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ABSTRACT When the simplex algorithm is used to calculate a linear programming (LP) problem, if the
matrix is a sparse matrix, it will be possible to lead to many zero-length calculation steps, and even iterative
cycle will appear. To deal with the problem, a new pivoting method is proposed in this paper. The principle
of this method is to avoid choosing the row which the value of the element in the right side of constraint
expression for LP in this row is zero as the row of the pivot element to make the matrix in LP density
and ensure that most subsequent steps will improve the value of the objective function. One step following
this principle is inserted in the existing LP algorithm to reselect the pivot element. Both the conditions for
inserting this step and the maximum number of allowed insertion steps are determined. In the case study,
taking several numbers of LP problems as examples, the results indicate that this method can effectively
improve the efficiency of LP for the sparse matrix.

INDEX TERMS Linear programming, pivoting rules, simplex algorithm, sparse matrix.

I. INTRODUCTION
Linear programming (LP) is one of the basic contents of
mathematical planning. Many realistic problems in busi-
ness planning, engineering design, industrial production and
other fields, can be converted into linear programming
problems [1]–[3]. In some case, such as mixed integer linear
programming and nonlinear optimization problems, the linear
programming need to be calculated several times [4], [5].
Therefore, it is of great significance to improve the computa-
tional efficiency of linear programming.

Linear programming can model large and complex prob-
lems and can solve these problems in a short period of time
by using effective algorithms and modern computers [6].
In 1947, American scholar George B. Dantzig proposed a
simplex algorithm for linear programming [7]. This algorithm
selects the maximum change variable out of the base in each
step, which makes the objective function decline fastest and
can calculate the linear programming quickly [8]. This is
the most frequently used method to solve linear program-
ming problems, and on this basis, a variety of improvements
are proposed, such as two-phase simplex algorithm, big-M

simplex algorithm and dual simplex algorithm [9]–[11].
In 1979, the scholar of the Soviet Union Khachiyan L.G.
proposed ellipsoid algorithm for linear programming [12].
By using the duality principle, the linear programming prob-
lem is transformed into a strict inequality group, and itera-
tively solves it by cutting the elliptical solution space. The
algorithm is theoretically proved to be a polynomial time
complexity algorithm, but it is a nonlinear class algorithm,
so the amounts of calculation are large in each iteration.
The actual calculation speed is not as good as the simplex
algorithm. In 1984, American scholar N. Karmarkar proposed
an interior-point algorithm for linear programming [13]. The
interior-point algorithm seeks the best solution from the inte-
rior by constructing the potential function and uses projection
transformation to search for the next solution. It has received
extensive attention from the international academic circle.
The simplex algorithm, ellipsoid algorithm and interior-point
algorithm are the three most representative algorithms for
solving linear programming problems at present.

The calculation efficiency of the simplex algorithm can
be influenced by the degenerate situation. If all the basic
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variables of the basic feasible solution x have positive values,
it is called non-degenerate situation; conversely, when some
basic variables are zero, it is called degenerate situation [14].
If x is a non-degenerate vector, a pole corresponds to a
basic feasible solution. Otherwise, a pole may correspond
to several basic feasible solutions. In other words, when
the simplex algorithm is applied to a linear programming
problem, the step length may be zero and the value of the
objective function will not change after one iteration. This
situation is called the degradation of the simplex algorithm,
and the degradation problem will probably cause an iterative
cycle [15].

The simplex algorithm starts from a basic feasible solution,
each step selects a pivot element according to a method to get
another basic feasible solution, and iteratively solve it until
the optimal basic feasible solution of the problem is obtained.
The choice of the pivot element has a decisive influence on the
computational efficiency in the simplex algorithm. Bland’s
pivoting rule is improved on the basis of the simplex algo-
rithm [16]. Each step chooses the first non-basic variable with
the negative value in the reduced cost vector to become the
basic variable. Although this method can avoid the iterative
cycle due to the degradation, there are still many calculation
steps with zero step length and the improvement of the value
of the objective function is slow. Most-obtuse angle principle
for the simplex algorithm introduces the identification of the
angle between the target gradient and the constraint gradient
as the basis for determining the priority of the variable to
become basic variable [17], [18], but this method only applies
to inequality constraints linear programming. Deficient-basis
simplex algorithm introduces the concept of deficient basis,
so as to form a one-to-one correspondence between differ-
ent poles and the basic feasible solutions [19]. In this way,
the iteration can be carried out between different poles, thus
reducing the occurrence of the iterative cycle. These two
algorithms can complement each other, therefore, it is very
attractive to combine the most-obtuse angle principle and
the basis-deficiency algorithms [20]–[22]. In addition, lexi-
cographic order method and perturbation method are also the
two kinds of pivoting methods that can avoid the occurrence
of iterative cycle [23], [24], but the number of iterations
needed in the calculation is more than that of the simplex
algorithm.

In this paper, the sparsity prevention pivoting method for
sparse matrix linear programming is proposed to reduce the
zero-length calculation step caused by the degenerate situa-
tion in linear programming. Both the conditions for inserting
this step and the maximum number of allowed insertion steps
are also determined. In case study, 1000 linear programming
problems with 3000 variables, 20 constraints, and 1000 linear
programming problems with 2000 variables, 20 constraints
are built to test this method. The results show that the method
can effectively reduce the iterations of sparse matrix linear
programming and improve the computational efficiency.

The rest of this paper is organized as follows. In Section II,
the cause of the zero-length calculation step problem

is analyzed. Then the sparsity prevention pivoting method is
proposed. In Section III, a demonstration using the proposed
method is shown. In Section IV, case study simulation is car-
ried out. Finally, themain points are summarized in SectionV.

II. THE SPARSITY PREVENTION PIVOTING METHOD
A. THE ZERO-LENGTH CALCULATION STEP PROBLEM IN
SIMPLEX ALGORITHM AND ITS REASON
One of the problems in the simplex algorithm is that it is
possible to lead to many zero-length calculation steps if the
matrix is a sparse matrix. The standard form of the linear
programming problem is as follows:

min f = cx

s.t.Ax = b

x ≥ 0

(1)

where A ∈ Rm×n, b ∈ Rm, x, c ∈ Rn.
A basis is a submatrix consisting of any linearly inde-

pendent subset of columns of A. Components of x and c,
and columns of A, corresponding to a basis and a non-basis
are subscripted with B and N, respectively. The non-basic
variable xN with the maximum absolute value in the reduced
cost vector is chosen to become the basic variable in the
process of the simplex algorithm. It is considered that the
subscript of this variable is k . The reduced cost vector is
defined by

σN = cTN − c
T
BAN (2)

where cB is a part of the c vector which corresponds to the
basic, cN is a part of the c vector which corresponds to the
non-basis, and AN is a part of the Amatrix which corresponds
to the non-basis.

For the simplex algorithm, the aik is selected as the pivot
element, which the subscript i satisfies the condition (3).

i = argmin
{
bv
avk
|avk > 0 , v = 1, 2, . . . ,m

}
(3)

If this algorithm is used to calculate a problem of sparse
matrix in which there are a large number of 0 in the b
vector, the value of bi corresponding to the pivot element
may be 0. In this case, the value of the objective function and
the b vector will not change after one step using the simplex
algorithm. This is a zero-length calculation step.

The reason is that in one step using the simplex algorithm,
the column corresponding to the pivot element needs to be
transformed into a vector which only the pivot element is 1
and the other elements are 0. This process needs to add the
row corresponding to the pivot element to other rows. If the
value of bi in this row is 0, the b vector will not change after
adding bi element to other elements. In this case, value of
bi in the row corresponding to the new base is still 0 after
one step using the simplex algorithm, and the value of the
elements of other rows in the b vector and the corresponding
base will also not change. The formula for the value of the
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objective function after each step of the simplex algorithm is
as follows:

z = cBb (4)

where cB is a part of the c vector which corresponds to the
basic

From this formula, it is seen that the value of the objective
functionwill not change. This step is a zero-length calculation
step. According to the pivoting rule in condition (3), it selects
the pivot element which satisfies the condition that bv/avk is
minimum and avk is greater than 0. And in this case, there
must be at least one element of 0 in the b vector. If there is one
row that bv is 0 and the corresponding avk is greater than 0,
then the avk will be selected as the pivot element. In this way,
the behavior that selects the row with the zero value of the
element in b vector as the row of the pivot element will appear
again, and the value of the objective function will not change
until all avk which corresponding bv equals 0 is less than or
equal to 0.

For a sparse matrix, since there are many zeros in the b vec-
tor, the probability of satisfying this condition is low. At the
same time, since the Amatrix is also sparse matrix, the proba-
bility of appearing 0 in the column corresponding to the pivot
element after choosing the pivot element is also higher. Then
after one step using the simplex algorithm, the value of the
element in the b vector of these 0 corresponding rows will not
change, so the probability of decreasing the sparseness degree
of the b vector will also be reduced. This situation will lead
to many zero-length calculation steps in the whole algorithm.

B. BASIC IDEAS OF THE METHOD
To prevent the zero-length calculation step problem in lin-
ear programming for sparse matrix and improve computa-
tion efficiency, a new pivoting method which called sparsity
prevention pivoting method is proposed in this section to
modify the simplex algorithm.

For further discussion, sparseness degree of the matrix is
defined as follows:

SD =
ZN
AN

(5)

where SD is the sparseness degree of the matrix, ZN and AN
are the number of 0 elements in the matrix and the number of
all elements in the matrix, respectively.

From the analysis in subsection A, the reason for having
a zero-length calculation step is that there are many zeros in
the vector b. Therefore, the pivot element should be reselected
in some of these steps to avoid choosing the row which the
value of the element in b vector is zero as the row of the pivot
element. The basic idea of this method is that if the b vector
and the A matrix are sparse matrices with many zeros, then
insert a certain number of steps using the sparsity prevention
pivoting method in the calculation. In the step of using the
sparsity prevention pivoting method, if the value of the ele-
ment in the b vector corresponding to the pivot element is 0,
which means that the choice of this pivot element will lead to

the value of the objective function unchanged, it tries to select
other elements which satisfy the conditions that the value of
element in the reduced cost vector is negative and the value
of element in the b vector corresponding to pivot element
is not 0 as the pivot element. When adding or subtracting
a non-zero element to other elements, the probability that
other elements become non-zero is high. The choice of such
elements will make the b vector density and improve the value
of the objective function. From the analysis in subsection
A, the reduction of the number of 0 in the b vector can
help to reduce the appearance probability of the zero-length
calculation step, which improves the speed of calculation and
is beneficial to the subsequent calculation.

C. ALGORITHM FLOW
The steps of sparsity prevention pivoting method are as
follows:

1) Listing the initial simplex tableau based on the normal-
ized form of LP problem

2) Judging whether all numbers in the reduced cost vector
are equal to or greater than 0, if yes, the optimal solution
and the optimal value are reached. The algorithm is end;
otherwise, turn 3).

3) Judging before each step of the algorithm, if the sparse-
ness degree of b vector is greater than 0.4 in this step,
and thebi selected in condition (3) is zero at the same
time, and the total number of insertion steps is less than
one step, then one step using the sparsity prevention
pivotingmethod will be inserted in this step to make the
b vector density. Otherwise, the original selection pivot
element method will continue to be used. The pivoting
rule of the sparsity prevention pivoting method is as
follows:
(a) Giving priority to select the aik which satisfies

the condition (6) and condition (7) to be the pivot
element, xk becomes the basic variable for calcu-
lation.

k = argmin
{
σNj |σNj ∈ σN

}
(6)

i = argmin
{
bv
avk
|avk > 0

}
(7)

(b) If the value of bi which satisfies the condition (7)
is zero, it is called that the pivot element aik is not
selected. In this case, the aik which corresponds
to the second smallest number variable in the
reduced cost vector and satisfies the condition (7)
is selected as the pivot element for the calculation.

(c) If still cannot select the pivot element aik , choose
a variable in the reduced cost vector which is less
than 0 in order from small to large until found the
pivot element aik which meets the condition (7).
If indeed can’t find the pivot element aik so that no
variable becoming basic variable can improve the
value of the objective function, randomly select a
non-basic variable with the negative value in the
reduced cost vector as the basic variable, and the
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aik which satisfies the condition (3) is selected as
the pivot element. The step is not included in the
total number of insertion steps.

4) Still use the original selecting pivot element method to
complete the calculation of linear programming prob-
lems in other steps.

D. DETERMINING THE CONDITION OF INSTERTION
When calculating the linear programming problem with
sparse matrices, inserting a certain number of steps using
the sparsity prevention pivoting method will help reduce the
zero-length calculation step and to improve the computational
efficiency. But the step of inserting is more complex than
other steps, so it can simply find that this sparsity preven-
tion pivoting method should not be implemented at every
step. The condition for using the sparsity prevention pivoting
method will be determined in this subsection.

Using mathematical tools, several numbers of linear
programming problems with different sparseness degree are
constructed and calculated. By calculation and analysis,
the relationship between the calculation steps of the simplex
algorithm and the sparseness degree of the matrix are shown
in Figure 1.

FIGURE 1. Relationship between the average number of calculation steps
of the simplex algorithm and the sparseness degree of the matrix.

It is seen that the calculation steps required for the simplex
algorithm in low sparseness degree are basically the same,
and the calculation steps have a slight decrease when the
sparseness degree increases. However, after the sparseness
degree of b vector is greater than 0.4, the required calculation
steps for computing are gradually increased. It implies that
the zero-length calculation step begins to affect the linear
programming calculation in this time.

Therefore, when solving a linear programming problem,
the sparseness degree of b vector is judged at each step.
If the sparseness degree of b vector is greater than 0.4 in this
step, the sparsity prevention pivoting method proposed in this
paper will be inserted one step to make the b vector density.

E. DETERMINING THE MAXIMUM NUMBER
OF INSERTION STEPS
In this subsection, the maximum number of allowed inser-
tion steps using the sparsity prevention pivoting method
will be determined. Several linear programming problems

with different sparseness degree are created as examples and
the calculation efficiency after inserting different maximum
number of step using the sparsity prevention pivoting method
is analyzed. The result is shown in Figure 2.

FIGURE 2. Relationship between the average number of calculation steps
of the simplex algorithm and the maximum number of allowed inserts
steps at different sparseness degree. (a) The case of sparseness degree
in 0.4-0.6. (b) The case of sparseness degree in 0.6-0.8. (c) The case of
sparseness degree above 0.8.

It is seen that in most cases, the insertion of one step
using the sparsity prevention pivoting method is enough. The
matrix can become dense by only one step of insertion, and
the insertion ofmore steps will not increase the computational
efficiency. At the same time, the step of inserting is more
complex than other steps, so the time required for the inser-
tion steps is larger than that for the other steps. Therefore,
make a rule that the maximum number of permitted insertion
steps using the sparsity prevention pivoting method is one
step in each calculation.
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III. DEMONSTRATION USING SPARSITY PREVENTION
PIVOTING METHOD
Take the linear programming problem (8) as an example,
a demonstration is shown in this section.

min f = −14x1 + 25x2 −
7
20
x3 + 20x4

subject to x1 − 2x2 −
1
10
x3 + 5x4 + x5 = 0

7
10
x1 −

3
10
x2 −

1
100

x3 +
19
50
x4 + x6 = 0

x1 + x2 + x3 + x4 + x7 = 5

x1 + 2x2 + 3x3 + x4 + x8 = 10

x1, x2, . . . , x8 ≥ 0 (8)

The two-phase simplex algorithm and the sparsity
prevention pivoting method are used to calculate this
problem respectively, the specific process is shown in
Table 1 to Table 6.

TABLE 1. Initial simplex tableau.

TABLE 2. The simplex tableau after one step calculation using the
simplex algorithm.

As shown in Table 1, a tableau can be used to represent
a linear programming problem. In this tableau, the basic
variables are x5, x6, x7, x8. After one step using the simplex
algorithm, the a51 = 1 is selected as the pivot element, which
means that x5 becomes the non-basic variable and x1 becomes
the basic variable. The result is shown in Table 2.

In this case, the value of the objective function and the
b vector do not change. It is a zero-length calculation step.
By continuing to use the simplex algorithm to calculate,
an iterative cycle will be appeared.

Reanalyze the situation of Table 1, since σ1 = −14 is the
smallest one in the reduced cost vector, it should select x1
to become the basic variable and a51 = 1 to become the
pivot element. However, due to the corresponding b5 is 0,
it should avoid choosing the element a51 in this row as the

TABLE 3. The simplex tableau after one step calculation using the
sparsity prevention pivoting method.

TABLE 4. The simplex tableau using the sparsity prevention pivoting
method.

pivot element. And at the same time, the sparseness degree
of vector b is 0.5, which is bigger than 0.4. The sparsity
prevention pivoting method is inserted in this step to make the
b vector density. The second smallest element in the reduced
cost vector is σ3 = −0.35, and it corresponding non-basic
variable is x3. According to the rule of selecting the pivot ele-
ment in section II, a83 = 3 will be used as the pivot element
and the value of the element b3 in the b vector corresponding
to a83 is non-zero. Therefore, x3 becomes the basic variable,
x8 becomes the non-basic variable, and a83 = 3 is chosen as
the pivot element. The result is shown in Table 3.

As shown in the Table 3, the b vector becomes dense and
the value of the objective function decreases after selecting x8
to become basic and x3 to become non-basic. Themain reason
is that the value of the element in the b vector corresponding
to the pivot element is non-zero.When adding or subtracting a
non-zero element to other elements, the probability that other
elements become non-zero will be high. The objective func-
tion will be improved at each step in subsequent calculations.
Of course, another important reasonwhy b vector becomes all
non-zero is that the columns represented by x3 in Table 1 are
all non-zero. If there are more zero elements in this column,
the b vector may still be sparse after one step of the operation
on the simplex tableau.

Still use the original simplex algorithm to complete the
calculation of linear programming problems in other steps.
The a61 = 211/300 will be selected as the pivot element and
Table 4 will be obtained.

All numbers in the reduced cost vector are greater than 0
and the optimal solution is obtained in this step. The opti-
mal solution of the problem is x = (x1, x2, x3, x4) =
(10/211, 0, 700/211, 0), the optimal value is−385/211. The
number of steps required for a calculation using the sparsity
prevention pivoting method is only 2 steps.
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TABLE 5. Iterations of the first 50 LP problems. TABLE 6. The average iterations of 1000 linear programming problems
with 3000 variables and 20 constraints

IV. CASE STUDY
In this section, a numerical experiment is carried out to gain
an insight into the behavior of this new method. By using
mathematical tools, the proposed sparsity prevention pivoting
method in this paper and the two-phase simplex algorithm
are implemented. 1000 linear programming problems with
3000 variables and 20 constraints are constructed. Using
CLS represents the two-phase simplex algorithm and SPPM
represents the sparsity prevention pivoting method, the iter-
ations of the first 50 linear programming problems is shown
in Table 5:

It is seen that the iterations of the sparsity prevention
pivoting method proposed in this paper is less than that of the
two-phase simplex algorithm. The specific improvement
effect is related to the properties of the matrix of linear
programming, which is specifically related to the sparseness
degree of the matrix A and the vector b.
Using the matrix sparseness degree standard mentioned

in section II equations (5), all 1000 problems are classified
according to the sparseness degree of the matrix A and the
vector b. The average iterations of the sparsity prevention
pivoting method and that of the two-phase simplex algorithm
are shown in Table 6. To compare with other pivoting meth-
ods in terms of computational efficiency, the results of the
calculation using the most-obtuse angle method (MOA) are
also shown in Table 6.

The results show that the sparsity prevention pivoting
method proposed in this paper can reduce the iterations
required for linear programming.When the sparseness degree
of the matrix A and that of the vector b are low, the calculation
efficiency is higher than that of two-phase simplex algo-
rithm, but it is lower than that of most-obtuse angle method,
the efficiency of calculation is not improved obviously. When
the sparseness degree of the matrices is greater than 0.4,
calculation efficiency of the sparsity prevention pivoting
method begins to exceed that of most-obtuse angle method.
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TABLE 7. The average iterations of 1000 linear programming problems
with 2000 variables and 20 constraints

And the more sparsity of the matrix is, the more efficiency of
the sparsity prevention pivoting method is. Compared with
the two-phase simplex algorithm and the most-obtuse angle
method respectively, the highest calculation efficiency can be
increased by 54.5% and 36.9%.

Similarly, 1000 linear programming problems with
2000 variables and 20 constraints are constructed. The
two-phase simplex algorithm, the most-obtuse angle method
and the sparsity prevention pivoting method are used to cal-
culate the results respectively. The result is shown in Table 7.

It is seen that the result is basically the same as those
descriptions mentioned above.

V. CONCLUSIONS
In this paper, a sparsity prevention pivoting method is pro-
posed to reduce the zero-length calculation step in linear pro-
gramming. One step is inserted to reselect the pivot element
in the existing linear programming algorithm in this method,
when the sparseness degree of b vector is greater than 0.4. The
maximum number of allowed insertion steps is determined as
one step in each calculation. It can avoid choosing the row
which the value of the element in the b vector in this row is
zero as the row of the pivot element, which makes b vector
density after the inserted step and reduces the appearance
probability of the zero-length calculation step.

Through the case study, it is shown that the iterations
required for linear programming can be reduced effectively
by inserting one step to reselect the pivot element using
the proposed sparsity prevention pivoting method. And the
higher the sparseness degree of the matrix is, the better the
effect of the algorithm is. This method can be widely used in
the situation of sparse matrix linear programming, such as the
node admittance matrix of the power grid.
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