

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 10, 2018

Streaming Process Discovery and Conformance Checking

Burattin, Andrea

Published in:
Encyclopedia of Big Data Technologies

Link to article, DOI:
10.1007/978-3-319-63962-8_103-1

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Burattin, A. (2018). Streaming Process Discovery and Conformance Checking. In S. Sakr , & A. Zomaya (Eds.),
Encyclopedia of Big Data Technologies Springer. DOI: 10.1007/978-3-319-63962-8_103-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/154333741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/978-3-319-63962-8_103-1
http://orbit.dtu.dk/en/publications/streaming-process-discovery-and-conformance-checking(735df916-afdc-4a6d-83af-d7c66de19b41).html

Streaming process discovery and conformance
checking

Andrea Burattin

Synonyms

Online process mining; online process discovery; online conformance checking.

Definitions

Streaming process discovery, streaming conformance checking, and streaming pro-
cess mining in general (also known as online process mining) are disciplines which
analyze event streams to extract a process model or to assess their conformance
with respect to a given reference model. The main characteristic of this family of
techniques is to analyze events immediately as they are generated (instead of stor-
ing them in a log for late processing). This allows to drastically reduce the latency
among phases of the BPM lifecycle (cf. Dumas et al (2013)), thus allowing faster
process adaptations and better executions.

Overview

A possible characterization of process mining algorithms is based on how they con-
sume event data. Specifically, most of the algorithms focus on a (static) event log,
however there are algorithms which focus on event streams. An event log is a fi-
nite sampling of activities observed in a given time frame. An event stream, on the

Andrea Burattin
DTU Compute, Software Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Den-
mark. E-mail: andbur@dtu.dk

1

andbur@dtu.dk

2 Andrea Burattin

other hand, is an unbounded sequence of events, which contains events as they are
executed.

Event streams, in fact, are specific types of data streams, where each data point
refers to an event. General data streams have been investigated since many years,
mainly to tackle problems such as frequency counting, classification, clustering,
approximation, time series analysis and change diagnosis (also known as novelty
detection or concept drift detection) as summarized in Widmer and Kubat (1996);
Gama (2010); Gaber et al (2005); Aggarwal (2007). To tackle these problems, it
is possible to devise techniques in a data- or task-based orientation. Data-based
techniques aims at extracting a significantly representative finite subset of the data
stream, which is used for the analysis. Task-based techniques, on the other hand,
adapt the computation to this new data modality, in order to minimize time and
space complexity of the analysis.

The streams these algorithms have to deal with can be characterized based on
their operations model. In particular, we might have:

• insert-only stream model (once an element is seen, it cannot be changed);
• insert-delete stream model (cf.n elements can be deleted or updated);
• additive stream model where seen item refers to numerical variables which are

just incremented.

In the context of process mining, all available techniques assume the insert-only
model: observations refer to activities which have been executed. The data mining
literature, for example in Golab and Özsu (2003); Bifet et al (2010), informally, de-
fines data streams as a fast sequence of data items. However, in Bifet and Kirkby
(2009), several assumptions on the data stream are reported, such as: the data is as-
sumed to have a small and fixed number of attributes; the number of data points is
very large; stream concepts (in the process mining context, the concept is the model
underlying the events being generated) are assumed to be stationary or evolving.
These assumptions make the processing of data streams very different from con-
ventional relational models. Specifically, as detailed in (Gama, 2010, Table 2.1), the
data elements arrive online, with no control by the system, in an unbounded amount.
This imposes the analysis to be incremental: once an element is received it is dis-
carded or analyzed. If it is analyzed it cannot be explicitly retrieved again afterwards
(i.e., its information is aggregated and summarized). Additionally, to cope with con-
cept drifts, old observations should be replaced by new ones and it is not possible to
have one-time queries but a continuous “querying mechanism” is necessary.

Key Research Findings

This section provides some general ideas on how to tackle the problem of process
mining from an event stream. Three general strategies are sketched and, in the up-
coming subsections, details regarding actual instantiations of the ideas are reported.
Figure 1 depicts a taxonomy of the different approaches investigated so far. In this

Streaming process discovery and conformance checking 3

Stream process mining approaches taxonomy

1. Store a window of recent event

2. Apply any offline approach for
 any process mining problem

1. Transform a specific process mining

 problem into a stream mining problem
2. Use known algorithm to solve the

 reduced problem

3. Contextualize the solu�on of the
 reduced problem into process mining

0. [offline] Precompute solu�ons to all

 possible problems given some
 condi�ons

1. Observe each event and apply

 proper precomputed solu�on

Window-based models Problem reduc�on Offline computa�on

Hybrid approaches: Mixing the three strategies

Fig. 1 Taxonomy of the different approaches to solve the different stream process mining prob-
lems. For each technique, corresponding general steps are sketched.

Algorithm 1: Window model
Input: S: event stream

M: memory model
maxM : maximum memory
A: additional information (e.g., a reference model), can be /0

1 forever do
// Observe a new event

2 e← observe(S)

// Memory update

3 if max(M)≥ maxM then
4 dequeue(M) // Forgetting

5 end
6 insert(M,e)

// Mining update

7 if perform mining then
// Memory into event log

8 L← convert(M)
9 ProcessMining(L,A)

10 end
11 end

text we will not focus on hybrid approaches: they are characterized by very hetero-
geneous solutions and therefore there is no proper generalization possible.

Window models. In order to perform process mining on a stream of event, the
simplest approach is to devised a data-based technique to store only the set of
most recent events observed and periodically analyze them. Whenever there is no
more memory available, the oldest event is discarded. This approach, called window
model is described in Alg. 1. The algorithm enters a endless loop where, at each it-
eration, a new event is observed. Then, the system checks whether it is necessary to
remove old events or not, and then the new event is inserted. Periodically, the system
converts the memory into a standard event log, and classical process mining algo-
rithms are applied on it. The literature, in Babcock et al (2002), identifies at least
two memory models capable of storing event: sequence based or timestamp based.
The first approach (which is typically implemented with sliding windows) consists

4 Andrea Burattin

Algorithm 2: Lossy Counting
Input: S: data stream

ε: maximal approximation error

1 T ← /0 // Initially empty set
2 N← 1 // Number of observed events

3 w←
⌈ 1

ε

⌉
// Bucket width

4 forever do
5 e← observe(S)
6 bcurr←

⌈ N
w

⌉
/* Is there a tuple in T with e as first component? */

7 if e is already in T then
8 Increment the frequency of e in T
9 else

10 Insert (e,1,bcurr−1) in T
11 end
12 if N mod w = 0 then
13 forall (a, f ,∆) ∈ T s.t. f +∆ ≤ bcurr do
14 Remove (a, f ,∆) from T
15 end
16 end
17 N← N +1
18 end

of a FIFO queue of fixed size. The observed events are stored in the window and,
once the maximum capacity is reached, the oldest event is removed. In a timestamp
based window model the approach is very similar but the memory size is not fixed.
Instead, the removal is based on the “age” of the observation: the memory keeps
only the events observed within the given time span.

This approach comes with several advantages, such as the possibility to reuse ev-
ery mining algorithm already available for event logs. However, the memory man-
agement is extremely problematic and has a huge impact on the performance of
the approach. Specifically, all window-based approaches have poor summarizing
capabilities since, for example, duplicate events require two “memory slots”, even
though they may not provide new information.

Problem reduction. The second possible way of tackling the streaming process
mining problems is to employ a task-based technique. For example, it is possible to
reduce the process mining problem to another well-establish problem and therefore
reuse algorithms specifically devised and optimized for the necessity at hand. Of
course, it is also possible to devise a completely new algorithm specifically tailored
to solve the given situation. This approach, for example, has been used to reduce the
problem of streaming process discovery to the frequency counting problem. This
problem consists of counting the frequencies of given variables over a stream. In
order to reduce the process discovery to such problem it is important to understand
what is a variable in the process mining context, and whether it is possible to identify
it.

An example of efficient algorithm for the approximated frequency counting prob-
lem is Lossy Counting, here summarized in Alg. 2, and described in Manku and
Motwani (2002). The idea is to conceptually split the observed stream in buckets,
each with a fixed size. The approach takes as input the stream and the maximal ap-

Streaming process discovery and conformance checking 5

proximation error on the counting ε ∈ [0,1], which drives the size of each bucket.
The approach stores entries in a data structure T where each component (e, f ,∆)
provides the element e of the stream, the estimated frequency for it f , and the max-
imum number of times it could have occurred ∆ . When a new event is observed in
the stream, the algorithm checks if it is already in T and, in case, it increments its
counter f by one. Otherwise a new entry in T is created. Periodically (i.e., every time
a new conceptual bucket starts) the algorithm cleans the memory, by removing ele-
ments not frequently observed. This algorithm has no memory bound. Specifically,
the size of the data structure T depends on the stream and on the approximation
error. However, a variation of the algorithm to enforce fixed amount of memory is
described in Da San Martino et al (2012).

The most relevant benefit of the problem reduction approach is that, once the
process mining problem has been reduced to the new one, it is possible to use algo-
rithms already devised for the reduced problem. However, such reduction might not
be trivial and all assumptions of the used approach have to be met.

Offline computation. The last approach we present consists of moving the com-
putation of the solutions to the given problem from online setting to offline. In other
words, the idea is to identify and solve all sub-problems the stream may provide.
Adopting this approach will help us in dealing with all situations we are going to
observe, still keeping the complexity of the online processing constant.

The advantage of this approach is the possibility of having extremely expensive
solutions “cached” in advance which are then just reused whenever needed. Though,
there are several drawbacks: it is not possible to apply this approach to all online pro-
cess mining problems. Additionally, by computing everything in advance, we lose
the possibility of adapting the pre-computed solutions to the contextual information,
which might be uniquely specific to the running process instance.

In the upcoming subsections, one example of each technique will be presented
and detailed by presenting two process mining activities.

Process Discovery

The first problem we present is the online process discovery. A graphical conceptu-
alization of the problem is reported in Fig. 2. The idea is to have a source which is
generating an event stream. This event stream is consumed by a miner which gen-
erates a representation of the underlying process model and keeps it up-to-date with
respect to the observed behavior.

The first approach available to tackle this problem is reported in Burattin et al
(2012, 2014b). In their works, authors employ a problem reduction strategy. Specif-
ically, they reduce the Heuristics Miner algorithm, described in van der Aalst and
Weijters (2003), to the Frequency Counting problem. To do that, they assume direct
following relationships as variables and, by counting them, they are able to use the
Heuristics Miner’s metric to reconstruct the high level business patterns in terms of
Heuristics Net or Petri Net. Authors test different algorithms to solve the frequency

6 Andrea Burattin

Events emi�ed over �me

Stream miner instance

... Network communica�on

Time

...

A

B

B2

C

A B C

Fig. 2 Conceptualization of the streaming process discovery idea as in Burattin et al (2014b).

counting problem, such as Lossy Counting and Lossy Counting with Budget. As
baseline approach, authors use a sliding window mechanism where Heuristics Miner
is iteratively applied. The sliding window approach is constantly outperformed by
other approaches which provide a better usage of the available resources. A similar
approach, called StrProM, tracks the direct following relationships. This approach,
presented in Hassani et al (2015), keeps an updated prefix tree by deriving a solution
based on Lossy Counting with Budget. The direct following relationships are then
used to construct a process model using the set of rules of Heuristics Miner.

As for the previously mentioned approaches, in Maggi et al (2013); Burattin et al
(2014a, 2015), authors investigate the problem of discovering a process represented
in Declare (cf. Pesic et al (2007)). Specifically, their idea is to instantiate several
“replayers”, one for each Declare template to mine. Then, specific behavior for each
template is implemented. To keep track of the replay statuses, authors use Lossy
Counting-based strategies. Authors apply sliding window as baseline and, again,
the performances of the Lossy Counting strategies are better with respect to the
simple application of offline approaches over a sliding window.

In Redlich et al (2014b) authors present the adaptation of CCM to cope with
event streams. The basic idea of CCM (cf. Redlich et al (2014a)) is to identify sub-
sequences of events in order to identify footprints of specific process patterns. In
CCM, relevant patters and corresponding footprints are described. Ageing factors
are employed to the collected information in order to give more importance to re-
cent behavior.

The most recent work tackling the online process discovery is reported in van
Zelst et al (2017b). In their paper, authors generalize previously instantiated con-
cepts: they present an architecture, namely S-BAR, which keeps an updated ab-
stract representation of the stream (e.g., direct follow relationships) and they use it
as starting point to infer an actual process model. In their work, authors present the
adaptations of different mining algorithms: α (cf. van der Aalst et al (2004)), Heuris-

Streaming process discovery and conformance checking 7

tics Miner (cf. van der Aalst and Weijters (2003)) and Inductive Miner (cf. Leemans
et al (2013)). To show the generability of their abstract representation, authors also
show a miner based on Region Theory (cf. van der Aalst et al (2008)). In order to
keep their abstraction updated, authors reduce their problem to frequency counting,
thus using Lossy Counting, Space Saving (cf. Metwally et al (2005)), and Frequent
(cf. Karp et al (2003)).

Conformance Checking

The problem of online conformance checking has received attention in the declar-
ative domain. In this case, it used to be called operational support and its aim is
to understand whether a set of constraints is being violated or not. To achieve that,
in Maggi et al (2011, 2012), authors devise an approach to represent the behavior
as an automaton and executions are replayed on it. Additionally, each process in-
stance is labeled with one of 4 possible fulfillment states: permanently/temporarily
violated/fulfilled.

Concerning imperative models, online conformance checking received less at-
tention. At present time, only two approaches have been specifically designed to
tackle the online conformance checking problem. One approach, described in van
Zelst et al (2017a), aims at reusing the concept of alignment in order to compute the
optimal alignment just for the prefix of the trace seen up to a given point in time.
To this end, authors first devise a technique to compute prefix-alignments. Authors
prove the optimality of the prefix-alignment they discover. Up to this point, their
approach is incremental but not really online (i.e., it is able to work on partial cu-
mulative information but in theory they need infinite memory to back-track in order
to find the optimal alignment). To solve this issue, authors mention the possibility
to implement memory management, either falling into a window-based model or
as problem reduction. Authors, however, do not implement or test either memory
management approach. However, they test their technique against different number
of backtracking steps required to find the prefix-alignment.

Another conformance checking approach belongs to the offline computation cat-
egory and is described in Burattin and Carmona (2017); Burattin (2017). In this
case, given a Petri Net as input, authors describe a technique to elicit a transition
system containing all possible transitions from one marking to another one, even
those which are not described by the original model. Each transition in this elicited
model is then associated with a cost. Transitions allowed by the original Petri Net
have cost 0, all others have cost > 0. This way, by replaying a trace on such transi-
tion system and summing the costs, authors show that conformant traces will have
cost 0 and non-conformant trace always have cost larger than 0. Additionally, au-
thors ensures the determinism of such transition system and the possibility, from
each state, to have one transition for each possible activity. These two last proper-
ties guarantees the suitability of the approach for online settings.

8 Andrea Burattin

Another conformance checking approach is presented in Weber et al (2015). In
this case, authors propose a RESTful service which performs a token replay on a
BPMN model. In particular, authors implemented a token pull mechanism. Authors
refer this approach as online primarily because of its interface, while no explicit
guarantee is mentioned in terms on memory usage and computational complexity.

Other Applications

Online process mining has been applied also to discover cooperative structures out
of event streams. For example, in van Zelst et al (2016), authors are able to pro-
cess an event stream and update the set of relationships of a cooperative resource
network.

Additionally, in order to conduct research on stream process mining, it is use-
ful to simulate an event stream for which we know the actual original source. To
achieve that, mainly two approaches are available. The first is a tool called PLG21,
described in Burattin (2016). It allows to generate a random model or to load a
BPMN file and stream events referring to actual executions. The stream is sent over
a TCP/IP connection, and the tool allows different configurations in terms of noise
and concept drift. The second tool is described in van Zelst et al (2015). This tool
allows researchers to design a model – as Petri Net – in CPN2 and then import
it into ProM3 where the XESEventStream Publisher plugin can be used to
simulate a stream. Please note that, in this case, the stream exists just within ProM.

Key Applications

Due to the novelty of the topic, we are not aware of any deployment of streaming
process mining techniques in real settings. However, more generally, online process
mining techniques are relevant in all cases where it is important to have results in
real-time, to immediately enact proper responses. In this section, examples related
to IT setting will be provided, but business oriented applications are absolutely pos-
sible and relevant as well.

Online process discovery might be useful in settings where it is important to
analyze immediately the behavior of the system. For example, reconstructing the
behavior of the services used in a website might be useful in order to see what
is currently under stress and what is going to be used afterwards. Exploiting this
information could improve the resource allocation (e.g., upscaling or downscaling
the server capacity on the fly).

1 http://plg.processmining.it/
2 http://www.cpntools.org/
3 http://www.promtools.org/

http://plg.processmining.it/
http://www.cpntools.org/
http://www.promtools.org/

Streaming process discovery and conformance checking 9

Online conformance checking is also useful whenever it is important to imme-
diately detect deviations from reference behavior to enact proper countermeasures.
For example, the kernel of an operating system exposes some services for applica-
tions. These services should be combined in some specific ways (e.g., a file should
be open(), then either write() or read() or both appear, and eventually the
file should be close()) which represent the reference behavior. If an application
is observed strongly violating such behavior it might be an indication of strange
activities going on, for example in order to bypass some imposed limitations or
privileges.

Future Directions for Research

As previously mentioned, online process mining is a relatively new area of investi-
gation. Some techniques are available for the discovery of the process (both as im-
perative and declarative model). Very recently, online conformance checking also
received attention, but several improvements are still needed.

First of all, techniques should improve their efficiency, for example in terms of
memory consumption. This represent an important research direction since, in the
online setting, the amount of available memory is fixed, thus representing a key
resource. To tackle this problem, it is necessary to work on the summarization ca-
pabilities used by the algorithms in order to find more compact ways of storing the
same information.

Related to the previous point is the quality and quantity of information and con-
textual data algorithms are able to extract out of the same event stream. For example,
a process discovery algorithm might be extended to extract more complex control
flow patters or the algorithm might be modified to return not just the result but the
confidence on the provided outcomes.

Additionally, there are more technical issues that algorithms should be able to
cope with. For example, dealing with a stream where the arrival time of events do
not coincide with their actual execution. In this case, it would be necessary to reorder
the list of events belonging to the same process instance before mining them. Please
note that, assuming different order implies a sort of different element model of the
stream (i.e., it becomes an “insert-delete stream model”, where the order of events
can change). Another relevant issue might be the inference of the termination of a
process instance.

Cross-References

• Automated process discovery
• Conformance checking
• Declarative process mining

10 Andrea Burattin

• Definition of data streams
• Introduction to stream processing algorithms

References

van der Aalst WM, Weijters TAJMM (2003) Rediscovering Workflow Models from Event-based
Data Using Little Thumb. Integrated Computer-Aided Engineering 10(2):151–162

van der Aalst WM, Weijters TAJMM, Maruster L (2004) Workflow Mining: Discovering Process
Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering 16:2004

van der Aalst WM, Günther CW, Rubin V, Verbeek EHMW, Kindler E, van Dongen B (2008)
Process mining: a two-step approach to balance between underfitting and overfitting. Software
& Systems Modeling 9(1):87–111, DOI 10.1007/s10270-008-0106-z

Aggarwal CC (2007) Data Streams: Models and Algorithms. Advances in Database Systems,
Springer US, Boston, MA, DOI 10.1007/978-0-387-47534-9

Babcock B, Babu S, Datar M, Motwani R, Widom J (2002) Models and Issues in Data Stream Sys-
tems. In: Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, pp 1–16, DOI 10.1145/543614.543615

Bifet A, Kirkby R (2009) Data Stream Mining: A Practical Approach. Tech. rep., Centre for Open
Software Innovation - The University of Waikato

Bifet A, Holmes G, Kirkby R, Pfahringer B (2010) MOA: Massive Online Analysis Learning
Examples. Journal of Machine Learning Research 11:1601–1604

Burattin A (2016) PLG2 : Multiperspective Process Randomization with Online and Offline Sim-
ulations. In: Online Proceedings of the BPM Demo Track 2016, CEUR-WS.org

Burattin A (2017) Online conformance checking for petri nets and event streams. In: CEUR Work-
shop Proceedings, vol 1920

Burattin A, Carmona J (2017) A Framework for Online Conformance Checking. In: Proceedings
of the 13th International Workshop on Business Process Intelligence (BPI 2017)., Springer, p
(in press)

Burattin A, Sperduti A, van der Aalst WM (2012) Heuristics Miners for Streaming Event Data.
ArXiv CoRR URL http://arxiv.org/abs/1212.6383

Burattin A, Maggi FM, Cimitile M (2014a) Lights, Camera, Action! Business Process Movies for
Online Process Discovery. In: Proceedings of the 3rd International Workshop on Theory and
Applications of Process Visualization (TAProViz 2014)

Burattin A, Sperduti A, van der Aalst WM (2014b) Control-flow Discovery from Event Streams.
In: Proceedings of the IEEE Congress on Evolutionary Computation, IEEE, pp 2420–2427,
DOI 10.1109/CEC.2014.6900341

Burattin A, Cimitile M, Maggi FM, Sperduti A (2015) Online Discovery of Declarative Process
Models from Event Streams. IEEE Transactions on Services Computing 8(6):833–846, DOI
10.1109/TSC.2015.2459703

Da San Martino G, Navarin N, Sperduti A (2012) A Lossy Counting Based Approach for Learning
on Streams of Graphs on a Budget. In: Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence, AAAI Press, pp 1294–1301

Dumas M, La Rosa M, Mendling J, Reijers HA (2013) Fundamentals of Business Process Man-
agement. Springer

Gaber MM, Zaslavsky A, Krishnaswamy S (2005) Mining Data Streams: a Review. ACM Sigmod
Record 34(2):18–26, DOI 10.1.1.80.798

Gama J (2010) Knowledge Discovery from Data Streams. Chapman and Hall/CRC, DOI 10.1201/
EBK1439826119

Golab L, Özsu MT (2003) Issues in Data Stream Management. ACM SIGMOD Record 32(2):5–
14, DOI 10.1145/776985.776986

http://arxiv.org/abs/1212.6383

Streaming process discovery and conformance checking 11

Hassani M, Siccha S, Richter F, Seidl T (2015) Efficient Process Discovery From Event Streams
Using Sequential Pattern Mining. In: 2015 IEEE Symposium Series on Computational Intelli-
gence, pp 1366–1373, DOI 10.1109/SSCI.2015.195

Karp RM, Shenker S, Papadimitriou CH (2003) A simple algorithm for finding frequent el-
ements in streams and bags. ACM Transactions on Database Systems 28(1):51–55, DOI
10.1145/762471.762473

Leemans SJJ, Fahland D, van der Aalst WM (2013) Discovering Block-Structured Process Models
from Event Logs - A Constructive Approach. In: Proceedings of Petri Nets, Springer Berlin
Heidelberg, pp 311–329, DOI 10.1007/978-3-642-38697-8{\ }17

Maggi FM, Montali M, Westergaard M, van der Aalst WM (2011) Monitoring Business Constraints
with Linear Temporal Logic : An Approach Based on Colored Automata. In: Proceedings of
the 9th international conference on Business process management, Springer Berlin Heidelberg,
pp 132–147, DOI 10.1007/978-3-642-23059-2{\ }13

Maggi FM, Montali M, van der Aalst WM (2012) An operational decision support frame-
work for monitoring business constraints. In: Proceedingss of 15th International Conference
on Fundamental Approaches to Software Engineering (FASE), pp 146–162, DOI 10.1007/
978-3-642-28872-2{\ }11

Maggi FM, Bose RPJC, van der Aalst WM (2013) A Knowledge-Based Integrated Approach for
Discovering and Repairing Declare Maps. In: 25th International Conference, CAiSE 2013,
Valencia, Spain, June 17-21, 2013., Springer Berlin Heidelberg, pp 433–448, DOI 10.1007/
978-3-642-38709-8{\ }28

Manku GS, Motwani R (2002) Approximate Frequency Counts over Data Streams. In: Proceedings
of International Conference on Very Large Data Bases, Morgan Kaufmann, Hong Kong, China,
pp 346–357

Metwally A, Agrawal D, Abbadi AE (2005) Efficient Computation of Frequent and Top-k Elements
in Data Streams. In: Database Theory - ICDT 2005, Springer Berlin Heidelberg, pp 398–412,
DOI 10.1007/978-3-540-30570-5{\ }27

Pesic M, Schonenberg H, van der Aalst WM (2007) DECLARE: Full Support for Loosely-
Structured Processes. In: Proceedings of EDOC, IEEE, pp 287–298, DOI 10.1109/EDOC.2007.
14

Redlich D, Molka T, Gilani W, Blair G, Rashid A (2014a) Constructs competition miner: Process
control-flow discovery of BP-domain constructs. In: Proceedings of BPM 2014, pp 134–150,
DOI 10.1007/978-3-319-10172-9{\ }9

Redlich D, Molka T, Gilani W, Blair G, Rashid A (2014b) Scalable dynamic business process
discovery with the constructs competition miner. In: Proceedings of the 4th International Sym-
posium on Data-driven Process Discovery and Analysis (SIMPDA 2014), vol 1293, pp 91–107

Weber I, Rogge-Solti A, Li C, Mendling J (2015) CCaaS: Online conformance checking as a
service. In: Proceedings of the BPM Demo Session 2015, vol 1418, pp 45–49

Widmer G, Kubat M (1996) Learning in the Presence of Concept Drift and Hidden Contexts.
Machine Learning 23(1):69–101, DOI 10.1007/BF00116900

van Zelst SJ, van Dongen B, van der Aalst WM (2015) Know What you stream: Generating event
streams from CPN models in ProM 6. In: CEUR Workshop Proceedings, pp 85–89

van Zelst SJ, van Dongen B, van der Aalst WM (2016) Online Discovery of Cooperative Structures
in Business Processes. In: Proceedings of the OTM 2016 Conferences, Springer International
Publishing, pp 210–228

van Zelst SJ, Bolt A, Hassani M, van Dongen B, van der Aalst WM (2017a) Online conformance
checking: relating event streams to process models using prefix-alignments. International Jour-
nal of Data Science and Analytics DOI 10.1007/s41060-017-0078-6

van Zelst SJ, van Dongen B, van der Aalst WM (2017b) Event stream-based process discovery
using abstract representations. Knowledge and Information Systems pp 1–29, DOI 10.1007/
s10115-017-1060-2

	Streaming process discovery and conformance checking
	Andrea Burattin
	Synonyms
	Definitions
	Overview
	Key Research Findings
	Process Discovery
	Conformance Checking
	Other Applications

	Key Applications
	Future Directions for Research
	Cross-References
	References

