distinguish between the different data caches. Furthermore, which cache will
be accessed can be detected earlier in the pipeline.

4.2 Dual-Issue Pipeline

Patmos contains 5 pipeline stages: (1) instruction fetch, (2) decode and register
read, (3) execute, (4) memory access, and (5) register write-back. Figure 2
shows an overview of the Patmos pipeline.

The register file with 32 registers is shared between the two pipelines. Full
forwarding between the two pipelines is supported. The basic features are like
a standard RISC pipeline.

Figure 2 shows an overview of the Patmos pipeline. To simplify the diagram,
forwarding and external memory access data paths are omitted. We can identify
the program counter PC which delivers the fetch address for the method
cache (M$). The M$ delivers the instruction and is the fetch stage. The
instruction word(s) are stored in the instruction register (IR) for decoding in
Dec. Furthermore, the register address fields from the instruction are input to
the register file (RF). The RF is read in parallel with the instruction decoding.
Instruction decoding and RF reading are the decode stage. The values of the
register file and the instruction move to the next stage, the execution stage.
In the execution stage, up to two ALU operations are computed or a memory
address is computed. The next stage is the memory stage where a load or store
operation is performed. The memory stage contains the stack cache (S$), the
data cache (D$), and the scratchpad memory (SP). In the final stage, the write
back stage, a computed result or a loaded word is written back into the RF.

Patmos: A Time-predictable Microprocessor 11

 RF M$

IRPC

+

Dec

 S$

SP

 D$

 RF

+

Fig. 2 Dual issue pipeline of Patmos with fetch, decode, execute, memory, and write-back
stages.

Due to the dual-issue pipeline, the register file needs four read ports and
two write ports. Such a memory is not available in an FPGA. In the current
design, we implement the register file with FPGA registers and use multiplexers
for the read ports. If Patmos is configured with a single-issue pipeline, on-chip
memory is used for the register file.

As Patmos provides full forwarding from both pipelines, this forwarding
network consumes a lot of resources. If the full power of dual issue is not needed,
Patmos can be configured as a single-issue pipeline.

4.3 Local Memories

Patmos contains three caches (method, data, and stack cache) and two scratch-
pad memories (SPM) for data and instructions. All caches are configurable in
the size. To distinguish between the different caches, Patmos implements typed
load and store instructions. The type information is assigned by the compiler
(for the stack cache) or by the programmer (for the data SPM).

4.3.1 Boot ROM and Scratchpad Memories

Patmos contains on-chip ROMs for instructions and data and a small SPM
dedicated to bootstrapping, such that small applications and test cases do
not need to access external memory. For larger applications, the boot ROM
contains a boot loader that loads the application from a non-volatile memory
(or, during development, from a serial line) into the main memory.

Patmos also contains (optional) SPMs for instructions and data. When
code and/or data caching is under program control, these SPMs can be used in
addition to caches or instead of caches. The usage of SPM is under programmer
control. The multicore research operating system MOSSCA explored the usage
of SPMs under operating system control [32].

12 Martin Schoeberl et al.

4.3.2 Method Cache

Patmos contains a method cache that stores entire functions. The term “method
cache” applies because this form of caching was originally introduced for a
Java processor [51]. Caching entire functions means that functions may be
loaded on a call or on a return. All other instructions are guaranteed cache
hits. Our assumption is that those few possible miss points allow for an easier
and more precise WCET analysis. Further details of the method cache for
Patmos and its analysis appear in [10]. An average-case comparison between a
method cache and a direct mapped instruction cache shows that the winner
depends on the external memory properties [51]. With shorter latency and
lower bandwidth, a standard cache performs better. With longer latencies and
higher burst bandwidth, as found in modern SDRAM memories, a method
cache performs better as it benefits from the higher bandwidth.

The assumption of a method cache is that the cache is larger than all
individual functions in a program. However, this assumption cannot be guaran-
teed at the source code level. Furthermore, an optimizing compiler will inline
functions to avoid the call and return overhead, leading to even bigger functions.
To mitigate this issue, we have implemented a function splitting pass in the
compiler that splits overly large functions into smaller (sub)functions that fit
into the cache.

4.3.3 Stack Cache

For cache hit and miss classification, the address for the load or store instruction
needs to be known. Some addresses, e.g., access to static data and stack access,
are relatively easy to predict statically [29]. Addresses of heap-allocated data are
known only at runtime and are therefore not statically predictable. Moreover,
access to an unknown address destroys abstract information for one way in all
sets of a cache in the cache analysis. Therefore, we split the cache into two
caches: one for stack allocated data [1] and one for other data. Load and stores
for the different caches are different instructions.

However, it is also possible to dynamically allocate data on the stack and
furthermore pointers to stack allocated data can leak out of the function. In
both cases we use a second stack, called the shadow stack, and those data are
allocated on the shadow stack, which is cached by the standard data cache.

The stack cache [1] provides a window into the main memory address space.
To manipulate the stack cache, Patmos has three instructions: (1) reserve
reserves space in the stack cache, (2) free frees space on the stack cache, and
(3) ensure enforces data to be in the stack cache. Only the reserve and ensure
instructions may trigger a possible exchange with the main memory (spill
and fill). All load and store instructions into the stack area are guaranteed
hits. Stores into the stack area access only local memory; the write-back to
main memory occurs when a reserve instruction causes a spill. Which stack
manipulation instructions may lead to memory transactions can be statically

Patmos: A Time-predictable Microprocessor 13

predicted [29]. As stacks are usually shallow, even a small stack cache provides
good hit rates.

4.3.4 Data Cache

The current implementation of the data cache is a direct-mapped cache with
write-through and no allocation on a write. Write-through was chosen, because
WCET analysis tools do not track the state of a dirty bit in a write-back cache
and therefore assume that a cache miss also needs a write back of this cache
line. The design decision to use a write-through policy is yet another example of
how WCET analyzability influences the hardware design for a time-predictable
processor. For statically unknown load and store addresses, Patmos has load
and store instructions that bypass all caches.

To mitigate the performance effects of the write-through policy, we im-
plemented a small buffer that combines writes into bursts. Furthermore, the
Patmos compiler includes a pass that replaces unpredictable accesses to the
data cache with bypass load and store instructions.

Access to global (static) data should be easy predictable and a specialized
cache for static data would be beneficial. In Java bytecode access to static
data is performed with its own instructions, and we have implemented such a
cache for static data in the Java processor JOP [52]. However, to distinguish
between static and heap allocated data is not trivial in C. We consider providing
compiler support to classify load and store instructions to static data as future
work.

4.3.5 Miss Detection and Pipeline Stalling

The cache configuration of Patmos is unique with respect to miss detection: for
all three caches, misses are detected (and the pipeline stalled) in the memory
stage. This is normal for a data cache, but a standard instruction cache misses
in the fetch stage. However, the method cache performs miss detection just
on call and return. Therefore, these instructions can also stall in the memory
stage.

The consequences of a single stalling pipeline stage are twofold: (1) The
hardware implementation of stalling is simplified, and (2) cache analysis be-
comes simpler. As instructions that access memory are allowed only in the first
pipeline, only one such instruction can be in the memory stage at one time.
Therefore, no two instructions can trigger a cache miss in the same clock cycle
for two caches. This feature contributes to a timing-composable architecture.
Different caches can be analyzed independently and the results merged.

4.3.6 Interrupts and Exceptions

Patmos supports interrupts and exceptions with an exception unit that is
mapped into the IO space. The general principle of operation is that the
exception unit requests the execution of an exception from the pipeline, and the

14 Martin Schoeberl et al.

pipeline acknowledges when it starts the execution of the respective exception
handler.

The exception unit supports 32 exception vector entries, where exceptions
0 and 1 are reserved for the “illegal operation” and “illegal memory access”
faults. While exceptions 2 to 15 can be used freely (e.g., by the operating
system), exceptions 16 to 32 are attached to external interrupts, triggered by
I/O devices. The default configuration of Patmos contains a programmable
timer interrupt to support a real-time operating system, such as TiCOS ported
to Patmos [72].

Instructions that stall the pipeline (loads, stores, calls, etc.) delay the
triggering of interrupts until the pipeline resumes execution. Therefore, method
cache fills or stack spills cannot be interrupted. Control-flow instructions delay
the triggering of interrupts such that interrupts are never triggered inside a
delay slot or while executing instructions speculatively. Multiplications delay
the triggering of interrupts such that no multiplications are “in flight” when
an interrupt handler is entered.

The return information for an exception, which is the base address of the
method cache and the offset within the method cache (like a program counter),
are stored in two special registers. No other hardware state needs to be stored
by the processor on an interrupt. The interrupt handler must store and restore
registers that it needs.

4.4 Multicore Architecture

Several Patmos processors share the main memory via a memory arbiter. Three
versions of the arbiter are available: the Bluetree memory tree [19], a simple
pseudo round-robin memory arbiter, and a distributed TDM arbiter [59]. The
round-robin arbiter is a pseudo round-robin arbiter, as it does not perform the
arbitration decision in a single clock cycle. The combinational decision in a
single clock cycle does not scale to many cores. Instead, the arbiter sequentially
“polls” each core for access. Therefore, for each core that does not need access
to main memory, one clock cycle is “wasted.” However, with enough cores
the memory bandwidth is fully utilized, and all cores are basically memory
bounded.

For external memory, we have implemented two different memory controllers
for synchronous and asynchronous SRAMs and a time-predictable SDRAM
controller [33].

5 Compiling and Worst-Case Execution Time Analysis for Patmos

Exposing the micro-architecture at the ISA level and requiring the application
to manage local memories leads to a small and fast hardware design. It also
simplifies the WCET analysis, because changes to the hardware state can
be explicitly observed at the ISA level. The application code, and thus the

Patmos: A Time-predictable Microprocessor 15

compiler, must ensure the efficient use of the available resources. While the
compiler has a static view of the executed application, it also has a more
high-level view than the processor. Together with less stringent resource and
runtime requirements (as compilation is done at design time), the compiler can
thus use more powerful optimizations.

The compiler supports the WCET analysis by supplying meta-information
(about the program) that is available in the compiler but lost in the final binary
to the analysis. Examples of such meta-information are indirect branch targets
or possible addresses accessed by memory instructions. The compiler also uses
feedback from the WCET analysis for optimization. For example, memory
accesses—for which the value analysis of the WCET analyzer cannot determine
the accessed address—are replaced by accesses directly to the external memory,
so that such accesses do not introduce imprecision in the cache analysis.

5.1 Dual-Issue Support

The dual-issue architecture of Patmos requires the compiler to schedule in-
structions without hazards and to allocate instructions to the second pipeline.
In our compiler, we use a standard bottom-up instruction scheduler to perform
this task. Scheduling is performed after the insertion of register spill code and
function prologues and epilogues. To break false dependencies between instruc-
tions, the compiler can use register renaming during scheduling. Depending
on the number of instructions available for filling control flow delay slots, the
compiler issues either delayed or non-delayed control flow instruction variants.

Supporting both delayed and non-delayed control flow instruction variants
provides performance benefits in exchange for very little hardware cost. On
the one hand, a fully filled delay slot provides better performance than a
branch predictor can. On the other hand, even trivial “predict-not-taken” non-
delayed branching provides better performance than executing only No-Ops.
Our non-delayed branch instruction predicts non-taken, the simple version
of just continuing instruction fetching after the branch. Combining the two
variants provides better performance than either variant can alone. Compared
to supporting only delayed branches, our approach also reduces the code size
by suppressing No-Ops. The reduced code size, in turn, can reduce the method
cache misses, thereby improving performance.

The compiler uses the fully predicated ISA to perform “if-conversion,” i.e.,
the compiler converts small conditionally executed basic blocks into predicated
straight-line code to avoid the overhead of branches. Our compiler can also
eliminate all input-data dependent branches to generate single-path code.

5.2 Stack and Method Cache Support

The stack cache provides a fast way of storing temporary data without nec-
essarily writing the data back to global memory. The compiler automatically

16 Martin Schoeberl et al.

uses the stack cache for spilling registers and for stack-allocated data. Stack
cache management instructions are inserted in the prologue and epilogue of
functions, as well as after all call sites, to reserve and free stack frames in the
stack cache [1]. However, pointers to data allocated to the stack cache cannot
be passed to callees. Therefore, the compiler maintains a separate shadow stack
in global memory. The shadow stack is used for dynamically allocated stack
data and for data that can escape the function in which it is defined.

The method cache requires the compiler to split large functions into smaller
sub-functions that fit into the cache. The compiler contains a function splitter
pass that partitions functions into sub-functions of a predefined size. This
feature enables the processor to execute arbitrarily large functions. Furthermore,
when large functions are split into smaller sub-functions, the cache cost of
larger functions, where not all code is executed, is reduced.

5.3 Single-Path Code Generation

The execution time of a given piece of code is determined by two factors: the
sequence of actions along an execution path and the durations of these actions.
Sources of uncertainty in execution time stem from both the software and the
underlying hardware. Typically, different program inputs result in different
execution paths. The duration of the instructions on these paths depends on
the hardware state that has built up in the execution history.

The single-path approach removes the uncertainty on the software side.
The key idea is to eliminate all input-data dependent control flow alternatives,
and to construct a singleton execution path that is taken independent of
the program inputs [46,47]. The transformation is based on if-conversion [3],
which turns input-data dependent control-flow alternatives into a straight-line
sequence of predicated instructions.

The Patmos compiler can generate single-path code in an automated
way [44]. It implements the single-path code transformation in the backend and
operates on the control flow graph representation rather than on the source
code. A guard predicate is computed for each basic block based on control
dependences. The instructions of the basic blocks are then predicated with the
corresponding guard. The guards are defined at the branch conditions of the
original graph, and these defining instructions are predicated themselves. The
basic blocks are put into topological order, and the branch instructions are
removed.

This procedure is performed individually for each loop scope in the graph.
Therefore, the forward control-flow graph of the loop (the graph without back
edges) is considered. For loops with an input-data dependent iteration count,
a new loop counter is introduced. This counter forces the code to be executed
as many times as given by the local loop bound. The guards are defined in
such a way that they are false for these excess iterations. The composition
of the complete control-flow graph from the single-path loops is performed
in a recursive manner: Inner loops are treated like single basic blocks and

Patmos: A Time-predictable Microprocessor 17

assigned guards. The sketched transformation is general in that it can handle
unstructured code (e.g., by break and goto statements) if the control flow
graph is reducible [45]. The single-path transformation is applied on the level
of functions. By specifying an entry function (a single-path root), the selected
function itself and copies of all functions below in the call-graph are converted
to single-path code. This limits the single-path transformation to programs
without direct or indirect recursion. Note that recursion is discouraged or even
prohibited in most coding standards for safety-critical software (e.g., MISRA C,
DO178-B, ISO 26262-6).

The Patmos processor presents itself as a suitable target platform for single-
path code, not only because of its predictable, fully predicated pipeline and the
instructions for predicate register manipulation, but also because the timing-
composable architecture allows for easy analysis and enables the generation of
code with stable timing behavior.

Special instructions allow reading and writing a single bit within a 32-bit
register. Furthermore, predicate live ranges coincide with the nesting depth
of the control-flow graph. During successive loop iterations, the predicates of
the code outside the loop do not need to be accessed. Therefore, the compiler
allocates predicate registers within loop scopes. When a loop is entered, the
whole set of live predicate registers is stored such that the registers are available
for the predicates inside the loop. When the loop is left, the set is restored.
Patmos supports storing and restoring of the complete predicate register file at
once by making it accessible as a special register.

Obtaining the WCET for single-path code on Patmos is straightforward.
The latency of an instruction (except for pipeline stalls at memory accesses)
is independent of the value of its operands, its predicate operand. To obtain
the WCET, the memory access-related worst-case costs must be added to the
number of instructions on the singleton execution path.

In single-path code, function calls and the corresponding stack cache alloca-
tions are performed unconditionally. Thus, both the sequence of (sub-)functions
loaded into the method cache and the sequence of stack cache control operations
is invariant. The related worst-case latencies can be obtained by simulation
with a simple hardware model.

If a data cache is used, the memory access costs of a conventional data cache
analysis performed on the original (not single-path converted) control-flow
graph can be added. A more suitable alternative to the data cache would be
the usage of the data SPM, where single-cycle access costs are given once the
data is loaded to the local SPM, and the costs for memory write-through are
avoided. In this case, the costs for the (explicit) transfer of the data between
the local SPM and the global memory must be added.

The single-path approach is an orthogonal approach to code predictability.
The knowledge of one execution of a single-path task accurately predicts every
execution of the task. Tasks generated as single-path code exhibit a predictable
and stable timing behavior with little or no execution time jitter. This is a
stronger property than WCET predictability, and certainly, it comes at a higher
cost. Depending on the program structure, the overall length of the singleton

18 Martin Schoeberl et al.

execution path may be increased compared to any path through the original,
conventionally compiled program. The programmer specifies the tasks to be
generated as single-path code either by function attributes in the source code
or by passing the names of the functions to the compiler. Because of the cost,
they will only apply single-path code generation for tasks for which such a
predictable, stable timing behavior is desired.

5.4 Worst-Case Execution Time Analysis

Static WCET analysis has been an integral part of the Patmos toolchain
since its early developmental stages. In addition to precise WCET bounds, an
important goal was to reuse existing platform-independent program analyses,
to benefit from advances in the rapidly evolving static analysis field. To achieve
this goal, all information necessary for WCET analysis should be provided by
the compiler and by analysis tools that operate on the platform-independent
bitcode representation of LLVM. In this approach, a major challenge is the
transformation and combination of compiler and analysis information. The
platin tool that was developed for Patmos [48] performs these transformations
and combinations.

The platin tool supports the transformation of platform-independent flow
information to machine code, using an approach that ensures sound results [26].
Furthermore, it prepares relevant analysis information for external binary-level
WCET analysis tools, e.g., the well-known industrial tool aiT [22]. The platin
tool communicates with the compiler using PML (Platin Metainfo Language)
files, which contain all information (about the analyzed program) relevant
for WCET analysis. A distinguished feature of PML is that it allows to store
information about both the platform-independent intermediate representation
and the platform-dependent machine code.

Figure 3 illustrates the integration of the compiler, WCET analysis, and
external tools into our framework. The application code is translated into
bitcode and linked at this intermediate level by the compiler (patmos-clang).
At this point the compiler has a complete view of the application. The compiler
(patmos-llc) and linker (patmos-gold) produce the executable binary file and
additional produces a PML, which contains structural information and flow
information derived from bitcode analyses and program annotations. With
platin this information can be extended. For example, our toolchain supports
the external tool SWEET [36] to obtain more precise flow-information. To this
end, the bitcode is translated to ALF, the input format of SWEET. The tool
generates target-independent flow facts that are added to the PML file. platin
translates the available flow information to the machine code representation. A
set of exporters (e.g., platin-aiT and platin-otawa) exists, which output the
information to a format suitable as input to external WCET analysis tools,
like the aiT [22] or OTAWA [8].

Patmos: A Time-predictable Microprocessor 19

AIS Files

WCET

Binary-Level WCET Tools

FFX files

aiTWCET
Analysis otawaWCET

Analysis

WCET

Bitcode Analyses

Input for Program
Analysis Tools

(ALF)

Bitcode-Level
Flow Facts

SWEETFlow Analysis

PML-based tools

Low-Level Compiler

Sources

Application Code
 Flow Annotations System Libraries

Linked Bitcode

patmos-clang
LLVM

Machine-Code Representation

Binary File

Program Description (PML)

platin-aiT
platin-otawa

WCET

platin-wca

Frontend
IR-Level Linker

IR-Level Optimizer

patmos-llcBackend

patmos-goldLinkerplatin-transformTransform
Flow Facts

Fig. 3 The T-CREST approach to compilation and integration with WCET analysis.

Additionally, platin provides a WCET analysis tool on its own (platin-
wca), thereby taking advantage of three features that are characteristic for the
Patmos architecture:

First, our static analysis operates (almost) exclusively on information that
was provided by the compiler and platform-independent analyses. We therefore
avoid duplicating efforts of the compiler and do not need to model the semantics
of machine code in detail.

Second, the Patmos design ensures that the timing of hardware components
can be analyzed independently. This feature allows us to decouple different
cache analyses and the pipeline timing analysis, and to use global cache analyses
(e.g., persistence analyses) that avoid costly virtual loop-peeling.

Third, the Patmos design prevents the need for excessive context sensitivity
for hardware timing analysis. This feature avoids scalability problems and

20 Martin Schoeberl et al.

allows modular analyses. For example, stack accesses cached by a conventional
data cache do not pose a problem if the value of the stack pointer is known,
but they are unpredictable if full virtual inlining is intractable. In contrast, our
analysis of the stack cache [29] does not require full context sensitivity.

The platin tool, including the WCET analysis, is easy to adapt for different
research experiments, and is deployed as part of the open-source Patmos
compiler.

6 Implementation

A software simulator of the architecture is the first, important step for ex-
ploring ideas and for serving as a reference design for the compiler and the
hardware design. Therefore, we provide a software simulator and a hardware
implementation of Patmos.

6.1 Simulator

At the start of the development of Patmos, we developed a cycle-accurate
software simulator. This simulator serves as the reference for the hardware
implementation of Patmos, for the development of the compiler, and the porting
of real-time operating systems. Furthermore, the simulator provides variants of
caches and memory controller models, and can thus be used for design space
exploration of caches.

6.2 Hardware Implementation

We use Chisel [6] for the implementation and simulation of the core design.
Chisel, developed at UC Berkeley, is a hardware-construction language, em-
bedded in the programming language Scala. Consequently, Chisel allows the
programmer to design efficient hardware components in a high-level language.
Scala, and therefore Chisel, are object-oriented and functional languages, en-
abling hardware design in an object-oriented way.

The Chisel back-end can generate both Verilog and C++ code. While
Verilog is used to implement a design on an ASIC or FPGA, the C++ code
implements a fast high-level simulation of the hardware and provides a test
environment. We call the Chisel-generated C++ simulation the “emulator”, to
distinguish it from the software-based simulator.

We adapted the top-level class of the emulator and added a model of an
external SRAM memory. Furthermore, an executable file can be loaded into the
memory (or optionally into the scratchpad memory of the model) to start the
execution. The emulator produces a precise model of the system behavior and
also the possibility of easily inserting debug information for explicit testing.

Because the Patmos emulator is auto-generated from the hardware descrip-
tion, it lends itself to the high-level debugging and testing of the processor

Patmos: A Time-predictable Microprocessor 21

implementation. In contrast to the simulator, the individual registers and
signals of the hardware design are emulated. We use the emulator to verify the
cycle-accurate behavior of the Patmos simulator.

The use of Chisel facilitates the configuration of the hardware implemen-
tation. Cache sizes, the number of pipelines (dual- or single-issue), and other
features can be controlled through a single XML configuration file. Moreover,
I/O devices can be added to the processor through this configuration file.
Parsing the configuration is done in Chisel, making code generation steps or
manual editing of the code unnecessary.

6.3 Co-Simulation

When building a complex hardware, such as the Patmos processor, testing,
having good test coverage—and checking the outcome of the tests—is very
important. The software simulator can serve as the gold reference for the
hardware implementation of Patmos.

We execute test cases on both the simulator and the emulator and compare
the execution traces of both executions on a cycle-by-cycle base. To compare the
two simulations, we consider the most important state of a processor: the register
file. Although a difference in another program visible state (program counter,
predicate registers, main memory) might also be interesting, a difference there
will at some point (i.e., some cycles later) show up in the register file. If not,
the failure would not be visible during a normal program execution. As all
loads and stores pass through the register file, separately monitoring the state
of the main memory is unnecessary. A collection of assembler programs is
co-simulated automatically every night.

6.4 Testing and Validation

Apart from a small set of test cases written in assembly, we use an extensive test
suite with test cases written in C for testing and validation. This testing ensures
that the compiler, the simulator, and the hardware consistently implement the
ISA. The test suite includes the MiBench5 and the Mälardalen [40] benchmarks.
Furthermore, the test suite includes the gcc.c-torture/execute test cases
from GCC’s test suite, which covers a wide range of corner cases for compilation
and execution. In total, the test suite contains more than 1000 test programs,
yielding to more than 2000 individual test cases. As the test suite is executed
every night, we will quickly notice regressions in the code base.

5 http://www.eecs.umich.edu/mibench/

http://www.eecs.umich.edu/mibench/

22 Martin Schoeberl et al.

Configuration Resources Memory fmax
(LC) (KB) (MHz)

Standard 15,320 13.6 78.4
Large caches 16,395 38.5 80.1
Single issue 9,193 13.9 84.6
Minimal 7,602 5.7 81.7

Table 1 Resource consumption and maximum clock frequency of different Patmos configu-
rations

7 Evaluation

In addition to a processor’s being time-predictable, it has two other important
properties: (1) its size and (2) its performance. We present results of Patmos
from an implementation in a low-cost FPGA.

7.1 Resource Consumption

Patmos is highly configurable with respect to the resource consumption. In
this section, we show results for Patmos in four different configurations: (1) the
standard configuration, (2) with large caches, (3) single issue, and (4) minimal.

All results are from synthesizing Patmos for an Altera Cyclone IV FPGA
(EP4CE115F29C7) and with a memory interface to the 16-bit asynchronous
SRAM on the Altera DE2-115 FPGA board. All configurations include several
IO devices and an exception unit. The maximum clock frequency is reported for
the slow timing model at 1200 mV core voltage and at 85 C core temperature.
For synthesize we used Quartus Prime Lite Edition version 15.1.0. Every
synthesize option is set to the default values.

Table 1 compares the results for the four configurations of Patmos. The table
shows hardware resource consumption in logic cells (LC) and on-chip memory.
An LC of the Cyclone IV FPGA contains a 4-bit lookup table and a register.
The last column shows the maximum frequency. The resource consumption
shown is for a full system with several caches and SPMs, IO devices, and a
memory controller, not just the processor pipeline.

The standard configuration of Patmos is dual-issue execution, a method
cache of 4 KB with maximum 16 methods, a direct-mapped data cache of 2 KB,
a 2 KB stack cache, an instruction SPM of 2 KB, a boot ROM of 1 KB, a data
SPM of 2 KB, and a memory controller for the external asynchronous SRAM.

The large configuration is the configuration used for the average case
benchmarking with CoreMark. The caches are increased to a 16 KB method
cache, a 8 KB data stack, and a 8 KB stack cache. Compared to the standard
configuration of Patmos, we can see the increase in on-chip memory usage and
about 1000 additional LCs, which are needed for the larger caches.

The third configuration of Patmos is the same as the standard configuration,
but configured with a single-issue pipeline. We see that the single-issue version
of Patmos reduces the footprint by 44%. The main savings are in the decode

Patmos: A Time-predictable Microprocessor 23

Component Resources Memory
(LC) (KB)

Fetch 716 3
Decode 4,681 0
Execute 4,409 0
Memory 589 0
Data cache 649 2.3
Stack cache 957 2
Method cache 1,998 4
IO 1,066 2
Exception unit 477 0.2
SRAM controller 495 0

Total 15,370 13.6

Table 2 Resource consumption of Patmos components in the standard configuration

stage and the execution stage. The register file, which is included in the decode
stage, can now be implemented in on-chip memory. Therefore, we can see a small
increase in memory consumption (0.25 KB). With a single-issue configuration,
the biggest resource saving comes from the simpler forwarding network. In the
execution stage, only a single ALU is needed.

For the minimal configuration of Patmos, we reduced all caches to 1 KB
and all SPMs to 0 KB, thereby reducing the amount of on-chip memory. In
the minimal configuration, the method cache is also restricted to cache only
two methods. As the tag memory for the method cache is implemented in LCs,
the number of LCs is therefore also reduced. This configuration also contains
only a single-issue pipeline.

In Table 1 we can see that the single issue-pipeline results in the highest
clock frequency. At at first look, it seems counterintuitive that a configuration
with larger caches can lead to a higher clock frequency. However, larger caches
might lead to a better alignment of on-chip memory blocks resulting in a
slightly higher frequency (about 2 %). Similar, the minimal configuration has
a slightly lower clock frequency than the standard version. Maximum clock
frequency in FPGAs is not directly correlated to the size of a design. Sometimes
larger designs force a denser packing of logic elements, resulting in a higher
clock frequency.

Table 2 shows the resource consumption of the individual components in
the standard configuration in logic cells (LC) and on-chip memory (KB). We
can see 4 of the 5 pipeline stages as dedicated components: Fetch, Decode,
Execute, and Memory. Write-back is merely the write port of the register file
and therefore not visible as a hardware component.

The fetch stage is relative small, containing just the program counter and
some multiplexing supporting unaligned fetch of a 64-bit dual-issue instruction
word. It also contains the 2 KB instruction SPM and the 1 KB ROM for
the boot loader. The decode stage contains the register file. As this register
file is built out of LCs for the dual-issue version of Patmos and we support
full forwarding between the two pipelines, the resource consumption is high.

24 Martin Schoeberl et al.

It is mainly dominated by the forwarding paths. Related to the dual-issue
configuration is the size of the execution stage, as it contains the full forwarding
from the memory and write back-stages of both pipelines to both execution
stages. The memory stage contains just the addressing and multiplexing of
various caches and input/output (IO) components mapped into memory.

The data and stack cache each contain a 2 KB memory; the data cache
additional 0.3 KB for the tag memory. The stack cache has no tag memories
as the content is determined by two pointers into the stack memory. Another
component that contributes significantly to the resource consumption is the
method cache. As the tag memory for 16 methods is fully associative, it is
build out of dedicated registers.

The IO component includes interfaces to switches and LEDs, a timer, a
UART, and the 2 KB data SPM. The exception unit supports interrupts
and runtime exceptions. The SRAM controller interfaces to a 16-bit SRAM.
However, the standard interface to Patmos is a 4-word burst interface according
to the Open Core Protocol specification. Therefore, the memory controller also
contains the translation between the burst interface and the memory interface.

Note, that the total number of LCs is less than the sum of LCs for all
components. This can be explained by some components, e.g., the forwarding
logic in the decode stage, uses more LUTs and less registers, but another
component, e.g., the tag memory of the method cache, uses more registers.
Therefore, LCs are shared between components.

7.2 Average-Case Performance

To evaluate the average-case performance of Patmos, we use the CoreMark
benchmark. We selected CoreMark as this is a popular benchmark for embedded
processors and because the web site of CoreMark contains many scores from
different processors.6 We compare the results to other FPGA-based processors.
We compare Patmos to the Aeroflex Gaisler LEON3, Xilinx MicroBlaze, and
Altera NIOS II processors.

Most of the available CoreMark scores for these processors were obtained
with 16 KB instruction cache and 16 KB data cache. We use a comparable
configuration of Patmos for this evaluation, with a 16 KB method cache that
can hold 16 methods, an 8 KB data cache, and an 8 KB stack cache. The SPMs
are disabled. We used the DE2-70 FPGA board with the Cyclone II FPGA for
the average case performance measurement. With such a setup, the CoreMark
benchmark fits into the caches, so that the benchmark evaluates the processor
pipeline rather than the efficiency of the memory subsystem.

Table 3 shows CoreMark scores relative to the operating frequency, the
absolute CoreMark score, the operation frequency, and the FPGA type used for
Patmos and three other softcore processors. The results for Patmos, LEON3,
NIOS II, and MicroBlaze were obtained on different FPGAs. Therefore, the

6 CoreMark scores for LEON3, MicroBlaze, and NIOS II are from http://www.eembc.org/
coremark/index.php, last accessed 29 November 2016.

http://www.eembc.org/coremark/index.php
http://www.eembc.org/coremark/index.php

Patmos: A Time-predictable Microprocessor 25

Processor CoreMark/MHz CoreMark Frequency FPGA

Patmos, dual-issue 2.19 175 80 MHz Cyclone II
Patmos, single-issue 1.97 158 80 MHz Cyclone II
LEON3 1.96 196 100 MHz Spartan-6
MicroBlaze 1.75 175 100 MHz Virtex 4
MicroBlaze 1.90 238 125 MHz Virtex 5
NIOS II 1.29 64 50 MHz Cyclone III
NIOS II 1.49 119 80 MHz -
NIOS II/f 1.87 187 100 MHz -

Table 3 CoreMark scores for Patmos, LEON3, MicroBlaze, and NIOS II

operation frequency and the absolute CoreMark scores are incomparable and
we also show the CoreMark/MHz measure to evaluate the efficiency of the
instruction set and the compiler. However, for the last two results no information
on the used FPGA is available.

We can see that Patmos performs in the same range as the other processors.
Just comparing the relative performance, Patmos can beat all the other proces-
sors. We conclude that the performance of the Patmos pipeline is in the same
range as comparable processors that are not optimized for time predictability.
This is expected as all processors have a similar pipeline structure as a RISC
processor. Therefore, we conclude that with our pipeline architecture we did
not reduce average case performance by optimizing for the WCET.

The speedup of the dual-issue version of Patmos relative the single-issue
is merely 10.8%. As the benchmark fits into the cache, this benchmark is not
memory bound. This means that the second pipeline is underutilized. The
result indicates that there is room for improvements in the compiler, especially
in the instruction scheduler. Only a simple instruction scheduler for the dual-
issue feature of Patmos has been developed. Within this project most of the
compiler work has been focused on integration with worst-case execution time
analysis [48,26], single-path code generation [44], and function splitting [24].
Future work on the compiler is necessary for using the second pipeline more
efficiently, e.g., by software pipelining [34] and trace [18] or superblock [28]
scheduling.

The code size for the single-issue executable is 355 KB and the dual-issue
executable is 359 KB. This executable also includes compiler support library
code (e.g., software division) and standard library code (e.g., printf()). We
see only a slight increase in code size in the range of 1 % for the dual-issue
executable. For comparison, CoreMark compiled under Intel 64-bit Linux is
263 KB. Besides possible differences in the libraries and different compilers
(LLVM versus gcc) it is expected that the executable size for the Intel processor
is smaller than the executable size for a RISC style instruction set.

To make Patmos easily accessible, we support in the standard configuration
the relative cheap FPGA boards DE2-70 and DE2-115. These board contain
FPGAs from the low-cost Cyclone series form Intel/Altera. To get an idea on
the possible performance of Patmos in different FPGAs from Intel/Altera we

26 Martin Schoeberl et al.

FPGA Frequency

Cyclone IV 94.2 MHz
Cyclone V 110.6 MHz
Stratix IV 167.8 MHz
Stratix V 206.9 MHz

Table 4 Maximum clock frequency of Patmos in different FPGAs.

synthesized the core for different FPGA families. To measure the limits of the
maximum clock frequency we configured the PLL to produce a 200 MHz clock,
selected the fastest speed grade of the FPGA, set optimize for performance, and
let the tool select the device. Setting the PLL to 200 MHz tells the synthesize
tool that this is the minimum requested frequency. For three out of the four
FPGA this is over constraining the design.

In Table 4 we report the maximum frequency using the slow timing model
at 85 C. We can see that by optimizing for performance and using the fastest
speed grade it is possible to increase the clock frequency on the Cyclone IV
FPGA from about 80 MHz to 94 MHz. Using the newest supported version7 of
the high-performance FPGA family from Intel/Altera, the Stratix V we can
clock Patmos at about 207 MHz, easily achieving the minimum clock frequency
constraint of 200 MHz. Ignoring the memory subsystem, this would increase
the CoreMark for Patmos by a factor of 2.5.

7.3 Worst-Case Execution Time

Patmos is designed as an easy target for worst-case execution time analysis. For
our evaluation, we used the static WCET analysis tool of the platin toolkit.

For the WCET evaluation, we used the standard configuration of Patmos
with dual-issue execution, a method cache of 4 KB with maximum 16 methods,
a direct-mapped data cache of 2 KB, a 2 KB stack cache, an instruction SPM
of 2 KB, a boot ROM of 1 KB, a data SPM of 2 KB, and a memory controller
for the external asynchronous SRAM of the DE2-115 board with 21 clock cycle
latency for a 4-word burst transfer. The information emitted by the compiler
already allows for a fully automatic WCET analysis, i.e., without the need for
manually adding loop bounds. We use a scope-based method cache analysis [25]
and an analysis of the stack cache [29], which are implemented in the WCET
tool of platin. For the data cache, we use a conservative analysis (assume
always-miss).

We use PapaBench for the evaluation of the WCET analysis, as this is a very
popular benchmark in the WCET analysis community. Furthermore, PapaBench
is derived from a real application. Table 5 summarizes the results of the WCET
analysis of the PapaBench WCET benchmark. PapaBench consists of two
application binaries, fly by wire (abbr. fbw) and autopilot (abbr. auto).

7 Stratix 10 is not (yet) supported in the latest Quartus version.

Patmos: A Time-predictable Microprocessor 27

Benchmark/Task WCET WCET MOET Number
Bound Tests Tests of Calls

papa auto/altitude control 12883 4781 4256 25
papa auto/climb control 58889 31851 21229 200
papa auto/link fbw send 670 628 544 3
papa auto/navigation 522606 137059 69082 25
papa auto/radio control 155825 159 159 1
papa auto/receive gps 193679 621 432 1
papa auto/reporting 79251 9493 6511 1
papa auto/stabilisation 49949 22954 16822 1
papa fbw/check failsafe 72289 8165 7913 12
papa fbw/check mega128 72612 8445 8151 16
papa fbw/send data 30768 8737 7183 16
papa fbw/servo transmit 7944 7857 2796 2
papa fbw/test ppm 133515 42155 30365 16

Table 5 PapaBench WCET analysis results with conservative data cache analysis

Each binary schedule several real-time tasks that need to be analyzed. The
column WCET Bound shows the statically computed WCET bound for the
corresponding task, without adding any additional flow information other than
provided by the compiler. To allow us to obtain some numbers on the actual
(average) execution time, we created some tests where we execute the tasks
with different values for the global variables, which determine the runtime
behavior of the tasks. The maximum observed execution time (MOET) for the
tests is shown in the fourth column MOET Tests. Finally, to compare static
analysis and measurements, we also computed a WCET bound for the execution
time of a task’s test run. We did not explore which state of the variables will
cause the worst-case path to be executed. Instead, we obtain the WCET for
the test runs by limiting the execution frequency of each basic block to the
maximum execution frequency observed during testing, which are recorded
by the trace-analysis tool of platin. This reduces the over-approximation
caused by the uncertainty of the program flow. Therefore, the column WCET
Tests provides a sound upper bound for the maximum observed execution time
during testing. In addition, column Number of Calls of Table 5 shows how
often each task was called during testing.

The results in Table 5 show that the gap between WCET Tests and MOET
Tests is in the range from no gap to +180%. To gain a deeper understanding
of the sources of the over-approximation, we also evaluated the benchmark
with a setup using an ideal data cache and otherwise identical configuration.
This allows to mask the pessimism of the conservative data cache analysis.
Table 6 shows the results of this evaluation. In this configuration, for a third
of the tasks the numbers WCET Tests and MOET Tests match, and for more
than half of the tasks the over-approximation of the upper bound is below
5%. Tasks with a higher gap between the test-specific WCET bound and the
observed worst case include the navigation and climb control tasks. For these
tasks, information about mutually exclusive program paths would benefit the
analysis but is not included in the flow facts recorded from the trace analysis.

28 Martin Schoeberl et al.

Benchmark/Task WCET WCET MOET
Bound Tests Tests

papa auto/altitude control 9778 3857 3668
papa auto/climb control 44243 23251 16568
papa auto/link fbw send 40 40 40
papa auto/navigation 380678 116143 62068
papa auto/radio control 105770 117 117
papa auto/receive gps 135097 495 306
papa auto/reporting 25460 4537 4327
papa auto/stabilisation 36594 17830 13840
papa fbw/check failsafe 50239 6191 6191
papa fbw/check mega128 50352 6303 6303
papa fbw/send data 20142 4999 4789
papa fbw/servo transmit 1308 1305 822
papa fbw/test ppm 97077 23579 20243

Table 6 PapaBench WCET analysis results, assuming an ideal data cache

The effect is amplified as for the computations in the different paths floating-
point arithmetic is performed, which is done in software for Patmos. Tasks
stabilization and receive gps were called only once each. The gap in this case
indicates the over-approximation caused by the method cache and stack cache
analyses.

It is worth emphasizing that the flow-information emitted by the compiler
is determined independently from the target. The information from high-level
analyses on bitcode (which were already present in LLVM) is transformed
by platin to the machine-code representation. In this benchmark, they are
sufficient to perform WCET-analysis without additional manual annotations.
Also, the results with the data cache are expected to become better when more
precise data cache analyses are added to the platin toolkit. We plan to add a
standard data cache analysis, such as [17], to platin in future work.

7.4 Single-Path Code

Patmos is a suitable target for single-path code, due to its fully predicated
instruction set, its predictable pipeline, and its controllable memory architecture.
In our evaluation for the code produced by the single-path code generator, we
assume that all global data is available locally. Stack allocated data is still
cached in the stack cache. In this regard, the setup is identical to the one
used in Section 7.3 with the ideal data cache. We compare the execution time
behavior of single-path code to the execution time behavior of the conventional
code in the worst case and the execution time jitter.

Table 7 shows the comparison between the conventionally compiled code
and the single-path code. The statically computed worst case bound for the
tasks compiled conventionally is shown in column WCET Bound. The range of
their observed execution times is shown in column Exec-Time (Conv.). The
column Single-Path shows the execution time for the single-path code. The

Patmos: A Time-predictable Microprocessor 29

Benchmark/Task WCET Bound Exec-Time Single-Path Ratio
(Conv.) (Conv.) Exec-Time

papa auto/altitude control 9778 [29,3668] 9076 0.928
papa auto/climb control 44243 [88,16568] 67738 1.531
papa auto/link fbw send 40 [11,40] 50 1.250
papa auto/navigation 380678 [4636,62068] 2966730 7.793
papa auto/radio control 105770 [117,117] 137165 1.297
papa auto/receive gps 135097 [306,306] 186842 1.383
papa auto/reporting 25460 [4327,4327] 26230 1.030
papa auto/stabilisation 36594 [13840,13840] 45824 1.252
papa fbw/check failsafe 50239 [37,6191] 66254 1.319
papa fbw/check mega128 50352 [161,6303] 66398 1.319
papa fbw/send data 20142 [26,4789] 19414 0.964
papa fbw/servo transmit 1308 [822,822] 1175 0.898
papa fbw/test ppm 97077 [213,20243] 112246 1.156

Table 7 Single-path code evaluation

execution time is identical for every execution run, i.e., it constitutes the
worst-case execution time. This is achieved by construction, as the execution
follows only one path and the method cache and of the stack cache are put in a
well-defined state by flushing them before the task’s execution. The last column,
Ratio, shows the ratio of the execution time of the single-path task to the
worst-case execution time of the task compiled conventionally, i.e., Single-Path
Exec-Time/WCET Bound (Conv.).

While in most of the cases the (worst-case) execution time of the single-path
code is higher than the computed WCET bound for the conventional code, in
some cases it is lower. This can be attributed to one of the following reasons.
The basic blocks of single-path code are larger, such that the VLIW scheduler
has more opportunity to bundle instructions and increase the ILP. Also, there
is no overhead caused by over-approximation in the analysis for the single-path
code. One of the main advantages of single-path code is that on predictable
architectures like Patmos its execution time behavior is almost trivial to
obtain. The most limiting drawback is the performance impact of single-path
code generation, if applied blindly. For example, the papa auto/navigation
benchmark either calls a function nav home() or nav update(), depending
on the current operating mode. The latter function implements a multi-level
state machine. In the single-path variant, all actions of this state machine are
serialized, resulting in an almost 7.8 times higher execution time than the
statically computed bound for the conventional variant.

For this evaluation, we assume an ideal data cache to eliminate uncertainty
in execution time behavior due to data accesses. In practice, the data SPM
would be used for fast and time-invariant data access during the execution
of the single-path task. At the time of writing, this can be achieved only
by the programmer by explicitly moving data from and to the data SPM.
Ideally, a compiler pass would allocate data to the data SPM automatically,
but unfortunately this has not been implemented yet.

30 Martin Schoeberl et al.

Automatic allocation of data in SPM is not trivial due to pointer aliasing.
However, with some hardware support to translate main memory addresses to
SPM addresses, this aliasing problem can be solved. The scratchpad memory
management unit [70] introduces this mechanism as an enhancement to an
SPM. This proposed solution does not require whole-program pointer analysis
and makes load and store operation time-predictable.

8 Conclusion

The basis for time-predictable computing systems is a time-predictable proces-
sor. This paper presented such a time-predictable processor, the open-source
design Patmos. To support real-time systems, all architectural features of Pat-
mos are optimized for the worst-case execution time instead of the average-case
execution time.

Patmos contains a statically scheduled dual-issue pipeline for good perfor-
mance without the unpredictability of dynamic instruction issuing. Patmos
contains a method cache, a stack cache, and a data cache, thereby providing
caches that are easy to analyze.

We have compared the average case performance of Patmos with other
RISC processors targeting an FPGA. Although those processors are optimized
for average-case performance, Patmos provides similar performance for the
CoreMark benchmark.

We have shown WCET analysis results with our open-source toolkit on
the popular PapaBench benchmark, focusing on hardware predictability. The
timing-compositional nature allows for separate, specialized analyses. We also
evaluated the performance of automatic single-path code generation. Applied
carefully, a predictable and stable code timing can be obtained at acceptable
additional cost.

Acknowledgements We would like to thank Tommy Thorn for the ongoing discussions
on computer architecture, processor design, and optimization for an FPGA implementation.
We would like to thank Florian Brandner for discussions on the Patmos instruction set, the
initial implementation of the software simulator of Patmos, and the initial port of LLVM for
Patmos. We would like to thank Sahar Abbaspour for helping on a first VHDL version of
the pipeline.

This work was partially funded under the European Union’s 7th Framework Programme
under grant agreement no. 288008: Time-predictable Multi-Core Architecture for Embedded
Systems (T-CREST). This work is part of the project “Hard Real-Time Embedded Multipro-
cessor Platform - RTEMP” and received partial funding from the Danish Research Council
for Technology and Production Sciences under contract no. 12-127600.

References

1. Abbaspour, S., Brandner, F., Schoeberl, M.: A time-predictable stack cache. In: Pro-
ceedings of the 9th Workshop on Software Technologies for Embedded and Ubiquitous
Systems (2013)

Patmos: A Time-predictable Microprocessor 31

2. Akesson, B., Goossens, K., Ringhofer, M.: Predator: a predictable sdram memory
controller. In: CODES+ISSS ’07: Proceedings of the 5th IEEE/ACM international
conference on Hardware/software codesign and system synthesis, pp. 251–256. ACM,
New York, NY, USA (2007). DOI http://doi.acm.org/10.1145/1289816.1289877

3. Allen, J., Kennedy, K., Porterfield, C., Warren, J.: Conversion of Control Dependence
to Data Dependence. In: Proc. 10th ACM Symposium on Principles of Programming
Languages, pp. 177–189 (1983)

4. Arnold, R., Mueller, F., Whalley, D., Harmon, M.: Bounding worst-case instruction
cache performance. In: IEEE Real-Time Systems Symposium, pp. 172–181 (1994)

5. Axer, P., Ernst, R., Falk, H., Girault, A., Grund, D., Guan, N., Jonsson, B., Marwedel, P.,
Reineke, J., Rochange, C., Sebastian, M., Hanxleden, R.V., Wilhelm, R., Yi, W.: Building
timing predictable embedded systems. ACM Transactions on Embedded Systems (2013)

6. Bachrach, J., Vo, H., Richards, B., Lee, Y., Waterman, A., Avizienis, R., Wawrzynek,
J., Asanovic, K.: Chisel: constructing hardware in a scala embedded language. In:
P. Groeneveld, D. Sciuto, S. Hassoun (eds.) The 49th Annual Design Automation
Conference (DAC 2012), pp. 1216–1225. ACM, San Francisco, CA, USA (2012)

7. Baldovin, A., Mezzetti, E., Vardanega, T.: A time-composable operating system. In:
T. Vardanega (ed.) 12th International Workshop on Worst-Case Execution Time Analysis,
WCET 2012, July 10, 2012, Pisa, Italy, OASICS, vol. 23, pp. 69–80. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2012)

8. Ballabriga, C., Cassé, H., Rochange, C., Sainrat, P.: OTAWA: An Open Toolbox for
Adaptive WCET Analysis, pp. 35–46. Springer Berlin Heidelberg, Berlin, Heidelberg
(2010). DOI 10.1007/978-3-642-16256-5 6

9. Brandner, F., Hepp, S., Jordan, A.: Criticality: static profiling for real-time programs.
Real-Time Systems pp. 1–34 (2013). DOI 10.1007/s11241-013-9196-y

10. Degasperi, P., Hepp, S., Puffitsch, W., Schoeberl, M.: A method cache for Patmos.
In: Proceedings of the 17th IEEE Symposium on Object/Component/Service-oriented
Real-time Distributed Computing (ISORC 2014), pp. 100–108. IEEE, Reno, Nevada,
USA (2014). DOI 10.1109/ISORC.2014.47

11. Delange, J., Lec, L.: POK, an ARINC653-compliant operating system released under
the BSD license. In: 13th Real-Time Linux Workshop, vol. 10 (2011)

12. Delvai, M., Huber, W., Puschner, P., Steininger, A.: Processor support for temporal
predictability – the SPEAR design example. In: Proceedings of the 15th Euromicro
International Conference on Real-Time Systems (2003)

13. Edwards, S.A., Kim, S., Lee, E.A., Liu, I., Patel, H.D., Schoeberl, M.: A disruptive
computer design idea: Architectures with repeatable timing. In: Proceedings of IEEE
International Conference on Computer Design (ICCD 2009). IEEE, Lake Tahoe, CA
(2009)

14. Edwards, S.A., Lee, E.A.: The case for the precision timed (PRET) machine. In: DAC
’07: Proceedings of the 44th annual conference on Design automation, pp. 264–265. ACM,
New York, NY, USA (2007). DOI http://doi.acm.org/10.1145/1278480.1278545

15. Falk, H., Kleinsorge, J.C.: Optimal static WCET-aware scratchpad allocation of program
code. In: DAC ’09: Proceedings of the Conference on Design Automation, pp. 732–737
(2009)

16. Falk, H., Lokuciejewski, P.: A compiler framework for the reduction of worst-case
execution times. Real-Time Systems pp. 1–50 (2010)

17. Ferdinand, C., Wilhelm, R.: Efficient and precise cache behavior prediction for real-time
systems. Real-Time Systems 17(2-3), 131–181 (1999)

18. Fisher, J.A.: Trace scheduling: A technique for global microcode compaction. IEEE
Transactions on Computers C-30(7), 478–490 (1981). DOI 10.1109/TC.1981.1675827

19. Garside, J., Audsley, N.C.: Investigating shared memory tree prefetching within multi-
media noc architectures. In: Memory Architecture and Organisation Workshop (2013)

20. Gomony, M.D., Akesson, B., Goossens, K.: Architecture and optimal configuration of
a real-time multi-channel memory controller. In: Design, Automation Test in Europe
Conference Exhibition (DATE), 2013, pp. 1307–1312 (2013). DOI 10.7873/DATE.2013.
270

21. Healy, C.A., Arnold, R.D., Mueller, F., Whalley, D.B., Harmon, M.G.: Bounding pipeline
and instruction cache performance. IEEE Trans. Computers 48(1), 53–70 (1999)

32 Martin Schoeberl et al.

22. Heckmann, R., Ferdinand, C.: Worst-case execution time prediction by static program
analysis. Tech. rep., AbsInt Angewandte Informatik GmbH. [Online, last accessed
November 2013]

23. Heckmann, R., Langenbach, M., Thesing, S., Wilhelm, R.: The influence of processor
architecture on the design and results of WCET tools. Proceedings of the IEEE 91(7),
1038–1054 (2003)

24. Hepp, S., Brandner, F.: Splitting functions into single-entry regions. In: K.S. Chatha,
R. Ernst, A. Raghunathan, R. Iyer (eds.) 2014 International Conference on Compilers,
Architecture and Synthesis for Embedded Systems, CASES 2014, Uttar Pradesh, India,
October 12-17, 2014, pp. 17:1–17:10. ACM (2014). DOI 10.1145/2656106.2656128

25. Huber, B., Hepp, S., Schoeberl, M.: Scope-based method cache analysis. In: Proceedings
of the 14th International Workshop on Worst-Case Execution Time Analysis (WCET
2014), pp. 73–82. Madrid, Spain (2014). DOI 10.4230/OASIcs.WCET.2014.73

26. Huber, B., Prokesch, D., Puschner, P.: Combined WCET analysis of bitcode and ma-
chine code using control-flow relation graphs. In: Proceedings of the 14th ACM SIG-
PLAN/SIGBED conference on Languages, compilers and tools for embedded systems
(LCTES 2013), pp. 163–172. The Association for Computing Machinery (2013). DOI
10.1145/2499369.2465567

27. Huber, B., Puffitsch, W., Schoeberl, M.: WCET driven design space exploration of an
object cache. In: Proceedings of the 8th International Workshop on Java Technologies
for Real-time and Embedded Systems (JTRES 2010), pp. 26–35. ACM, New York, NY,
USA (2010). DOI 10.1145/1850771.1850775

28. Hwu, W.M.W., Mahlke, S.A., Chen, W.Y., Chang, P.P., Warter, N.J., Bringmann, R.A.,
Ouellette, R.G., Hank, R.E., Kiyohara, T., Haab, G.E., Holm, J.G., Lavery, D.M.: The
superblock: An effective technique for vliw and superscalar compilation. The Journal of
Supercomputing 7(1), 229–248 (1993). DOI 10.1007/BF01205185

29. Jordan, A., Brandner, F., Schoeberl, M.: Static analysis of worst-case stack cache
behavior. In: Proceedings of the 21st International Conference on Real-Time Networks
and Systems (RTNS 2013), pp. 55–64. ACM, New York, NY, USA (2013). DOI
10.1145/2516821.2516828

30. Kasapaki, E., Schoeberl, M., Sørensen, R.B., Müller, C.T., Goossens, K., Sparsø, J.:
Argo: A real-time network-on-chip architecture with an efficient GALS implementation.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 24, 479–492 (2016).
DOI 10.1109/TVLSI.2015.2405614

31. Kluge, F., Gerdes, M., Ungerer, T.: An operating system for safety-critical applications
on manycore processors. In: 17th IEEE International Symposium on Object Oriented
Real-Time Distributed Computing (ISORC), 2014, pp. 238–245. IEEE (2014)

32. Kluge, F., Schoeberl, M., Ungerer, T.: Support for the logical execution time model on a
time-predictable multicore processor. In: 14th International Workshop on Real-Time
Networks. ACM SIGBED Review, Toulouse, France (2016)

33. Lakis, E., Schoeberl, M.: An SDRAM controller for real-time systems. In: Proceedings
of the 9th Workshop on Software Technologies for Embedded and Ubiquitous Systems
(2013)

34. Lam, M.: Software pipelining: An effective scheduling technique for vliw machines.
In: Proceedings of the ACM SIGPLAN 1988 Conference on Programming Language
Design and Implementation, PLDI ’88, pp. 318–328. ACM, New York, NY, USA (1988).
DOI 10.1145/53990.54022

35. Lickly, B., Liu, I., Kim, S., Patel, H.D., Edwards, S.A., Lee, E.A.: Predictable pro-
gramming on a precision timed architecture. In: E.R. Altman (ed.) Proceedings of
the International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES 2008), pp. 137–146. ACM, Atlanta, GA, USA (2008)

36. Lisper, B.: SWEET – a Tool for WCET Flow Analysis. In: B. Steffen (ed.) 6th
International Symposium On Leveraging Applications of Formal Methods, Verification
and Validation, pp. 482–485. Springer-Verlag (2014)

37. Liu, I.: Precision timed machines. Ph.D. thesis, EECS Department, University of
California, Berkeley (2012)

38. Liu, I., Reineke, J., Broman, D., Zimmer, M., Lee, E.A.: A PRET microarchitecture
implementation with repeatable timing and competitive performance. In: Proceedings
of IEEE International Conference on Computer Design (ICCD 2012) (2012)

Patmos: A Time-predictable Microprocessor 33

39. Liu, I., Reineke, J., Lee, E.A.: A PRET architecture supporting concurrent programs
with composable timing properties. In: Signals, Systems and Computers, 2010 Conference
Record of the Forty-Four Asilomar Conference on (2010)

40. Mälardalen Real-Time Research Center: WCET benchmarks. Available at http://www.
mrtc.mdh.se/projects/wcet/benchmarks.html (accessed 2009)

41. Metzlaff, S., Ungerer, T.: Replacement policies for a function-based instruction memory:
A quantification of the impact on hardware complexity and wcet estimates. In: Real-
Time Systems (ECRTS), 2012 24th Euromicro Conference on, pp. 112 –121 (2012).
DOI 10.1109/ECRTS.2012.22

42. Mische, J., Guliashvili, I., Uhrig, S., Ungerer, T.: How to enhance a superscalar processor
to provide hard real-time capable in-order smt. In: 23rd International Conference on
Architecture of Computing Systems (ARCS 2010), pp. 2–14. Springer, University of
Augsburg, Germany (2010). DOI 10.1007/978-3-642-11950-7 2

43. Pitter, C., Schoeberl, M.: A real-time Java chip-multiprocessor. ACM Trans. Embed.
Comput. Syst. 10(1), 9:1–34 (2010). DOI 10.1145/1814539.1814548

44. Prokesch, D., Hepp, S., Puschner, P.P.: A Generator for Time-Predictable Code. In:
IEEE 18th International Symposium on Real-Time Distributed Computing, ISORC
2015, Auckland, New Zealand, 13-17 April, 2015, pp. 27–34. IEEE Computer Society
(2015). DOI 10.1109/ISORC.2015.40

45. Prokesch, D., Huber, B., Puschner, P.: Towards Automated Generation of Time-
Predictable Code. In: Int. Workshop on Worst-Case Execution Time Analysis, OASIcs,
vol. 39, pp. 103–112. Schloss Dagstuhl (2014)

46. Puschner, P.: Experiments with WCET-oriented programming and the single-path
architecture. In: Proc. 10th IEEE International Workshop on Object-Oriented Real-
Time Dependable Systems (2005)

47. Puschner, P., Kirner, R., Huber, B., Prokesch, D.: Compiling for time predictability. In:
F. Ortmeier, P. Daniel (eds.) Computer Safety, Reliability, and Security, Lecture Notes
in Computer Science, vol. 7613, pp. 382–391. Springer Berlin / Heidelberg (2012)

48. Puschner, P., Prokesch, D., Huber, B., Knoop, J., Hepp, S., Gebhard, G.: The T-CREST
approach of compiler and WCET-analysis integration. In: 9th Workshop on Software
Technologies for Future Embedded and Ubiquitious Systems (SEUS 2013), pp. 33–40
(2013)

49. Rocha, A., Silva, C., Sørensen, R.B., Sparsø, J., Schoeberl, M.: Avionics applications on
a time-predictable chip-multiprocessor. In: 24th Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing (PDP 2016), pp. 777–785. IEEE
Computer Society (2016). DOI 10.1109/PDP.2016.36

50. Rochange, C., Sainrat, P.: Towards designing WCET-predictable processors. In: Pro-
ceedings of the 3rd International Workshop on Worst-Case Execution Time Analysis,
WCET 2003, pp. 87–90 (2003)

51. Schoeberl, M.: A time predictable instruction cache for a Java processor. In: On the Move
to Meaningful Internet Systems 2004: Workshop on Java Technologies for Real-Time
and Embedded Systems (JTRES 2004), LNCS, vol. 3292, pp. 371–382. Springer, Agia
Napa, Cyprus (2004). DOI 10.1007/b102133

52. Schoeberl, M.: A Java processor architecture for embedded real-time systems. Journal of
Systems Architecture 54/1–2, 265–286 (2008). DOI http://dx.doi.org/10.1016/j.sysarc.
2007.06.001

53. Schoeberl, M.: Time-predictable cache organization. In: Proceedings of the First In-
ternational Workshop on Software Technologies for Future Dependable Distributed
Systems (STFSSD 2009), pp. 11–16. IEEE Computer Society, Tokyo, Japan (2009).
DOI 10.1109/STFSSD.2009.10

54. Schoeberl, M.: Time-predictable computer architecture. EURASIP Journal on Embedded
Systems vol. 2009, Article ID 758480, 17 pages (2009). DOI 10.1155/2009/758480

55. Schoeberl, M.: Is time predictability quantifiable? In: International Conference on
Embedded Computer Systems (SAMOS 2012). IEEE, Samos, Greece (2012)

56. Schoeberl, M., Abbaspour, S., Akesson, B., Audsley, N., Capasso, R., Garside, J.,
Goossens, K., Goossens, S., Hansen, S., Heckmann, R., Hepp, S., Huber, B., Jordan, A.,
Kasapaki, E., Knoop, J., Li, Y., Prokesch, D., Puffitsch, W., Puschner, P., Rocha, A.,
Silva, C., Sparsø, J., Tocchi, A.: T-CREST: Time-predictable multi-core architecture

http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

34 Martin Schoeberl et al.

for embedded systems. Journal of Systems Architecture 61(9), 449–471 (2015). DOI
http://dx.doi.org/10.1016/j.sysarc.2015.04.002

57. Schoeberl, M., Brandner, F., Hepp, S., Puffitsch, W., Prokesch, D.: Patmos reference
handbook. Tech. rep., Technical University of Denmark (2014)

58. Schoeberl, M., Brandner, F., Sparsø, J., Kasapaki, E.: A statically scheduled time-
division-multiplexed network-on-chip for real-time systems. In: Proceedings of the 6th
International Symposium on Networks-on-Chip (NOCS), pp. 152–160. IEEE, Lyngby,
Denmark (2012). DOI 10.1109/NOCS.2012.25

59. Schoeberl, M., Chong, D.V., Puffitsch, W., Sparsø, J.: A time-predictable memory
network-on-chip. In: Proceedings of the 14th International Workshop on Worst-Case
Execution Time Analysis (WCET 2014), pp. 53–62. Madrid, Spain (2014). DOI
10.4230/OASIcs.WCET.2014.53

60. Schoeberl, M., Huber, B., Puffitsch, W.: Data cache organization for accurate timing
analysis. Real-Time Systems 49(1), 1–28 (2013). DOI 10.1007/s11241-012-9159-8

61. Schoeberl, M., Puffitsch, W., Huber, B.: Towards time-predictable data caches for chip-
multiprocessors. In: Proceedings of the Seventh IFIP Workshop on Software Technologies
for Future Embedded and Ubiquitous Systems (SEUS 2009), no. 5860 in LNCS, pp.
180–191. Springer (2009)

62. Schoeberl, M., Schleuniger, P., Puffitsch, W., Brandner, F., Probst, C.W., Karlsson, S.,
Thorn, T.: Towards a time-predictable dual-issue microprocessor: The Patmos approach.
In: First Workshop on Bringing Theory to Practice: Predictability and Performance in
Embedded Systems (PPES 2011), pp. 11–20. Grenoble, France (2011)

63. Sparsø, J., Kasapaki, E., Schoeberl, M.: An area-efficient network interface for a TDM-
based network-on-chip. In: Proceedings of the Conference on Design, Automation and
Test in Europe, DATE ’13, pp. 1044–1047. EDA Consortium, San Jose, CA, USA (2013)

64. Starke, R.A.: Design and evaluation of a vliw processor for real-time systems. Ph.D.
thesis, Universidade Federal de Santa Catarina (2016)

65. Starke, R.A., Carminati, A., Oliveira, R.S.D.: Evaluating the design of a VLIW processor
for real-time systems. ACM Trans. Embed. Comput. Syst. 15(3), 46:1–46:26 (2016).
DOI 10.1145/2889490

66. Thiele, L., Wilhelm, R.: Design for timing predictability. Real-Time Systems 28(2-3),
157–177 (2004)

67. Ungerer, T., Cazorla, F., Sainrat, P., Bernat, G., Petrov, Z., Rochange, C., Quiñones,
E., Gerdes, M., Paolieri, M., Wolf, J.: Merasa: Multi-core execution of hard real-time
applications supporting analysability. Micro, IEEE 30(5), 66–75 (2010). DOI 10.1109/
MM.2010.78

68. Whitham, J.: Real-time processor architectures for worst case execution time reduction.
Ph.D. thesis, University of York (2008)

69. Whitham, J., Audsley, N.: Using trace scratchpads to reduce execution times in pre-
dictable real-time architectures. In: Proceedings of the Real-Time and Embedded
Technology and Applications Symposium (RTAS 2008), pp. 305–316 (2008). DOI
10.1109/RTAS.2008.11

70. Whitham, J., Audsley, N.: Implementing time-predictable load and store operations. In:
Proceedings of the International Conference on Embedded Software (EMSOFT 2009)
(2009)

71. Wilhelm, R., Grund, D., Reineke, J., Schlickling, M., Pister, M., Ferdinand, C.: Memory
hierarchies, pipelines, and buses for future architectures in time-critical embedded
systems. IEEE Transactions on CAD of Integrated Circuits and Systems 28(7), 966–978
(2009)

72. Ziccardi, M., Schoeberl, M., Vardanega, T.: A time-composable operating system for the
Patmos processor. In: The 30th ACM/SIGAPP Symposium On Applied Computing,
Embedded Systems Track. ACM Press, Salamanca, Spain. (2015)

73. Zimmer, M., Broman, D., Shaver, C., Lee, E.A.: FlexPRET: A processor platform for
mixed-criticality systems. In: Proceedings of the 20th IEEE Real-Time and Embedded
Technology and Application Symposium (RTAS). Berlin, Germany (2014)

	Introduction
	Related Work
	T-CREST: Time-predictable Multicore Architecture for Embedded Systems
	The Architecture of Patmos
	Compiling and Worst-Case Execution Time Analysis for Patmos
	Implementation
	Evaluation
	Conclusion

