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Abstract

Decision support systems are a key focus of research on developing control rooms to aid
operators in making reliable decisions, and reducing incidents caused by human errors. For
this purpose, models of complex systems can be developed to diagnose causes or consequences
for specific alarms. Models applied in safety systems of complex and safety-critical systems
require rigorous and reliable model building and testing. Multilevel Flow Modelling is a
qualitative and discrete method for diagnosing faults and has previously only been validated
by subjective and qualitative means. To ensure reliability during operation, this work aims to
synthesize a procedure to measure model performance according to diagnostic requirements.
A simple procedure is proposed for validating and evaluating the concept of Multilevel Flow
Modelling. For this purpose, expert statements, dynamic process simulations, and pilot
plant experiments are used for validation of simple Multilevel Flow Modelling models of a
hydrocyclone unit for oil removal from produced water.

Keywords: Multilevel Flow Modelling, Model Validation, Produced Water treatment,
Fault Diagnosis

1. Introduction

Decision support systems are crucial in attempts to improve the efficiency and safety of
control systems. With an increase in system complexity and autonomy, tasks for operators
to analyse situations to determine behaviours that deviate from nominal system operation
are becoming increasingly complicated. Automated fault diagnosis is a method that can
potentially decrease the reaction time and increase the probability of correct responses to
faults. The focus of online fault diagnosis has primarily been at the component level. Mul-
tilevel Flow Modelling (MFM) is a method for modelling the functionality of complex mass
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and energy flow systems. The method is used to model how low-level functionality supports
high-level functionality, commonly referred to as means-end modelling. Models of nuclear
power systems, electric power grids, and oil production systems have been used for online
fault diagnosis [1].

MFM has numerous different applications, of which online fault diagnosis is one. Online
fault diagnosis with MFM is, however, limited in application [1, 2, 3, 4, 5, 6], whereas
offline root cause analysis has been applied diversely. Current methods for model validation
of MFM models are limited in application, as the models primarily have been used for
offline root cause analysis. The models must be reliable if they are to be used for online
fault diagnosis in industrial decision support systems. Insufficient validation of models to
improve decision reliability may prove to be counterproductive when seeking to improve the
level of safety.

No additional requirements are defined for advanced or intelligent control algorithms,
or for diagnostic methods in standards such as [7]. In cases of false or absent alarms and
diagnoses operators may eventually ignore decision support systems, and solely rely on
their own experience and intuition. In line with the concept of defence in depth [8], fault
diagnosis is used as an addition to the monitoring level, at level 2, to enable either prevention
or mitigation of faults. To the same degree as an emergency shutdown, a fault diagnostic
system should thus be considered a safety precaution, although its function according to the
defence in depth concept is at a different level. Model validation and testing is thus crucial.

This paper introduces initial work on an approach to validate MFM models based on
different types of available information. It has been applied to simple MFM models of a
deoiling hydrocyclone. The aim is to provide a measure of model performance.

2. Previous Validation

Multilevel Flow Modelling is a strictly qualitative method. Numerical process signals
are used, but only to produce qualitative and discrete states such as low, normal or high.
The states are then processed by the MFM reasoning in combination with the MFM model.
The discrete states simplify the rule base, and thus the reasoning process, significantly, and
ensure low computational effort when dealing with plant-wide fault diagnosis [1]. Systems
have typically been modelled and validated by an expert in MFM and a process expert.
Based on the model, functions are triggered separately, and the prognosis is compared to
the causes and consequences as explained by a process expert. Alternatively, an MFM and/or
a process expert attempts to describe how the MFM prognosis relates to the dynamics of
the process system. This approach is subjective and qualitative. In addition, it introduces
bias to the validation, as there is no distinction between the input used to build the model
and that used to validate it.

The majority of published research on the topic of MFM is not concerned with the
validity of the models. This is very problematic, as many models are presented with no
information on how well they model the physical system. The published research addressing
validation includes examples of comparisons of expert statements to cause-consequence fault
trees, to counter-actions generated based on MFM model prognoses, and to fault trees
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published in scientific literature [9, 10, 11]. More recently, model prognoses have been
compared to Standardized Operation Procedures (SOP) available in published standards,
and to numerical process simulations [12]. The SOP and MFM prognoses were presented
in a table for easy comparison as a basis for a qualitative evaluation [13]. In addition,
different theoretical aspects of MFM model validation are discussed in [14]. The previously
mentioned approaches all focus on the validity of the model according to the output produced
by a specific input. Causal relations between functions have been discussed by Larsson
and Berquist, and a correlation method was presented to determine the causal relationship
between functions [15, 16]. The validity of the causal relationship is the only example of
validation of the structure of MFM models. Apart from this, the structure is only treated
as a part of the verification, according to a defined MFM syntax [14].

3. Hydrocyclone

The validation method is demonstrated using a simple case study of hydrocyclone equip-
ment for water treatment. A hydrocyclone is a passive component used for separation of
water and oil in offshore Produced Water Treatment (PWT). It has one inlet and two outlets.
If the process conditions are optimal, the oil dispersed in the water leaves the hydrocyclone
through the overflow outlet and the treated water leaves through the underflow outlet, as
shown in Fig. 1.

Figure 1: Example of water and oil flow in a hydrocylone [17].

The common control strategy is based on the Pressure Drop Ratio (PDR), defined as
the ratio of the pressure difference from inlet to overflow ∆Po to that from inlet to underflow
∆Pu as shown in Equation 1 [18].

PDR =
∆Po

∆Pu

=
Pi − Po

Pi − Pu

(1)

As the density of water is higher than that of oil, the centrifugal force of the water exceeds
the centrifugal force of the oil particles. The inlet flow enters tangentially into the conical
geometry of the hydrocyclone, thus passively generating a rotational flow. This results in
the water moving outwards, towards the hydrocyclone wall, in a vortex; the oil is displaced
towards the centre of the hydrocyclone, in a vortex.
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The separation efficiency of the hydrocyclone does not only depend on the PDR, but also
on the flow-split Fs, inlet flow rate, oil content, oil droplet size, and geometry. The flow-split
is proportional to the PDR, and it can be defined as the ratio between the overflow flow
rate Qo and the input flow rate Qi [17]:

Fs =
Qo

Qi

(2)

The PDR is controlled using two control valves, one at each outlet. A P&ID of the
hydrocyclone used for experimental work is shown in Fig. 2. The setup has a pressure and
a flow rate sensor on all in- and outlets, and one control valve on each outlet. The input
water is delivered from a water tank by a pump. Both the underflow and overflow outputs
are transported to the same water tank.

Figure 2: P&ID of the hydrocyclone at the pilot plant.

The standard offshore application of hydrocyclones involves upstream separation, in com-
bination with three-phase separation tanks. The underflow valve is then used to control the
water level in the three-phase separation tank, and the overflow valve controls the PDR. In
this application, any other processes besides the hydrocyclone are bypassed, and the under-
flow valve has no real-time control. In a standard application, the hydrocyclone is placed in
a bundle of hydrocyclones, among which the inlet water is divided. This is however not the
case in this particular application, in which only a single hydrocyclone is used.

4. MFM Model

As a case study, only a part of the full MFM model of the hydrocyclone will be used
to prove and present the principle of this validation method. This part is the mass flow,
shown in Fig. 3. As can be seen in the figure, there are six transport functions, of which
three represent the three flow rate sensors, and three storage functions representing the
pressure sensors. A balance function represents the mass balance of flow from the inlet to
the underflow and the overflow.

The model shown in Fig. 3 can potentially be used in two different models, by having
two different representations of the sensors. The mapping from component to function will
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Figure 3: MFM Model of hydrocyclone mass flow separation.

thus be the only difference between the two models: v1 and v2. The MFM models and
their respective mappings are shown in Table 1. The third model, v3, is similar to v2, but
the causal relation in2 has been changed to pa4. It is thus a participant relation, instead
of an influencer relation. Influencer relations can propagate state changes in any direction,
whereas a participant relation can only propagate in one direction [19].

Model Qi Qu Qo Pi Pu Po Relation

MFM v1 tra1 tra3 tra2 sto1 sto3 sto2

MFM v2 tra4 tra6 tra5 sto1 sto3 sto2

MFM v3 tra4 tra6 tra5 sto1 sto3 sto2 in2→ pa4

Table 1: MFM Models for Fig. 3.

5. Validation Method

The purposes of having a structured methodology for validating MFM models for fault
diagnostic applications include:

1. Performance comparison of one model, on different sets of faults, to determine the
suitability of MFM models for specific faults or systems.

2. Comparison of different models and model versions on the same set of faults to track
and ensure progression during model building.

3. Comparison of different extensions of the MFM methodology on the same set of faults,
to track and ensure improvement in development of the MFM methodology, e.g. the
rule base and reasoning.

4. Performance comparison of MFM with other fault diagnostic methods on the same set
of faults, to determine the suitability of MFM for specific systems or faults, compared
to other methods.

A graphical illustration of these four purposes is shown in Fig. 4. The figure depicts
the defined sets of faults, marked by bold circles, in comparison to diagnostic prognoses or
predictions, marked by filled circles. If a model can predict all of the defined faults, the
bold and filled circles align and are equal in size. Two different methods, models or MFM
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extensions may have very similar performance on a set of faults, but given that the criteria
under which they are evaluated change, the performance may no longer be similar. In this
work, only a single criterion is proposed; however, this may very well prove to be insufficient
for model validation in many cases.

MFM
Model

Faults A

Predictions

Faults B

MFM
Model A

MFM
Model B

MFM
Model B
Version 2

MFM
Rule base A

MFM
Rule base B

MFM
Rule base C

Faults

PCA

MFM

SVM

ANN

Bayesian

Predictions
Faults

Predictions

Faults

Figure 4: Model comparison of MFM on fault sets by performance evaluation.

Validation of MFM models can be separated into three stages based on the informa-
tion available at each stage. These stages are System Concept, System Design and System
Operation.

In the first stage, System Concept, the only available information may very well be P&ID
diagrams, expert statements, and preliminary Hazard and Operability Study (HAZOP)
results. This information can be used to build the MFM model and validate it. In the next
stage, System Design, flowsheets, mass, energy, and momentum balance calculations, and
process module specifications and Dynamic Process Simulations (DPS) may be available.
The final stage, System Operation, could very well be carried out as a part of commissioning.
At this stage, the physical system is available for experimentation, and can thus include
online diagnosis of faults emulated on the physical plant. For this work, a pilot plant (PP)
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of an offshore PWT system will be used. The validation procedure for each stage are shown
in Fig. 5. This figure shows how experts first define the faults, which are then compared
to the MFM prognoses. In addition, the defined faults are simulated or emulated, and
the results are then compared to the MFM prognoses. For new plants, the amount of
information available that will most likely be largest is the type of information associated
with the System Concept stage; the lowest amount of information will be that associated
with the System Operation stage.

Figure 5: Modelling and validation stages of MFM models.

The previously published validation approaches are all related to the System Concept
stage, apart from the methods introduced by Larsson and Wu [15, 16, 12, 13, 14]. The
validation of MFM models at each stage can be considered as engineering validation of the
models. Future extensions of the work presented here will include a scientific validation of the
three approaches to engineering validation. The scientific validation will combine validation
sets and information of different types, from each of the three stages, and will examine the
discrepancies between the validation sets. In the case of no or only little discrepancy, it is
assumed that models can be validated at each stage by using this procedure.

6. Validation

Conventional diagnostic methods are used to model a defined set of faults and to dis-
tinguish between these faults and any other behaviour. In theory, MFM can distinguish
between faults that have not been defined. MFM models describe the system’s functionality
at a generic and qualitative level, and are thus capable of generating propagation paths and
prognoses automatically, based on evidence.

For this reason, it is important to also validate the structure of the model and not only
the prognoses. To increase the fidelity of such prognoses, it is important that the model
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representation of the system behaviour, functionality, and causality is correct. This paper
deals with the validity of the causal relations between functions, to determine how well they
reflect the physical system. The functions are then assumed to be modelled correctly. If
such relations are valid, the non-validated prognoses of the MFM model will be assumed to
be correct.

For the case study of the hydrocyclone, four scenarios have been defined and tested for
each of the three stages. Valve openings of the underflow valve Vu and the overflow valve
Vo have individually been increased and decreased by a defined amount. The scenarios were
implemented as a position control offset of the valve setpoint (SP) in both the DPS and the
PP. An overview of how the scenarios have been implemented in MFM, in the PP, in the
DPS, and as expert statements is shown in Table 2. The valve position range for Vu and Vo

is between [0 100%], where 0 is fully closed and 100% is fully opened.

Scenario Expert DPS PP MFM

Vu + Vu opens Vu SP + 3% Vu SP + 3% Qu High

Vu - Vu closes Vu SP - 3% Vu SP - 3% Qu Low

Vo + Vo opens Vo SP + 20% Vo SP + 20% Qo High

Vo - Vo closes Vo SP - 20% Vo SP - 20% Qo Low

Table 2: Methods for testing or simulating faults scenarios.

6.1. System Concept

At the concept level, no numerical information will be available apart from what can be
found in the literature. The only other source of information at this stage will most likely be
estimations and experience-based statements of experts. When designing chemical process
systems, a Hazard and Operability Study (HAZOP) will be carried out for compliance with
safety regulations. The format of a HAZOP is as follows:

1. Which hazards can arise, given physical property (flow rate) changes (increases) in the
hydrocyclone?

2. What are the causes?

3. What are the consequences?

4. What are the safeguards?

Thus, the purpose is not to identify the system behaviour but to identify safety-critical
operation, and the corresponding causes and consequences. In addition, safeguards must be
proposed to mitigate faults. However, as this method is based on a physical property such
as the flow rate, and an instance such as a decrease, it can be used as a basis for specifying
the operational behaviour in a structured manner when identifying causes and consequences
of the given properties. A HAZOP is based solely on expert statements. For this work,
expert statements have been acquired from operators of the pilot plant and compiled into
a Qualitative Trend Table (QTT) in Table 3. HAZOP has however not been used for the
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work presented here. In all the QTTs, the + represents an increasing qualitative trend of a
property, and − a decreasing qualitative trend. Each column represents a physical property,
and the rows represent scenarios.

Qi Qu Qo Pi Pu Po PDR Fs

Vu + + + - 0 - -

Vu - - - + 0 + +

Vo + + - + 0 - -

Vo - - + - 0 + +

Table 3: QTT for Expert statements.

6.2. System Design

Dynamic process simulations of the hydrocyclone have been carried out in K-spice. K-
Spice is a software for simulating process conditions of offshore oil production plants, with
the intent of plant design.

The model, shown in Fig. 6, includes a hydrocyclone module, an overflow and an under-
flow control valve, and a PID controller for the overflow valve. The underflow valve has been
given a specified setpoint with no control. This model has not been calibrated, and thus
produces results different from those of the pilot plant. It is assumed that this difference is
only numerical, but no differences exist at the qualitative or causal levels between the pilot
plant and the model behaviour.

Qi Qu Qo Pi Pu Po PDR Fs

Vu + + + + - - - 0 -

Vu - - - - + + + - +

Vo + + + + - - - + +

Vo - - - - + + + - -

Table 4: QTT for the Dynamic Process Simulation (DPS).

Based on the experiments for the dynamic process simulation listed in Table 2, a QTT
has been compiled in Table 4. It is assumed that the magnitude of an increase or decrease
is of no importance for assessing the validity of how a high or low alarm state is propagated
through a model. The scenario for a closing overflow valve is shown in Fig. 7 with the
overflow valve position and the inlet, underflow, and overflow pressures. As the valve closes,
the pressure increases at the inlet, the underflow, and the overflow. This indicates a causal
relationship between the valve and the pressure at the inlet, underflow, and overflow. It
does not however necessarily indicate direct causal relations. In MFM models, the order
in which something can be causally propagated is directly defined; however, for the results
from the DPS, the causal order is not directly given.
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Figure 6: Model of the hydrocyclone in K-Spice.

Figure 7: Response to closing overflow valve Vo in DPS.
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6.3. System Operation

The scenario for the opening of the underflow valve in the pilot plant is shown in Fig.
8. The function findchangepts from MATLAB [20] has been used to determine whether a
signal increases or decreases. The function divides a signal into sections based on changes to
the signal mean. The signal is divided into sections by varying the section and minimising
the total residual error of the signal from the mean of the sections. The change in mean,
from the section before manipulating either Vu or Vo to the section after manipulating it,
is used to determine whether the qualitative trend is positive or negative. A value of ±0.5
% has been chosen for thresholding the signal. If the signal mean does not change by more
than the defined threshold, the signal is considered as being in a normal state. If it increases
by more than 0.5 % it is considered as a high state (+); if it decreases it is considered as a
low state (-). This approach has been used to produce Table 4 and Table 5. The PDR and
flowsplit shown in Table 5 have been calculated according to Eq. 1 and 2.

Figure 8: Response to opening underflow valve Vu on the Pilot Plant.

6.4. MFM Model results

The three MFM models have been used to produce QTTs. For each model, the flow
rates Qo and Qu are assumed to be directly proportional to the valve openings of Vo and Vu.
Thus Qu has been triggered as high, when reasoning about the consequence of opening Vu.
The same applies for Qo and Vo. The resulting QTT for MFM models v1, v2, and v3 are
shown in Table 6, 7, and 8.
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Qi Qu Qo Pi Pu Po PDR Fs

Vu + + + - - - - - -

Vu - - - - + + + + +

Vo + 0 0 + 0 0 - + +

Vo - 0 0 - 0 0 + - -

Table 5: QTT for the Pilot Plant experiments.

Qi Qu Qo Pi Pu Po PDR Fs

Vu + + + - - + -

Vu - - - + + - +

Vo + + - + - - +

Vo - - + - + + -

Table 6: QTT for the MFM model v1.

Qi Qu Qo Pi Pu Po PDR Fs

Vu + + + - - - -

Vu - - - + + + +

Vo + + - + - - -

Vo - - + - + + +

Table 7: QTT for the MFM model v2.

Qi Qu Qo Pi Pu Po PDR Fs

Vu + + + - - - -

Vu - - - + + + +

Vo + 0 0 + 0 0 -

Vo - 0 0 - 0 0 +

Table 8: QTT for the MFM model v3.

7. Evaluation

In order to provide an easily interpretable measure of the model performance, the model
output must be compared to validation sets and then quantified. For each scenario, each
sensor prognosis from the MFM model has been compared to the result for the same sensor
and scenario from a validation set. All three models have been compared individually with
all three validation sets.

A confusion matrix has been produced similar to the one shown in Table 9. The validation
sets are considered as actual observations, and the MFM model outputs as predictions. The
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matrix has three prediction classes: positive (+), zero (0), and negative (-), corresponding
to the states high (+), normal (0), and low (-). When both the validation set and the model
predict positive (+), the prediction is classified as a True Positive (TP). The other prediction
classes are True Zero (TZ), True Negative (TN), False Positive (FP), False Zero (FZ), and
False Negative (FN). The prediction classes of the false predictions are all followed by either
Positive (P), Negative (N), or Zero (Z), indicating the correct class of the false prediction.
Conventionally, confusion matrices are used for evaluation of binary classifiers; however, in
this case three classes are used.

The results from only using two classes can be found in [21]. As argued in [22], metrics
for evaluation of binary classifiers can be extended to multiclass classifiers. Thus, to reflect
the possibility of a fault, actuation or system deviation performed so as not to have any
consequence on certain functions of the system, the normal state (zero class) has been
included.

Predicted MFM

+ 0 -

Actual + TP FZ(P) FN(P)

Validation 0 FP(Z) TZ FN(Z)

set - FP(N) FZ(N) TN

Table 9: Multiclass confusion matrix.

The confusion matrix for each model, with corresponding validation set, has been used
to calculate the accuracy of the MFM model as:

Accuracy =
TP + TN + TZ

TP + TN + TZ + FP + FN + FZ
(3)

The accuracy levels of the three MFM model versions compared to those of the validation
sets are shown in Table 10. For a model and a validation set, all the individual predictions
for each scenario and sensor are summed for each prediction class and used in Eq. 3. The
mean accuracy of the validation set for all three models is also shown in Table 10, as well
as the mean of the accuracy of the model for all validation sets.

Model PP DPS Expert Mean

MFM v1 0.46 0.67 0.67 0.60

MFM v2 0.63 0.83 0.83 0.76

MFM v3 0.96 0.58 0.67 0.74

Table 10: MFM model evaluation.

It is evident from Table 10 that MFM model v2 is a better representation than model v1,
independent of the validation set. Model v3 was made with the intention of achieving a high
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Figure 9: Accuracy of model predictions for each sen-
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Figure 10: Accuracy of model predictions for each
scenario.

accuracy on the pilot plant validation set. It achieves the highest accuracy on exactly the
pilot plant validation set, but has a lower accuracy on the other two sets than the accuracy
of model v2. An indication of how to improve model v2 can be identified by looking at Fig.
9 and Fig. 10. Model v2 has a low accuracy for the two scenarios Vo+ and Vo−, but a high
accuracy for the two scenarios Vu+ and Vu−. For the sensor predictions from model v2, the
accuracy is highest for Qo and Po, and the accuracy is 0.5 for all other sensor predictions.
This indicates that, when changing Vo in model v2, only the adjacent functions Qo and Po

are identical to the pilot plant validation set. Qo must be identical, as the same function
represents both Qo and Vo. The change from Vo is therefore not propagated correctly to
the underflow and overflow functions. The specific functions not matching the validation
set from the pilot plant can also be found by comparing Table 5 and Table 7. From this
comparison, it can be seen that the overflow should not affect the underflow or inflow.

The sensors from the inlet and underflow of scenarios Vo in Table 5 have a normal state,
as opposed to those in Table 7, which have either a high or low state. Thus, changing
the causal relation in2 from an influencer to a participant relation pa4, will decouple the
influence of the overflow from the underflow and inlet. This change of causal relation is the
change from Model v2 to v3. The changes from model v2 to v3 improve the model, but
only when comparing to the validation set of physical experiments from the pilot plant. The
performance is, however, reduced in comparison to the other validation sets.

The QTTs make it easy to improve models by comparing models and validation sets, and
also allow a quantification of the performance of models. This approach allows us to measure
model progression and improvement, and can potentially also be used as a quantitative
approach to determine if changes to the Multilevel Flow Modelling methodology improve
the ability to represent process systems. A similar approach to that in the work presented
here will be investigated and applied for the purpose of validating MFM model predictions.
The purpose will be to suggest an approach for model validation by measuring how well
MFM models can predict root causes or consequences in a data set.
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8. Discussion

8.1. Validation sets
Data collected from the actual plant being modelled should be regarded as the validation

set with the highest fidelity. As MFM is a discrete method, with no accurate measures, it is
important to ensure that nonlinear system behaviour does not affect the model performance,
or at least to know the degree to which it affects the performance. With only a few samples
in the validation set, highly nonlinear behaviour can introduce uncertainty to the validation
of the model.

Unlike the other validation sets, the results from the pilot plant show that there is
no influence from the valve Vo on the inlet and underflow. The orifice of the overflow is
very small compared to that of the underflow, thus giving it a very low influence on the
system. This result, however, also depends highly on the threshold of 0.5%, under which
any deviation is disregarded. The experts are also able to explain this very low influence,
but cannot produce statements based on a threshold of 0.5%. The change from an influencer
to a participant relation thus reflects this dominance of the underflow over the overflow.

The dynamic process simulation produced results quite similar to those from the pilot
plant. However, the inlet and underflow parameters change for the simulation with changes
of the position of Vo, unlike the results from the pilot plant. As this simulation is not exact,
the results rely on how the threshold is set. On one hand, a simulation introduces uncertainty
when substituted for a physical system, as there are discrepancies between the simulation
behaviour and the physical system behaviour. On the other hand, process variations and
sensor noise can be completely avoided, thus eliminating uncertainties introduced by the
method used to determine whether a specific scenario results in an increase or decrease of
physical parameters.

Results can easily be obtained from experts; however, a lot of uncertainty can be in-
troduced, and this uncertainty can be difficult to identify or quantify. Depending on how
expert statements are acquired, the results can possibly vary from time to time or expert to
expert.

The input pressure remains constant for all scenarios of the expert statements. The more
structures are provided as constraints, the easier it becomes for the experts to answer. In
the pilot plant, a separator is placed upstream from the hydrocyclone. The separator is
pressure controlled, and thus the inlet pressure to the hydrocyclone is constant. For this
reason, the results are similar to those of conventional plant operation. Had the threshold
been increased from 0.5 % to 1 %, the inlet pressure would have been a zero or normal state
for Pi in the Vu scenario for the pilot plant, and also a zero or normal state for the simulation
for Pi in the Vo state. The PDR and flow split can be influenced by both Vo and Vu. In
addition, these variables are functions of two or more physical parameters. This makes the
situation more difficult for experts to interpret and reason about; thus, these columns are
blank in Table 3.

8.2. Uncertainty
The purpose of model validation is commonly to determine how accurately a model

represents something physical. Whether the model does this well or poorly depends on a
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set of requirements. If these requirements, or the process of validation, does not relate to
the actual use of the model, the model performance could possibly be very good. However,
when examined during application, the model can possibly perform poorly. As an example
of MFM models used for fault diagnosis, a set of tests can be carried out on a physical plant
to determine the system behaviour. Given that these tests are restricted to a certain process
window, the model is validated on data from exactly this process window. The model may,
however, be assumed to represent a process window outside of these tests. This introduces
uncertainty to the validation process. The uncertainty is thus introduced by any potential
model discrepancy that is unaccounted for in the validation process.

As previously mentioned, the method for thresholding signals as either high, normal,
or low introduces uncertainty. When validating models, the uncertainties should either be
reduced or at least be made explicit, so that whoever is part of the validation process or relies
on it is aware of any model limitations. The following issues should in future be addressed,
as they introduce uncertainties to the proposed validation method:

• The detection method for a qualitative trend as either high, normal, or low.

– Any parameters or thresholds specific to the detection method.

– Any assumptions on the non-linearity of the process and signals

• The choice of test method

• The choice of validation set

As the purpose of validation is to produce accurate and reliable models, for validation of
MFM models, the effects of these points should be investigated for the proposed method.

9. Conclusion

In order to measure model performance, an approach has been presented for validating
the causal structure of MFM models. This should enable tracking of model progression,
tracking of MFM methodology development, and building of experience on model suitability
for specific systems or faults. The approach identifies three stages at which MFM models
can be validated with three different types of information: concept, design, and operation
stages of process systems. The approach has been applied on three simple MFM models
of a deoiling hydrocyclone for offshore Produced Water Treatment. Expert statements, a
dynamic process simulation in K-Spice, and empirical data collected from a pilot plant have
been used as validation sets for model validation. For evaluation of binary classifiers, the
metric of accuracy has been used to evaluate the MFM model coherence with each validation
set. Based on this approach, it was possible to determine a better association of sensors
with functions, and a better causal representation; this improved the model’s coherence
with the validation set of the pilot plant. The MFM model achieved an accuracy of 0.96 on
the validation set of the pilot plant. This validation approach should provide a structured
approach to building and improving MFM models with high fidelity for use in online fault
diagnosis and decision support.
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pressional Power and Validation for Multilevel Flow Models, Journal of Intelligent & Fuzzy Systems:
Applications in Engineering and Technology 15 (1) (2004) 61–73. arXiv:0007035.

[17] M. V. Bram, L. Hansen, D. S. Hansen, Z. Yang, Grey-box modeling of an offshore deoiling hy-
drocyclone system, in: IEEE Conference on Control Technology and Applications, 2017, pp. 94–98.
doi:10.1109/CCTA.2017.8062446.

[18] P. Durdevic, S. Pedersen, M. Bram, D. Hansen, A. Hassan, Z. Yang, Control Ori-
ented Modeling of a De-oiling Hydrocyclone, IFAC-PapersOnLine 48 (28) (2015) 291 – 296.
doi:doi.org/10.1016/j.ifacol.2015.12.141.

17



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

[19] X. Zhang, M. Lind, O. Ravn, Consequence reasoning in multilevel flow modelling, in: IFAC Symposium
on Analysis, Design and Evaluation of Human-Machine Systems, IFAC, Las Vegas, USA, 2013, pp. 187–
194. doi:10.3182/20130811-5-US-2037.00028.

[20] MATLAB, S. P. Toolbox, Release (R2017a), The MathWorks Inc., Natick, Massachusetts, 2017.
[21] E. K. Nielsen, M. V. Bram, J. Frutiger, G. Sin, M. Lind, Modelling and Validating a Deoiling Hy-

drocyclone for Fault Diagnosis using Multilevel Flow Modeling, in: Internation Symposium on Future
Instrumentation and Control for Nuclear Power Plants, Gyeongju, Korea, 2017.

[22] P. Baldi, S. Brunak, Y. Chauvin, C. A. F. Andersen, H. Nielsen, Assessing the Accuracy of
Prediction Algorithms for Classification: An Overview, Bioinformatics 16 (5) (2000) 412–424.
doi:10.1093/bioinformatics/16.5.412.

18


