
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Apr 10, 2018

High Aspect Ratio Plasmonic Nanotrench Structures with Large Active Surface Area
for Label-Free Mid-Infrared Molecular Absorption Sensing

Shkondin, Evgeniy; Repän, Taavi; Panah, Mohammad Esmail Aryaee; Lavrinenko, Andrei; Takayama,
Osamu
Published in:
ACS Applied Nano Materials

Link to article, DOI:
10.1021/acsanm.7b00381

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Shkondin, E., Repän, T., Panah, M. E. A., Lavrinenko, A. V., & Takayama, O. (2018). High Aspect Ratio
Plasmonic Nanotrench Structures with Large Active Surface Area for Label-Free Mid-Infrared Molecular
Absorption Sensing. ACS Applied Nano Materials , 1(3), 1212-1218. DOI: 10.1021/acsanm.7b00381

http://dx.doi.org/10.1021/acsanm.7b00381
http://orbit.dtu.dk/en/publications/high-aspect-ratio-plasmonic-nanotrench-structures-with-large-active-surface-area-for-labelfree-midinfrared-molecular-absorption-sensing(acf32960-2cf0-499b-88f2-f4eeab380f38).html


High Aspect Ratio Plasmonic Nanotrench Structures with Large
Active Surface Area for Label-Free Mid-Infrared Molecular
Absorption Sensing
Evgeniy Shkondin, Taavi Repan̈, Mohammad Esmail Aryaee Panah, Andrei V. Lavrinenko,
and Osamu Takayama*

DTU Fotonik − Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads 343, DK-2800 Kgs. Lyngby,
Denmark

ABSTRACT: Mid-infrared spectroscopy offers unique sensing schemes to detect target molecules thanks to the absorption of
infrared light at specific wavelengths unique to chemical compositions. Due to the mismatch of the mid-infrared light wavelength
on the order of micron and nanometer size molecules, the interaction between them is typically weak, resulting in small
signatures of absorption. Plasmonics can play an important role, enhancing photon−matter interactions by localization of light in
small volumes or areas. Thus, it enables the increase of light absorption by molecules providing higher sensitivity. Here, we
demonstrate the enhancement of infrared absorption in plasmonic trench structures that function as hyperbolic metamaterials.
The metamaterial is composed of plasmonic trenches made of aluminum-doped zinc oxide. We use a 5 nm thick silica layer as a
model analyte conformally coated around the plasmonic trenches, which absorbs light with wavelengths around 8 μm. The
enhanced absorption is achieved by the interaction of bulk plasmon modes propagating in the trenches with the analyte silica
layer on the pronounced extended surface area of the trench structure. Such plasmonic nanotrench structures may serve as a
highly sensitive bio- and chemo-sensing platform for mid-infrared absorption spectroscopy.

KEYWORDS: mid-infrared absorption spectroscopy, metamaterials, plasmonic materials, transparent conductive oxide,
hyperbolic metamaterials, label-free detection, surface-enhanced infrared spectroscopy, SEIRAS

■ INTRODUCTION
Midinfrared (IR) light with wavelengths between 2.5 and 20
μm (4,000−500 cm−1) is typically utilized for molecular
detection with the technique generally termed as mid-IR
spectroscopy.1−3 Mid-IR absorption spectroscopy is a powerful
tool to identify chemical species due to their particular
absorption bands specific for each molecular bond irrespective
of the presence of macrophase as gas, liquid, or solid. It offers a
wide variety of applications from industrial process monitoring
for pharmaceutical production4 to gas sensing.5 Mid-IR
spectroscopy has been applied for the label-free detection of
various biochemical specimens, for example, proteins,6−10 to
study their folding, unfolding, and membrane characteristics.
Moreover, mid-IR spectroscopy also holds promise for the
clinical and biomedical analysis of human breath11 and
biofluids,12 such as urine, serum, and blood to diagnose
diabetes,13 cancers,14 and different viruses.15 Clinical studies

have been conducted for the detection of biomarkers of acute
myocardial infarction, such as cardiac troponin T.16 However,
due to the huge spacial difference of the wavelength (several
microns) and target molecules (typically on the order of several
nanometers), in this particular case 3 orders of magnitude,
interactions are weak, and therefore, it is challenging to detect
very trace amounts of molecules. In order to address this issue,
there have been considerable efforts to improve the absorption
by localizing mid-IR light in dielectric2,17−20 and plasmonic
waveguide structures.21 Moreover, surface enhanced infrared
absorption spectroscopy (SEIRAS)22 has been extensively
developed in the last several years with the help of plasmonic
nanostructures used to confine mid-IR light at the nanoscale
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and improve photon−matter interactions. Certain progress is
reported with sensing schemes exhibiting sensitivity toward
individual molecules. The schemes typically involve in-
plane1,23−34 and vertical pillar plasmonic nanoantennas.35,36

In these studies, vertical pillars of indium tin oxide (ITO) with
protein as an analyte35 and porous Au coated by 3 nm thick
SiO2 as an analyte36 exhibit absorption of several percent, in
which pillars act as a plasmonic monopole antenna that
supports plasmonic modes. Furthermore, a graphene metasur-
face with voltage tuning was demonstrated.37 Thanks to the
advent of commercially available quantum cascade lasers
(QCLs) that are tunable and able to cover a broad wavelength
range in the mid-IR, on-chip chemo-biosensors based on
principles of vibrational spectroscopy may become feasible.2,38

In parallel, mid-IR photonics based on the Si platform is also
emerging.17,18,39

Here we propose the use of hyperbolic metamaterials
(HMMs) based on aluminum-doped zinc oxide (AZO) trench

structures as a platform for boosting absorption of mid-IR light
by molecules in the trenches as illustrated in Figure 1a. AZO
exhibits the plasmonic response (that is a negative real part of
the permittivity) in the near- and mid-IR wavelength regions
between 1.8 and 3.5 μm depending on doping and fabrication
schemes.40−42 Its permittivity can be widely tuned by doping
from near-IR to mid-IR.40−42 AZO can be deposited by the
atomic layer deposition (ALD) technique,43 allowing a
conformal and uniform coating of deep trenches. For
demonstration of the potential of the trench HMMs for
sensing, we coat the trench structure with a 5 nm thick SiO2

layer emulating the presence of an analyte. The SiO2 layer
represents a monolayer of proteins, because as was shown in
numerous studies of proteins, they typically have thicknesses
from 2 to 8 nm.1,32,44 An amorphous SiO2 film deposited by
ALD has a phonon absorption at around 8.07 μm (1239
cm−1),36,45 which is away from the typical absorption bands of
water molecules and, therefore, offers itself as a good model

Figure 1. Cross-sectional SEM images of (a) fabricated AZO-based HMM structures and (b) Si trenches, as well as corresponding schematic
illustrations of AZO and Si trenches with 5 nm thick SiO2 (not visible in SEM images), respectively.

Figure 2. (a) Permittivity of AZO thin film in the mid-IR range. (b) Ordinary and extraordinary permittivities of the AZO HMM trench structure
based on the EMA approach. The inset shows the cross-sectional, bird-eye view SEM image of the actual AZO HMM, with permittivities shown by
the axis. The structure supports the hyperbolic regime from the wavelength above 2.7 μm.
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analyte.36 We demonstrate over 9% increase in absorption of
mid-IR light by the SiO2 layer. To the best of our knowledge,
this is the first report on mid-IR absorption spectroscopy based
on nanotrench HMM structures.

■ EXPERIMENTAL SECTION
Fabrication of AZO trench HMMs and deposition of 5 nm

SiO2 layer. Two types of samples were fabricated: AZO/Air trench
structures and Si trench structures with and without 5 nm of ALD
deposited SiO2 (see Figure 1). The structures are grown on the Si
substrate. These two types of trenches are the result of one fabrication
flow. The full description of the fabrication procedure including deep
UV lithography, deep reactive ion etching (DRIE), and atomic layer
deposition (ALD) is reported elsewhere.42 Both structures have
trenches of 2.7 μm height and 200 nm wide with a period of Λ = 0.4
μm providing effective anisotropy in the long wavelength regime. The
ordinary and extraordinary permittivities of the HMM are depicted in
Figure 2b, as well as the permittivity of the 100 nm AZO film in Figure
2a. The ordinary permittivity is relevant for electric fields in the plane
of the individual trenches, while the extraordinary permittivity is
relevant for fields orthogonal to this plane.
Extreme anisotropy of the HMMs with the ability to support

propagation of waves with high wavevectors leads to a wide variety of
potential applications such as broadband enhancement in the
spontaneous emission for a single photon source, subwavelength
imaging, and thermal engineering.46,47 HMMs composed of plasmonic
nanopillars48 and planar multilayer structures49 have been shown to
achieve extremely high sensitivity toward refractive index variations for
biosensing on visible to near-infrared wavelengths. Moreover, the
HMMs also support unique directional surface waves, named
Dyakonov plasmons.42,50,51

Conventional deep-UV lithography was used to define grating
patterns on standard silicon ⟨100⟩ wafers. DRIE was implemented
with a standard Bosch process52 in order to fabricate a Si template with
the 3 μm-deep trenches. An inherent consequence of the Bosch
process is the formation of sidewalls roughness known as scallops.
They are formed as a result of switching between etching and
passivation steps. In this work, the process was fine-tuned in order to
reduce this effect by minimizing the switching times and lowering the
temperature.42 Indeed, the resulting Si trench as depicted in Figure 1b
has a very smooth sidewall surface suitable for subsequent ALD
deposition. Fabricated Si templates were carefully investigated using
SEM cross-sectional analysis. Afterward, the processed structures were
cleaned in N2/O2 plasma in order to get rid of resist remainings and
other organic contaminants. Then, the silicon templates were ALD
coated by AZO (using trimethylaluminum, diethylzinc, and water as
precursors), until the gratings voids were filled entirely. For the final
step, the AZO filling needs to be isolated, and for that purpose, the
samples were subjected to Ar+ sputtering for removal of the ALD
deposited top AZO layer opening the silicon trenches. This procedure
allows us to etch silicon in-between cavities fully coated with AZO,
resulting in the AZO/Air trenches as shown in Figure 1a. In other
words, the fabricated AZO trenches are the negative replica of the
initial DRIE-prepared Si template. Such AZO structures act as an
HMM in the mid-IR wavelength range. The detailed description of the
fabrication method for different structures, AZO trenches,42 AZO
pillars,41 TiN-based trenches,53 and dielectric trenches,54 can be found
elsewhere.
Finally, the initial Si trench template and AZO/Air HMM trench

structures were ALD coated with 5 nm SiO2. ALD deposition of silica
is based on two precursors2Si[N(C2H5)2]2 (SAM.24), supplied
from AirLiquide55,56) as the source of silicon, and O2 plasma as the
oxidation agent, being carried at 300 °C. In order to find the
deposition rate, deposition of SiO2 with thicknesses up to 50 nm on
flat and structured Si has been proven prior to deposition on the
trench samples. The linear growth conditions were verified by
spectroscopic ellipsometry and SEM cross-sectional analysis. It was
found that growth of SiO2 was 0.06 nm/cycle, and therefore, 85 cycles
were selected for deposition of a 5 nm thin film on the Si and AZO/air

HMMs. Such thicknesses are hard to see using cross-sectional SEM
measurements, but ellipsometry and X-ray photoelectron spectroscopy
(XPS) performed on AZO coated flat dummy wafers confirmed
deposition of a thin silica layer with the 5 nm thickness.

FTIR free-space reflection measurement. Free-space reflection
measurements were conducted by the FTIR spectrometer (VERTEX
70, Bruker). The measurements were performed with the TM-
polarized incident light in the wavelength range of λ = 6.25−10.0 μm
(1600−1000 cm−1) with resolution of 2 cm−1. Two different samples,
AZO and Si trench structures with and without 5 nm thick SiO2 layers,
were used for each measurement. The presented reflectance is the
average of 32 scans. For the reference spectrum, TM reflectance from
an aluminum mirror at the angle of incidence ϕ = 12° was taken. A
wire grid polarizer is used to obtain the TM polarization with the
magnetic field in the x−z plane as shown in the inset of Figure 2b. The
incident beam has angular variation of Δϕ = ± 1.7°. The incident
angles were varied in the range ϕ = 12−50° with 3° steps.

■ RESULTS AND DISCUSSION
Hyperbolic metamaterials are artificially designed structures
that possess unusual indefinite dispersion in a certain region of
frequencies.57 Defining the dispersion relation through wave-
vector k, the isofrequency contour obeys the dispersion
equation:
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For naturally occurring materials the ordinary (εo) and
extraordinary (εe) permittivity components are typically
positive, resulting in spherical dispersion in the case of equal
permittivities (isotropic materials) or elliptical dispersion when
slightly different positive components represent uniaxial
materials. The different situation happens when one of the
permittivity components becomes negative; in this case, the
isofrequency contour has the hyperbolic shape supporting
propagation of abnormally high-k waves. There are limited
cases when such phenomena are encountered in natural
materials,58 but they all suffer from high losses and narrow
bandwidths. Therefore, such structures need to be artificially
designed. Two types of geometries are proposed and realized:
metal-dielectric multilayers59 and metallic wires in a dielectric
host.48,60 The case where εo > 0 and εe < 0 describes a 2-fold
hyperboloid and refers to a so-called type-I HMM. It is
common for a wire medium and will not be considered here.
The opposite scenario, εo < 0 and εe > 0, with one-fold
symmetry (type-II HMM) mainly represents multilayer
structures. Expressions for the ordinary and extraordinary
permittivities can be derived within the effective medium
approximation (EMA),60 under the condition that the
thicknesses of individual layers are deeply subwavelength:
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where εm and εd are the permittivities of metal and dielectric,
and fm, fd are the corresponding fractions of metal and dielectric
in the multilayer. The trench structure we fabricated is an
example of a multilayer with vertically arranged layers. The
period of trenches (Λ = 0.4 μm) is deeply subwavelength for
the mid-IR wavelength range λ = 6.25−10 μm (1600−1000
cm−1, Λ/λ = 1/17.5−1/25), allowing application of the
effective media theory and subsequent introduction of the
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effective parameters. Our AZO/Air trench structure has a zero
crossing wavelength for εo around 2.7 μm and becomes Type II
HMMs (εo < 0 and εe > 0)42 within an extremely wide band;
see Figure 2b. Theoretically our AZO trench HMM supports
bulk plasmon modes at 3 μm and above in a wide wavelength
range.42 Wavelengths longer than 3 μm cover most of the
absorption bands of interesting/biologically relevant mole-
cules.3 Moreover, most of the important absorption resonances
in the biomedical sensing are ranged between 2.5 and 10 μm
(4000 to 1000 cm−1).6

Numerical simulation. The differences in reflection of two
samples, field profiles, and absorption in Figure 3 were
calculated by the Comsol Multiphysics software package. The
permittivities of AZO, Si, and SiO2 were taken from refs 41, 42,
and 45, respectively. The simulations were conducted for both
TE- and TM-polarized light with the angle of incidence 12°
counted from the optical axis as shown in the inset of Figure 2b.
Figures 3a and 3b show the simulated reflection difference
between the samples with and without the 5 nm SiO2 layer with
reduced and realistic losses of AZO, respectively. The
absorption of the real structure drops to approximately 0.1
(10%) from the reduced loss case of 0.15 (15%). This suggests
that a material with lower absorption, such as a doped
semiconductor,61 can improve the absorption. From Figure 3,
the optimum height of the trenches is 2.5 to 2.7 μm in both
cases. Therefore, we choose the trench height to be 2.7 μm,
providing almost optimum absorption around 8 μm in
wavelength. In a different sensing situation, where targeted
analytes exhibit absorption for different wavelengths, the
structural parameters, especially the height of the trenches,
should be optimized to operate effectively at certain wave-
lengths. Figure 3e shows the electric field profile in a trench.
We can see the presence of a strong field between the AZO

trenches, indicating the feature of a bulk plasmon that
propagates in the bulk of the structure.51 Figure 3f shows
enhanced absorption in trenches, stemming from the
interaction between the bulk plasmons and analyte. According
to Figure 3e, there are hot spots at the four edges of the
trenches, and corresponding absorption at these places is high
(Figure 3f). However, from the color bar in Figure 3e, the hot
spots have the field enhancement factor of 2−3, which are not
so significant, and they occupy relatively small volumes of the
entire trenches. Therefore, most of absorption originates from
the middle of the trenches as shown in Figure 3f. This also
suggests that the analyte should be preferably located between
the trenches rather than on the top or bottom close to the hot
spots for enhanced absorption. In general this structure would
be very suitable for “gas” sensing when analyte molecules are
equally located inside the trenches rather than located on the
top or bottom of the trenches. There are mainly two
mechanisms of absorption enhancement: (1) Extended surface
area of the trench structuresca. 14.5 times more surface area
in the trench structure relative to a flat surface with the same
footprint. (2) The HMM structures support bulk plasmon
modes in the trenches which bounce between the top and
bottom interfaces of the trenches, interacting with the analyte
and resulting in higher absorption in comparison with the
surface waves case.
In contrast with the TM-polarized incident light, the TE-

polarized light sees the structure as a metal since the electric
field is oscillating along the trenches (x-axis in the inset of
Figure 2b), experiencing εo < 0. Hence, incident light is
reflected from the structure and does not propagate inside the
trenches, resulting in weak interaction with the SiO2 analyte
layer.

Figure 3. Simulated reflection difference between AZO trench structures with and without the 5 nm thick SiO2 layer in terms of wavelengths and
heights of trenches, H. (a) With the imaginary part of the AZO’s permittivity reduced by 10 times and (b) the actual permittivity of AZO for TM-
polarized incident light. (c), (d) Same as (a) and (b) for TE-polarized light. (e) Field profile. The color bar is normalized by incident field. (f)
Absorption. The color bar has arbitrary units. The angle of incidence is 12°.
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Figure 4a,b shows the measured reflectance for the samples
with and without 5 nm thick SiO2 analyte layers. There is a
reflection dip associated with the phonon absorption of the
SiO2 stretching that appears around 8.07 μm (Figure 4b). In
order to highlight the absorption enhancement, Figure 4c
presents the reflection difference of both samples, giving the
absorption equivalent of SiO2 layers. The reflection difference is
the highest at the lowest angle of incidence, ϕ = 12°, reaching
0.09 (9%). Figure 5a and b shows the reflectance spectra and
their difference at ϕ = 12°. The real and imaginary part of
SiO2’s refractive index is shown in Figure 5c for reference. Note
that multiple reflection dips below 7.5 μm are caused by the
water absorption. We assume that absorption from the SiO2
film follows the Beer−Lambert law, exhibiting the saturation of
absorption as the thickness increases.62 The AZO trench
structures exhibit a high reflection difference of approximately
9.4%, which shows qualitatively good agreement with the
prediction of Figure 3.
In order to clarify the contribution of enlarged surface area

and bulk plasmon modes, we also characterize reflection from a

Si trench structure, a 100 nm AZO film on the flat Si substrate,
and the flat Si substrate with and without conducted 5 nm SiO2
layers. The 5 nm SiO2 films on the flat AZO and Si surface do
not give detectable absorption around λ = 8 μm [Figure 5f].
Figure 5d and 5e show the measured reflection and its
difference of the Si trench structures, resulting in 5.7%
difference. Since the Si trenches are dielectric, they do not
support any bulk plasmon mode. We deduce that this
absorption is caused by the enlarged surface area of the trench
structure. Therefore, the rest of 9.4 − 5.7% = 3.7% is the
contribution of the bulk plasmon modes, resulting in more than
50% enhancement of absorption over the surface effect.

■ CONCLUSIONS

In conclusion, we demonstrate the enhancement of absorption
by a 5 nm thick SiO2 layer in the mid-IR wavelength range of
6.25−10 μm (1600−1000 cm−1). The enhancement originates
from nanostructurization of large active surfaces with plasmonic
trenches, and as shown it can be used for effective molecular

Figure 4. Absorption spectra. Measured free-space reflection of AZO trench HMM structures (a) without and (b) with a 5 nm thick SiO2 layer. (c)
Reflection difference for ϕ = 12° − 50° with TM-polarized incidence light. The absorption associated with the SiO2 layer is indicated by an arrow.

Figure 5. Absorption enhancement. (a) Measured free-space reflection of AZO trench structures with (dotted pink) and without (dotted black) the
5 nm thick SiO2 layer. (b) Reflection difference. (c) Real (n) and imaginary part (k) of the refractive index of SiO2 from ref 45. (d) Measured
reflection of Si trench structures with (dotted pink) and without (dotted black) the 5 nm thick SiO2 layer. (e) Reflection difference. (f) Reflection
from the 100 nm AZO film on the Si substrate with and without the 5 nm SiO2 film, as well as from the Si substrate with and without the 5 nm SiO2
film. Note that Si trenches and substrates have a few nanometers of a native oxide layer. The angle of incidence is ϕ = 12o with TM-polarized
incidence light for all reflection measurements. Colored shade represents an error bar.
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sensing. The structures are composed of multiple high-aspect
ratio (1:6.7) subwavelength AZO trenches on a Si substrate,
providing 14.5 times more surface area for residing of analyte
molecules than the flat surface. The fabrication process for the
trench structures is fully compatible with the large-scale CMOS
technology. Moreover, the doping level of AZO can be changed
to adjust its plasmonic properties for desired wavelengths,
leading to the optimum sensitivity of molecules on demand.
The AZO trench HMM exhibits broadband performance in the
range of wavelengths important for molecular sensing. We
report about over 9% absorption increase. This enhancement is
enabled by a combination of the extended surface area and the
bulk plasmon modes supported by the trench structure. Our
demonstration shows that such structures can be effectively
designed to detect traces of a target analyte and molecular
sensing in mid-IR spectroscopy.
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