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Abstract—The two level undercut-profile substrate (2LUPS) has 

been introduced as a concept for subdividing rare-earth-Ba2Cu3O7 

coated conductors (CC) into narrow filaments that effectively re-
duces the AC losses and improves field stability for DC magnets. 
The 2LUPS consists of two levels of plateaus connected by a wall 

with an undercut-profile, which enables a physical separation of 
the superconducting layer between the plateaus without reducing 
the effective width of the superconducting layer.  

In this study we report for the first time the results of fabrication 
and characterization of a filamentary CC produced in an industri-
al setup by SuperPower Inc. using ion beam assisted deposition 

and metal organic chemical vapor deposition (IBAD-MOCVD) on 
a 2LUPS realized at the Technical University of Denmark (DTU), 
whereas previous studies discussed the fabrication using alternat-

ing beam assisted deposition and pulsed laser deposition (ABAD-
PLD). 

We also present Hall probe scanning measurements performed 

using a standard THEVA TAPESTAR™ XL machine that is rou-
tinely employed for industrial critical current characterization of 
long length CCs. From these results is it clear that additional anal-

ysis of the measured field profiles are required when characteriz-
ing filamentary 2LUPS CC using a standard TAPESTAR™ set-
ting. Using a model representation of the 2LUPS we calculated the 

expected magnetization response by means of finite element meth-
ods  simulations and  we find a good agreement with the experi-
mentally observed magnetic profiles. 

 
Index Terms—Multifilamentary superconductors, High-

temperature superconductors, Magnetic variables measurement, 

Finite element analysis. 

I.  INTRODUCTION 

IGH-TEMPERATURE SUPERCONDUCTORS (HTS) 

are relevant to many scientific and technological applica-

tions [1]–[3] such as electric motors and generators, electric 

power distribution systems, and high-field electromagnets. 
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Superconducting electromagnets are used in magnetic reso-

nance imaging (MRI) and nuclear magnetic resonance (NMR) 

devices, particle accelerators, and many other scientific in-

struments and in general made using low temperature super-

conductors (LTS). HTS present several advantages over LTS 

which include higher irreversibility fields [4] and higher oper-

ation temperatures. Rare-Earth Barium-Copper-Oxides, such 

as YBa2Cu3O7 and Gd1-xYxBa2Cu3O7 (GYBCO), are a well-

documented [1]–[4] class of HTS materials in the 2nd genera-

tion HTS wires, i.e. called coated conductors (CC). The width 

of these tapes is an important design parameter, which affects 

hysteretic losses in AC applications as well as the magnetic 

field drift in strong DC magnets [5]–[7]. These effects are 

caused by the screening current, which arises inside the super-

conductor tape to prevent the magnetic field from penetrating 

the material. This current and its variation over time are re-

sponsible for AC-losses and may also reduce the precision of 

the required magnetic field distribution, which is critical for 

many superconducting magnet applications. It has previously 

been shown that these detrimental effects can be mitigated by 

transposing the tape and subdividing the tape along its width 

into many decoupled filaments [7], [8]. Filamentation methods 

employed to achieve this subdivision include mechanical stria-

tion, laser striation and ink jet printing of filaments [9]–[12]. 

The challenge with these approaches comes from the reduc-

tion of the effective width of the superconducting (SC) layer 

that decreases the engineering critical current density, in addi-

tion to potential critical damage over the long length. Filamen-

tization can potentially be achieved without reduction of  the 

effective width of the tape using the two level undercut profile 

substrate (2LUPS) concept [13], [14] (see Fig. 1), consisting 

of two levels of plateaus in the metal substrate surface sepa-

rated by a vertical displacement with an undercut profile. 

H 

 
Fig. 1.  Illustration of the geometry of  2LUPS-based CC. The dark gray and 

light gray regions indicate the substrate and the SC layer, respectively. 
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 The undercut profile can be realized by surface modification 

of the areas of the substrate corresponding to the lower plat-

eaus by means of electrochemical etching. In this study we 

present, for the first time, experimental characterization of a 

2LUPS CC produced by SuperPower Inc. using ion beam as-

sisted deposition and metal organic chemical vapor deposition 

(IBAD-MOCVD) in a commercial system on a 2LUPS pre-

pared at the Technical University of Denmark. No post-

treatment was conducted after layer depositions. The perfor-

mance of the 2LUPS CC was evaluated by means of Hall 

probe scanning using a Theva TAPESTARTM XL machine that 

is routinely employed for analysis of long length samples at 

SuperPower Inc. and compared to a CC produced without sur-

face profiles. The 2LUPS CC is evaluated in this system since 

filamentary long length samples would eventually also require 

such industrial characterization. However, data obtained using 

a TAPESTARTM machine does not take into account geomet-

rical effects and further interpretation is therefore required to 

evaluate the critical current. In order to correctly calculate the 

critical current of the filamentary 2LUPS CC, we compare the 

experimental data with computations performed using FEM 

analysis.  

II. METHODS 

A. Samples fabrication 

Starting from a commercial Hastelloy C276 tape 

(L×W×T = 300 mm × 10 mm × 0.89 mm), wet electrochemi-

cal etching is employed in order to create the desired 2LUPS 

geometrical profile and to reduce the surface roughness [14].  

Protective masking tape has been applied and cut in a reel-

to-reel system after which 3 strips were peeled off. Lower 

plateaus were then formed during subsequent etching. The 

widths of each of the two lateral filaments are 2.8 ± 0.1 mm, 

while the five central plateaus has a width of 0.9 ± 0.1 mm. 

The reference sample was produced using the standard etching 

procedure [14]. Following the 2LUPS fabrication, the buffer 

and superconducting GYBCO layers are deposited on the sub-

strate in a commercial production system at SuperPower Inc. 

by means of IBAD-MOCVD [15]. The total thickness of the 

buffer layers is around 0.2 μm and the superconducting Gd1-

xYxBa2Cu3O7 layer has a thickness of 1.1 μm. Finally, a 

0.7 μm thick protective silver layer is deposited on the GYB-

CO layer by means of sputtering.  

B. Scanning electron microscopy 

The cross-section of the 2LUPS sample has been analyzed 

using focused ion beam scanning electron microscopy (FIB-

SEM) in a Carl Zeiss 1540 XB electron microscope. Fig. 2 

shows the cross-section of the 2LUPS and the different layers 

of the CC. A gap is present in the GYBCO layer just below 

the edge of the upper plateau (marked by “A”) that verifies the 

desired physical decoupling between the superconducting fil-

aments. It was observed that the undercut length 

L = 1.2 ± 0.5 μm, which is significantly greater, compared to a 

previously reported Hastelloy-based 2LUPS sample 

(L=0.3 µm) [14]. In the curved region of the lower plateau 

(see Fig.2) the GYBCO layer is observed to be both porous 

and irregular, and as such considered non-functional. In con-

trast, a very dense and homogeneous microstructure is ob-

served on the regions of the plateaus not located in the imme-

diate vicinity of the edge of the filaments, which is typical for 

CC production at SuperPower Inc. Measuring several cross-

sections, it was observed that the extension of the damaged re-

gion, marked by “B”, is equal to 18 ± 2 μm, which is signifi-

cantly smaller than that obtained using other filamentization 

techniques. 

C. Hall probe scanning 

The remanent magnetic field in different positions along the 

x direction of the 2LUPS and the reference samples were 

measured at 77 K using a TAPESTAR™ XL machine at Su-

perPower Inc. The apparatus employs an array of 21 Hall sen-

sors spanning a width of 12 mm [16]. Fig.3(a) displays the 

field profile plotted as function of y. The data corresponding to 

the 2LUPS and the reference sample are plotted as red and 

blue dots, respectively. The error bars shown in the figure cor-

respond to the variation of the field profile along the length x 

of the tape. The solid lines of matching colors correspond to 

FEM calculations discussed in the next section. The vertical 

gray lines indicate the filaments edges of the 2LUPS tape. 

 
Fig. 2 SEM picture of the cross section of the 2LUPS CC. The SC layer 

presents a gap, marked by the letter A, and the upper plateau is physically 

decoupled from the lower plateau. The extent of the region where the SC is 
potentially damaged, ≈ 18 μm, is indicated by the letter B. Numbers 1–4 

mark the different layers: 2LUPS (1), buffer stack (2), Gd–Y–B–CO (3) and 

Ag (4). The inset defines the undercut length L, and the depth H of the lower 
plateau. 
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The TAPESTAR™ software utilizes conventional inversion 

techniques to compute IC from the magnetic field it generates 

in the immediate vicinity of the surface of the tape [18]. The 

resulting plots of the critical current IC as function of the posi-

tion along the length of the tape, i.e. x direction, are shown in 

Fig. 4 as dashed lines. It is observed that the critical current of 

the 2LUPS is substantially lower than that of the reference 

sample. However, if the spatial resolution is too coarse or the 

distance of the Hall sensor from the tape is too large to resolve 

the small signal generated by the narrow filaments, one would 

expect a similar reduction in the calculated IC, which does not 

correspond to the true value. It is clear that the conventional 

inversion requires special attention due to the filament geome-

try. In addition, the setup is not ideal for a complete character-

ization of filamentized samples and potentially in future stud-

ies one would modify the TAPESTAR™ machine. Taking in-

to consideration the great effect of the distance on the obtained 

field profiles [19]–[23], we calculated a set of typical field 

profiles from analytical formulas [17], which can be seen in 

Fig. 5. The formula, reported in the reference, is derived from 

the two-dimensional Biot-Savart law applied to a mono-

dimensional current distribution. The different lines shown in 

the figure correspond to different values of the distance Δz be-

tween the Hall sensors and the SC layer of the tapes. The dis-

tance Δz increases from 0.5 mm to 1.5 mm with steps of 

0.5 mm, as shown in the figure. As can be noticed, at a dis-

tance of 1 mm from the SC layer the field oscillations generat-

ed by the narrow filaments of the central region of the tape are 

completely smoothed out and would not be resolved by the 

measurement. The black dashed line corresponds to the case 

where the narrow filaments are not working. As can be no-

ticed, a significantly higher level in the center would have 

been expected if the filaments were not working. We per-

formed additional investigations employing finite element 

method analysis. As discussed in the next section, the field 

profiles calculated by means of FEM simulation are more real-

istic than the ones provided by the analytical formula since the 

FEM simulation solves the partial differential equation gov-

erning the magnetic field distribution, while imposing the con-

straint on the time-dependence of the applied field and the rel-

evant constitutive relations. 

D. Finite Element Method analysis 

The experimental data set has been compared to corre-

sponding results computed by FEM analysis. The computa-

tions have been performed using the magnetic field formula-

tion interface of the commercial software COMSOL Mul-

tiphysics. The model solves Maxwell’s equations and the rele-

vant constitutive relation between the magnetic field H and 

magnetic flux density B. For this study we assumed the fol-

lowing constitutive relation: B= μ0H. A power law J-E consti-

tutive relation is assumed between the electrical field E and 

the electrical current density J [25], [28]. The relation is par-

ametrized by the critical current density JC: 

E=EC ‖J/JC ‖n J/‖J‖  (1) 

For large values of the exponent n, the highly non-linear J-

E relation practically constrains the current density in each 

point of space to be either zero or equal to JC, thus reproduc-

 
Fig. 3 Hall-probe scanning data obtained at 77 K. The figure shows the dis-

tribution as function of y of the magnetic flux density z component. The ref-

erence and 2LUPS data are plotted using blue and red colors, respectively. 
The experimental data is shown as points with error bars, the results of the 

FEM calculation are shown as solid lines, or as a dashed line for the case of 

a filamentary tape where only the lateral wider filaments are active.  The 

vertical lines indicate the filaments edges. 

 
Fig. 4 Calculation of the critical current IC for different positions along the 

length of the tape, i.e. x direction. The calculations performed using the con-
ventional approach are plotted as dashed lines. The result for the reference 

sample is consistent with the expected average value of IC =387 A, whereas 

for the 2LUPS IC is unrealistically low, indicating that the conventional in-
version technique cannot be accurately applied to tapes presenting narrow 

filaments if the distance between the Hall sensors and the tape is too large. 

The values of IC computed from the FEM simulations are plotted as solid 
lines, and for the 2LUPS sample show a better agreement with the expected 

IC. 

 
Fig. 5 Field profiles calculated with analytical techniques for different dis-

tances Δz between the Hall sensors and the 2LUPS tape. The values of Δz are 
indicated in the figure. At a distance of 1 mm the field oscillations produced 

by the narrow filaments are not distinguishable. However, the field profile is 

different when the narrow filaments are not active (black dashed line). 



 

 

4 

ing the behavior described by Bean’s critical state model [26], 

[27]. The critical current density JC depends on the norm B of 

the magnetic flux density. We assume the JC(B) dependence 

reported in Ref. [24], which has been measured from CCs 

produced at SuperPower Inc. using the same procedure as for 

the samples studied in this work and the JC(B) relation can be 

described by: 

 JC(B)=  JC0 /(1 + (B/B0))α  (2) 

We used the method of least squares to fit this model func-

tion to the data reported in Ref. [24], and we obtained the fol-

lowing parameters: JC0=3.52 MA/cm2, B0= 3.54 T, α=3.62, as-

suming that the critical current density JC depends only on the 

magnitude of B. The simulations have been performed using a 

time-dependent two-dimensional model, which does not re-

solve the x direction. This simplification is justified since both 

the samples (2LUPS and flat reference) have length greater 

than 20 cm, and width of 1 cm. The intensity of the magnetic 

field applied in the z direction is ramped from 0 mT to 

0.037 mT, simulating the TAPESTARTM measurement. The 

geometrical characteristics of the reference and 2LUPS sam-

ples have been used for the simulation, where the latter also 

includes the exact width of each of the filaments. Since the ac-

tual distance between the SC layer and the Hall sensor is not 

known with high precision, we calculated the distance by fit-

ting the FEM results to the experimental data. Employing this 

procedure we obtained the value of Δz = 1.19 mm for the ref-

erence sample and Δz = 0.85 mm for the 2LUPS sample, 

which are values of distance within the expected range. 

The results of the FEM computations are shown in Fig. 3 as 

red and blue solid lines for the 2LUPS and reference sample, 

respectively. The dashed red line corresponds to the FEM 

simulation for a tape where the narrow filaments are not work-

ing (labelled as “off”). As can be seen, the match between the 

computed field profiles and the experimental data sets are very 

good. The relative error δ between the measured field profile, 

BExp, and the one calculated from the simulation, BSim, has 

been quantified using the normalized sum of the squared re-

siduals, expressed by the following formula: 

δ  =  (∑k (BExp-BSim)2 )/(∑k (BExp)2 )  (3) 

Here the index k runs over the 21 experimental data-points. 

Once expressed in percentage, this formula gives the follow-

ing result for the reference and 2LUPS samples: 

δ = 0.8 %,   (Reference) (4) 

δ = 6.8 %,   (2LUPS)  (5) 

δ = 18.8 %,   (2LUPS – central filaments “Off”)  (6) 

This agreement indicates that the critical current at zero 

field JC0=3.52 MA/cm2, obtained from the data reported in 

Ref. [24], is consistent with the experimental observation for 

both the samples. Moreover, the experimental data show a 

significantly better agreement (~2.5× lower relative error δ) 

with the simulation which includes the narrow filaments of the 

central region. For the geometry of the samples under consid-

eration the current density of 3.52 MA/cm2 corresponds to the 

critical current IC=387 A, which matches well with the calcu-

lation performed with the conventional approach when applied 

to the reference tape (375 ± 27 A). Measurement of IC for the 

2LUPS sample using the standard Hall scan setup and employ-

ing the conventional conversion, i.e. using the same parame-

ters as for the reference sample, results in much lower IC val-

ues (dashed red line in Fig. 4). It is already known that a more 

careful Hall scan analysis is necessary for CCs presenting nar-

row filaments as shown in [29]. For this reason we re-

calculated the value of IC for each position x along the length 

of the tapes, by considering the scale-factor which would give 

the best match with the field profile computed by FEM simu-

lation. The results of this calculation are shown in Fig. 4 as 

solid lines. It can be noticed that our method leads to approx-

imately the same result when applied to the reference tape. For 

the 2LUPS tape our approach is in much better agreement 

with the expected value of critical current than the conven-

tional calculation. This indicates that the TAPESTARTM setup 

can be used to interpret functionality of the 2LUPS filaments 

though a lower working distance between sample and sensor 

should, and if possible more sensors, should be applied for fu-

ture characterization to enable a more precise IC evaluation. 

III. CONCLUSION 

A new type of 2LUPS-based filamentary CCs was produced 

using Ion Beam Assisted Deposition and Metal Organic Vapor 

Deposition in commercial systems at SuperPower Inc. Micro-

structural characterization of the GYBCO superconducting 

layer cross-sections revealed that narrow non-functional re-

gions are present between the upper and lower plateaus. In ad-

dition, individual filaments were also found to be physically 

decoupled when producing the superconducting layer using 

the large-scale MOCVD technique.  

Hall-probe scanning using a commercial Theva TAPES-

TARTM system, suitable for long length characterization of 

standard CCs, was employed for critical current measurements 

of samples. The standard parameters and conventional (mag-

netic field/current) conversion used in this commercial charac-

terization system are not ideal for evaluation of filamentary 

CCs and significantly lower IC values were observed for the 

2LUPS CC compared to a standard flat sample. We performed 

FEM computations taking into consideration the 2LUPS ge-

ometry and the expected JC(B) dependence, and obtained a 

good agreement between the numerical model and the meas-

urement for both the reference and 2LUPS samples. 
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