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Abstract: Generative deep machine learning models now
rival traditional quantum-mechanical computations in pre-
dicting properties of new structures, and they come with a
significantly lower computational cost, opening new ave-
nues in computational molecular science. In the last few
years, a variety of deep generative models have been
proposed for modeling molecules, which differ in both their
model structure and choice of input features. We review

these recent advances within deep generative models for
predicting molecular properties, with particular focus on
models based on the probabilistic autoencoder (or varia-
tional autoencoder, VAE) approach in which the molecular
structure is embedded in a latent vector space from which
its properties can be predicted and its structure can be
restored.

Keywords: molecular science · deep learning · variational inference · variational auto-encoders · generative modeling

1 Introduction

Computational molecular science – the discovery and
design of new molecules and analysis of their structure and
properties by computer models – has traditionally involved
making elaborate quantum-mechanical computations de-
rived from first principle. In recent years, new approaches
based on machine learning have shown great promise,
approaching the same accuracy as first principle computa-
tions at a much lower computational cost. Machine learning
is a branch of artificial intelligence concerned with making
models that can learn from data by discovering patterns in
the data, and generalizing these patterns to new unseen
cases. In molecular science, machine learning can leverage
the existing huge databases of experimental results and
quantum-mechanical calculations that are currently avail-
able, to learn to predict properties and structures of new
molecules at unrivaled computational speed. In this review
we outline the current trends in machine learning-based
computational molecular science with a particular focus on
one of the most promising model classes known as deep
generative models. Based on the latest results from the
literature and from our own research, our aim is to
characterize the deep generative modeling paradigm in
terms of both model structure and approach to inference,
in order to build intuition about the mechanisms behind its
success.

In machine learning we distinguish between discrim-
inative and generative models. In a discriminative learning
approach to molecular science, we would be concerned
with learning a mapping from a molecule x to a property y
that we are interested in predicting. Given a dataset
fxi; yigN

i¼1 that consists of N molecules and their correspond-
ing known properties, the discriminative model is targeted
at learning the probability distribution p(y jx) such that
predictions for a new material x* can be computed.
Although this can lead to excellent predictions, the down-
side of the discriminative approach is that the model does
not describe the molecular structure x itself – only the
relation between the structure and property – and can thus
not directly be used to make inference about new
molecules of interest. In a generative learning approach, the
model is concerned with characterizing either the distribu-

tion of the molecular structure p(x) or the joint distribution
p(x, y) of the molecular structure and the property of
interest. The former case where only the molecular structure
is modeled is known as unsupervised learning, whereas the
latter case where both molecular structure and correspond-
ing properties are modeled is known as supervised learning.

In this study we will focus on one particular non-linear
flexible generative model, the variational autoencoder
(VAE).[1,2] The complementary likelihood free approach to
generative modelling, generative adversial networks (GAN),
has also received a lot of attention recently. GAN and other
approaches beyond VAE are discussed in Section 6. In our
review of VAE we include recent advances in inference and
implementation details. Therefore the tutorial by Doersch[3]

might be an easier starting point to establish the
mathematical intuition behind the model.

The remainder of the paper discusses generative
modelling (Section 2), variational inference (Section 3), prac-
tical implementation (Section 4) and application to proper-
ties of molecules (Section 5).

2 Deep Generative Models

In this paper we define a generative model as a probabilistic
model for the data features we have access to. We
distinguish between unsupervised learning where we have
a feature vector x and supervised learning where we have x
and dependent variables y. For unsupervised learning the
generative model is the joint distribution of x: p(x).
Probabilistic supervised learning involves modeling the
conditional p(y jx). In generative probabilistic supervised
learning we decompose the joint distribution of x and y as
p(x, y) = p(y jx)p(x). In the molecular context x will usually be
some representation of the molecule structure (for example
the SMILES representation,[4] molecular fingerprints such as
MACCS[5] or in principle the atomic positions and properties)
and y will be a physical property of the system such as free
energy, ground state energy, band gap, or crystal structure

[a] P. B. Jørgensen, M. N. Schmidt, O. Winther
Technical University of Denmark
E-mail: olwi@dtu.dk

Minireview www.molinf.com

© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Mol. Inf. 2018, 37, 1700133 (2 of 9) 1700133

www.molinf.com


1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

or a biological response such as toxicity, cellular uptake, or
drug efficacy.

The two main reasons why we want to apply proba-
bilistic generative models are that they:
1. Allow for quantitative model comparision. Once fitted

we can evaluate the density on a test data point xtest or a
test dataset. A high value of log p(xtest) (relative to other
model baselines) indicates that the model has captured
essential statistical properties of x.

2. Can be used to synthesize new data. Once fitted we can
simulate new data from the model xnew~p(x) where ~ is
notation for a draw from the distribution. The synthes-
ised data can be used for a qualitative evaluation of the
model for example an image generated from a model
fitted on a training set of natural images. The generated
data can also be of practical interest, for example a new
molecule with potentially desirable properties.
In this paper we will consider a specific class of

generative models called latent variables models. A latent
variable (vector) z represents unobserved properties of the
datum that can describe the observed datum x statistically
through a generative process p(x j z). A simple example of
such a model is a linear model with additive noise e: x =
Wz +e, where W is the weight matrix. Often we will assume
that dim(x)>dim(z) so that the latent representation is
more compact than the observed data. The latent variable
itself is assumed to be generated from a prior distribution
p(z). The generative model p(x) discussed above is recov-
ered by marginalizing over z : pðxÞ ¼

R
p x zjð ÞpðzÞdz. In a

latent variable model we can draw from p(x) by a two-step
procedure: 1) z~p(z) and 2) x~p(x j z). In some cases the
latent variable will have a direct physical meaning and in
other cases the use of a latent variable model is a
convenient way to define a flexible statistical model.

We will usually use maximum likelihood learning. For
unsupervised learning this means that we have a training
set X ¼ fxigN

i¼1 that we model with a latent variable model

pq(x, z) = pq(x j z)p(z) with parameters q. We will as a default
assume independent identically distributed (iid) samples
such that the likelihood for q is written as

pqðxÞ ¼
YN

i¼1

pqðxiÞ ð1Þ

with pqðx1Þ ¼
R

pq xi zjð ÞpqðzÞdz. Sometimes we will omit the
q dependence for brevity. In maximum likelihood learning
the objective is thus to maximize (1) with respect to the
parameters q.

In deep generative modelling we replace the simple
linear relation between the observed data x and the latent
variable z with a parameterized non-linear function fq(·). For
fq(·) we use a multi-layered neural network with L layers of
adaptable weights, for example

where the (element-wise) rectified linear activation function
is given by relu(a) = max(0, a). We then have

pqðxjzÞ ¼ Nðf qðzÞ, s2IÞ: ð5Þ

The trainable parameters q of the model are the L weight
matrices W1, . . . WL, the L bias vectors b1, . . . bL and the
output noise variance s2. The model can be extended, for
example by letting s2 depend on the latent variable z or by
introducing a hierarchy of latent variables, for example p(x,
z1, z2) = p(x j z1)p(z1 j z2)p(z2) where z1 and z2 are latent
variables vectors.
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As soon as we introduce non-linearities in the model we
can not analytically marginalize out the latent variables. We
therefore have to resort to approximations. A prominent
method, that variational autoencoders are based on, is
variational inference.

3 Variational Inference

The approach we use in variational autoencoders (VAE)
consists of three steps:

Likelihood lower bound. Replace the likelihood with a
more tractable lower bound. The most widely used is:

log pðxiÞ � EqiðzÞ log
p xi zjð ÞpðzÞ

qiðzÞ

� �

; ð6Þ

where EqiðzÞ½:::� denote average (expectation) over qi(z). We
have here introduced a variational distribution qi(z) which is
an approximation to the posterior distribution over the
latent variables and its role in the variational autoencoder is
explained in the next paragraph. This lower bound still
requires intractable integration due to EqiðzÞ½:::�, but we can
derive low variance Monte Carlo estimators for these. The
bound can be decomposed into two terms

log pðxiÞ � EqiðzÞ log p xi zjð Þ½ � � KLðqiðzÞ; pðzÞÞ; ð7Þ

where KLðqðxÞ; pðxÞÞ �
R

qðxÞ log qðxÞ
pðxÞdx is the Kullback-Leib-

ler divergence between q and p. The first term on the right-
hand-side of (7) can be interpreted as the average
reconstruction error, i. e. how well does the generative
model fit the data distribution and the KL-term is a measure
of how much q(z) diverges from the prior p(z).

An alternative tighter bound is given by Burda et al.,[6]

which is often used when comparing different models on
the same dataset.

FK xð Þ �
Z YK

k¼1

q zkð Þ log
1
K

XK

k0¼1

wx zk0ð Þ
" #

YK

k¼1

dzk

with wx zð Þ � p x zjð Þp zð Þ
q zð Þ . This so-called importance weighted

bound coincides with the standard bound for K = 1, obeys
FK�FL for K>L and converges to the log p(x) for K!1 as a
consequence of the law of large numbers. It is often used
with moderate K for example K�3–10 during training and
large K, K�1000–5000 for evaluating the test log likelihood.

Inference network. The lower bound (6) depends upon
a variational distribution qi(z) which is an approximation to
the latent posterior distribution

p z xijð Þ ¼ p xi zjð ÞpðzÞ
pðxiÞ

: ð8Þ

We can for example choose q�i
ðzÞ ¼ N z mi;

P
ijð Þ with varia-

tional parameters fi = {mi, Si}. In VAE, instead of having a set of
parameters for each xi we will use a socalled inference network
parameterization qf(z jx). The inference network will be
specified as a deep neural network similar to the generative
model but now with x as input and mean and variance of z as
output. We could for example take qf(z jx)=N (z jmf(x), Sf(x))
where mf(x) and Sf(x) are written as output of a deep network
in the same fashion as the generative model was specified in
the generative model Eqs. (2)–(5). This is actually more
restrictive than the formulation with individual variational
parameter for each datum but it has the advantage that we
leverage information across data points. In other words it is
based upon the assumption that data points that are close (in
some sense derived from the data) will also have similar
posterior latent distribution. The log likelihood lower bound
for the training set that we want to optimize is:

Lðq; �Þ ¼
XN

i

Eq� z xijð Þ log
pq xi zjð ÞpqðzÞ

q� z xijð Þ

� �

: ð9Þ

Note that even though we treat the two sets of parameters
q and f in the same way they play different roles: the q-
optimization is model fit and the f-optimation is for making
the bound as tight as possible. Overfitting is not an issue in
the latter case – we want the inference network to come as
close as possible to p(z jx).

The inference network qf(z jx) can be interpreted as a
probabilistic encoder which maps an input x to a probability
distribution in the latent vector space and pq (x j z) is the
corresponding probabilistic decoder. Hence the name varia-
tional autoencoder.

Monte Carlo estimators and reparameterization trick.
Low variance Monte Carlo estimators of the log likelihood
lower bound and its derivative with respect to the
parameters q and f are obtained by choosing a parameter-
ization of qf(z jx) that allows the use of the so-called
reparameterization trick. Again we focus on the standard
bound and use M samples:

log pðxÞ � Eq� z xjð Þ½log wxðzÞ� �
1
M

XM

m¼1

log wxðzmÞ

with wxðzÞ ¼ pq x zjð ÞpqðzÞ
q� z xjð Þ and zm~q(z jx). Since we expect wx(z)

to scale exponentially in the number of dimensions of z
then the logarithm appearing in the bound is important to
make the Monte Carlo estimator (the right hand side above)
have low variance.

We need the reparameterization trick when taking
derivatives. For the Gaussian inference network it amounts
to replacing an average over qf(z jx) with an average over
e~N(0, I). The parameter dependence is thus shifted into
the integrand. In the integrand we will then replace z with
zf(e, x) =mf(x) +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
�ðxÞ

p
e where

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
�ðxÞ

p
is to be under-
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stood as a matrix square root. A diagonal Sf(x) is the
standard choice because it is simple only requiring a
network with dim(z) outputs for the (log) variances.

3.1 Bits Back

The bits back argument[7,8,9] gives theoretical insight on why
variational models often will converge to a solution where
relatively few latent dimensions are being used. That is in
p(x j z) many of the components of z have no influence on x.
The bits back back argument is simply an alternative
decomposition of the log likelihood bound in the limit of
very large training set corresponding to averaging over the
data generating distribution pdata(x). For the variational
bound using an inference network we have

EpdataðxÞ½log pðxÞ� � EpdataðxÞ;q z xjð Þ log
p x zjð ÞpðzÞ

q z xjð Þ

� �

:

We can rewrite this expression using two steps: multiplying
by pdataðxÞ

pdataðxÞ inside the log and replacing p(x j z)p(z) by the
equivalent p(z jx)p(x):

EpdataðxÞ½L� ¼ �HðpdataÞ � KLðpdataðxÞ; pðxÞÞ
�EpdataðxÞ KL q z xjð Þ; p z xjð Þð Þ½ �;

where H(p) =�S p(x) log p(x)dx is the entropy of p. The first
term (minus the entropy of the data generating distribu-
tion) is the irreducible lower bound on the log likelihood,
the second is the model error and the third is the variational
posterior approximation error. The trade-off between the
two last terms determines the solution we will find. We get
a more flexible model by introducing latent variables
because p(x) = S p(x j z)p(z)dz will in general be more flexible
than a model without the latent variables but we pay a
price in terms of the variational approximation error. The
components ẑ of z not are used in the generative model
will have p ẑ xjð Þ ¼ pðẑÞ and we can get KL q ẑ xjð Þ; p ẑ xjð Þð Þ to
be zero by setting q ẑ xjð Þ ¼ pðẑÞ. The limited number of
active units observed empirically, see for example,[10] reflects
this trade-off. At some point introducing additional latent
variables gives a smaller gain in terms of model fit than the
price paid in approximation error. This is motivation for
using the improved variational approximations discussed in
the text section.

3.2 Improving the Variational Approximation

Methods for improving the variational distribution mayr-
oughly be divided into three categories:

Hierarchical specification of variational distribution.
For generative models with two or more stochastic layers
there is some freedom in choosing the connectivity of
variational distribution. Consider a two layer generative

model p(x, z1, z2) = p(x j z1)p(z1 j z2)p(z2). One minimal solution
is to specify q with dependence in the reverse order: q(z1,
z2 jx) = q(z2 j z1)p(z1 jx). However, we get a more flexible and
thus more accurate inference network if we condition the
first term on x as well: q(z1, z2 jx) = q(z2 j z1, x)p(z1 jx). We say
that we introduce a skip-connection that connects x directly
to the network for the mean and covariance of z2: mf(z1, x)
and Sf(z1, x). The ladder VAE[10] has a more advanced version
of skip connections which also includes a parameterization
where the parts of the inference network are shared by the
prior hierarchical prior specification for the generative
model. This leads to improved generative performance.

Normalizing flows. Let f be an invertible dim(z)!dim(z)
mapping. We can use distribution z’= f (z) in our generative
model instead of z and introduce the determinant of the
Jacobian in the likelihood.[11] If we let f have adaptable
parameters it is possible to learn quite flexible priors. We
can also generalize this concept in a simple way by letting f
be a series on invertivle transformations.[12,13]

Auxiliary latent variables. In the auxiliary variable
approach[14,15,16] we introduce a new latent vector a into the
inference network q(z, a jx) = q(z ja, x)q(a jx). We specify the
generative model as p(x, z, a) = p(x j z)p(z)p(a j z, x) in order
to leave the generative process unaffected that is z and x
are not affected by the value of a. However, the resulting
marginal inference network q(z jx) = S q(z ja, x)q(a jx)da is
now more flexible than before and should therefore give a
better fit to the posterior. This is also observed in practice.[15]

One may also make a bits back argument for the auxiliary
model that shows that we still have to make a trade-off
between the exact posterior p(a j z, x) and its variational
approximation.

4 VAE Inference in Practice

Variational autoencoder practice follows standard modern
deep learning practice. Mini-batch stochastic gradient
descent optimization is employed with parameter updates
based upon gradients calculated on mini-batches of the
order of 100 training examples. Thousands of epochs
(complete sweeps through the training set) are often
needed for convergence. The objective is usually evaluated
with M = 1 samples for the expectation:

Xmini�batch

i

log
pq xi zijð ÞpqðziÞ

q� zi xijð Þ

with zi�zf(ei, xi) =mf(xi) +sf(xi)�ei, mf(xi) and log sf(xi) are
the output of the inference network (both dim(z) dimen-
sional), � denotes component-wise multiplication and ei~
N(e j0, I). Setting M = 1 is the favored choice because
averaging over mini-batches will be a more efficient way to
decrease the variance of the estimator than to use the same
example M>1 in the same mini-batch. Many variants of
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adaptive step-size stochastic gradient descent with momen-
tum have been proposed recently. Adam[1] is a popular
choice. Differentiation of the objective involves applying
the chain rule of differentiation. This is performed automati-
cally within modern deep learning software packages such
as TensorFlow and PyTorch. Some derivate terms in the
objective cancels exact on expectation.[17] These terms have
to removed explicitly from the gradient calculation. In
practice it turns out that it does not make a big difference
to take this into account or not.[17]

The effect of removal of latent variables discussed in
Section 3.1 can be partially mitigated by employing “warm-
up”[10,18] or the “free bits” surrogate objective.[13] We rewrite
the log likelihood lower bound objective in (9) and
introduce a “temperature” parameter a:

Lðq; �;aÞ ¼
XN

i

Eq� z xijð Þ log pq xi zjð Þ þ a log
pqðzÞ

q� z xijð Þ

� �

: ð10Þ

The original objective is restored by setting a=1. Warmup[10,18]

amounts to starting with a traditional map x-to-x autoenocder
objective corresponding to a=0 and slowly increasing a, say
linearly during the first 200 epochs, to the variational objective
a=1. In some cases for example in the sequence encoder and
decoder models employed in Section 5 it turns out that it is
necessary to set the final value of a below one in order to
make the model use any latent variables. The learned latent
structure is still useful but the likelihood lower bound
interpretation is no longer valid.

5 Applications to Molecular Sciences

Using VAEs with recurrent neural network encoder and
decoder was first employed by Bowman et al.[18] to generate
English written sentences. The first application in molecular
science is demonstrated by Gómez-Bombarelli et al.,[19] where
a similar encoder and decoder model is used to generate
SMILES strings character by character from the latent space.
The method is applied to a dataset of approximately 250,000
drug-like molecules from the ZINC database[20] and 100,000
organic light emitting diode (OLED) molecules.[21] One of the
problems of the character-based VAE is that it often produces
invalid molecules. In the experiments by Gómez-Bombarelli
et al.[19] from 70 % to less than 1 % of the generated samples
are valid molecules. The errors can be syntax errors (the
generated string is not a valid SMILES string) or semantic
errors (the SMILES string is syntactically valid but the molecule
corresponding to the SMILES string is physically impossible).
Despite these problems, using SMILES strings is an appealing
approach because it gives a full description of the molecule
without making assumptions about which features are
important for the task at hand. If we for example modeled
fingerprints we would have to search for the molecule that

corresponds to the generated fingerprint (which might not
exist if it is generated erroneously) and we have already made
a choice of which features are important by selecting or
designing the fingerprint.

5.1 Using a Grammar

The number of syntax errors can be significantly reduced by
replacing the character-based encoder and decoder with a
syntax-aware model as done in the Grammar VAE.[22] The
SMILES syntax can approximately1 be described by a so-
called context free grammar. Rather than constructing a
string character by character we can be represent the string
as a sequence of production rules. Not all possible
sequences of production rules are valid and the formulation
as a context free grammar allows us to enforce this
restriction upon the decoder such that all generated
sequences are syntactically valid. Kusner et al.[22] also applies
the Grammar VAE model to the drug-like molecules from
the ZINC database and the results indicates improved
smoothness in the latent space representation in compar-
ison to the character based VAE.

In many molecular screening applications we are not
interested in the set of all possible molecules, but for
example want to limit our search to a smaller set of
molecules that are easy to synthesize. In this case the
SMILES grammar formulation may be unnecessarily complex
and can be replaced with a simpler application specific
grammar that is easier to handle for the grammar VAE. This
approach is used by Jørgensen et al.[23] for screening of
materials for polymer solar cells where each material is
composed from a library of acceptor, donor and side group
substructures. If the application allows it, the grammar can
be formulated such that a syntactically valid string implies a
semantically valid molecule, such that the model only
generates valid molecules.

5.2 Example: Screening of Polymer Solar Cells Using
Grammar VAE

The problem of interest in[23] is to find new materials for
polymer solar cells. The polymer units are composed by one
of 13 acceptor units, one of 10 donor units and a number of
side groups. The crucial properties are the Lowest Unoccu-
pied Molecular Orbital (LUMO) and the optical band gap
energy. These properties can be estimated with computa-
tionally costly DFT calculations and from a dataset of
approximately 4000 DFT calculations we seek to propose
new candidate molecules and determine their properties
with machine learning. An example polymer solar cell

1 Not all elements of SMILES are context free, e. g. opening and
closing of ring-bonds where the same digit must be used for
opening and closing the bond as seen in benzene “c1ccccc1”.
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molecule (monomer) is shown in Figure 1 and the context
free grammar that describes all the possible strings is shown
in Figure 2. A model based on this grammar might generate
invalid molecules because the number of side groups for
each acceptor/donor is not defined by the grammar, but
the grammar rules are simpler this way.

We train a grammar VAE using the log likelihood lower
bound objective (10) with a constant temperature parame-
ter a<1. Initial studies showed that using a <0.1 was
necessary in order to yield good reconstruction error and
we use a= 0.08 for the training objective and a = 1 when
evaluating the bound. We use Adam[24] with initial learning
rate 0.001 and the learning rate is divided by 2 after every
100 epochs. The log likelihood lower bound for the training
and validation set is shown in Figure 3a and the reconstruc-
tion accuracy2 is shown in Figure 3b.

The latent space dimension is set to 32, but as discussed
in Section 3.1 it might not be beneficial to use all the latent
variables. Because the prior p(z) and q(z jx) factorize across
the dimensions of z we can compute the KL-term of the objective function for each of the latent dimensions as

shown in Figure 4 for the polymer solar cell grammar VAE.
In this example the “effective” dimension of the latent space
is around 17, the KL-term for the remaining dimensions is
close to zero. Depending on the subsequent application of
the model, it may be beneficial to “prune” these dimensions
from the model.

The embedding is visualized using principal component
analysis in Figure 5. Even though the grammar VAE is

Figure 1. An example molecule from the polymer solar cell dataset
and its simplified string representation.

Figure 2. Context free grammar for the polymer solar cell dataset.

Figure 3. Training curves for grammar VAE on the polymer solar cell
dataset. We use 5-fold cross-validation to estimate the model’s
generalisation error. The lines are averages across the 5 folds and
the shaded area shows the maximum and minimum.

2 The reconstruction accuracy is measured in the following way:
Each string x is encoded as the mean of the encoding distribution
qf(z jx) and decoded using pq(x j z) where the most probable
(according to the decoder model) production rule is selected at
each step and the encode/decode is considered successful if the
output of the decoder matches the encoder input exactly. The
accuracy is the success rate across the data set.

Figure 4. Average (over the training set) KL-divergence

Minireview www.molinf.com

© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Mol. Inf. 2018, 37, 1700133 (7 of 9) 1700133

www.molinf.com


1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

trained without using label information we notice some
structure when coloring the embedded data points accord-
ing to the optical band gap energy. The target range for the
optical gap is from 1.4 eV to 1.7 eV and the LUMO target
range is �3.2 eV to �2.9 eV.

5.3 Generating New Molecules

In our description above we have only discussed the problem
of encoding to and decoding from a latent space representa-
tion of the discrete input, but often we would like to use this
representation to search for molecules with a given property.
Since the latent space is a continuous vector space we can
then employ our favourite regression/classification on top of
this representation. Kusner et al.22] and Gómez-Bombarelli
et al.[19] use a Gaussian process regression model that is trained
on the latent space representation and new points in the

latent space are selected based on Bayesian optimization, see
Brochu et al.[25] for a tutorial on Bayesian optimization. The
Bayesian optimization procedure tries to avoid to sample new
points that are close to the training data, so we can avoid
sampling a point in the latent space that decodes to a
molecule that is already in the training set. However, this also
means we might sample from areas in the latent space that
decodes to invalid molecules.[19] Instead they train a feedfor-
ward neural network on the latent representation and then
optimize the position by taking a few gradient steps starting
from the latent representation of a molecule with good
properties.[19] Jørgensen et al.[23] continuing the example
above) sample a large number of random points from the
latent space and this set of points is decoded and encoded
repeatedly to find well-behaved regions of the latent space.
After a number of iterations the best points according to the
regression model are selected for further studies.

A more advanced approach is to train a regression model
in conjunction with the VAE model, as done for classification
in semi-supervised learning with deep generative models.[26]

In this class of models we can condition the generation of
new samples on a specific class label. This is yet to be tried
with the SMILES representation, but has been successfully
done for drug efficiency classification trained on preand
post-treatment gene expression vectors.[27]

6 Other Generative Models

Another popular deep generative model class is Generative
adversarial networks (GAN).[28] In this framework the gen-
erative model is pitted against a discriminative adversarial
model, which is typically also implemented as a neural
network. During training the discriminator is optimized to
classify whether a sample comes from the data distribution
or it is generated by the generative model and the
generative model is optimized to fool the discriminator.
Some advantages compared to VAEs is that we do not need
to specify a variational distribution qf(z jx) and the model
can represent sharper data distributions.[28]

The GAN framework has been applied to generation of
molecular fingerprints in the DruGAN Adversarial Autoen-
coder.[29] They effectively replace the KL-term of a VAE with
a discriminator that discriminates between the encoder and
a sample from N (0, I). Apart from generating new molecular
fingerprints they use the VAE as pretraining for an aqueous
solubility regression problem.

It is also possible to formulate generative models based
on (deep) reinforcement learning in which a software agent
builds a data point through a series of actions, e. g. selecting
the characters for a SMILES string representation. The agent
is trained to maximize a given notion of reward for the
generated data. The advantage of this approach is that the
reward function can be any function of the taken actions as
opposed to VAE where we need to specify a differentiable
p(x jz) and for a GAN the discriminator must be differentiable.

Figure 5. Visualization of embedding using principal component
analysis on the mean value of the embedding corresponding to
each data point. The dots marks the mean value and the shaded
ellipses are the contours corresponding to half the standard
deviation of each point.
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Olivecrona et al.[30] trains an autoencoder to reconstruct
SMILES strings. Then they replace the decoder with a
reinforcement-learning trained decoder to generate mole-
cules with a desired property. They use a trade-off
parameter to trade off between generating from the auto-
encoder (prior) or follow the RL cost function. In objective-
reinforced generative adversarial network (ORGAN),[31] the
GAN framework is combined with reinforcement learning to
generate SMILES strings. They also introduce a trade-off
parameter that weights between GAN training (to make
molecules look like training data) and RL training (to make
molecules with desired property).

7 Conclusion

This paper has given an introduction to variational autoen-
coders (VAE) and given a few examples of their application for
modeling molecule properties. VAE are flexible non-linear
latent variables generative models. At the time of writing the
VAE have only been around for four years. During these years
variants of VAE have pushed the state-of-the-art performance
in many unsupervised and semi-supervised benchmarks and
found its way into many application areas. Un- and semi-
supervised learning are arguably areas where we will see
much more research focus in the coming years because
supervised learning is much more explored and better under-
stood and because having access to good unsupervised
models will enable researchers to explore the vast amounts of
unlabeled data available. There are still many open issues
around inference with VAE such as how to construct better
variational approximations (inference networks) such that we
can learn better model for for example sequence data. When
these current shortcomings have been dealt with we will likely
see even more applications in many data abundant areas such
as computational materials science and biomedicine.
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