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Abstract— Non-orthogonal multiple access (NOMA) has 

emerged as a key technology for boosting the capacity of 5G 

networks. Since the latter are expected to be heterogeneous 

networks (HetNets), the performance of NOMA on 5G 

HetNets is highly anticipated. In this paper, we present a 

system-level analysis, focused on the capacity dimensioning, of 

a 5G HetNet with hybrid multiple access where NOMA and 

orthogonal multiple access (OMA) coexist. We use dynamic 

power allocation and consider four generic pairing methods 

for NOMA: Hungarian, Gale-Shapley, random and 

exhaustive. Through our results, we show that the optimal or 

close-to-optimal pairing methods offer the highest capacity 

gain (22-24%) when the network cells are equally loaded. On 

the contrary, if the load is unequal and load balancing 

techniques are used, simpler pairing methods offer higher 

gains (approximately 29%). This leads to the idea of a flexible 

choice of the pairing method to be used for NOMA depending 

on the network load, thus achieving a balance between the 

network capacity gain and the complexity of the pairing 

method. In our network, for 100 cells, the combination of the 

Hungarian and the random method allows supporting 4% 

higher network traffic volume than if either of these two 

methods is exclusively used. Such gain can be translated into 

fewer cells needed for the same traffic volume, or higher 

traffic volume with the same number of cells. Furthermore, 

our results on network user dimensioning show that NOMA 

and HetNets can have the capacity to cope with the high data 

demand expected for 5G. 

Index Terms—NOMA, capacity dimensioning, pairing 

methods, 5G, HetNets, hybrid multiple access. 

I.  INTRODUCTION  

s the demand for digital content and services over the 
mobile networks continues to rise, same as the number 

of users/devices coming online, the current fourth generation 
(4G) of mobile networks are about to reach their capacity 
limit. It is expected that by 2022, there will around 9 billion 
mobile subscriptions, 8.3 billion mobile broadband 
subscriptions, and 6.2 billion unique mobile subscribers. 
With this high number of subscriptions, the mobile data 
traffic is also expected to grow, reaching values of 71 
ExaBytes per month. Most of this high data volume is fueled 
by the video applications [1].  

Therefore, one of the main improvements that comes 
with the deployment of the fifth-generation of mobile 
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networks (5G), is higher capacity in comparison to 4G. 5G 
networks are expected to handle traffic 1000 times higher 
than 4G, and with connections up to 10 to 20 times faster. 
Moreover, near-zero latency, and energy saving and cost 
reduction are also requirements. With this, 5G welcomes the 
rapid development of the Internet of Things (IoT), connected 
homes, smart cities, autonomous driving, ultra-high 
definition (UHD) video and virtual reality, among others.  

Two of the main solutions that have emerged as capacity 
boosters for 5G are non-orthogonal multiple access (NOMA) 
and massive deployment of small cells. With the integration 
of NOMA, the spectral efficiency can be increased, offering 
higher capacity than orthogonal multiple access (OMA) 
without increasing the available resources. This is possible 
through user pairing and multiplexing in the same 
time/frequency resources. However, in crowded scenarios 
where the network performance can significantly degrade, 
additional solutions might be needed to cope with the high 
traffic volume. For this, cell densification is a 
straightforward solution. By massively deploying small cells 
and tightly integrating them with the already deployed 
macro cells, the network load can be spread and enhance the 
quality of service (QoS).  

The implementation of these solutions, lead to what is 
known as heterogeneous networks (HetNet) with hybrid 
multiple access (MA). That is, networks where macro and 
small cells coexist, as well as different multiple access (MA) 
schemes.  

A. Motivation and contribution 

The implementation of NOMA in HetNets can offer 
extended benefits since both technologies share the objective 
of improving the spectral efficiency. The work in [2] 
proposes a resource management design for NOMA in 
HetNets and shows that NOMA based HetNets allow 
achieving a significantly higher performance than OMA 
based HetNets.  

The benefits of NOMA and small cells for 5G have been 
studied separately in numerous research works.; [3]–[7] are 
some examples of such works. However, since the 
integration of small cells and NOMA is a natural one, 
research on how their combination influences the 
performance of a HetNet from a system-level perspective is 
needed. Moreover, research on how such combination 
influences the deployment and dimensioning of 5G HetNets 
is highly anticipated.  

A 
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The purpose of this paper is to provide a system-level 

evaluation of the impact of NOMA in the downlink capacity 
dimensioning of a HetNet with hybrid MA. Most of the 
research works that can be found nowadays related to 
NOMA focus on single cell implementations; therefore, we 
present an analysis that considers a more realistic approach 
and that can be used as a guide for future 5G network 
deployments. Since the decision of using either OMA or 
NOMA for each user in a HetNet depends on how the 
pairing is done, we also focus on how the pairing selection 
affects such dimensioning. For this, we compare four 
generic pairing algorithms, showing their complexity in 
terms of the runtime, and we propose the use of a cost matrix 
to help in the pairing selection. The reason for selecting 
generic pairing methods aims at speeding up the NOMA 
rollout in 5G networks; in this way, the network operators 
can rely on such methods while, perhaps, some other 
optimized methods for each network condition are defined. 
Through our results we show the impact of NOMA and the 
pairing method selected on the number of cells needed, users 
served, and data plans offered Furthermore, we show that a 
flexible selection of the pairing method, based on the 
network load conditions, is preferred over a single pairing 
method. 

B. Small cells and HetNets 

The deployment of cells is needed for network 
densification purposes; with a massive deployment of cells, 
network capacity and coverage can be enhanced. Although 
deploying more macro cells can seem a straightforward 
solution, finding places for deploying these cells can become 
increasingly difficult and cost prohibited. There is where 
small cells play a key role; their reduced size and low power 
makes them suitable for deployment in places such as lamp 
posts, traffic lights, and buildings facades. Moreover, the 
deployment of small cells has become simpler as features as 
interference, mobility, and software-defined networking 
(SDN) have been defined by the Third Generation 
Partnership Project (3GPP) for small cells [4]. New wireless 
backhaul solutions have also emerged for small cells, 
facilitating their rollout.  

Small cells can be mainly added in hot spots where the 
data demand is high, by the edge of the cell to benefit the 
users susceptible to low QoS, and in areas not covered by the 
macro cells (both outdoor and indoor). At the same time, 
small cells allow offloading the macro cells, improving the 
QoS for all the users in the network. With the deployment of 
small cells, a layer of short-range access points is overlaid 
on the existing network, allowing this to reduce the distance 
between the users  (UEs) and the base stations (BSs), which 
results in lower propagation losses, and higher data rates and 
energy efficiency [8],[9]. Network densification through the 
deployment of different types of cells essentially leads to 
HetNets; Fig. 1 shows a typical architecture of a HetNet.  

For in-band deployments of HetNets where all the cells 
operate at the same frequency, techniques such as inter-cell 
interference coordination (ICIC), enhanced ICIC (eICIC), 
coordinated multipoint (CoMP), and enhanced CoMP 
(eCoMP) have been added by the 3GPP for a more efficient 
management of inter-cell interference [4]. However, in 
scenarios where macro cells and small cells operate at 
different frequencies (out-of-band deployments) the inter-
cell interference can be handled with simple interference 
management methods. In [3], target scenarios for small cells 
enhancements have been defined for 5G HetNets. The out-
of-band implementations in [3] represent one of the biggest 

advantages/changes for 5G; not only they allow to explore 
new frequency bands (e.g., millimeter wave bands) to enjoy 
more and wider spectrum, but also with them the decoupling 
of the control and user plane (C/U plane split) is possible. 

 

Fig. 1.  HetNet example with hotspots and cells edges covered by small 

cells. 

In in-band HetNets, coverage and data services are 
simultaneously provided by both types of cells, with the 
control and data plane coupled. This architecture allows for 
ubiquitous coverage, at the expenses of having all the cells 
working, even under low load conditions, resulting in a sub-
optimal use of resources and energy [10]. On the contrary, in 
a C/U plane split architecture, the macro cell is in charge of 
the control plane, and hence it provides ubiquitous coverage 
and manages the mobility using the lower frequency bands; 
it also provides data services for the UEs not covered by 
small cells. Moreover, the macro cells provide data services 
to high-speed UEs to avoid frequent handovers in the small 
cells. The small cells are in charge of the user plane, 
boosting the capacity by providing high-speed data 
connections, and more flexible/cost-energy efficient 
operations in higher frequencies [10]–[12]. Since the 
propagation losses increase as the frequency increases, high 
frequencies offer smaller coverage area, thus making them 
suitable for small cells. With the C/U plane split 
architecture, the UEs will be simultaneously connected to 
the macro and the small cells; this dual connectivity allows 
for a fast handover of the UE to the macro cell in case that 
the connection to the small cell fails. With this architecture, 
a new interface will be required through which the macro 
cell can manage the small cells; this interface will allow the 
macro cell to activate/deactivate the small cells for energy 
saving purposes and to participate in the radio resource 
management to help mitigate the interference [10], [13]. Fig. 
2 illustrates a HetNet with C/U plane split architecture. 

Due to the benefits of implementing HetNets, many 
research works have emerged on the topic. In [14] an 
overview of HetNets architectures focusing on the capacity 
and coverage benefits that can be achieved through 
multilayer and multi-Radio Access Technology (RAT) 
deployments, is presented. The authors in [15] study four 
different approaches for load balancing in HetNets: relaxed 
optimization, game theory, Markov decision processes, and 
range expansion (i.e. biasing); this study shows that although 
load balancing is still a challenge in HetNets, it offers 
considerable new flexibility and gain to the system design. 

MACRO CELL SMALL CELL
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The work in [16] focuses on the inter-cell interference in 
HetNets and evaluates the performance of eICIC techniques. 
In [17] an extensive research on the technical details and 
performance gains of HetNets can be found. Moreover, in 
[18] a framework of a cooperative HetNet for 5G with a 
particular highlight on the energy efficiency and spectrum 
efficiency has been studied.   

 

Fig. 2.  HetNet with C/U plane split architecture. High-speed UEs and 

those not covered by the small cells receive data and control from the 

macro cell. UEs covered by the small cells receive control from the macro 

cells and data from the small cells. 

C. NOMA plus OMA 

Multiple access (MA) techniques are used to allow 
sharing the available resources among a large number of 
UEs in the most effective way. As one of the most limited 
resources in a mobile network is the spectrum, in an MA 
system different UEs get to simultaneously use the available 
bandwidth. MA schemes can be broadly classified into two 
categories: OMA and NOMA [19]. OMA schemes have the 
advantage of avoiding intra-cell interference but they require 
careful cell planning to reduce inter-cell interference. The 
later can be achieved by having sufficient distance between 
the re-used channels, which results in a low spectral 
efficiency. On the contrary, NOMA schemes are prone to 
high intra-cell interference, but are robust against fading and 
inter-cell interference.  

In 4G long-term evolution (LTE), orthogonal frequency 
division multiple access (OFDMA) was chosen for the 
downlink. The selection of this MA scheme was a key step 
for increasing the capacity and improving the performance in 
4G LTE. Despite the significant enhancements that OFDMA 
offers, they might not be sufficient to cope with the expected 
traffic demands for 5G. Therefore, new MA schemes aiming 
at further increasing the spectral efficiency are highly 
anticipated. In this regard, NOMA has gained a lot of 
attention as an MA technique that can boost the capacity of 
5G networks, because of its ability to increase the spectral 
efficiency [5]–[7]. Other benefits of using NOMA include 
higher cell-edge throughput, relaxed channel feedback, and 
low transmission latency. Furthermore, with NOMA, a good 
operating point where both spectrum efficiency and energy 
efficiency become optimum, can be achieved [20]. 

Unlike the OMA schemes used in 4G LTE, orthogonality 
in the resources (e.g., frequency, time, spreading codes) is no 
longer needed with NOMA. The main idea behind NOMA is 
to allocate the same frequency channel to two or more 
multiplexed UEs at the same time. Fig. 3 shows a 
comparison of users multiplexing between OMA and 
NOMA for four UEs; here it can be seen that the OMA 
transmissions are done with full power, while the NOMA 
ones are done with split power The UEs to be multiplexed in 
NOMA should be selected in a manner that UEs with high 
channel conditions can access the resources assigned to UEs 
with low channel gain, thus achieving a higher spectral 
efficiency. This is where the advantage of NOMA over 
OMA schemes used in 4G relies on. At the transmitter side, 
NOMA uses superposition transmission to join the 
multiplexed UEs signals; at the receiver. successive 
interference cancellation (SIC) is used to eliminate the 
multiuser interference [5].  

 

Fig. 3.  Users multiplexing differences between OMA and NOMA. 

Many research works have already been done regarding 
NOMA and its performance, challenges, node cooperation, 
and user pairing. The works in [7], [20]–[23] present a 
comprehensive approach to NOMA. Moreover, a NOMA 
version for the downlink referred to as multiuser 
superposition transmission (MUST) has been proposed by 
the 3GPP [24] to be implemented in the future LTE 
networks. However, the implementation of NOMA in 5G 
does not mean that it will replace the OMA schemes used 
nowadays. Depending on the load and the UEs channel 
conditions, the system might decide to use either OMA or 
NOMA for each UE. This leads to having a hybrid MA 
system in 5G, where OMA and NOMA coexist [6], [20], 
[25]. This coexistence is in accordance with the coexistence 
of multiple radio access technologies (RATs), which is 
highly anticipated for 5G. Fig. 4 shows an example of UEs 
multiplexing in a hybrid MA system. 
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Fig. 4 Users multiplexing in a hybrid multiple access system, combining 

OMA and NOMA. 

D. NOMA in 5G HetNets  

The implementation of NOMA in HetNets can offer 

extended benefits since both technologies share the objective 

of improving the spectral efficiency. Particularly interesting 

is the case of NOMA with millimeter wave (mmWave) 

frequencies. The use of mmWave frequencies (i.e. 30-300 

GHz) for the small cells in 5G is a promising 

implementation [8]. Even though the use of such high 

frequencies comes with many propagation challenges, its 

combination with techniques as massive multiple-input-

multiple-output (MIMO) and beamforming strengthens the 

viability of mmWave in 5G [9], [26], [27]. Nevertheless, the 

combination of mmWave and NOMA is a challenging 

aspect. The works in [28]–[32] have researched on the 

integration of NOMA with mmWave and massive MIMO.  

II. THE THEORY BEHIND NOMA 

Two main categories of NOMA have been broadly 
defined in the literature: power-domain NOMA and code-
domain NOMA. In the former, the signal of each 
multiplexed UE is separated in the power domain; the poorer 
the channel conditions, the higher the power allocated, and 
vice versa. In the latter, user-specific spreading codes are 
used to differentiate the multiplexed signals. The work in 
[20] presents an inside to the most relevant NOMA 
techniques. In this paper we focus on the power-domain 
NOMA in the downlink, so from now on we refer to this 
scheme simply as NOMA. 

In NOMA, besides the multiplexing in time and 
frequency domains, UEs are also multiplexed in the power 
domain. The principle of NOMA is to select UEs with a high 
difference in their channel conditions and multiplex them in 
the same time/frequency resources, but with different levels 
of transmission power. This allows UEs with high channel 
conditions to access the resources assigned to UEs with poor 
channel conditions, hence increasing the spectral efficiency 
and the system capacity [6]. In the transmitter, signals from 
the multiplexed UEs are superposed and adaptive power 
allocation techniques are used to define the power for each 
UE. The power allocated depends on the channel conditions, 
the higher the channel gain the higher the power, and vice 
versa. 

 Although power-sharing reduces the power allocated to 
each multiplexed UE, they benefit from being scheduled 
more often and having access to more bandwidth [33], as 
shown in Fig. 3. In the receiver side, SIC techniques are used 

to mitigate the inter-cell interference. The number of UEs 
that can be multiplexed in the same resources with NOMA is 
not restricted; however, the inter-cell interference is 
proportional to the number of UEs. Moreover, the 
constellation of the superposed signal in the transmitter 
becomes more complex as the number of multiplexed UEs 
increases, posing great challenges on the decoding side and 
compromising the network performance. Therefore, and for 
simplicity reasons, for the rest of the paper, we assume only 
two UEs are multiplexed in the same resources.  

A. Superposition transmission  

Superposition transmission is a physical layer technique, 
first proposed in [34] that allows a single transmitter to 
simultaneously send a combination of independent signals to 
several UEs. The transmitted signal after applying 
superposition techniques for two UEs would be as follows: 

𝑋 = √𝑃1𝑋1 + √𝑃2𝑋2 (1) 

with 

𝑃 = 𝑃1 + 𝑃2 = 1 (2) 

where 𝑋𝑖 is the signal corresponding to the UEi’s message, 
𝑀𝑖; and 𝑃𝑖 is the power ratio for UEi. The difference between 
the values of 𝑃1 and 𝑃2 should be large enough to guarantee a 
successful decoding of the superposed signal. The waveform 
used for the transmissions could be based on orthogonal 
frequency division multiplexing (OFDM), same as in 4G 
LTE.  

B. Successive interference cancellation 

Because of the non-orthogonality of NOMA, interference 
in the power domain is intentionally added in the transmitter. 
To mitigate this interference, SIC can be applied [34]. The 
received signal by UEi is of the form: 

𝑌𝑖 = ℎ𝑖𝑋 + 𝑊𝑖 (3) 

where ℎ𝑖 represents the complex channel coefficients 
between UEi and the BS, and 𝑊𝑖(𝑛) represents the Gaussian 
noise plus inter-cell interference experienced by UEi. The 
optimal order for decoding the received signal is in the order 
of the increasing signal strength (i.e. the channel gain 
normalized by the noise and inter-cell interference) [5]. In 
this regard, UEs are organized based on their signal strength; 
so that any UEn first decodes the strongest signal and 
removes that from the received combined signal, isolating 
the desired signal. To better exemplify SIC, let us assume 
that we have two UEs, UE1 and UE2, and that UE2 is first in 
the decoding order, hence its signal is the strongest (with 
more power). In the UE2 receiver, the decoding will go as 
follows [35]: 

1. The message 𝑀2 is decoded from 𝑌2, treating 𝑋1 as 
noise. The interference caused by UE1 on UE2 

should not significantly affect the performance of 
UE2, as the power from such interference is likely to 
be much smaller than the desired signal. This is 
valid as long as an effective power allocation was 
performed in the transmitter. 

For UE1 the decoding process is more complex and here 
is where SIC is applied: 

1. The message 𝑀2 is decoded from 𝑌1, treating 𝑋1 as 
noise. This step is possible because of the fact that 
the channel gain of UE1 is higher than that of UE2, 
so as long as the rate of UE2 is within the Shannon 
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limits of its receiver, it will also be within the limits 
of the UE1 receiver. 

2. 𝑋2 is regenerated by using an encoder, and with the 

knowledge of ℎ1 and 𝑃2, ℎ1√𝑃2𝑋2 is subtracted from 

𝑌1, obtaining: 

𝑌1
′ = 𝑌1 − ℎ1√𝑃2𝑋2 

       = ℎ1√𝑃1𝑋1 + 𝑊𝑖 

 

(4) 

3. The message 𝑀1 is decoded from 𝑌1
′. 

In [24], several receiver schemes are proposed for 
NOMA depending on the UE channel conditions. Fig. 5 
shows an example of the transmission and reception of 
NOMA for two UEs. The messages 𝑀1and 𝑀2 are mapped to 
the signals 𝑋1 and 𝑋2, respectively. These signals are then 
scaled according to the values of 𝑃1and 𝑃2, and summed to 
generate the supperpositioned signal that is sent to both UEs. 
During the transmission, each signal is affected by the 
channel conditions of its respective receiver. Once the signal 
is received, the far UE, UE2, simply decodes the stronger 
signal, whereas the near UE, UE1, applies SIC before 
decoding its signal.  

 

Fig. 5.  Transmission and reception of signals in NOMA for two users. 

 

C. Data rates 

Theoretically, it is known that NOMA offers a bigger 
capacity region than OMA [20], [21]. Assuming a successful 
decoding and no error propagation, the data rates with 
NOMA for UE1 and UE2, can be represented by (5) and (6), 
respectively: 

𝑅1 = log2 (1 +
𝑃1|ℎ1|2

𝑁𝑜,1
) (5) 

 

𝑅2 = 𝑙𝑜𝑔2 (1 +
𝑃2|ℎ2|2

𝑃1|ℎ2|2 + 𝑁𝑜,2
) 

 

(6) 

where 𝑁𝑜,𝑖 is the power spectral density of 𝑊𝑖. As the values 

of R1 and R2 depend on the power allocation ratio 𝑃1 𝑃2⁄ , the 
overall throughput gain of NOMA is tightly related to the 
power allocation scheme selected. In comparison, for an 
OMA transmission, the data rates of UE1 and UE2 are given 
by (7) and (8), respectively: 

𝑅1 = 𝛼 log2 (1 +
𝑃1|ℎ1|2

𝛼𝑁𝑜,1
) 

 

(7) 

𝑅2 = (1 − 𝛼)log2 (1 +
𝑃2|ℎ2|2

(1 − 𝛼)𝑁𝑜,2
) 

 

(8) 

where 𝛼 represents the bandwidth assigned to UE1, with the 
remaining bandwidth being assigned to UE2. When using 
numerical examples, it can be shown that the rate values 
corresponding to NOMA are considerably higher than those 
of OMA [5]. 

D. Resource management 

The appeal of NOMA for 5G networks relies on its more 
effective utilization of scarce resources (e.g., spectrum) than 
4G; therefore, to really exploit the capacity benefits offered 
by NOMA, resource management must be done in the most 
effective possible way. In NOMA, there are three resources 
that must be carefully allocated: power, frequency and time. 
Since a group of UEs will be assigned to the same frequency 
channel during the same time, such UEs must be chosen to 
guarantee that there will be a capacity gain and that 
resources will not be wasted. Moreover, the power allocation 
for each multiplexed UE in NOMA must also be carefully 
chosen to allow the correct decoding of the signals on the 
receiver side. Both user-pairing and power allocation, are 
complex processes that require optimization algorithms to 
allow for the best results with the minimum resources. Some 
research works have been focused on these two processes, as 
outlined in the following. 

The work in [36] deals with user pairing for two NOMA 
system: NOMA with fixed power allocation and cognitive-
radio-inspired NOMA. Results show that each of these 
systems exhibits a different behavior when selecting the UEs 
to be paired, and that the gains of fixed power NOMA over 
OMA can be further increased by selecting UEs whose 
channel conditions are more distinctive. In [37], a user 
pairing and power allocation approach based on a 
proportional fair (PF) metric is used to achieve a balance 
between transmission efficiency and user fairness. The 
proposed scheme offers low computational complexity by 
deriving the prerequisites for user pairing and avoiding 
comparison of candidate user pairs. Authors in [38] propose 
three user pairing methods based on the CQI; results are 
presented for cases with perfect and imperfect SIC and 
compared with OMA. Matching theory is proposed in [39] 
as an approach to optimize user pairing and power allocation 
in the downlink in a cognitive radio NOMA. Results show 
that the low complexity proposed algorithm results in a 
stable matching and outperforms an OMA system. In [40] 
two user pairing strategies are proposed, where all the users, 
including those in the middle of the cell who are typically 
left unpaired, are considered; results show that the proposed 
algorithm can outperform the near-far pairing, especially in 
scenarios with imperfect SIC. In [41] a comprehensive 
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review of resource management in NOMA is presented; here 
the authors propose a resource management framework 
based on game-theoretic models for power-domain and 
code-domain NOMA. 

III. NOMA IMPLEMENTATION 

A. Power allocation 

The selection of the power ratio in NOMA directly 
impacts on the UEs data rate and thus in the system 
performance. Moreover, because of the power-domain 
multiplexing, the power ratio of one of the multiplexed UE 
affects the data ratio of not only that UE but also of its pairs, 
as can be seen in equations (5) and (6). 

Despite the research works done on the topic, power 
allocation in NOMA still remains as an implementation 
issue. In general, two types of power allocation can be 
considered for NOMA. One, based on a fixed set of power 
allocation coefficients, and other based on dynamic power 
allocation. In this paper, we use the later by implementing 
the approach suggested in [42], where the power for the 
NOMA UE with the strongest channel gain is derived from 
the assumption that the capacity of its paired UE will be the 
same in NOMA as in NOMA. Equations (9) and (10) are 
used to estimate the power allocation for UE1 (UE with 
higher channel gain) and UE2, respectively, based on the 
SINR of UE2, 𝛾2:  

𝑃1 =
√1 + 𝛾2 − 1

𝛾2
,      with 𝛾2 > 0   

 

(9) 

𝑃2 = 1 − 𝑃1 
 

(10) 

B. User pairing  

For the pairing process, UEs are divided into two groups 
in the scheduler. Group A corresponds to those UEs that 
have been already selected by the scheduler to transmit in 
the following subframe; we refer to this as pre-scheduling. 
Group B corresponds to those UEs that are in need of 
resources but were not selected to transmit during the pre-
scheduling because of lack of resources. The UEs in the 
groups are not sorted in any particular order. A proportional 
fair scheduling algorithm is used for the resources 
assignment and the priority of each UE is assigned according 
to the following metric 𝑃𝐹𝑖[𝑡][43]; the UEs with the highest 
𝑃𝐹𝑖[𝑡] are scheduled first: 

𝑃𝐹𝑖[𝑡] =
𝑅𝑖[𝑡]

𝑆𝑖[𝑡 − 1]⁄   (11) 

where 𝑡 is the subframe number, 𝑅𝑖[𝑡] is the target data rate 
and it depends on the application in use by UEi, and 
𝑆𝑖[𝑡 − 1] is its average experienced data rate and can be 
estimated as: 

𝑆𝑖[𝑡] =
𝑡 − 1

𝑡
𝑆𝑖[𝑡 − 1] +

1

𝑡
𝑅𝑖[𝑡] (12) 

In this paper we evaluate the performance of four generic 
pairing algorithms for downlink NOMA, aiming at 
maximizing the system capacity with relatively low 
complexity. For the first approach, we treat the pairing as an 
assignment problem, using the Hungarian method [44] to 
find an optimal solution by which the systems gets the 
maximum capacity.  

For the second approach, we use the Gale-Shapley 
algorithm [45] to find a stable pairing. Unlike the Hungarian 
method that finds the optimal solution by minimizing (or 
maximizing) a cost associated with a set of pairs, the Gale-
Shapley algorithm finds an optimal solution based on the 
stable marriage criterion. Up to date, no work on user pairing 
for NOMA in HetNets has evaluated the Hungarian method, 
and the work in [46] proposes an extension of the Gale-
Shapley algorithm for user pairing in NOMA. The third 
algorithm is a simple random pairing, in which UEs from 
Group A choose the best available pair from Group B. The 
fourth algorithm is an exhaustive search over all possible 
pair combinations. For all four algorithms, we first generate 
a cost matrix that reflects the cost of each possible pair. 
Table I shows an example of such matrix: 

Table I Cost matrix. 

 

where 𝐶𝑖,𝑗 is the cost function and is represented by: 

𝐶𝑖,𝑗 =
1

1 + 𝑅𝑇∆𝑆𝐼𝑁𝑅
;       with  𝑖 ≤ 𝑛;  𝑛 ≤ 𝑗 ≤ 𝑚 

 

(13) 

with 

𝑅𝑇 = 𝑅𝑖 + 𝑅𝑗;       with  𝑖 ≤ 𝑛;  𝑛 ≤ 𝑗 ≤ 𝑚 
 

(14) 

∆𝑆𝐼𝑁𝑅= |𝑆𝐼𝑁𝑅𝑖 − 𝑆𝐼𝑁𝑅𝑗|;       with  𝑖 ≤ 𝑛;  𝑛 ≤ 𝑗 ≤ 𝑚 

 
(15) 

where 𝑅𝑇 is the sum of the UEi and UEj data rates, according 
to (5) and (6), and ∆𝑆𝐼𝑁𝑅 is the difference in the channel gain 
of UEi and UEj. The lower the value of 𝐶𝑖,𝑗 the higher the 

pair throughput, 𝑅𝑇.  The selection of this cost function aims 
at facilitating the pairing mainly for the Hungarian and Gale-
Shapley algorithms, although it also applies to the other 
methods. The two former methods are defined to minimize 
the cost associated with certain pair selection; for this, they 
give preference to the pairs whose cost is lower (as we 
explain ahead).  Because the rate gain in NOMA is higher as 
the channel gain difference between the paired UEs 
increases, as ∆𝑆𝐼𝑁𝑅 increases so does 𝑅𝑇; thus, approximating 
the cost function to zero. This means that as the paired UEs 
offer higher sum rates, a lower cost will be associated with 
them, giving such pair a higher probability of being chosen 
during the pairing process. When calculating 𝐶𝑖,𝑗 the 

following restrictions apply: 

(i) 𝑅𝑇 ≥  𝑅𝑖, with 𝑅𝑖 calculated according to (7). This 
guarantees that the pairing will result in a capacity gain. 

(ii) 𝐼′𝑀𝐶𝑆𝑖
< 𝐼′𝑀𝐶𝑆𝑗

, to guarantee that the UE with high 

channel gain is the one accessing the resources assigned to 
the UE with low channel gain. 

UEn+1 UEn+2 UEn+3 · · · UEj · · · UEm

UE1 c 1,n+1 c 1,n+2 c 1,n+3 · · · c 1,j · · · c 1,m

UE2 c 2,n+1 c 2,n+2 c 2,n+3 · · · c 2,j · · · c 2,m

UE3 c 3,n+1 c 3,n+2 c 3,n+3 · · · c 3,j · · · c 3,m

· · · · · · · · · · · ·

· · · · · · · · · · · ·

· · · · · · · · · · · ·

UEi c i,n+1 c i,n+2 c i,n+3 · · · c i,j · · · c i,m

· · · · · · · · · · · ·

· · · · · · · · · · · ·

· · · · · · · · · · · ·

UEn c n,n+1 c n,n+2 c n,n+3 · · · c n,j · · · c n,m

G

R

O

U

P

 

A

G R O U P      B
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The values 𝐼′𝑀𝐶𝑆𝑖,1

 and 𝐼′𝑀𝐶𝑆𝑗,2
 correspond to the 

modulation and coding scheme (MCS) index of UEi and 
UEj, respectively, after the CQI estimation for NOMA.  

Because of the inter-cell interference that is intentionally 
added in NOMA, in a network with hybrid MA the CQI 
reported by the UE to the BS might not be based on the 
effective SINR after SIC. Hence, a CQI mismatch between 
OMA and NOMA transmissions can be expected [32], [42]. 
A solution for this could be to have all the UEs report the 
CQI assuming an OMA transmission (i.e. without SIC 
estimations) and have the BS estimate the CQI for NOMA, 
in order to select the correct MCS. For this, we use the 
approximations proposed in [33]: 

𝐶𝑄𝐼′𝑖 =
𝑃2𝐶𝑄𝐼𝑖

𝑃1𝐶𝑄𝐼𝑖 + 1
;       with  𝑖 ≤ 𝑛;  𝑗 ≤ 𝑚 

 

(16) 

𝐶𝑄𝐼′𝑗 = 𝑃1𝐶𝑄𝐼𝑖;       with  𝑖 ≤ 𝑛;  𝑗 ≤ 𝑚 

 
(17) 

where 𝐶𝑄𝐼′𝑖 and 𝐶𝑄𝐼′𝑗 are the estimated CQIs for NOMA, 

and 𝐶𝑄𝐼𝑖 and 𝐶𝑄𝐼𝑗 are the reported CQIs for UEi and UEj, 

respectively. In our model, the CQI reported is estimated 
based on the SINR and for a block error rate (BLER) of 
10%. 

The UE pairs that do not fulfill the restrictions (i) and (ii) 
are considered as non-suitable pairs; thus, in the cost matrix, 
a cost much higher than the maximum 𝐶𝑖,𝑗 is assigned, so 

that such pairs are not considered during the pair selection. 
Once the cost matrix is generated, we proceed with running 
the algorithms to find the best pairs that minimize the cost 
and therefore maximize the system capacity. The number of 
pairs should be equal to the number of UEs in the group with 
fewer members, unless there are two or more UEs that can 
only be paired with the same UE from the opposite group, 
because of the pairing restrictions set. In case of the latter, 
fewer pairs than expected will be considered.  

For the Hungarian and Gale-Shapley algorithms, if the 
number of UEs in Group A and Group B are not equal, 
dummy rows/columns should be used to generate a square 
matrix, since both algorithms require square matrixes to find 
the optimal solution.  

To exemplify the use of the considered pairing methods 
in a cell, let us assume that we have a total of six UEs; let us 
also assume that all six UEs need resources in the following 
subframe and that after the pre-scheduling and the grouping, 
UEs are divided as shown in Fig. 6. 

 

 
  

Fig. 6.  Single cell scenario for user pairing example in NOMA. 

After calculating the cost of each possible pair according 
to (13) and assuming that conditions (i) and (ii) are fulfilled, 
our cost matrix would look as shown in Table II. The 

following subsections explain the pairing process and their 
complexity (i.e., number of iterations) for all four methods 
considering the example in Fig. 6. 

Table II Cost matrix for user pairing example in NOMA. 

 

C. Hungarian method 

The Hungarian method is a combinatorial optimization 
algorithm used for solving a two-sided one-to-one matching 
problem. For this method, the problem can be 
mathematically expressed as: 

Minimize ∑ ∑ 𝐶𝑖,𝑗

𝑚

𝑗=1

𝑥𝑖𝑗

𝑛

𝑖=1

 

 

(18) 

where 

𝑥𝑖𝑗 = {
1, if the UE𝑖  is already paired with  UEj

0, if the UE𝑖  is not paired with  UE𝑗
 

 

with the restrictions 

(iii) ∑ 𝑥𝑖𝑗
𝑛
𝑖=1 = 1;       𝑗 = 1,2, … 𝑛, to guarantee that the UEi 

only has one pair. 

(iv) ∑ 𝑥𝑖𝑗
𝑚
𝑗=1 = 1;     𝑖 = 1,2, … 𝑛, to guarantee that the UEj 

only has one pair. 

In Fig. 7 the basic steps of the Hungarian algorithm are 
applied to the cost matrix in Table II., until obtaining the 
final matrix from which pairs are selected by choosing those 
with 𝐶𝑖,𝑗=0. From Fig. 7 we have a total of three pairs as 

required by the algorithm (i.e., the number of pairs has to be 
the same as the cost matrix dimension). If after the row and 
column reduction the number of pairs is not optimal, further 
steps are taken to optimize the solution. Such steps can be 
found in [44]. The complexity of this algorithm is calculated 
as the number of iterations needed to find the optimal 
pairing. The execution of each step defined by the algorithm 
is considered an iteration (e.g., each row/column reduction, 
each zero assignment). 

Furthermore, if some of the pairs are those previously 
defined in the cost matrix as non-suitable, such pairs are 
omitted during the scheduling and the UEs involved from 
Group A continue with OMA, whereas the ones from Group 
B are not scheduled. 

D. Gale-Shapley algorithm: problem formulation 

The Gale-Shapley algorithm uses the stable marriage 
criterion to find stable assignments (pairs). Once the cost 
matrix is generated, each UE in Group A sorts the UEs in 
Group B in order of preference, based on the cost functions 
defined in (11). The lower the cost the higher the preference. 
The iterative algorithm is then applied to the sorted matrix, 
during which the UEs from Group A “propose” as a pair to 
the UEs in Group B. The UEs in the latter either accept (if 
they are free) or reject (if they are paired and prefer their  

UE1

UE2

UE6

UE5

UE3

UE4

Pre-scheduled UEs 
Group A

Non pre-scheduled UEs 
 Group B

SINR (dB)

UE1 18

UE2 20

UE3 16

UE4 4

UE5 2

UE6 3

UE1 UE3 UE4

UE2 0.03 0.04 0.25

UE5 0.03 0.03 0.38

UE6 0.1 0.05 0.01

B

A
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Fig. 7.  Hungarian method application on a user pairing example for 

NOMA. 

current pair to the one proposing) the proposition. The 
solution is said to be stable if, and only if, there exists no 
UEi and UEj who are not paired with each other but who 
would both prefer each other over their present partners.  

Assuming the same cell scenario as in the previous 
subsection, we apply the Gale-Shapley algorithm to the 
matrix in Table II, until obtaining the final pairing for a total 
of three pairs. The steps applied are shown in Fig. 8. The 
complexity of this algorithm is calculated as the iterations 
for the UEs ranking plus the number of proposals done 
(accepted and rejected) until the stable solution is found. 

Even though the solution provided by the Gale-Shapley 
algorithm is stable, it is not necessarily the optimal solution. 
In general, there are several solutions to the pairing when 
applying this algorithm [47]. The solutions depend on the 
group that does the proposal. In this regard, and if we follow 
the dynamic explained above, the stable solution is optimal 
for the UEs in Group A, but not necessarily for the UEs in 
Group B. Similarly, if the proposal is done by the UEs in 
Group B, the solution would be optimal for those UEs. It 
could be the case, that the stable optimal solution is the same 
regardless of which group proposes. 

Same as with the Hungarian method, if the stable 
solution considers pairs that have been marked as non-
suitable, such pairs are ignored during the scheduling 
process.  

E. Random and exhaustive pairing 

In the random method, UEs in Group A simply choose 
the best unpaired UE in Group B, according to the cost of 
each pair. From the cost matrix in Table II, the pair choosing 
process can be seen in Fig. 9. The complexity of this method 
is calculated as the number of iterations needed until all the 
pairs have been found. 

 

Fig. 8.  Gale-Shapley algorithm application on a user pairing example for 

NOMA. 

For the exhaustive pairing, all possible pairs are 
evaluated to find the combination of pairs that yields the 
minimum cost. Although the solution from this method is 
the optimal solution, its complexity makes is 
computationally expensive. For a cost matrix of size 
𝐶(𝑛, 𝑚) with 𝑛 ≥ 𝑚, a total of 𝑛! (𝑛 − 𝑚)!⁄  iterations are 
needed to evaluate all the pairs. Each iteration corresponds 
to the evaluation of one of the possible permutations. When 
applied to the cost matrix from Table II, the pairing from the 
exhaustive search is shown in Fig. 10; six iterations are 
needed with this method. Although the number of iterations 
for this example is lower with the exhaustive method, this 
would not be the case as the dimensions of the cost matrix 
increase. 

UE1 UE3 UE4

UE2 0 0.01 0.22

UE5 0 0 0.35

UE6 0.09 0.04 0

UE1 UE3 UE4

UE2 0 0.01 0.22

UE5 0 0 0.35

UE6 0.09 0.04 0

UE1 UE3 UE4

UE2 0 0.01 0.22

UE5 0 0 0.35

UE6 0.09 0.04 0

 Selected pair

 Crossed-out pair

SOLUTION COMPLEXITY

 UE2  → UE1 ; UE5  → UE3 ; UE6  → UE4 TOTAL ITERATIONS = 9

A

Zero assigment: starting from the 

first row, find the rows with only one 

non-selected zero and select the 

corresponding pair. Cross out all 

other zeros in the row and column 

were the pair was selected. 

STEP 2 B

Column reduction: for each column, 

subtract the minimim value of the 

column from all the elements in that 

column. Iterations = 3.
A

STEP 3 B

B

A

Row reduction: for each row, subtract 

the minimim value of the row from 

all the elements in that row. 

Iterations = 3

STEP 1  

UE2 UE1 UE3 UE4

UE5 UE1 UE3 UE4
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UE6  proposes to UE4 ; UE4  is unpaired 

and accepts. Iterations = 1.

Group B preferences by rank

Group B preferences by rank

UE5  proposes to UE1;  UE1  is paired 

with  UE2   and prefers UE2 over UE5 , 

so it rejects the pairing.  UE5  then 

proposes to UE3 ; UE3  is unpaired and 

accepts. Iterations = 2.

STEP 4 Group A preferences by rank

STEP 2 Group A preferences by rank

UE2  proposes to UE1 ; UE1  is unpaired 

and accepts. Iterations = 1.

Group B preferences by rank

STEP 3 Group A preferences by rank

STEP 1  

UEs rank the UEs in the opposite 

group in order of preference. 

Iterations = 6.

Group A preferences by rank

Group B preferences by rank
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Fig. 9.  Random pairing application on a user pairing example for NOMA. 

 

 

Fig. 10  Exhaustive pairing application on a user pairing example for 

NOMA. 

From Fig. 7-10 we can see that the same pairing was 
obtained from all four algorithms. Nevertheless, the process 
of finding the pairs becomes more complex as more UEs are 
considered and as some of the pairs do not fulfill the criteria 
explained above. 

F. Load Balancing  

The randomness associated with how, when and where 
the mobile UEs use and demand data from the network, 
leads to unequal load in neighboring cells. Thus, a cell can 
be overloaded, while its neighbors have available resources 
that are not being utilized.  

This load imbalance affects the performance of the 
network, and load balancing techniques can be used to use 
the resources more efficiently. During these techniques, the 
BSs communicate to each other and exchange information to 
compare the cells load.  

In this paper, we use the load balancing technique for 

NOMA proposed in [48]. In this technique, to which we 

will refer to as LB-NOMA, the balancing is done after the 

pairs for NOMA have been selected; the purpose is to force 

handovers of the active UEs that could not be paired (i.e., 

OMA UEs) and that are located in the overlapping area of 

two or more cells. This helps to minimize the OMA UEs in 

the congested cells, thus increasing the system capacity 

since more resources are available for the paired UEs. The 

implementation of LB-NOMA comes with many challenges 

related mainly to the complexity of doing selected load-base 

handovers and avoiding ping-pong effects for the UEs 

involved. Nevertheless, we analyze the performance of LB-

NOMA in HetNets assuming that these challenges are 

overcome since they rely on software configurations that 

can be integrated into the system. Furthermore, with such 

assumption, we can focus on determining if the gains in the 

network capacity are significant enough to consider its 

implementation. 

IV. SINGLE CELL PERFORMANCE 

For our first performance analysis we consider a highly 
loaded (i.e., 100% load) single cell with hybrid MA, 
operating at 2.6 GHz, and with UEs randomly deployed. The 
pairing algorithms selected for our implementation are 
compared for this cell. The results are shown for the 
downlink and use OMA as the benchmark. In Fig. 11 the 
sum rate gain is shown for all four pairing methods. We can 
see that the Hungarian method offers a rate gain highly 
similar to the exhaustive method, with an average of 23.3% 
and 24%, respectively. The variation for both methods is 
approximately 12-39%.  The results from the Gale-Shapley 
and random algorithms are also highly similar to each other, 
with an average gain of 18.3% and 18.5%, respectively; the 
variation in these methods is wider, which implies a higher 
uncertainty in the gain that can be obtained. For the Gale-
Shapley algorithm, such variation is 4.6-42.4%, whereas for 
the random algorithm is 3.6-42%. 

From Fig. 11 is it clear that the Exhaustive algorithm is 
the best option for increasing the system capacity, followed 
by the Hungarian method. Nevertheless, the 
speed/complexity of the methods should also be considered. 
Fig. 12 shows the computational complexity in terms of the 
number of iterations required for each pairing method. We 
can see from Fig. 12a that the implementation of the 
exhaustive pairing results in the highest complexity (i.e., 
number of iterations), with values up to 2E+21 times higher 
than the highest complexity for the other three methods. 
With such complexity, the use of the exhaustive method 
would likely be time prohibited in a real implementation 
where every 1 ms a new subframe must be sent. In our 
implementation, the performance of the exhaustive pairing 
could be obtained from simulations results for up to 10 pairs, 
due to software limitations. For higher number of pairs, a 
combination of simulations results and numerical 
estimations were used. 

 In Fig. 12b the complexity of the pairing methods is 
shown excluding the exhaustive pairing for a better 
perspective of the performance of the remaining methods. 
For the Hungarian method, although its complexity is lower 
than that for the exhaustive pairing, it is on average 85 times 
higher than for the Gale-Shapley algorithm. The complexity 
difference between the Hungarian and Gale-Shapley 
algorithms is due to the fact that with the former an optimal 
solution must be obtained, whereas with the latter only a 
stable solution is needed, which is not necessarily optimal. 
The selection of one or the other depends on the 
computational speed and the time constraints. The random 
algorithm is the one with the lowest complexity, with 9 
times fewer iterations needed than with the Gale-Shapley 
algorithm. Since the capacity gain of the Gale-Shapley over 

UE1 UE3 UE4

UE2 0.03 0.04 0.25

UE5 0.03 0.03 0.38

UE6 0.1 0.05 0.01

 Selected pair

SOLUTION COMPLEXITY

UE2  → UE1 ; UE5  → UE3 ; UE6  → UE4 TOTAL ITERATIONS = 3

Starting from the first row, each UE 

in Group A chooses the best free 

pair from Group B. Iterations = 3.

B

A

OPTION 1

Cost = 0.07 UE1 UE3 UE4

Iterations = 1 UE2 0.03 0.04 0.25

UE5 0.03 0.03 0.38

UE6 0.1 0.05 0.01

OPTION 2

Cost = 0.46 UE1 UE3 UE4

Iterations = 1 UE2 0.03 0.04 0.25

UE5 0.03 0.03 0.38

UE6 0.1 0.05 0.01

OPTION 3

Cost = 0.08 UE1 UE3 UE4

Iterations = 1 UE2 0.03 0.04 0.25

UE5 0.03 0.03 0.38

UE6 0.1 0.05 0.01

.

.

.

SOLUTION COMPLEXITY

UE2  → UE1 ; UE5  → UE3 ; UE6  → UE4 TOTAL ITERATIONS = 6

B

B

B

Continue until evaluating all six combinations. Select the one 

with lowest cost.
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the random algorithm is negligible, the implementation of 
the random pairing (following the cost function and the pair 
restrictions proposed above) might offer a better tradeoff 
between complexity and capacity gain. To further analyze 
this, a system-level analysis is presented in the next section. 

 

 
Fig.11.  Sum rate gain for a single cell for four pairing algorithms for 

NOMA; OMA is used as the benchmark. 

  
(a) 
 

  
(b) 

 
Fig. 12.  Complexity of the pairing algorithms for NOMA, represented as 

the number of iterations versus the number of pairs per subframe: a) for the 

four pairing methods considered; b) for the three methods with lower 

complexity.  

V. NETWORK PERFORMANCE 

A. Network Model 

For evaluating how NOMA affects the downlink 

capacity dimensioning of a HetNet, we consider a two-tier 

out-of-band deployment. The first tier corresponds to the 

macro cells operating at 2.6 GHz, whereas the second tier 

corresponds to the small cells operating at 28 GHz; since 

the study of the coexistence challenges of NOMA and 

mmWave is outside the scope of this paper, we assume that 

such design challenges are overcome. This assumption is 

considered valid since, for mmWave NOMA, solutions 

related to beamforming techniques such implementation 

feasible have been proposed in [49], [50]. The LTE-

compatible 5G network model is deployed in MATLAB 

and consists of a wrap-around cluster model of seven macro 

cells, with small cells deployed inside their coverage area. 

The density of small cells on each macro cell depends on 

the UEs density. Sparse deployment of small cells is used 

for areas that have identified hotspots, whereas a dense 

deployment is used for macro cells that are constantly fully 

loaded. The small cells are modeled as clusters of 7, 3 or 2 

cells, or as a single cell. Since the small cells operate at 

mmWave, the inter-cell interference is rather limited thanks 

to the high propagation losses at these frequencies [51]. All 

cells are considered to be located outdoors. Fig. 13 shows 

the network model, the macro and small cells characteristics 

are summarized in Table III and Table IV, respectively. 

 

Fig. 13.  Two-tier HetNet model. 

For the coverage calculation of the macro cells, an inter-
site distance (ISD) of 600 m is used, along with the path loss 
model 3D-UMa [52]. For the small cells, the ISD is 100 m 
and the path loss model UMi [53] is used. Table V 
summarizes the parameters used for the link budget 
calculations and the signal generation. 
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Table III Macro cells characteristics. 

 

 
Table IV Small cells characteristics. 

 
 

Table V Parameters for link budget calculation and signal generation. 

 

The UEs in the network are randomly located inside the 
coverage area of each cell using a normal distribution; the 
small cells provide the data connections for the UEs inside 
their coverage area, while the macro cells provide such 
connections for the rest of the UEs. A total of 2376 UEs are 
served by the network (Table III). Four UE profiles are 
considered, which determine the size and inter-arrival time 
of the UE’s packets: video streaming, FTP file transfer, web 
browsing and IoT sensors. The work in [54] is used for the 
characteristics of the first three profiles, whereas the work in 
[55] is used for the IoT sensors. The profile for each UE is 
randomly selected while guaranteeing that the average load 
of the respective serving cell is maintained. 

For the MA scheme, the BS decides between OMA and 
NOMA depending on the results of the user pairing process. 
NOMA is applied independently in each network tier. 

B. HetNet analysis and dimensioning 

For this section, the results of our network model in Fig. 
13 are analyzed. We consider the four pairing algorithms 
mentioned above and also compare the performance of the 
network with LB-NOMA. The results of the system sum rate 
are presented in Fig. 14, whereas the sum rate gain is shown 
in Fig. 15 using OMA as the benchmark. 

From Fig. 14 and 15 we can verify the better 
performance that can be achieved by incorporating NOMA 
in a HetNet. Furthermore, the gain of using LB-NOMA can 
also be noted, especially for the random pairing. For the 
NOMA+OMA cases we can see the same trend as in the 
single cell analysis, which was expected; the Hungarian 
algorithm offers the highest sum rates and capacity gain after 
the exhaustive algorithm, achieving an average of 199 Gbps 
for a gain of 22% and 204 Gbps for a gain of 24%, 
respectively . In contrast, with the Gale-Shapley algorithm, a 
sum rate of 196 Gbps is achieved for 21% gain, whereas 
with a random pairing the sum rate is approximately 192.5 
Gbps for 18% gain. The combination of NOMA with 
mmWave in the small cells allows having such high rates 
because of the wide spectrum available and its more 
effective utilization.  

Interestingly, we can see that when LB-NOMA is used, 
the random method offers the highest capacity gain, with 
29% gain corresponding to a sum rate of 210 Gbps; this 
equals to a gain of 11% because of the use of load balancing 
in NOMA. To understand this behavior, let us remember that 
NOMA is more effective as the difference in the channel 
gain of the paired UEs becomes larger. This typically occurs 
between UEs located close to the BS and near the edge of 
the cell. Therefore, when an optimal method is used to find 
the pairs, the UEs located at the edge of the cell will be 
chosen with a higher probability, since pairing them with 
UEs close to the BSs yields the highest system gain. With 
pairing methods that are not optimal, such as the random and 
the Gale-Shapley algorithm, the probability of having active 
UEs at the edge of the cell that are not paired is higher. 
Hence, when LB-NOMA is implemented, more UEs are 
likely to be moved to cells that are not fully loaded. This 
makes the LB-NOMA more efficient when the pairing 
method fails to choose the best possible pairs. Then, in 
scenarios where the cells are not equally loaded, the 
implementation of a simple pairing method such as the 
random can be chosen along with LB-NOMA. On the 
contrary, if all cells tend to be fully loaded thus limiting the 
need for LB-NOMA, optimal pairing methods should be 
considered.  

To now illustrate how the implementation of NOMA 
affects the capacity dimensioning of a HetNet, let us 
consider our network model from Fig. 13. For the 
estimations we use a traffic volume based dimensioning; 
assuming that during the busy hour the average load of the 
cells is 50% and that the busy hour carries 15% of the daily 
traffic, the traffic volume T in GB/month/km2 can be 
estimated as: 

    

T =
(

Sum rate (GBps) ∙ 3600(s) ∙ 50%
15%

) ∙ 30 (days)

area(km2)
 

(19) 
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The results are shown in Fig. 16; the seven macro cells 

are fixed for every case, and the capacity expansion is done 
by adding small cells. From these results, we can see the 
advantages of NOMA from a dimensioning perspective. In a 
first glance, the most noticeable gain, in terms of the cells 
needed to support certain traffic volume, is that of including 
NOMA (independently of the user pairing method) as an 
MA scheme. This gain is clearer as the traffic volume 
increases. Because of the massive amount of data expected 
for 5G networks, the implementation of NOMA is an 
attractive feature to meet the capacity requirements while 
minimizing the deployment costs associated.  

If our network, for example, needs to handle a volume of 
0.2 EB/month/km2, with OMA we would need 98 cells. On 
the contrary, if we have a hybrid MA system with 
OMA+NOMA (Fig. 16a) and the pairing is done with the 
Hungarian algorithm, 81 cells are needed; same as with the 
exhaustive pairing. The highest cell requirement from the 
hybrid MA cases comes with the use of the Gale-Shapley or 
random algorithms, with 82 cells needed to support such 
traffic volume; nevertheless, both methods offer a gain of 16 
cells over OMA. Moreover, it is important to highlight that, 
as shown in Fig. 16, the higher the traffic volume, the higher 
the gain in the number of cells needed.  

 
Fig. 14 Network sum rate comparison for the modeled HetNet. 

 
Fig. 15 Sum rate gain for the modeled HetNet for four pairing algorithms 

for NOMA; OMA is used as the benchmark. 

For the hybrid MA system with LB-NOMA+OMA (Fig. 
16b), the best performance is offered when the random 
pairing is used, as expected from the results obtained for a 
single cell scenario shown in Fig. 14-15. For the same traffic 
volume of    0.2 EB/month/km2, 75 cells are needed for the 
random pairing. The remaining three methods, each needs 
81 cells; this represents little to no improvement compared 
to their equivalents in the NOMA+OMA cases, especially 
for scenarios with lower traffic volume. Thus, the benefits of 
LB-NOMA highly depend on the chosen pairing method. 

When close-to-optimal methods are used, the space left for 
improvements with LB-NOMA is limited. On the contrary, 
simpler algorithms can be used if their weaknesses are 
balanced with other optimization techniques, such as load 
balancing.  

In Fig. 17 the traffic volume gain and the gain in the 
number of deployed cells are shown, using OMA as the 
benchmark. For a NOMA+OMA implementation, the use of 
the Hungarian method is preferred, since it offers an average 
gain of 20% in the traffic volume (Fig. 17a) that can be 
supported and its complexity is lower than the exhaustive 
method, which offers a 21% traffic volume gain. The Gale-
Shapley algorithm offers a 17% gain, whereas the gain for 
the random method is 16%. On the contrary, for a LB-
NOMA+OMA implementation, the random method offers 
the highest gain in the traffic volume supported, with 24.6%. 

 

 

(a) 

 
(b) 

 

Fig. 16 Number of cells needed versus network traffic volume for OMA 

and for hybrid MA for four pairing algorithms: a) NOMA+OMA;                         

b) LB-NOMA+OMA. 

For the number of cells needed, we can see from Fig. 17b 
that for NOMA+OMA the highest gain in the number of 
cells deployed (a gain meaning fewer cells needed) is 
achieved with the exhaustive method, with a gain of 14%. 
However, considering the complexity of the exhaustive 
method, the Hungarian method could offer a better tradeoff 
between complexity and gain, with 13% saving in cells 
needed. For LB-NOMA+OMA the highest gain is achieved 
with the random method, with 15.6%. The gain in the 
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number of deployed cells can be translated into a gain in the 
deployment cost of the network; in this respect, if 15.6% 
fewer cells are needed to cope with the capacity demand, 
roughly 15.6% can be saved from the deployment cost, 
while maintaining the network revenues. 

The selection of the pairing method in a hybrid MA 
HetNet could then be flexible and subject to the load 
conditions of the cell and its neighbors. The BSs could 
choose the best method for pairing in NOMA according to 
the network conditions. This will allow using simpler and 
faster, but less efficient, pairing algorithms when the load in 
the cells is unequal, and compensate the inefficiency of the 
pairing by using LB-NOMA. The optimal or more efficient 
algorithms could then be reserved for cases where LB-
NOMA is not applied, either because all cells have a similar 
load or because such feature is not available. By having this 
flexibility in the implementation of NOMA, the network 
capacity can be improved while lowering the deployment 
costs. 

 

(a) 

 

 
(b) 

 

Fig. 17 Gain for the modeled HetNet for four pairing algorithms for 

NOMA; OMA is used as the benchmark:  a) Traffic volume gain; b) 

Number of deployed cells gain. 

 For example, in our network, the Hungarian method 
could be selected for NOMA, whereas the random method 
could be used for cases when LB-NOMA is beneficial 
(unequally loaded cells). With such implementation, and 
assuming that 100 cells can be deployed (7 macro cells plus 
93 small cells), an average network traffic volume of 0.26 
EB/month/km2 can be supported, as shown in Fig. 18. In 
contrast, if only the Hungarian or the random method is 
used, the same number of cells can handle                        
0.25 EB/month/km2. This difference of 4% is only due to the 

flexible choice of the pairing method and directly translates 
into a 4% gain in the network revenues, since either more 
UEs or higher data plans can be supported.  

Moreover, either combination of hybrid MA offers 
significantly higher capacity than the use of only OMA, with 
which 0.20 EB/month/km2 can be supported with the same 
100 cells; this corresponds to capacity gains between        
25-30% because of the use of NOMA. For a simple revenue 
estimation, we can refer to Table VI, where we consider 100 
cells and the pairing methods with the best tradeoff between 
complexity/capacity gain for our network (i.e., Hungarian 
for NOMA and random for LB-NOMA). Only end users 
revenues are considered and we assume that the price of 
each GB/month is $2 (example value estimated from data 
plans commercially offered nowadays). The highest 
revenues correspond to the hybrid multiple access with 
flexible pairing method, with 2.34 million dollars per month, 
offering a 4% gain over the other hybrid MA access 
considered and a 30% gain over OMA. Furthermore, if we 
consider the 2376 UEs simulated, an average of 493 
GB/month/UE can be offered with the hybrid MA and 
flexible pairing as shown in Table VII, being the highest 
monthly data allowance. Since such a huge amount of data 
will be likely too high for the average monthly consumption, 
we can see that for a data plan of 30 GB/UE/month, up to 
58,513 UEs could be served by the network, versus 56,263 
and 45,010 for the other hybrid MA options and OMA, 
respectively. These numbers result interesting considering 
the high data demands and increase number of connected 
devices connected that are expected for 5G networks. 

 

Fig. 18.  Traffic volume that can be supported by the modeled HetNet, with 

100 cells deployed for OMA and for NOMA. 

Table VI Simple network revenue estimation based only on the end users 

revenues, for three combinations of multiple access. 
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Table VII Simple network user capacity estimation, for three combinations 

of multiple access. 

 

VI. CONCLUSIONS  

In this paper, we have analyzed, from a system-level 
perspective, the performance of a HetNet with hybrid MA. 
Our network model consists of an out-of-band deployment 
of macro and small cells, where NOMA and OMA coexist. 
For NOMA we made particular emphasis on the pairing 
process, comparing the performance of four generic pairing 
methods: Hungarian method, Gale-Shapley algorithm, 
random pairing, and exhaustive pairing. Furthermore, we 
considered the use of load balancing techniques with NOMA 
(LB-NOMA) to further increase the overall network 
capacity. Our results show the clear capacity benefits of 
hybrid MA over OMA in HetNets.  More interestingly, our 
results also showed the impact of the efficiency of the 
pairing method and the use of load balancing techniques for 
NOMA in the overall network capacity. The use of optimal 
or close-to-optimal pairing methods offers the higher 
capacity gains (22-24%) in cases where load balancing 
techniques are not used.  On the contrary, if LB-NOMA is 
used, simpler pairing methods can offer a higher gain 
(approximately 29%); that is because the inefficiency in 
choosing the best pairs can be compensated through load 
balancing techniques. We showed in our dimensioning 
results that hybrid MA with LB-NOMA+OMA and with 
random pairing requires significantly fewer cells deployed to 
offer the same capacity than the other combinations 
considered. For a network traffic volume of 0.2 
EB/month/km2, with OMA 98 cells are needed, with 
NOMA+OMA and exhaustive pairing 81 cells are needed, 
whereas with LB-NOMA+OMA and random pairing 75 
cells are needed. These results lead us to consider a flexible 
selection of the pairing method for NOMA depending on the 
load conditions of the network. For scenarios where all cells 
are equally loaded and thus load balancing techniques are 
not effective, the selection of a close-to-optimal (typically 
more complex) pairing method is preferred. On the contrary, 
in scenarios where cells are unequally loaded, the selection 
of simpler and faster pairing methods combined with load 
balancing techniques could offer a better performance for the 
network, in terms of capacity and pairing complexity in 
NOMA. In our network, for 100 cells deployed the 
combinations of the Hungarian and the random method, for 
NOMA and LB-NOMA respectively, allows supporting 4% 
higher network traffic volume, than if either of the two 
methods is exclusively used regardless of the network load 
conditions. This 4% gain reflects directly as a revenue gain 
for the network since either more UEs can be supported or 
higher data rate plans can be offered.  

The analysis of HetNets with hybrid MA combining 
OMA and NOMA is still on early stages, hence research 
work on how the resource management on such networks 
influences the dimensioning and deployment of 5G networks 

is highly anticipated. Further research on how to select the 
appropriate pairing method depending on the network 
conditions should be done, considering variables such as the 
changes in the cells load, e.g., during the peak hours, or 
during night hours in commercial and business areas.  
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