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Abstract—Thermal loads are recognized as a valuable source
of flexibility in face of the increasing variability caused by the
large shares of renewable production. Lockout constraints can
significantly reduce the flexibility of thermostatically controlled
loads (TCLs). We propose a novel way of modifying the loads’
lockout durations to achieve non-intrusive centralized control
without relying on local computations and estimations. We derive
analytical expressions for the flexibility reduction and validate
them via simulations, which show that the proposed method
describes the TCLs flexibility accurately. We further show that
a simple stochastic centralized controller, which does not rely
on local temperature measurements, outperforms the commonly
used priority-stack controller in terms of system robustness
against infeasible trajectories.

Index Terms—Aggregation, lockout constraints, stochastic con-
troller, thermal battery model, thermostatically controlled loads.

I. INTRODUCTION

Due to the increasing shares of intermittent renewable
energy production and the reduction of conventional generators
capacity, it is expected that the power system’s balancing needs
will increase [1]. Buildings can be used for balancing services
because they can act as virtual storage due to their thermal
capacity. Using residential buildings flexibility in particular,
has been found to be a viable investment [2]. Because of the
large number of loads which must be controlled in order to
provide a meaningful service, aggregation methods are neces-
sary to represent the collective dynamics both for scheduling
and control purposes. In [3] the potential of a collection of
thermostatically controlled loads (TCLs) to arbitrage in the
day-ahead energy market was investigated, by comparing two
methods. In the first method the savings potential was calcu-
lated by optimizing the consumption of each TCL separately,
whereas the second method used an aggregated thermal energy
storage model, resulting in a linear optimization problem,
which is computationally more attractive. It was shown that the
aggregated model can achieve good performance in describing
the population’s dynamics.

Many research works have investigated how a collection of
TCLs can be represented by a virtual battery model, which can
describe its flexibility in a simple manner. Hao et al. proposed
a stochastic battery model with varying energy capacity and
power limits to describe the aggregate TCLs flexibility [4], [5].

An important contribution of this work is that the proposed
battery model can be bounded by two other battery models,
whose parameters are analytically calculated. Moreover, for
homogeneous loads all models converge to one and there-
fore an exact battery model can be derived (exact means
that any feasible trajectory provided by the battery model is
also feasible for the individual loads). Another approach for
describing flexibility is via polytopes, which is however much
more demanding computationally [6]. A common limitation
on the operation of TCLs is the so-called lockout constraints.
This constraint forces a TCL to remain at the on or off
state for a minimum duration after switching to protect it
from wear. In [7] the effect of lockout constraints on the
TCLs ramping capability was examined, whereas in [8]–[10]
controllers were designed which take the lockout durations
into account. However, their effect on the aggregation’s energy
and power limits was not addressed.

In this paper we propose a new battery model which
accounts for the effect of lockout constraints and we quantify
the impact on the energy and power limits of the population.
We must note that we consider “large” time steps in the
battery model, as in [3], [11]. Additionally, we show that if the
lockout durations are not chosen appropriately, the TCLs might
cycle outside their thermostat limits while being controlled,
resulting in user-comfort violation. Our work is closer to [11],
where the authors addressed the issue of reduced flexibility
due to the lockout constraints. In contrast to our work which
considers aggregate models, [11] modifies the power/energy
limits of individual TCLs and relies on local intelligence to
guarantee non-intrusive control. Moreover, the dependence of
these limits on time-varying externalities such as the ambient
temperature is neglected.

The main contribution of our work is a method to modify the
lockout durations based on the expected baseline consumption
and ensure the non-intrusive nature of the centralized control.
We calculate the allowed combinations of lockout durations
with which a TCL can always operate within its temperature
deadband. The advantage of this approach is that there is no
need for local computations for the loads to decide whether to
follow the external control signal, which was a limitation in
[11]. In a second contribution, we use the modified lockout
durations to abstract the effects of lockout constraints and



characterize the aggregation’s flexibility in a more accurate
manner. We have considered the effect of lockout constraints
on aggregations of TCLs offering primary frequency control
in our previous work [12], [13], but we didn’t quantify the
flexibility reduction in terms of power and energy. Finally, we
show that a simple stochastic controller without local temper-
ature measurements is more robust than the commonly used
priority-stack controller, which results in large oscillations in
case of intractable reference set-points.

The remainder of the paper is organized as follows. In
Section II the basic principles of TCL modeling and the
thermal battery model are introduced. In Section III a method
to modify the lockout constraints is presented, as well as
analytical expressions of their effect on the energy and power
limits of the battery model. Section IV discusses and compares
two different control approaches, namely the stochastic and
priority-stack controller. In Section V simulation results are
presented and Section VI concludes.

II. MODELING OF TCLS

A. Individual TCL modeling

We use a first-order model to describe the evolution of a
TCL’s air temperature. Higher order models exist in the liter-
ature, for instance the works of [9], [8], where the building’s
mass temperature is also considered. However, similar to other
works, we believe that this model can sufficiently capture the
TCLs dynamics for our purposes [14], [3]. Consider the case
of a heating TCL i which is controlled by an on/off hysteresis
controller. The following first-order differential equation de-
scribes the evolution of the lumped temperature Ti(t) of the
the air and building mass

Ṫi(t) = αi

[
Ta,i(t)− Ti(t)

]
+ wi(t) when OFF

Ṫi(t) = αi

[
Ta,i(t)− Ti(t)

]
+ βiPn,i + wi(t) when ON,

(1)
where α = 1/RC, and β = η/C; C is the thermal capacitance,
R is the thermal resistance, Ta(t) is the time-varying outside
temperature, η is the coefficient of performance (COP)1, and
Pn is the nominal compressor power. Term w(t) can be
considered a Gaussian noise term with zero mean and small
variance like in [7], or it can aggregate the effect of the system
disturbances, such as door and window openings, occupancy
etc., similar to [14]. Denote by Tr,i the set-point of the TCL
and by ∆i its deadband; the hysteresis controller will switch
the compressor on/off in order to keep the temperature within
the temperature region [Tr,i − ∆i, Tr,i + ∆i]. By dropping
the index i for convenience, the temperature evolution can
be described in discrete time by

Tt+1 = aTt + bmt + c(Ta,t + wt) , (2)

where a = e−∆t/(RC), b = (1 − a)ηRPn, c = (1 − a), ∆t
is the model’s discretization time step, and mt ∈ {0, 1} is
the on/off state. Using the discrete time model, and by setting

1In our analysis we considered a constant COP for simplicity, but a varying
COP can be used in the model as a parameter, similar to Ta.

Q = ηRPn for notation simplicity, we can derive the duration
of the on (ton) and off cycles (toff)

ton
i = RiCi ln

[
Tr,i −∆i − Ta,i −Qi

Tr,i + ∆i − Ta,i −Qi

]
, (3)

toff
i = RiCi ln

[
Tr,i + ∆i − Ta,i

Tr,i −∆i − Ta,i

]
. (4)

The device’s duty cycle is equal to Di = ton
i /(t

on
i + toff

i ),
whereas the average consumption is equal to Pav,i = Pn,iDi.
We must note here that external temperature Ta is considered
common for all the loads. Furthermore, the time-varying nature
of Ta and the external disturbances result in time-varying duty
cycles. Modeling the aggregate effect of disturbances such as
the door/window openings requires statistical approaches due
to their event-based nature and is outside the scope of the
paper. We use however a time-varying Ta to show the effect
of a non-constant duty cycle on the aggregate flexibility.

B. Continuous-power model
The aggregated consumption of n loads is given by the sum-

mation of their individual states, multiplied by their nominal
power consumption. The nonlinearity of the presented hybrid
model makes it inconvenient for analysis and optimization.
A more suitable model for relatively large populations of
TCLs is the continuous-power model, where a continuous state
ui(t) ∈ [0, Pn,i] is used for the power consumption, instead
of a binary variable. The equivalence of the deadband and
continuous-power models has been discussed in [5], [7] and
was shown to be a good approximation for a relatively small
heterogeneity and a sufficient number of loads. As a result,
temperature is given by

Ṫi(t) = −αi

[
Ti(t)− Ta,i(t)

]
+ βiui(t) + wi(t). (5)

In this case the temperature must be maintained within the
desired boundaries by controlling the continuous power input.

C. Thermal battery model
Thermal battery models (TBMs) have been proposed and

investigated in many works as a convenient representation of
the flexibility of a population of TCLs for scheduling and
control purposes [15], [5], [3]. We follow an approach similar
to [5], [3] and we express the aggregated flexibility of a
pool of TCLs with relatively low heterogeneity via a TBM
considering the average parameter values. In that case the
baseline consumption of n TCLs, i.e. the load that maintains
the aggregation’s average temperature at the set-point value,
is given by

P b
k =

n ᾱ (Tr − Ta,k)

β̄
, (6)

where the upper bar indicates the average value and index
k indicates the battery model’s time step, whose duration is
equal to tBM; this duration is not to be confused with the
hybrid model’s time step ∆t used in the simulations. State
Xk represents the state of charge of the battery model and its
evolution is described by

Xk+1 = Xk ad + (Pk − P b
k) tBM, (7)



TABLE I: TCLs Parameters
Parameter Description Value
Tr (◦C) Temperature set-point 22.5

C (kWh/◦C) Thermal capacitance 2
R (◦C/kW) Thermal resistance 2
Pn (kW) Nominal power 5.6
η (-) Coefficient of performance 3

∆ (◦C) Temperature deadband 0.5

where the self-discharge rate ad is equal to 1−ᾱ tBM. Pk is the
total consumption and can take values in the range [0, nP̄n].
State X is limited by the capacity S of the battery model,
which is expressed in kWh, and is calculated as

S =
n ∆̄

β̄
. (8)

In this paper we consider TCL flexibility via a TBM over
“large” steps, similar to [3], and thus the reference is constant
over a larger period and does not change every few seconds,
like in TBMs used for frequency regulation, such as [15],
[5]. However, several works have shown that the effective
power range is smaller than [0, nP̄n]. Moreover, the presence
of lockout constraints further reduces the loads flexibility,
whereas a local controller is required to evaluate if an external
control signal will result in thermostat limits violations, further
complicating the analytical characterization of flexibility. In
the following section we will present a method for modifying
the lockout durations to guarantee user comfort and we will
calculate the energy and power limits of the TBM of TCLs
under lockout constraints. By modifying these durations we
can capture the effects of these constraints on the aggregate
flexibility, abstract their behaviour close to the thermostat
limits and derive analytical forms for the new energy and
power limits of the TBM. For our study we consider a
population of TCLs with relatively small heterogeneity (10%).
Our simulations showed that the proposed approach works
well even with higher heterogeneity levels, but it is common to
cluster the loads in the case of large heterogeneity to achieve
better performance. The parameters used in our simulations
are shown in Table I and are taken from [16].

III. EXTENDED BATTERY MODEL WITH LOCKOUT
CONSTRAINTS

A. Modification of the lockout durations

A common practical constraint on the operation of TCLs is
a minimum lock-on duration tlon,i, which forces the TCL to
remain at the on state once switched on. Similarly, a minimum
lock-off duration tloff,i locks the TCL at the off state. As a result
of these constraints, if the TCL’s duty cycle is not equal to
0.5, then a switching action can force it to operate outside its
temperature deadband if the lockout durations are not carefully
chosen. To illustrate this behaviour consider a TCL with the
parameters presented in Table I. We assume that both durations
are set by the manufacturer equal to 3 minutes. We consider
a case where Ta = 10◦C and D = 37% and a case where
Ta = 0◦C and D = 67%. The temperature evolutions when

the TCL continuously receives a command to switch on and
off are shown in Fig. 1.

Figure 1: Violation of thermostat limits due to equal lockout durations.

When D < 50% then ton < toff and the heating rate is
larger than the cooling rate. If the TCL is forced to switch on,
then once it reaches the upper thermostat limit it will switch
off for a period tloff. Since ton < toff the TCL will not cool
enough after tloff has elapsed and a switching will force it to
remain on for tlon, thus exceeding the thermostat limit. This
however will not occur when the load is forced to remain off,
since it is able to increase the temperature enough during the
tloff period that it operates after reaching the lower thermostat
limit. Following similar arguments, it is expected that the load
will only exceed the lower thermostat limit if forced to switch
off when D > 50%, as seen in Fig. 1. To prevent the TCL
from operating outside the deadband, the local controller must
disregard external signals which will force the TCL in such
regions. However, it is difficult to abstract the effect of such
temperature-dependent local operations on an aggregate level
and characterize the aggregated behaviour of the population.
For this reason we propose to modify the individual lockout
durations. We have presented this concept in our earlier work
for individual TCLs [12], [13] and here we formalize and
extend this concept, in order to incorporate it to a TBM.

Consider the case where a TCL is forced to remain on and
switches off for tloff after reaching the upper limit. Once the
TCL switches on, a maximum lock-on duration is required,
such that temperature does not exceed this limit. For notation
simplicity we drop the subscript i and denote by Tmin and Tmax
the lower and upper thermostat limit respectively. By using (2)
it is straightforward to show that the following inequality must
hold, in order to avoid temperatures higher than Tmax

tlon ≤ RC ln

 (Tmax − Ta)e
−tl

off
RC −Q

Tmax − Ta −Q

 . (9)

For our example with Ta = 10◦C and tloff = 180 s,
the maximum allowed tlon is approximately 113 s. An upper
bound is thus required for the lock-on duration, so that it is



small enough to prohibit the TCL from operating in higher
temperatures. When the load is forced to remain off, a lower
limit on tlon must be set, such that temperature increases
enough before the load switches off. To avoid temperatures
lower than Tmin, the following inequality must hold

tlon ≥ RC ln

 (Tmin − Ta −Q)e
−tl

off
RC

Tmin − Ta −Qe
−tl

off
RC

 . (10)

In our example (10) results in a minimum lock-on duration
of 101 s. A lower bound is thus imposed on the lock-on
duration, which will increase the temperature enough, so that a
lock-off duration of 180 s will not result in temperatures lower
than Tmin. Inequalities (9) and (10) define feasible regions for
the lockout durations, which guarantee non-violation of both
thermostat limits for any external signal. Additional constraints
may be imposed by the minimum lockout durations set by the
manufacturer. The allowed combinations for tloff and tlon are
shown in Fig. 2 for 3 duty cycles: larger than 50%, smaller
than 50%, and equal to 50%.

Figure 2: Allowed region (area with green color) for tloff and tlon.

For combinations of tloff and tlon within the allowed regions,
user comfort is always guaranteed. Interesting results can be
drawn by observing Fig. 2. First, the ratio tlon/t

l
off must be

almost equal to 1 for D = 50%, whereas it must increase as
D increases and decrease as D decreases. Second, if one of the
durations is fixed at its minimum value, an allowed range for
the other duration exists. The closer the lockout value is to the
boundaries, the more sensitive the TCL becomes to changes
of the external temperature, as we will show next.

Consider the case where D = 37% and Ta = 10◦C, then for
tlon = 180 s, tloff ∈ [290, 318] s. The lower limit tl,min

off represents
the smallest duration which decreases the temperature enough,
so that an immediate switching after tl,min

off will not result in
a temperature higher than Tmax. A realized Ta lower than
10◦C will increase the cooling rate and lead the TCL to an
even lower temperature, thus avoiding a deadband violation.
However, a higher realized Ta will have the opposite effect,
as it will slow down the TCL’s cooling rate. By setting tloff
equal to tl,min

off , any temperature higher than 10◦C will violate
the upper thermostat limit. By increasing the value of tloff the
TCL is able to remain within the deadband for larger realized
Ta values, providing some robustness against Ta variations.

The relationship between Ta and tloff is given by solving (9)
using a fixed tlon (in our case equal to 180 s), resulting in

T up
a (tloff) =

Tmax(e
−tl

off
RC − e

tl
on

RC ) +Q(e
tl

on
RC − 1)

e
−tl

off
RC − e

tl
on

RC

. (11)

Following similar arguments, by setting tloff equal to tl,max
off ,

any Ta lower than 10◦C will result in a Tmin limit violation. By
increasing tloff, the TCL is able to remain within the deadband
for smaller realized Ta values. The relationship between Ta
and tloff is given by solving (10), resulting in

T d
a (tloff) =

Tmin(e
−tl

off
RC − e

tl
on

RC ) +Qe
−tl

off
RC (e

tl
on

RC − 1)

e
−tl

off
RC − e

tl
on

RC

. (12)

It is evident that there is a trade-off in the robustness against
Ta when choosing tloff. For smaller values, the TCL has a
relatively large margin against reduced Ta values, but a very
small margin against Ta values larger than the expected. As
tloff increases, these margins vary, as seen in Fig. 3.

Figure 3: Robustness against Ta variation. The green area indicates the Ta
values for which the TCL remains within the deadband for a set tlon and
varying tloff values. The yellow arrows indicate robustness against Ta increase
and the brown against Ta decrease.

It is reasonable to choose a tloff value close to the middle of
the allowed range, so that the TCL will not violate the thermo-
stat limits with small Ta variations in either direction. For the
considered example, by setting tloff = 304 s, the TCL is robust
against Ta for Ta ∈ [9.6, 10.4]oC. In practice, even if lockout
durations are chosen according to the proposed method, there
is a number of factors which can lead the TCL outside its
deadband, such as disturbances (e.g. window openings and
human interaction) and noisy measurements [17]. We consider
only Ta variations, as an example of assessing the impact of
uncertainty in choosing the lockout durations. However, by
setting the appropriate ratio between the lockout durations,
it is expected that if deadband violations occur, they will be
small.



Without exchanging internal temperature information with
the aggregator, the absence of a local controller which eval-
uates the external control signals can force the load to cycle
outside its deadband, as showcased in Fig. 1. A simple way
to avoid this would be to temporarily increase the lockout
duration if temperature crosses the thermostat limits but the
TCL is still locked. This can be achieved without using any
temperature measurements, i.e by counting time since the
locked TCL crossed the thermostat limit and by temporarily
modifying the lockout duration by using the appropriate ratio.

B. Modification of energy capacity limits

Once the required lockout durations have been chosen, their
effect on the aggregation’s performance can be investigated.
Consider a TCL which is forced to remain on and as close
as possible to its upper temperature limit. Once it reaches this
limit, it will switch off and a period equal to tloff will have to
pass until it can switch on again. Due to the modified lockout
durations, the TCL cycles within a temperature region ∆T+,
below the Tmax, which can be calculated as

∆T+ = (Tmax − Ta)(1− e
−tl

off
RC ). (13)

Similarly, the TCL would be confined within a temperature
region ∆T− close to Tmin, if forced to remain off, given by

∆T− = (1− e
−tl

on
RC )(Ta +Q− Tmin). (14)

A consequence of this behaviour is a reduced effective
temperature deadband, imposed by the lockout constraints;
instead of an allowed temperature band ∆ above the set-point,
the actual deadband is equal to ∆ − 0.5 ∆T+. Also, the
allowed deadband below the set-point is equal to ∆−0.5 ∆T−.
These modified deadbands can be interpreted as reduced Tmax
and increased Tmin thermostat limits of the continuous-power
model and are time-varying, since Ta and the lockout durations
are not constant. Thus, the modified, time-varying capacity
limits of the TBM can be differentiated between a positive
S+
k and a negative S−

k , and can be calculated as

S+
k =

n (∆̄− 0.5 ∆T+
k )

β̄
, S−

k =
n (∆̄− 0.5 ∆T−

k )

β̄
, (15)

where ∆T+ and ∆T− can be calculated from (13) and (14)
respectively, by using the population’s average values.

C. Modification of power limits

Similar to energy capacity, the power limits of the aggre-
gation, which we denote by P−

k and P+
k for the lower and

upper limit respectively, are affected by the lockout constraints.
Using (7) and (15) may result in Pk values which cannot be
tracked by the TCLs. As already stated, we describe flexibility
on large steps, since our focus is not on the population
dynamics when they track fast-changing reference signals.
In general, imposing power limits on a TBM under lockout
constraints for an arbitrary reference signal is very challenging,
as also recognized in [7]. For relatively small deadband values,
as is the case in most works in the literature, we found that

the implicit power constraints imposed by (7), (15) result in
power values which are generally tractable. One important
assumption though is that tBM is considerably longer than
the lockout durations. We introduce the switching on (son

k )
and off (soff

k ) rates, which express the load change in kW/s
by loads switching on and off respectively. These rates are
approximately constant at steady state and are given by

soff
k ≈ P b

k/t̄
on
k , son

k ≈ (nP̄n − P b
k)/t̄off

k , (16)

where t̄off
k and t̄on

k are the average off and on times of the TCLs
at period k. In steady state there is always a share of loads
which is locked due to natural cycling. The steady state parts
of the loads locked off (LOFF

k ) and on (LOFF
k ), expressed in

kW, are calculated by

LOFF
k = nP̄n · t̄loff,k/(t̄

on
k + t̄off

k ), (17)

LON
k = nP̄n · t̄lon,k/(t̄

on
k + t̄off

k ), (18)

where t̄loff,k and t̄lon,k are the average lock-off and lock-on
durations respectively. We refer the interested reader to our
previous work [13] for more details on how to derive these
approximations. A limitation on total power is imposed by the
number of locked devices. Thus, starting from steady state,
it’s impossible to reduce the total load to zero because a load
LON
k is not available to switch off. Following similar arguments

it’s not possible to increase the total load up to the installed
capacity of the aggregation. These limits are expressed by

P+
k = nP̄n − LOFF

k , P−
k = LON

k . (19)

However, the number of locked devices changes when a
Pk other than P b

k is tracked. Deriving analytical expressions
to reflect this is very complicated. We can however impose
stricter limits than (19). Consider the case where the system
is in steady state, i.e. Xk = 0 and Pk = P b

k , and a Pk+1 ≥ Pk

is calculated via (7), (15). We want to calculate the maximum
allowed value of Pk+1 for a given tBM. We consider a priority-
stack controller to describe the dynamics of the population. In
the beginning, the required loads (equal to Pk+1 − Pk) at the
off state with the lowest temperatures will switch on. Let us
denote by tr1 the average time period that the newly switched-
on loads will need to reach the upper temperature limit and
start switching off. Until tr1, loads will continue to switch
off at a rate soff

k , equal to the pre-disturbance level, since the
newly switched on loads were placed on the lower end of the
temperature range and do not change the switching rate. Thus
the pool of switched off and unlocked loads will decrease by
Pk+1 − Pk but will remain constant until tr1. After tr1, there
will be a continuous reduction of the available to switch on
load due to the larger switching off rate due to the arrival of
the initially switched on loads to the upper thermostat limit.
The aggregation is unable to track the reference signal when
all the available off load has switched on. Time periods tr1
and after tr2 are given by

tr1 = t̄on
k+1 ·

nP̄n − Pk+1

nP̄n − Pk
, tr2 =

nP̄n − Pk+1 − LOFF
k+1

Pk+1/t̄
on
k+1

. (20)



For a given tBM, the maximum Pk+1 value can be obtained
by solving the equation: tBM = tr1 + tr2. Following similar
arguments, tr3 and tr4 can be calculated to find the minimum
tractable Pk+1 and their values are given by

tr3 = t̄off
k+1 ·

Pk+1

Pk
, tr4 =

Pk+1 − LON
k+1

(nP̄n − Pk+1)/t̄off
k+1

. (21)

IV. CONTROL

Various control approaches exist in the literature, with
varying levels of complexity. A number of factors may
have a significant effect on the control type and architec-
ture, namely knowledge of the system’s parameters, and the
specific application, as well as the shared information and
type of communication. In [18] a state-bin transition model
was proposed, which models the temperature evolution of
the TCLs as a Markov process. The look-ahead controller
estimates the state of the system at the next control step and
switches a number of TCLs on or off to achieve the best
possible tracking accuracy. The controller either dispatches
switching probabilities uniformly among the temperature bins
or prioritizes the TCLs closer to their thermostat limits to avoid
short cycling.

The latter approach, called priority stack controller, is often
employed as a simple, centralized control method which
minimizes switching and is usually employed as the most
effective control strategy to minimize the switching actions
and extract the maximum flexibility. A central controller
receives the power consumption and temperature values of all
units, calculates how many loads need to switch to track the
reference signal and sends commands to the loads which are
closest to switching. A major disadvantage of this approach
is that internal temperatures are required at each control step,
which increases the communication and sensing requirements;
most importantly, the required resolution and accuracy for such
a control scheme are much higher than what is practically fea-
sible. Thus, some authors have proposed to employ a stochastic
controller [10], [8], which after receiving the aggregated load
value, dispatches a switching probability to the loads, which
based on an individual random number drawn from a uniform
distribution, decide to change their state or not.

In this work we examine both controllers and we show that
a stochastic controller not only requires less information but is
more robust than the priority-stack controller when infeasible
trajectories are to be tracked. Even though both controllers
have been proposed and used in the literature, the side-effects
of using a priority-stack controller in the presence of lockout
constraints have not been pointed out yet.

V. RESULTS

In this section we validate the energy and power limits of
the proposed extended battery model (EBM) and we compare
the performance of a stochastic and a priority-stack controller.
We consider a population of 10000 TCLs with the parameters
shown in Table I, a heterogeneity of 10%, a simulation time
step equal to 1 s and a constant Ta = 5◦C. A stochastic

controller is applied to track the reference signal in the first
simulation. We set a power reference such that the upper and
lower limits of the proposed EBM, as calculated by (15),
are reached; we use the limits of the standard battery model
(SBM), which neglects the lockout durations, to show the
effect on flexibility. As can be seen in Fig. 4, the proposed
model is able to capture the reduced energy limits of the
aggregation with very high accuracy. At t = 2000 s all positive
flexibility, i.e. the ability to track references higher than the
baseline, is depleted and if the higher SBM energy limits were
considered, then significant tracking errors would occur. In

Figure 4: Validation of the energy limits of the proposed model.

the second simulation we apply a power reference signal to
identify the power limits. This time we employed a priority-
stack controller, since we used this type of controller to derive
the power limits. We set tBM = 600 s and try to find the
maximum power that can be tracked for this duration. Using
(7), (15) we obtain a maximum load of 44.5 MW. As seen in
Fig. 5 (a), the aggregation is not able to track the reference
signal given by (7), (15) due to the power constraints. The
theoretically calculated time when the reference signal could
not be tracked, calculated via (20), was found to be almost the
same as the simulated. By using tBM = tr1 + tr2 and (20) the
maximum tractable power was calculated as 42.8 MW, which
as shown in Fig. 5 (b) can be tracked for the whole tBM period.

We further evaluated the tracking performance and ro-
bustness of a stochastic and a priority-stack controller in
the case of infeasible reference signals, as shown in Fig.
6. No significant reduction in flexibility was observed by
using a simple stochastic controller which does not rely on
internal temperature measurements. On the other hand, the
priority-stack controller tends to synchronize the loads. This
results in large oscillations in the aggregated load, once the
reference signal cannot be followed. Notice that with the
stochastic controller the loads oscillate around their baseline
consumption with a period equal to t̄lon,k+t̄loff,k and a relatively
small amplitude; the other controller results in considerably
larger load oscillations. Additionally, it forces the available on
and off load to oscillate due to the induced synchronization,



Figure 5: Validation of the power limits of the proposed EBM.

Figure 6: Tracking performance and evolution of the locked ON and OFF
loads for (a) a stochastic controller and (b) a priority-stack controller.

which is not apparent when the stochastic controller is used.
Finally, it is interesting to note that the stochastic controller
dampens the oscillation starting at t = 10000 s, whereas the
priority-stack controller is unable to do so.

VI. CONCLUSION

We have presented a method to handle lockout constraints
when describing aggregate TCL flexibility of TCL. The
method modifies the lockout durations, such that user-comfort
is guaranteed under any external commands without relying on
local-controller computations. This allows us to derive analyti-
cal expressions for the reduced energy and power flexibility of
the thermal battery model. These analytical expressions were
verified in simulations and were shown to capture the flexibil-
ity reduction very well. Finally, we identified the advantages
of a stochastic controller against a priority-stack controller.
Besides the fact that the stochastic controller does not require

temperature information, it is also more robust against infea-
sible reference signals. Therefore, it reduces oscillations in
the TCL population, which are pronounced with priority-stack
controllers. Future work will focus on generalizing the power
constraints by tracking the number of locked loads.
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