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Abstract 
Summary: Metabolite analogues (MAs) mimic the structure of native metabolites, can competitively 

inhibit their utilization in enzymatic reactions, and are commonly used as selection tools for isolating 

desirable mutants of industrial microorganisms. Genome-scale metabolic models representing all 

biochemical reactions in an organism can be used to predict effects of MAs on cellular phenotypes. 

Here, we present the Metabolite Analogues for Rational Strain Improvement (MARSI) framework. 

MARSI provides a rational approach to strain improvement by searching for metabolites as targets 

instead of genes or reactions. The designs found by MARSI can be implemented by supplying MAs in 

the culture media, enabling metabolic rewiring without the use of recombinant DNA technologies that 

cannot always be used due to regulations. To facilitate experimental implementation, MARSI provides 

tools to identify candidate MAs to a target metabolite from a database of known drugs and analogues. 

Availability and Implementation: The code is freely available at https://github.com/biosustain/marsi 

under the Apache License V2. MARSI is implemented in Python. 

Contact: DKAHZE@chr-hansen.com, herrgard@biosustain.dtu.dk 

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

 

1 Introduction  
Genome-scale metabolic models (GEMs) describe the biochemical 

reactions in an organism and their relation to the proteome and genome 

(McCloskey et al., 2013). These models comprehensively represent 

natural metabolism and they are useful for predicting the effect of me-

tabolite analogues (MAs) as therapeutics (Agren et al., 2014; Kim et al., 

2014). 

Non-rational strategies such as mutagenesis and selection or laborato-

ry evolution can be used to develop industrial strains when the use of 

recombinant DNA technology is not allowed due to regulations (Derkx 

et al., 2014; Hansen et al., 2017). MAs, inhibiting the enzymatic conver-

sion of the target metabolite, act as metabolite knockouts and can be 

used as the selective pressure in non-rational strategies to shape the 

metabolism of microorganisms (Sørensen et al., 2016). 

Here, we present software that implements workflows to identify me-

tabolite knockouts instead of gene or reaction knockouts. We also pro-

vide a pipeline to identify structural analogues for those targets. 

2 Materials and Methods 
The first workflow consists of systematically replacing reaction knock-

outs (identified by other strain design methods) by metabolite knockouts, 

until we can find metabolite targets that result in a similar flux distribu-

tion. The second workflow consists of searching for metabolite targets 

using heuristic optimization, without the need to specify reaction knock-

outs a priori. A metabolite knockout consists of blocking all reactions 

consuming a given metabolite, excluding transporters. 

After identifying the metabolite targets, we search for MAs similar to 

them. We compiled a database of potential MAs from publicly available 

sources (see Supplementary Information). We use OpenBabel (O’Boyle 

et al., 2011) and RDKit (http://www.rdkit.org) to calculate the features 

used to compare candidate MAs to the target metabolite: number of 
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atoms/bonds/rings, MACCs fingerprints, Tanimoto coefficient (TC) and structural similarity score (SS).

Fig. 1. Metabolite target identification workflow and examples of MA targets. (A) The workflow for identifying for metabolite knockouts and candidate MAs. (B) Comparison 

between the known MAs (columns 1 and 2) and the best MARSI hits (columns 3 and 4) used to calibrate the search parameters. We show the Tanimoto coefficient and the structural score. 

We highlighted rows where the best MARSI hit and the known MA are the same. 

 

3 Results 
We implemented a software package containing algorithms to generate 

strain design strategies using MAs. Our software could generate metabo-

lite targets for a published knockout-based design (Harder et al., 2016). 

We also provide the tools to identify candidate MAs that could be used 

for implementation of the designs. 

3.1 Identification of replacement targets 

We used an experimentally validated strain design for itaconic acid 

production in Escherichia coli (Harder et al., 2016) and the E. coli GEM 

iJO1366 (Orth et al., 2014) to demonstrate the use of MARSI. MARSI 

identified acetyl-phosphate as a metabolite knockout target that can 

replace the PTAr reaction knockout and sustain the same flux for itacon-

ic acid production (Table 1). Using a SS cutoff of 0.5 (see Supplemen-

tary Information), we found 182 MAs for acetyl-phosphate (Table S1 

shows the top 10 hits). More examples of replacement targets in other E. 

coli strain designs can be found in Supplementary Information.  

Table 1. Knockout replacements for the strain design. We use Biomass 

Product Coupled Yield (Patil et al., 2005) as fitness measure. 

Non-replaced knockouts 
Replaced 

reaction 
Metabolite 

Original 

fitness 

New  

fitness 
     

PTA2, ICL, ALDD2x, PYK, 

SUCOAS, GGGABADr 
PTAr Acetyl-P 0.001 0.001 

3.2 Query calibration with known metabolite analogues 

In order to validate the ability of MARSI to find known analogues for a 

target metabolite, we selected 42 known metabolite-MA pairs from the 

literature (Table S3). We compared the structural features between the 

MAs and their target metabolites (Figure S1). We used a distance of 4 

for the number of atoms, 3 for the number of bonds and 2 for the number 

of rings as our query cutoff. The TC cutoff changes dynamically with the 

size of the metabolites (see Supplementary Information). In Figure 1B, 

we show the SS and TC for different targets and their known analogues 

as well as the best hit analogue in the database. For most targets MARSI 

found candidate MAs that showed higher structural similarity to the 

target metabolite than the known analogue. 
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