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electrosprayed capsules: combined use of whey protein and 2 

carbohydrates as wall materials 3 

Pedro J. García-Morenoa∗, Andres Pelayoa, Sen Yua, María Busolob,c, Jose M. Lagaronb,c, Ioannis S. 4 

Chronakisa, Charlotte Jacobsena 5 

a Division of Food Technology, National Food Institute, Technical University of Denmark, Denmark  6 
b Novel Materials and Nanotechnology Group, IATA-CSIC, Spain 7 
c Bioinicia S.L., Spain 8 

ABSTRACT 9 

The encapsulation of fish oil in electrosprayed capsules using whey protein and carbohydrates 10 

(pullulan and dextran or glucose syrup) mixtures as glassy wall materials was studied. Capsules with 11 

fish oil emulsified by using only a rotor-stator emulsification exhibited higher oxidative stability than 12 

capsules where the oil was emulsified by high-pressure homogenization. Moreover, glucose syrup 13 

capsules (with a peroxide value, PV, of 19.7±4.4 meq/kg oil and a content of 1-penten-3-ol of 14 

751.0±69.8 ng/g oil) were less oxidized than dextran capsules after 21 days of storage at 20 ºC (PV of 15 

24.9±0.4 meq/kg oil and 1-penten-3-ol of 1161.0±222.0 ng/g oil). This finding may be attributed to 16 

differences in oxygen permeability between both types of capsules. These results indicated the 17 

potential of both combinations of whey protein, pullulan, and dextran or glucose syrup as shell 18 

materials for the encapsulation of omega-3 PUFA in nano-microcapsules obtained by electrospraying. 19 

Keywords: Omega-3; Lipid oxidation; Electrospraying; Nano-microencapsulation; Dextran; Glucose 20 

syrup 21 

1. INTRODUCTION 22 

Long chain omega-3 polyunsaturated fatty acids (PUFA) such as eicosapentaenoic (C20:5n-3) and 23 

docosahexaenoic (C22:6n-3) acids, which are mainly extracted from fish, krill or microalgae biomass, 24 

                                                 
∗ Corresponding author. Tel: +45 93 51 88 74; Fax: +45 45 88 47 74; E-mail: pejeg@food.dtu.dk 
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consumption of fish, krill or algae-based products by Western populations, the development of food 26 

fortified with omega-3 PUFA is still having an increasing interest for the food industry (GOED, 2015). 27 

Nevertheless, these nutritionally beneficial lipids are highly prone to oxidation (i.e. due to their high 28 

content of bis-allylic hydrogens), which limit their successful incorporation into complex food systems 29 

(e.g. containing prooxidants such as metal ions) (Jacobsen, 2015).  30 

In this regard, encapsulation of omega-3 PUFA is an approach generally used to avoid their oxidative 31 

deterioration (i.e. formation of secondary volatile oxidation products which are responsible for 32 

undesirable off-flavours) (García-Moreno et al., 2016). An emerging encapsulation technique for 33 

producing omega-3 nano-microencapsulates is electrospraying (Torres-Giner et al. 2010). Contrary to 34 

spray-drying (the most employed encapsulation technique), electrospraying can be carried out at room 35 

temperature, which should result in a better stability of thermo-sensitive bioactives (Lim, 2015). The 36 

process uses a high-voltage electrostatic field to charge the surface of a biopolymer solution droplet at 37 

the end of a capillary tube. When the surface tension of the droplet is overcome by the electric field, a 38 

charged jet is ejected from the tip of the Taylor cone (formed at the end of the capillary tube) to a 39 

grounded collector. Due to the low viscoelasticity of the biopolymer solution, the jet destabilize due to 40 

varicose instability forming fine highly charged droplets. On the way to the collector, the droplets are 41 

further disrupted due to electrostactic repulsion, which favors solvent evaporation resulting in solids 42 

particles (Ghorani & Tucker, 2015). Electrosprayed encapsulates, which present high encapsulation 43 

efficiency and large surface-to-volume ratio, are of special interest for the food industry for the 44 

encapsulation of unstable bioactive compounds such as vitamins, probiotics, antioxidants and omega-3 45 

fatty acids. Furthermore, due to their reduced size, these novel encapsulates exhibit a higher 46 

bioaccessibility than traditional capsules (Jacobsen et al., 2018). 47 

To the best of the authors’ knowledge, omega-3 fatty acids have only been encapsulated by 48 

electrospraying when using proteins such as zein, whey protein concentrate, soy protein isolate, and 49 

gelatin as shell material (Gómez-Mascaraque & López-Rubio, 2016; Moomand & Lim, 2015; Torres-50 

Giner et al., 2010). In the authors’ previous work, the potential of dextran as a biopolymer shell to 51 
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dextran solutions was required to improve the physical stability of the emulsion as well as the oil 53 

entrapment within the capsules (García-Moreno et al., 2017a). To this end, an interesting approach to 54 

be evaluated is the combination of both carbohydrates, which usually act as filler or matrix-forming 55 

material, and proteins, which exhibit emulsifying properties and are effective film-formers (Augustin 56 

& Oliver, 2014). Dairy proteins (e.g. whey protein or casein), which also exhibit antioxidant properties 57 

(Adjonu et al. 2014), are usually combined with carbohydrates (i.e. glucose syrup, lactose, 58 

maltodextrin, starch) in order to obtain fish oil-loaded microencapsulates by spray-drying with 59 

enhanced properties (Encina et al. 2016). For instance, Aghbashlo et al. (2012) reported the production 60 

of microcapsules by spray-drying with significantly higher encapsulation efficiencies using mixtures 61 

of skim milk powder and lactose or sucrose (70% and 30%, respectively) when compared to the use of 62 

only skim milk powder. Likewise, Ramakrishnan et al. (2013) found that the replacement of part of 63 

whey protein by maltodextrin as wall materials increased the oxidative stability of fish oil-loaded 64 

microcapsules. This was attributed to lower oxygen permeability of the shell material composed of 65 

maltodextrin. Furthermore, the incorporation of high-molecular weight carbohydrates (e.g. starch, 66 

maltodextrin, dextran) also increases the glass transition temperature of the wall material, which 67 

implies that the shell material will be in glassy state in a broader range of temperature (Schutyser et al. 68 

2012). Glassy state of the protein-carbohydrate matrix is preferred to rubbery state due to its lower 69 

free volume, which restricts diffusion of oxygen and other prooxidants (i.e. trace of metals) enhancing 70 

the oxidative stability of the encapsulates (Hu, 2016). In addition, the use of carbohydrates as 71 

encapsulating material, which are not digested in the stomach, will allow a more targeted delivery of 72 

omega-3 PUFA (e.g. in the small intestine where most absorption occurs) (Fathi et al. 2014).  73 

In the light of the above, this work aimed at investigating the encapsulation of fish oil by 74 

electrospraying using combinations of whey protein and carbohydrates as biopolymers. Dextran and 75 

glucose syrup were selected as carbohydrates due to their appropriate properties to form 76 

electrosprayed capsules (García-Moreno et al., 2017a) and to their successful use in spray-dried 77 

capsules loaded with oils rich in omega-3 PUFA (Tamm et al. 2016), respectively. First, the influence 78 
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electrospraying flow rate, and morphology of the capsules was assessed in lab scale. Secondly, the 80 

approach used to emulsify the oil (i.e. high pressure homogenization or rotor-stator emulsification) in 81 

the optimized biopolymers solution was studied. Particularly, the ability to entrap the oil and the oil 82 

distribution of capsules produced by a high-throughput electrospraying process in pilot-plant scale was 83 

investigated. Finally, the protective effect against oxidative degradation of the different encapsulating 84 

matrices used was investigated during storage of the fish oil-loaded nano-microcapsules. 85 

2. MATERIALS AND METHODS 86 

2.1 Materials 87 

Dextran (molecular weight = 70,000 Da, dextran70) was generously provided by Pharmacosmos A/S 88 

(Holbaek, Denmark). Glucose syrup (DE38, C*Dry 1934) was kindly provided by Cargill Germany 89 

GmbH (Krefeld, Germany). Pullulan (molecular weight = 200,000 Da) was donated by Hayashibara 90 

Co., Ltd. (Okayama, Japan). Whey protein concentrate (WPC), under the commercial name of 91 

Lacprodan® DI-8090, was provided by ARLA Food Ingredients (Viby, Denmark). Citrem (citric acid 92 

ester without antioxidants) was provided from Danisco (Copenhagen, Denmark). The peroxide value 93 

(PV) of the citrem used was 2.3±0.1 meq/kg oil. Commercial cod liver oil was donated by Maritex 94 

A/S, subsidiary of TINE, BA (Sortland, Norway) and stored at -40 ºC until use. The fatty acid 95 

composition of the fish oil was determined by fatty acid methylation (AOCS, 1998a) followed by 96 

separation through GC (AOCS, 1998b). It was (major fatty acids only) as follows: C16:0, 9.5%; 97 

C16:1, 8.7%; C18:1, 16.3%; C20:1, 12.6%; C20:5, 9.2%; and C22:6, 11.4%. The tocopherol content 98 

of the fish oil was: α-tocopherol, 200±3 µg/g oil; β-tocopherol, 5±1 µg/g oil; γ-tocopherol, 96±3 µg/g 99 

oil; and δ-tocopherol, 47±1 µg/g oil (AOCS, 1998c). PV of the fish oil used was 0.4±0.1 meq/kg oil. 100 

All other chemicals and solvents used were of analytical grade. 101 
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2.1 For optimization of capsules morphology in lab scale 103 

Electrospraying solutions containing fish oil (20 wt.% with respect to biopolymer), WPC (1 wt.%), 104 

and carbohydrates (pullulan and dextran or glucose syrup) at different concentrations (1-5 wt.% 105 

pullulan and 15 or 20 wt.% dextran or 15 wt.% glucose syrup) were tested in lab scale in order to 106 

optimize capsule morphology. First, WPC, pullulan, and dextran or glucose syrup were dissolved in 107 

distilled water by stirring overnight at 500 rpm. Secondly, fish oil was added slowly to the 108 

biopolymers solution during mixing at 16,000 rpm using an Ystral mixer (Ystral Gmbh, Ballrechten-109 

Dottingen, Germany). The fish oil was added during the first minute of mixing, and the total mixing 110 

time was 3 min. Further homogenization was done on a microfluidizer (M110L Microfluidics, 111 

Newton, MA, USA) equipped with a ceramic interaction chamber (CIXC, F20Y, internal dimension 112 

75 µm). Emulsions were homogenized at a pressure of 9000 psi, running 3 passes. Samples were used 113 

immediately after production for electrospraying processing in lab scale and for droplet size analysis.  114 

2.2 For production in pilot plant 115 

Biopolymer solutions containing fish oil for processing in pilot plant were prepared following two 116 

different approaches to emulsify the oil. In the first approach, fish oil was emulsified by using high 117 

pressure homogenization. Briefly, pullulan and dextran or glucose syrup were dissolved in distilled 118 

water under constant stirring (500 rpm) at room temperature. Fish oil was added as 10 wt.% fish oil-119 

in-water emulsion stabilized with 1 wt.% WPC and 1 wt.% citrem at pH 7. The homogenization 120 

process was carried out by using an Ystral mixer followed by microfluidizer (M110L Microfluidics, 121 

Newton, MA, USA) as described above. The biopolymer solutions and the fish oil-in-water emulsion 122 

were mixed under nitrogen atmosphere by using magnetic stirring (500 rpm) for 30 min at 5 °C in the 123 

dark. Finally, the resulting emulsion was passed 3 times through microfluidizer (M110L 124 

Microfluidics, Newton, MA, USA) at a pressure of 9,000 psi. The resulting electrospraying solutions 125 

contained 20 wt.% fish oil (with respect to biopolymer). The samples were subsequently characterized 126 

for droplet size analysis and dried by electrospraying assisted by pressurized air using the 127 

FluidnatekTM LE500 Capsultek pilot tool by Bioinicia S.L. (Valencia, Spain). Dextran solution was 128 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPTelectrosprayed two days after production, whereas glucose syrup was processed after three days. Both 129 

samples were kept at 4 ºC until electrospraying was carried out.  130 

In the second approach, fish oil was emulsified by only using a rotor-stator emulsification. In brief, 131 

carbohydrates (pullulan and dextran or glucose syrup) together with WPC were dissolved in distilled 132 

water and stirred overnight using magnetic stirrer at 500 rpm. Then, the biopolymer solution was 133 

passed through microfluidizer (M110L Microfluidics, Newton, MA, USA) 3 times at 9,000 psi. 134 

Citrem and fish oil were added slowly, under nitrogen atmosphere, into the resulting biopolymer 135 

solution during mixing at 17,500 rpm using an Ultraturrax T-25 homogenenizer (IKA, Staufen, 136 

Germany). The fish oil was added during the first 5 min of mixing, and the total mixing time was 8 137 

min. The resulting electrospraying solutions also contained 20 wt.% fish oil (with respect to 138 

biopolymer). Samples were used immediately after production for processing in pilot plant equipment 139 

LE500 Capsultek (Bioinicia and Fluidnatek® ,Valencia, Spain). 140 

2.3 Droplet size distribution of solutions 141 

Droplet sizes were measured by laser diffraction in a Mastersizer 2000 (Malvern Instruments, Ltd., 142 

Worcestershire, UK). Solutions were diluted in recirculating water (3000 rpm), until it reached an 143 

obscuration of 12%. The refractive indices of sunflower oil (1.469) and water (1.330) were used as 144 

particle and dispersant, respectively. Results were given in surface area mean diameter (D3,2) and 90% 145 

percentile (d0.9). Measurements were made in triplicate. 146 

2.4 Electrospraying process 147 

In lab scale, the electrospraying process was carried out at room temperature by adding the biopolymer 148 

solutions containing the fish oil to a syringe, which was placed in a syringe pump (New Era Pump 149 

Systems, Inc., USA). A 16 G needle (Proto Advantage, Canada) was used. A high-voltage electrostatic 150 

field was applied between the spinneret of the syringe and a 15 × 15 cm collector plate made of 151 

stainless by using a high voltage power supply (Gamma High Voltage Research, USA). An horizontal 152 

conformation was selected and the distance between the syringe tip and the collector plate was 15 cm. 153 
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were optimized in order to stabilize the Taylor cone and avoid dripping or droplets in the collector. 155 

In pilot plant scale, biopolymers solutions containing fish oil were subjected to electrospraying 156 

assisted by pressurized air using the patent pending FluidnatekTM LE500 Capsultek pilot tool 157 

(Bioinicia S.L., Valencia, Spain). Solutions were processed using flowrates between 1.5 and 1.8 158 

mL/min and voltages between 10 and 15 kV. The collection of the encapsulated powder was carried 159 

out in a grounded cyclonic collector as a free flowing powder. Temperature was maintained at 24 ºC 160 

and relative humidity at 40 %. The production batches had a duration of 40 min. The powder collected 161 

in the different batches (for the same type of capsule) were blended together in order to have a 162 

homogeneous final sample. Dextran and glucose syrup capsules were coded as D-HPH or G-HPH and 163 

D-RSE or G-RSE when the oil was emulsified by using high-pressure homogenization of rotor-stator 164 

emulsification, respectively. 165 

2.5 Characterization of electrosprayed capsules 166 

2.5.1 Morphology 167 

The morphology of the different types of electrosprayed capsules produced was investigated using 168 

scanning electron microscopy (SEM) (Phenom Pro, Phenom-World B.V., Eindhoven, The Netherlands). 169 

Approximately 0.5×0.5 cm of the capsules aluminium sheet was placed on carbon tape and sputter 170 

coated with gold, 8 s, 40 mA utilizing a Q150T Quorum Coater (Quorum Technologies Ltd, East Sussex, 171 

UK). The capsule diameter distribution was determined from the micrographs by using the open 172 

source image processing program ImageJ (National Institutes of Health). One hundred random 173 

capsules were measured. 174 

2.5.2 Encapsulation efficiency (EE) 175 

The efficiency of the encapsulation was determined by measuring the non-encapsulated oil, which was 176 

extracted according to Westergaard (2004) with some modifications. Briefly, 1 g of electrosprayed 177 

capsules was immersed in 5 mL heptane and shaken at 100 rpm for 2 min. Then, the suspension was 178 

filtered and the retained solid washed three times with 2 mL heptane. From the recovered liquid, the 179 

heptane was evaporated and the amount of extracted oil was weighted. Analyses were carried out in 180 
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capsules. 182 

2.5.3 Oil distribution  183 

The droplet size distribution of the fish oil-loaded electrosprayed capsules after re-dispersion in 184 

distilled water was measured as previously described in section 2.3. For that purpose, 1 g of capsules 185 

was dissolved in 15 mL of distilled water at room temperature under magnetic stirring (100 rpm) for 186 

30 min. The resulting dispersion was filtered in order to remove the possible rest of capsules. 187 

Moreover, oil distribution in the capsules was also analyzed by fluorescence microscopy. 188 

Electrospraying solutions were stained with Nile red and fluorescein isothiocyanate to visualize fish 189 

oil and WPC, respectively. The nano-microcapsules were directly electrosprayed in a coverslip and 190 

then covered with a glass slide. Then, the distribution of fish oil and WPC within the nano-191 

microcapsules was analyzed with a fluorescence microscope Olympus BX53 fitted with a Retiga-6000 192 

monochrome camera (Olympus Danmark A/S, Ballerup, Denmark). Fluorescence was measured after 193 

irradiation at 580 nm or 488 nm. Images were captures using the Olympus cellSens Dimension V1 194 

software and further processed in Adobe Photoshop CS6. 195 

2.5.4 Glass transition temperature  196 

Glass transition temperature (Tg) of the capsules was determined using a Discovery DSC (TA 197 

Instruments, New Castle, USA). For each scan, 2-5 mg of capsules were hermetically sealed in an 198 

aluminium pan and tested again and identical empty pan. Samples were cooled and held isothermally 199 

at -80 ºC for 10 min, then heated to 200 ºC with a ramp rate of 10 ºC/min under nitrogen atmosphere 200 

(50 mL/min). TRIOS software (TA Instruments, New Castle, USA) was used to determined Tg from 201 

the midpoint of the heat flow derivative. 202 

2.5.5 Oxidative stability 203 

For lipid oxidation measurements, immediately after receiving the samples from Bioinicia and 204 

Fluidnatek®  (Valencia, Spain), the capsules were stored in 10 mL vial at 20 °C in the dark for 21 205 

days. Each vial contained approximately 2.2 g of capsules in order to maintain a similar headspace. 206 

Samples were taken at day 0, 3, 8, 14 and 21 for analysis. 207 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT2.5.5.1 Attenuated total reflection – Fourier transform infrared (ATR-FTIR) 208 

ATR-FTIR spectra of the capsules were obtained by using Spectrum 100 FT-IR Spectrometer 209 

(PerkinElmer, Waltham, USA). Approximately 10 mg of capsules were placed on top of the 210 

ZnSe/diamond crystal and good contact was assured by using the Universal ATR Sampling Accessory 211 

(PerkinElmer, Waltham, USA). All spectra were recorded within the wavenumber range of 4000-600 212 

cm-1 by averaging 20 scans at 4 cm-1 resolution. Measurements were performed in triplicate. Results 213 

were normalized to the initial intensity for a better comparison among the different capsules. 214 

2.5.5.2 Determination of oil content and peroxide value 215 

Oil was extracted from approximately 0.5 g of capsules according to Bligh and Dyer method using a 216 

reduced amount of the chloroform/methanol (1:1, wt.%) solvent (Bligh & Dyer, 1959). Two 217 

extractions were made from each sample. Peroxide value was determined on lipid extracts using the 218 

colorimetric ferric-thiocyanate method at 500 nm as described by Shantha and Decker (1994). Results 219 

were expressed as milliequivalents of peroxides per kg of oil.  220 

2.5.5.3 Volatiles secondary oxidation products – Dynamic headspace GC-MS 221 

Approximately 0.4 g of capsules and 10 mg internal standard (4-methyl-1-pentanol, 30 µg/g water) 222 

were weighted out in a 100 mL purge bottle, to which 5 mL of distilled water and 1 mL antifoam 223 

(Synperonic 800 µL/L water) were added. The bottle was heated to 45°C in a water bath while purging 224 

with nitrogen (flow 250 mL/min, 30 min). Volatile secondary oxidation products were trapped on 225 

Tenax GR tubes. The volatiles were desorbed again by heating (200°C) in an Automatic Thermal 226 

Desorber (ATD-400, Perkin Elmer, Norwalk, CN), cryofocused on a cold trap (-30°C), released again 227 

(220°C), and led to a gas chromatograph (HP 5890IIA, Hewlett Packard, Palo Alto, CA, USA; 228 

Column: DB-1701, 30 m x 0.25 mm x 1.0 µm; J&W Scientific, CA, USA). The oven program had an 229 

initial temperature of 45°C for 5 min, increasing with 1.5°C/min until 55°C, with 2.5°C/min until 230 

90°C, and with 12.0°C/min until 220°C, where the temperature was kept for 4 min. The individual 231 

compounds were analyzed by mass-spectrometry (HP 5972 mass-selective detector, Agilent 232 

Technologies, USA; electron ionization mode, 70 eV; mass to charge ratio scan between 30 and 250). 233 

The individual compounds were identified by both MS-library searches (Wiley 138 K, John Wiley and 234 
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The external standards employed were 2-ethyl-furan, 1-penten-3-one, pentanal, 1-penten-3-ol, (E)-2-236 

pentenal, hexanal, 2-hexenal, heptanal, 2-pentyl-furan, (E,E)-2,4-heptadienal, and nonanal (Sigma-237 

Aldrich, Brøndby, Denmark). Samples were analyzed in triplicate. 238 

2.6 Statistical analysis 239 

Statgraphics Centurion XV (Statistical Graphics Corp., Rockville, MD, USA) was used for data 240 

analysis. Data were expressed as mean ± standard deviation. Firstly, multiple sample comparison 241 

analysis was performed to identify significant differences between samples. Secondly, mean values 242 

were compared by using the Tukey’s test. Differences between means were considered significant at p 243 

< 0.05. 244 

3. RESULTS AND DISCUSSION 245 

3.1 Optimization of biopolymer solutions 246 

The properties of the biopolymer solutions (e.g. viscosity, conductivity, and surface tension) together 247 

with the processing variables (i.e. voltage and flowrate) have a high influence on the electrospraying 248 

process (e.g. stability of Taylor cone and morphology of capsules). The solution properties are mainly 249 

determined by the type of biopolymers used (i.e. molecular weight and concentration) as well as by 250 

the type of solvent (Drosou et al. 2017). Taking this into account, the composition of dextran and 251 

glucose syrup solutions containing fish oil were first optimized in the lab before scaling-up. Pullulan 252 

was added to both type of solutions as thickening agent since it allowed to increase the stability of the 253 

Taylor cone, avoiding dripping and droplets in the collector while also working at higher flow rate. 254 

Both high solid content in solutions (wt.% of biopolymers and oil) as well as high flow rate are desired 255 

in order to increase the throughput of electrospraying process. With a similar objective, Pérez-Masiá et 256 

al. (2014) employed gums (e.g. guar and xanthan gum) in order to increase the viscosity of 257 

carbohydrate (i.e. resistant starch or maltodextrin) solutions, which allowed the formation of capsules 258 

by electrospraying. However, these authors also observed the formation of a continuous film together 259 

with the capsules, which was attributed to the ability of gums to retain water leading to an incomplete 260 
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which may be attributed to a lower retention of water by pullulan when compared to gum facilitating 262 

the drying process. 263 

Fig. 1 shows the morphology of the nano-microstructures obtained when varying the concentration of 264 

pullulan (1-2 wt.%) and dextran (15-20 wt.%) in an aqueous solution also containing 1 wt.% WPC and 265 

20 wt.% of emulsified fish oil (with respect to biopolymers). It was observed that when using 2 wt.% 266 

pullulan and 20 wt.% dextran, some capsules were obtained, but they were interconnected with 267 

abundant fibers (Fig. 1a). Nevertheless, reducing the concentration of biopolymers, especially pullulan 268 

which has been reported to have an extraordinary spinnability leading to fiber formation (García-269 

Moreno et al. 2017), considerably decreased the polymer chain entanglements avoiding the formation 270 

of fibril defects. For instance, decreasing the concentration of dextran to 15 wt.% (2 wt.% pullulan) 271 

significantly reduced the formation of fibers (Fig. 1b). Likewise, fibers were almost not observed 272 

when reducing the content of pullulan to 1 wt.% (20 wt.% dextran) (Fig. 1c), and no fibril defects 273 

were found in the capsules obtained when using a solution of 1wt.% pullulan and 15 wt.% dextran 274 

(Fig. 1d). Capsules are preferred to fibers as delivery systems due to their ability to easily disperse in 275 

the food matrix (Pérez-Masiá et al. 2015). The dispersion of fibers is more challenging due to their 276 

continuous and interconnected morphology. As expected, decreasing pullulan concentration from 2 to 277 

1 wt.% slightly reduced the electrospraying flow rate (from 0.012 to 0.010 mL/min) (Table 1). 278 

Moreover, decreasing dextran concentration in the solution led to a significantly (p<0.05) more 279 

effective droplet disruption in the high pressure homogenizer (Table 1), mainly due to a lower 280 

viscosity of the solution. Smaller droplet sizes are desired in order to enhance the entrapment of the oil 281 

within the wall material matrix (Ramakrishnan et al. 2013). 282 

For the glucose syrup solution, only the pullulan content was varied from 2 to 5 wt.%, while the 283 

content of the glucose syrup was kept constant at 15 wt.% in order to have the same concentration as 284 

for dextran in the previous solution. Fig. 2 shows that only capsules were obtained when using either 2 285 

or 4 wt.% pullulan (Fig. 2a,b), whereas fibril defects appeared between the capsules due to more 286 

polymer chain entanglements when increasing pullulan concentration to 5 wt.% (Fig. 2c). In order to 287 
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increasing pullulan content from 2 to 4 wt.% led to a significantly (p<0.05) larger droplet size, it also 289 

allowed a considerable improvement of the electrospraying flow rate (from 0.003 to 0.007 mL/min) 290 

(Table 1). It is worth noting the lower electrospraying flow rate for the glucose syrup solution when 291 

compared to the dextran solution, despite the higher content of pullulan employed (4 vs. 1 wt.%, 292 

respectively). This might be attributed to the lower number of polymer chain entanglements in the 293 

glucose solution compared to dextran, as a consequence of the different molecular weights of the 294 

carbohydrates used (70 kDa for dextran and 12.5 kDa for glucose syrup, as reported by Pharmacosmos 295 

A/S and Cargill Germany GmbH respectively) (Pérez-Masiá et al., 2014).    296 

Finally, the replacement of half of the WPC used as emulsifier by an efficient surfactant such as citrem 297 

led to significant (p<0.05) smaller oil droplet size when compared to electrospraying solutions 298 

containing only WPC, both in dextran and glucose syrup solutions (Table 1). This should favor both 299 

the physical stability of the solution until drying as well as the efficiency of the encapsulation process. 300 

Therefore, taken together, optimum solutions for further production in pilot-plant scale were selected 301 

as: i) 0.5 wt.% WPC, 0.5 wt.% citrem, 1 wt.% pullulan, and 15 wt.% dextran, and ii) 0.5 wt.% WPC, 302 

0.5 wt.% citrem, 4 wt.% pullulan, and 15 wt.% glucose syrup. 303 

3.2 Physicochemical properties of the capsules 304 

3.2.1. Morphology 305 

Fig. 3 shows that the capsules obtained in pilot-plant for the two types of carbohydrates (dextran or 306 

glucose syrup) and for the two approaches used to emulsify the oil (high pressure homogenization or 307 

rotor-stator emulsification) had a spherical shape with no fibril defects. In general, dextran capsules 308 

showed no clear cracks or fissures, although small holes could be observed at their surface, especially 309 

for capsules where the oil was incorporated by using high pressure homogenization (Fig. 3a,b). 310 

Glucose syrup capsules presented a less smooth surface when compared to dextran capsules, as 311 

indicated by the presence of some fissures and larger holes on the surface. This phenomenon was also 312 

observed to a higher extent for capsules with oil emulsified by high pressure homogenization (Fig. 313 
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section 3.2.2. 315 

The four type of capsules produced presented a broad size range, varying from submicron particles to 316 

microcapsules up to 10 µm (Fig. 3). Nonetheless, most of the capsules (approximately 70 %) had a 317 

size lower than 3 µm. Although no significant differences were observed between G-HPH and G-RSE 318 

capsules, D-HPH capsules showed a larger diameter when compared D-RSE capsules (Fig. 3a,b).  319 

This may be attributed to the higher flow rate and voltage used to produce D-RSE capsules compared 320 

to D-HPH (1.8 vs. 1.5 mL/min and 15 vs. 10 kV), which favoured the formation of satellite droplets 321 

(Hartman et al. 2000).  322 

Overall, the capsules produced in pilot-plant presented a larger diameter when compared to capsules 323 

produced in lab scale, where approximately 60-70% of the capsules were below 1 µm (see Fig. S1 of 324 

the Supplementary material). In order to increase throughput, in pilot-plant electrospraying the 325 

solution is impelled into the electric field by pressurized air, hence the solution droplet size cannot be 326 

reduced to the level obtained by conventional electrospraying process in lab scale. In any case, the 327 

electrosprayed capsules obtained in this study showed a reduced size compared to microcapsules 328 

loaded with fish oil and obtained by spray-drying, which have been reported to have diameters 329 

between 14.2-18.1 µm (Drusch, 2007) or 17.9-23.0 µm (Carneiro et al. 2013). Capsules with a reduced 330 

size are preferred for incorporation into a food matrix since they might be easier to disperse and could 331 

have a lower effect on product quality (e.g. texture). Moreover, particles with a lower diameter present 332 

a larger specific surface area, which might enhance the release profile of the bioactive compound. On 333 

the other hand, a larger surface-to-volume ratio also implies an increase of the contact surface between 334 

lipids and prooxidants, which negatively affects oxidative stability of the capsules (Jacobsen et al. 335 

2018). 336 

3.2.2 Oil encapsulation and distribution  337 

Oil encapsulation and distribution within the shell material determines the accessibility of prooxidants 338 

to the oil as well as the available contact surface, which might have a great importance on the 339 

oxidative stability of the capsules (Drusch & Berg, 2008).  The longer time spent before the drying of 340 
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rotor-stator emulsification (which were produced in situ in the electrospraying pilot-plat) explain the 342 

significantly (p<0.05) higher D3,2 values of the reconstituted capsules obtained from the former 343 

emulsions (Table 2). However, the correlation between droplet size and EE is not clear since EE 344 

values were higher for the capsules containing oil emulsified by rotor-stator emulsification, besides 345 

the significantly higher D0,9 value of these capsules (Table 2).  346 

Dextran capsules showed significantly higher EE values than glucose syrup capsules for both type of 347 

emulsification approaches, which correlated well with the lower D3,2 and D0,9 values of the dextran 348 

capsules when compared to glucose syrup capsules (Table 2).  Glucose syrup nano-microcapsules 349 

presented large holes on the surface (Fig. 3a,b), which in fish oil-loaded microcapsules produced by 350 

spray-drying has been related to the presence of non-encapsulated oil droplets (Drusch & Berg, 2008). 351 

Fig. 4 shows how fish oil is distributed in electrosprayed nano-microcapsules containing oil emulsified 352 

by high-pressure homogenization and produced in lab scale. Fig.4a1,b1 show the location of fish oil 353 

(in red) and Fig.4a2,b2 show the location of WPC (in green). It was observed that oil droplets were 354 

entrapped within the shell material but both dextran and glucose syrup capsules also presented non-355 

encapsulated oil, since oil droplets were located at the capsule surface or very close to the surface 356 

(marked as white arrows in Fig. 4-a3,b3). In any case, it is worth noting that the EE values obtained 357 

for fish oil-loaded dextran and glucose syrup nano-microcapsules (20 wt.% oil load) were higher than  358 

EE values reported for gelatin, whey protein concentrate and soy protein isolate nano-microcapsules 359 

loaded with 10 wt.% of α-linoleic acid (ALA) and produced by electrospraying (23-67 % EE based on 360 

intact ALA) (Gómez-Mascaraque & López-Rubio, 2016). Nevertheless, they were in the same range 361 

as fish oil-loaded capsules (40 wt.% oil load) produced by spray-drying using caseinate and glucose 362 

syrup (13 wt.% extractable oil) or sugar beet pectin and glucose syrup (25.9 wt.% of extractable oil) as 363 

wall materials (Drusch et al., 2007). 364 

3.2.3 Glass transition temperature 365 

A glassy shell is desired in order to prevent oxygen diffusion through the capsule and to avoid caking 366 

(Huang et al., 2014). Fig. 5 shows the DSC heating curves of the nano-microcapsules containing oil 367 
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capsules, three endothermic peaks were found in the range from -75 ºC to 10 ºC, which indicated the 369 

range of melting temperature for the different triglycerides in the fish oil. In the case of dextran 370 

capsules no Tg could be detected in the range of temperature assessed (Fig. 5a), which implies that the 371 

shell material will be in glassy state minimum up to 200 ºC. Nevertheless, glucose capsules showed a 372 

Tg at 94.2 ºC (Fig. 5b). This difference between both types of capsules could be explained by the 373 

different Tg of the carbohydrates used as wall materials. The dextran employed had a Tg at 143.3 ºC, 374 

whereas the Tg of the glucose syrup used was at 59.3 ºC (see Fig. S2ab of the Supplementary 375 

material). These values differed from those previously reported for glucose syrup (DE36) and dextran 376 

(74.3 kDa) in the literature, Tg at 31 ºC and 223 ºC respectively (Drusch et al., 2007; Scandola et al. 377 

1991). This might be due to the different type of biopolymer used (Mw and DE) and to possible 378 

differences in their residual water levels. In regard to pullulan, no Tg was found in the range of 379 

temperature studied (see Fig. S2c of the Supplementary material). This is in line with the findings of 380 

Scandola et al. (1991), who did not observe any melting or Tg for pullulan below its thermal 381 

decomposition temperature (300 ºC). It is worth mentioning that fish oil-loaded dextran and glucose 382 

capsules had a higher Tg than skim milk powder and lactose (Tg at 67 ºC) or sucrose (Tg at 50 ºC) 383 

capsules containing fish oil and obtained by spray-drying (Aghbashlo et al., 2012).  384 

3.3 Oxidative stability of capsules  385 

3.3.1 ATR-FTIR 386 

Firstly, and in accordance with previous studies (Gómez-Mascaraque & López-Rubio, 2016; Torres-387 

Giner et al., 2010), the oxidative stability of the capsules was evaluated by ATR-FTIR. Many of the 388 

characteristics bands of fish oil overlapped with the infrared bands of the biopolymers used as wall 389 

materials (WPC, dextran, pullulan and glucose syrup). Nevertheless, the characteristic absorption band 390 

of omega-3 PUFA at 3012 cm-1, which corresponds to the stretching of cis-alkene (-HC=CH-) groups 391 

(Guillén & Cabo, 1999), did not overlap with the vibrational modes of the protein and carbohydrates 392 

employed (see Fig. S3 of the Supplementary material). As a result, the intensity of this band, which 393 

indicated the disappearance or not of cis double bonds due to oxidation, was monitored during the 394 
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capsules did not significantly decrease during storage, apart from D-HPH capsules which slightly 396 

decreased at day 21. This may imply that the capsules were not oxidized during storage due to the fact 397 

that the cis-alkene groups were not degraded. Nonetheless, it should be noted that, although the 398 

generation of hydroperoxides changes the conformation of some double bonds due to the formation of 399 

conjugated cis-/trans- or trans-/cis- dienes, a reduction in the frequency of the band at 3006-3012 cm-1 400 

is generally associated with advanced stages of lipid oxidation (Guillén & Cabo, 2000). However, and 401 

opposite to what we observed, other studies have reported a decrease in the intensity of this band 402 

during storage. For instance, Moomand and Lim (2014) observed a reduction of the absorption at 3012 403 

cm-1 for ultrathin zein fibers containing fish oil during storage at different temperatures (4, 25, and 60 404 

ºC) for 14 days. Likewise, Gomez-Mascaraque and López-Rubio (2016) found a reduction in the 405 

intensity of the same band for gelatin, whey protein, and soy protein electrosprayed capsules loaded 406 

with ALA during storage at 80 ºC for 5 days.    407 

3.3.2 PV and volatiles 408 

The oxidative stability of the capsules was further evaluated by measuring the formation of primary 409 

and secondary volatile oxidation compounds. Fig. 6b shows the PV of the different capsules during 410 

storage. It was observed that the PV of the fish oil-loaded capsules after production, which ranged 411 

from 7.4±0.6 to 10.3±0.1 meq/kg oil, was significantly higher than the PV of the initial fish oil 412 

(0.4±0.1 meq/kg oil). This might be attributed to lipid oxidation during: i) emulsion preparation due to 413 

oxygen inclusion and increase in specific surface area (as reported by Serfert et al., 2009), and ii) 414 

encapsulation process as a result of the exposure of the surface oil to atmospheric air during 415 

production (as reported by Drusch et al., 2006).  416 

Although the PV of the capsules at day 0 was not significantly affected by the carbohydrate or oil 417 

emulsification approach used, different trends in hydroperoxides content were observed during storage 418 

for the capsules studied (Fig. 6b). Independently of the carbohydrate used, a longer lag phase was 419 

found for the capsules with oil emulsified by rotor-stator equipment when compared to those 420 

containing oil emulsified by high-pressure homogenization (8 days vs. 3 days). Furthermore, the PV of 421 
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storage than the PV of the capsules with oil incorporated by rotor-stator emulsification (apart from 423 

glucose syrup capsules at day 21). PV of the electrosprayed capsules with oil (20 wt.%) emulsified 424 

only by rotor-stator equipment was similar to those reported by Morales-Medina et al. (2016) for 425 

microcapsules containing 14 wt.% fish oil and produced by spray-drying using fish protein 426 

hydrolysates and glucose syrup as wall materials (PV of ca. 20 meq/kg oil after 20 days storage at 20 427 

ºC); and lower than those found by Drusch & Berg (2008) for spray-dried microcapsules loaded with 428 

30 wt.% fish oil and containing n-OSA starch and glucose syrup as shell materials (PV of ca. 30 429 

meq/kg oil after 21 days storage at 20 ºC). Nevertheless, lower hydroperoxide concentrations (PV<10 430 

meq/kg oil after 50 days storage at 20 ºC) were obtained for Serfert et al. (2009) for microcapsules 431 

with a shell matrix composed of n-OSA starch and glucose syrup (fish oil load of 40 wt.%), which 432 

were stabilized with specific combinations of natural antioxidants (α- and δ-tocopherols, ascorbyl 433 

palmitate, citric acid, lecithin or citrem and rosemary extract). In line with PV results, the 434 

concentration of secondary volatile oxidation products was also higher for capsules with oil emulsified 435 

by high-pressure homogenization compared to capsules where the oil was emulsified using only a 436 

rotor-stator equipment (Fig. 7). For instance, significantly lower concentration of 1-penten-3-ol during 437 

storage was observed for G-RSE capsules compared to G-HPH capsules (Fig. 7a). Similarly, D-RSE 438 

and G-RSE showed a lower content of (E)-2-pentenal up to 14 days of storage than D-HPH and G-439 

HPH capsules, respectively (Fig. 7b). Both 1-penten-3-ol and (E)-2-pentenal are volatiles derived from 440 

the oxidation of omega-3 PUFA and they have low odour threshold values (0.001-3 ppm and 0.04-25 441 

ppm, respectively) and undesired sensory attributes (milky, butter and sweet or oily, soapy, pungent, 442 

glue, green and grassy, respectively) (Hartvigsen et al. 2001; Venkateshwarlu et al. 2004). Likewise, 443 

lower content of volatiles products derived from oxidation of omega-9 fatty acids (i.e. heptanal and 444 

nonanal) were also found for D-RSE and G-RSE capsules compared to D-HPH and G-HPH capsules 445 

(Fig. 7c,d). Both heptanal and nonanal have also low odour threshold values (0.014-1 ppm) and 446 

unacceptable sensory characteristics for the consumer such as chemical and burnt or green plant-like, 447 

compost-like and rancid, respectively (Hartvigsen et al., 2000; Shahidi, 2001; Venkateshwarlu et al., 448 
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higher EE values when compared to D-HPH and G-HPH capsules, respectively (Table 2). Oil on the 450 

surface of the capsules oxidized rapidly due to the lack of protection by any interfacial layer of 451 

biopolymers, which implies that a larger amount of surface oil might have reduced the oxidative 452 

stability of D-HPH and G-HPH capsules (Drusch et al., 2007). Furthermore, the parent emulsions of 453 

D-RSE and G-RSE capsules were produced in situ in the pilot plant just right before electrospraying, 454 

which reduced the time elapsed from emulsification to drying and minimized physical destabilization 455 

of the emulsions. On the contrary, a more pronounced physical destabilization was observed in the 456 

parent emulsions of D-HPH and G-HPH capsules (Table 2), which may have led to unprotected oil 457 

droplets by modification of the interfacial layer.  458 

Although no significant effect of the shell matrices evaluated (dextran vs. glucose syrup) was observed 459 

in PV (Fig. 6b), significant differences were found in terms of secondary volatile oxidation products 460 

(Fig. 7). In general, glucose capsules showed a significantly (p<0.05) lower concentration of volatiles 461 

compared to dextran capsules. This trend was clearly observed for: i) 1-penten-3-ol when comparing 462 

D-RSE and G-RSE capsules (Fig. 7a), ii) (E)-2-pentenal when comparing both D-HPH and G-HPH or 463 

D-RSE and G-RSE capsules up to day 14 of storage (Fig. 7b), and iii) heptanal when comparing D-464 

HPH and G-HPH capsules at day 21 of storage, or D-RSE and G-RSE capsules up to 14 days of 465 

storage. An opposite trend was found for nonanal, with glucose syrup capsules presenting a higher 466 

concentration of this volatile during storage (Fig. 7d). However, this is attributed to the higher content 467 

of pullulan in glucose syrup capsules (4 wt.%) compared to dextran capsules (1wt.%), since pure 468 

pullulan electrospun fibers have been reported to present high concentration of nonanal (García-469 

Moreno et al., 2017a). These results indicated that the highest oxidative stability of G-RSE capsules 470 

cannot be solely explained by their extractable oil content, since D-RSE capsules presented 471 

significantly (p<0.05) higher EE values than G-RSE capsules (Table 2). This is in agreement with 472 

previous studies in the literature which indicated that: i) extractable oil also contains oil droplets 473 

surrounded by interfacial layer, which could offer some protection against oxidation (Drusch et al., 474 

2007), and ii) surface oil could protect other fractions of the extractable oil from oxidation (e.g. oil 475 
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fish oil in microcapsules by spray-drying stated the importance of oxygen diffusivity on autooxidation 477 

of omega-3 PUFA (Drusch et al., 2009). Therefore, a plausible explanation for the higher oxidative 478 

stability of G-RSE compared to D-RSE might be the result of a reduced free volume for the glucose 479 

syrup matrix compared to the dextran shell. Glucose syrup had a lower molecular weight than dextran 480 

(12.5 vs. 70 kDa), which may allow a more dense packaging within the glassy wall, limiting oxygen 481 

permeability; and thus, reducing oil oxidation. Similarly, Drusch et al. (2009) demonstrated the 482 

presence of larger free volume elements for glassy carbohydrates matrices with higher molecular 483 

weight, which correlated well with the lower oxidative stability of fish oil encapsulated in these 484 

matrices (i.e. maltodextrin with DE 18 and maltose with estimated DE 50). Therefore, the authors 485 

suggested that the reduced oxygen diffusivity in fish oil-loaded microcapsules containing low 486 

molecular weight carbohydrates (e.g. maltose with estimated DE 50) explained the enhanced oxidative 487 

stability of these capsules. 488 

4. CONCLUSIONS 489 

Biopolymer solutions containing fish oil (20 wt.% with respect to biopolymers), WPC (0.5 wt.%), 490 

citrem (0.5 wt.%), and pullulan (1wt.%) plus dextran (15wt.%) or pullulan (4wt.%) plus glucose syrup 491 

(15 wt.%) led to electrosprayed capsules without any fibril defects, both when producing in lab and 492 

pilot-plant scale. To the best of the authors’ knowledge, this is the first study reporting the production 493 

of electrosprayed capsules by using combinations of whey protein and carbohydrates. Moreover, 494 

electrosprayed capsules were developed for the first time by using glucose syrup as the main wall 495 

material. This is of special importance due to the low cost of this biopolymer.   496 

The ATR-FTIR method was not sensitive enough to study oxidative stability of the fish oil-loaded 497 

capsules, since no changes in the normalized absorbance of the band at 3012 cm-1 (indicating the 498 

stretching of cis-alkene -HC=CH- groups) was observed during storage. Nevertheless, the 499 

hydroperoxide and volatiles content of the capsules increased during storage. Capsules with oil 500 

emulsified by using only a rotor-stator equipment showed higher oxidative stability than capsules 501 
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volatiles (1-penten-3-ol, (E)-2-pentenal, heptanal, and nonanal) content. This was explained by a 503 

higher encapsulation efficiency and a shorter time span between emulsification and drying which 504 

reduced physical destabilization of emulsions. Glucose syrup capsules presented higher oxidative 505 

stability than dextran capsules. This finding was attributed to the lower molecular weight of glucose 506 

syrup, which led to lower free volume in the glassy matrix reducing oxygen diffusivity. Finally, it has 507 

to be mentioned that the oxidative stability of the electrosprayed capsules needs to be further improved 508 

(i.e. by reducing surface oil). 509 
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Solutions 
Oil droplet size, m Electrospraying flow 

rate, mL/min D3,2 D0,9 

Dextran 

1% WPC + 2% pullulan + 20% dextran 0.684a 1.894a 0.012 

1% WPC + 2% pullulan + 15% dextran 0.327b 1.009b 0.012 

1% WPC + 1% pullulan + 20% dextran 0.600a,* 1.647a,* 0.010 

1% WPC + 1% pullulan + 15% dextran 0.280b,* 0.909b,* 0.010 

0.5% WPC + 0.5% citrem + 1% pullulan + 

15% dextran 
0.129† 0.334† 0.010 

Glucose 
syrup 

1% WPC+2% pullulan + 15% glucose syrup 0.163a 0.485a 0.003 

1% WPC+4% pullulan + 15% glucose syrup 0.189b 0.581b 0.007 

1% WPC+5% pullulan + 15% glucose 0.212c 0.614c 0.010 

0.5% WPC + 0.5% citrem + 4% pullulan + 

15% glucose syrup 
0.112† 0.259† 0.007 

 

Standard deviatons for oil droplet size measurements were < 0.008 m. No deviations were observed for flow 
rate. 
For dextran samples, different letters (a-b) indicate statistical significant differences (p<0.05) between samples 
containing different concentration of dextran but same concentration of pullulan. * indicates statistical significant 
differences (p<0.05) between samples with same dextran concentration but different concentration of pullulan. 
For glucose syrup samples, different letters (a-b) indicate statistical significant differences (p<0.05) between 
samples containing different concentration of pullulan. 
† indicates statistical significant differences (p<0.05) between samples with and without citrem. 
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Electrosprayed capsules 
Oil droplet size, m 

Encapsulation efficiency (EE), % 
D3,2 D0,9 

Dextran 
HPH 0.414±0.013a 1.762±0.102a 86.9±1.5a 

RSE 0.388±0.006b 2.548±0.176b 91.7±0.9b 

Glucose syrup 

HPH 0.605±0.009x,* 3.008±0.079x,* 78.1±3.2 x,* 

RSE 0.461±0.061y,ns 3.960±0.355y,† 85.7±0.3 y,† 

 

HPH: high-pressure homogenization; RSE: rotor-stator emulsification 
 
Letters (a-b) indicate statistical significant differences (p<0.05) between dextran samples. 
Letters (x-y) indicate statistical significant differences (p<0.05) between glucose syrup samples. 
* indicates significant differences (p<0.05) between dextran and glucose samples with oil emulsified by high-
pressure homogenization. 
ns indicates no significant differences (p>0.05) between dextran and glucose samples with oil emulsified by 
rotor-stator emulsification. 
† indicates significant differences (p<0.05) between dextran and glucose samples with oil emulsified by rotor-
stator emulsification. 
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Figure 1. SEM images of nano-microstructures obtained by electrospraying of WPC (1 wt.%), 

pullulan and dextran solutions containing emulsified fish oil (20 wt.% oil with respect to 

biopolymers): (a) 2 wt.% pullulan + 20 wt.% dextran, (b) 2 wt.% pullulan + 15 wt.% dextran, (c) 1 

wt.% pullulan + 20 wt.% dextran, and (d) 1 wt.% pullulan + 15 wt.% dextran. 
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Figure 2. SEM images of nano-microstructures obtained by electrospraying of WPC (1 wt.%), 

pullulan and glucose syrup (15 wt.%) solutions containing emulsified fish oil (20 wt.% oil with respect 

to biopolymers): (a) 2 wt.% pullulan, (b) 4 wt.% pullulan, and (c) 5 wt.% pullulan. 
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Figure 3. SEM images and diameter distribution of electrosprayed capsules: (a) D-HPH, (b) D-RSE, 

(c) G-HPH, and (d) G-RSE. 

D: dextran; G: glucose syrup; HPH: high-pressure homogenization; RSE: rotor-stator emulsification. 

0

10

20

30

Fr
e

q
u

e
n

cy
, %

Diameter, mm

0

20

40

60

Fr
e

q
u

e
n

cy
, %

Diameter, mm

0

10

20

30

40

50

Fr
e

q
u

e
n

cy
, %

Diameter, mm

0

10

20

30

40

Fr
e

q
u

e
n

cy
, %

Diameter, mm



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

a1) 

 

 b1) 

 

a2) 

 

 b2) 

 

a3) 

 

 b3) 

 

 

Figure 4. Fluorescence microcopy images of electrosprayed capsules produced in lab scale using high-

pressure homogenization for incorporating the oil: a) dextran-based capsules, and b) glucose syrup-

based capsules. a1) and b1) show the location of fish oil (in red); a2) and b2) show the location of 

WPC (in green); and a3) and b3) show the simultaneous location of fish oil and WPC. 
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Figure 5. DSC heating curves of electrosprayed capsules produced in pilot-plant scale using high-

pressure homogenization for incorporating the oil: a) dextran-based capsules, and b) glucose syrup-

based capsules.   
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Figure 6. Oxidative stability of electrosprayed capsules loaded with fish oil during storage at 20 °C: a) 

ATR-FTIR, and b) Peroxide value (PV).  

D: dextran; G: glucose syrup; HPH: high-pressure homogenization; RSE: rotor-stator emulsification 
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Figure 7. Secondary volatiles oxidation products of electrosprayed capsules loaded with fish oil during storage at 20 °C: a) 1-penten-3-ol, b)  

D: dextran; G: glucose syrup; HPH: high-pressure homogenization; RSE: rotor-stator emulsification. 
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Highlights 

 

 Fish oil-loaded nano-microcapsules were produced by electrospraying 

 Whey protein, pullulan and dextran or glucose syrup were used as wall materials 

 Rotor-stator emulsification led to capsules with higher oxidative stability 

 The glucose syrup matrix prevented more efficiently oxidation of encapsulated oil 

 Electrosprayed capsules are promising omega-3 nano-delivery systems  


