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SUMMARY

This paper presents a novel scheme for diagnosis of faults affecting sensors that measure the satellite attitude,
body angular velocity, flywheel spin rates, and defects in control torques from reaction wheel motors. The
proposed methodology uses adaptive observers to provide fault estimates that aid detection, isolation and
estimation of possible actuator and sensor faults. The adaptive observers do not need a-priori information
about fault internal models. A nonlinear geometric approach is used to avoid that aerodynamic disturbance
torques have unwanted influence on the fault estimates. An augmented high fidelity spacecraft model is
exploited during design and validation to replicate faults. This simulation model includes disturbance torques
as experienced in low Earth orbits. The paper includes an analysis to assess robustness properties of the
method with respect to parameter uncertainties and disturbances. The results document the efficacy of the
suggested methodology.

Received . . .

KEY WORDS: fault diagnosis; nonlinear geometric approach; adaptive observer; structural analysis;
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1. INTRODUCTION

The increasing operational requirements for onboard autonomy in satellite control systems imply
an inherent need for structural methods that support the design of complete and reliable supervisory
systems. It is necessary to design supervision schemes that are capable of realising accurate
diagnosis of potential faults, in order to allow subsequent fault accommodation actions to improve
system reliability and availability, while maintaining desirable performances. In this context, Fault
Detection and Diagnosis (FDD) systems provide fundamental information about the health status of
the system jointly with the estimation of any faults.
Significant research in FDD has been done in last three decades [1, 2] and numerous model-based
methods have been proposed [3, 4]. For a nonlinear spacecraft, linear models fall short, so nonlinear
approaches are needed [5, 6]. The NonLinear Geometric Approach (NLGA) [7] was inspired by the
Fault Detection and Isolation (FDI) problem for spacecraft. Later research [8, 9, 10] investigated
FDI and FDD methods for spacecraft, and some included supervisory actions to mitigate faults.
Specificly, [11] considered faults in reaction wheel control torque and in wheel spin rate sensors,
and [12] mapped physical faults to models that were affine with respect to actuator and sensor
faults. The FDI task was carried out, in [11, 13], through cross–checking of residual signals and
actuator and sensor fault estimates were provided by dedicated estimation filters using Radial Basis
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Function Neural Networks (RBF NN). This approach was quite complex and robustness properties
were not investigated. The majority of results in spacecraft FDD literature focus on occurrence of
either actuator or sensor defects separately (se e.g. [14, 15, 16]) or take into account the possible
occurrence of a more limited number of actuator and sensor faults at the same time, a more holistic
view is needed on diagnosis and operability of the entire ADCS.
This paper aims to assess the health condition and proper functioning of all essential sensors and
actuators used in a spacecraft Attitude Determination and Control System (ADCS). In particular,
the sensors measuring the satellite attitude, body angular velocity and flywheel spin rates are
considered, whereas the actuators are the reaction wheel motors. This work represents a substantial
improvement over previous works of the authors [11, 13]. Reduction in complexity is achieved by
a structure where fault estimates from Adaptive Observers (AO) are used as diagnostic signals for
all of the fault detection, isolation and estimation tasks. Step-stones in the design are based on the
general works [17, 18]. One is to augment models for the design of adaptive observers for sensor
fault estimation, such that actual output sensor faults are represented as input signals [19]. The
second is the design of adaptive observers for actuator and sensor fault estimation. A third is to
employ the NLGA [7] to obtain diagnostic signals that are independent of the knowledge of the
aerodynamic disturbance parameters and decoupled from different subsets of faults. The fourth is
to achieve fault isolation through the use of a cross–check of the diagnostic signals and a proper
decision logic.
Albeit being based on existing theoretical approaches, this paper describes a novel application
scheme with significant benefits. The joint use of the NLGA and adaptive observers allows to
take advantage of the benefits of both of them. The use of adaptive observers allows to design
generalised fault estimation filters which do not need a priori information about the type of fault.
The FDD adaptive observers can accurately estimate a generic fault without needing to define any
specific fault internal model. The NLGA allows to obtain better FDI performances and accurate
fault estimates, independent of the knowledge of the aerodynamic disturbance parameters, and
thus without any isolation and estimation error due to aerodynamic parameter uncertainties. The
Structural Analysis (SA) method, which is illustrated in [1] and already suggested for satellite
applications for example in [20, 21], is exploited to qualitatively assess detectability and isolability
of faults related to the satellite attitude control system. This satellite–wide analysis of the ADCS will
show that a second physical attitude sensor is required to achieve a complete isolation of possible
attitude and angular velocity sensor faults.
The proposed scheme relies on general satellite and reaction wheel dynamic models and a very
limited sensor hardware redundancy, and exploits only sensors and models that are fundamental
for the ADCS. No additional subsystem models or embedded measurement sensors, e.g. current or
voltage sensors, are required to achieve a complete FDD. Moreover, in practice, it is normal and
usually required for safety and reliability reasons to have hardware redundancy available for both
for satellite actuators and sensor systems.
The paper evaluates the performance of the proposed FDD system using a detailed nonlinear satellite
simulator with detailed flywheel modeling [24], measurement noise and exogenous disturbance
signals. In particular, the exogenous disturbance terms are represented by aerodynamic and
gravitational disturbance torques. Simulation results show various fault cases. An extensive Monte–
Carlo analysis is conducted to assess the robustness and reliability of the proposed diagnosis scheme
with respect to parametric uncertainties.
The paper is organised as follows. Section 2 describes the overall spacecraft and reaction wheel
models. Section 3 illustrates the structural analysis of the actuator and sensor fault detectability and
isolability. Section 4 illustrates the augmented spacecraft model. Section 5 illustrates the design
of the FDD system, which is based on NLGA and adaptive observers. Section 6 illustrates the
proposed procedure for the cross-checking of the diagnostic signals and the detection and isolation
of the actuator or sensor faults. Section 7 provides simulation results. Concluding remarks are finally
drawn in Section 8.
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SATELLITE FAULT DIAGNOSIS 3

2. SPACECRAFT AND ACTUATOR MODELS

2.1. Dynamic and Kinematic Equations

The spacecraft is considered as a rigid body, whose attitude is represented by using the quaternion
notation. The satellite mathematical model is given by the dynamic and kinematic equations of
(1) and (2) [22, 23], where ωin = [ω1, ω2, ω3]

T
in is the vector of body rates in roll, pitch, and yaw

with respect to the inertial reference frame, respectively, whilst hrw = [hrw,1, hrw,2, hrw,3, hrw,4]
T

is the vector of the flywheel angular momenta. The quaternion vector qorb = [q1, q2, q3, q4]
T
orb

describes the attitude of the spacecraft with respect to the orbital reference frame. The principal
inertia body-fixed frame is considered, with Ixx, Iyy, and Izz , the elements on the main diagonal of
the satellite inertia matrix Is.

ω̇in = −I−1
s S(Isωin + Trwhrw) + I−1

s (−Trwḣrw + Mgg + Maero) (1)

q̇orb =
1

2
Ωqorb (2)

with the skew-symmetric matrices

S(ωin) =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


in

,Ω(ωorb) =

 0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0


orb

(3)

The relations between the spacecraft angular rates ωin = [ω1, ω2, ω3]
T
in and ωorb = [ω1, ω2, ω3]

T
orb,

respectively expressed with respect to the inertial and orbital frames, are given by ω1

ω2

ω3


orb

=

 ω1

ω2

ω3


in

+ ω0

 2(q1q2 + q3q4)
(1− 2q2

1 − 2q2
3)

2(q2q3 − q1q4)

 (4)

where ω0 =
√
µ/R3 is the orbital angular velocity of the spacecraft. Therefore, it results that the

dynamic equations of (1) describe the spacecraft dynamics with respect to the inertial reference
frame, whilst the kinematic equations of (2) describe the attitude kinematics with respect to the
orbital reference frame. The inertial and orbital notations for the spacecraft angular velocity and
attitude, respectively, will be neglected in the rest of the paper.
The external disturbances, which can be cyclic or constant, consist of aerodynamic effects, gravity
gradient, magnetic moment, and solar effects. In this paper, the design of the FDD system exploits
the explicit decoupling only of the aerodynamic torque for the following reasons:

• the gravity is always present and, in many cases, produces disturbance torque at least one order
of magnitude larger than other external torques (e.g. Galileo, Voyager 1 and 2). However, its
model is almost perfectly known, and thus its effect does not need to be decoupled;

• many Low Earth Orbit (LEO) spacecrafts are not subject to significant solar disturbance
torques;

• it is desirable to have a spacecraft with no on–board residual magnetic field that affects
attitude; but there are cases in which magnetic actuators are used for attitude control purpose
(control torque is known).

The dynamic equations (1) explicitly include the gyroscopic terms due to cross-couplings between
the satellite angular rates and flywheel spin rates and the models of the gravitational and
aerodynamic disturbance torques Mgg and Maero about the centre of mass and described in the
body-fixed frame. Both the disturbances are dependant on the satellite attitude. As already remarked,
these disturbances typically represent the most important external disturbance torques affecting LEO
satellites [22, 23].
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Regarding the gravity gradient torque Mgg, the parameters µ andR in (5) represent the gravitational
constant and the orbit radius respectively. R is the satellite distance from the Earth center and v̂nadir
is the unit vector towards nadir expressed in body-frame coordinates.

Mgg =
3µ

R3
(v̂nadir × Isv̂nadir) =

3µ

R3

 2 (Izz − Iyy) (q2 q3 + q1 q4)
(
1− 2q2

1 − 2q2
2

)
2 (Ixx − Izz) (q1 q3 − q2 q4)

(
1− 2q2

1 − 2q2
2

)
4 (Iyy − Ixx) (q1 q3 − q2 q4) (q2 q3 + q1 q4)

 (5)

Regarding the aerodynamic torque Maero, it depends on the aerodynamic force represented in (6) by
the relation Faero = 1

2 ρSp V
2 CD, where ρ is the atmospheric density, V is the relative velocity of

the satellite, Sp is the reference area affected by the aerodynamic flux, andCD is the drag coefficient.
rcp =

[
rxcp

, rycp , rzcp
]T

is the vector joining the centre of mass and the aerodynamic centre of
pressure and v̂V is the unit velocity vector expressed in body-frame coordinates. It is worth noting
that, mainly due to the presence of the unknown terms ρ and CD, the input signal Maero in (1)
represents the main source of uncertainty. Therefore, the adaptive observers need to be independent
of the aerodynamic disturbance. The aerodynamic torque is:

Maero = Faero(v̂V × rcp) =
1

2
ρSpV

2CD

 2 (q1 q3 + q2 q4) rycp − 2 (q1 q2 − q3 q4) rzcp(
1− 2q2

2 − 2q2
3

)
rzcp − 2 (q1 q3 + q2 q4) rxcp

2 (q1 q2 − q3 q4) rxcp −
(
1− 2q2

2 − 2q2
3

)
rycp


(6)

The considered satellite Attitude Control System (ACS) consists of a fixed array of four reaction
wheels in a tetrahedral configuration defined by the matrix Trw:

Trw =

 1/
√

3 1/
√

3 −1/
√

3 −1/
√

3√
2/3 −

√
2/3 0 0

0 0 −
√

2/3
√

2/3

 (7)

The dynamic equations of the detailed reaction wheel models are given in (8), where hrw =

Irwωrw = [hrw,1, hrw,2, hrw,3, hrw,4]
T is the vector of the wheel angular momenta, ωrw =

[ωrw,1, ωrw,2, ωrw,3, ωrw,4]
T is the vector of the reaction wheel spin rates, Irw denotes the flywheel

inertia and b, c are the viscous and Coulomb friction coefficients, respectively [24]:

ω̇rw = Irw
−1ḣrw = Irw

−1Mrw − Irw−1b ωrw − Irw−1c sgnωrw (8)

The elements of the input vector u = Mrw = [M1, M2, M3, M4]
T correspond to the control

torques actuated by the reaction wheel motors.
The overall system model can be described by (1), (2) and (8). Thus, the overall state vector can
be represented by x = [ω1, ω2, ω3, q1, q2, q3, q4, ωrw,1, ωrw,2, ωrw,3, ωrw,4]

T , and all the state
variables are assumed to be measurable.

2.2. Actuator and Sensor Fault Modelling

The occurrence of possible faults affecting the actuated attitude control torques, the flywheel spin
rate, satellite attitude and angular velocity measurements is considered in this paper. Moreover, it is
assumed that at most one fault can affect the system at any time. However, it is worth observing that
the designed fault diagnosis system is able to detect, isolate and estimate any occurred actuator or
sensor fault at any time without needing any reconfiguration of the diagnosis system on the basis of
the considered fault. Being (1) and(8) already affine in the control inputs, the i–th physical actuator
fault can be simply modeled through the following additive fault input:

fMi = Mi −Mc,i, (i = 1, ..., 4) (9)

where Mc represents the vector of the commanded control inputs. Regarding the sensor faults, the
measurement faults can be defined as the differences between the real values ωrw,j , ωl, qm and

Manuscript accepted by Int. J. Robust. Nonlinear Control (2018)



SATELLITE FAULT DIAGNOSIS 5

measured values ωrwy,j
, ωy,l, qy,m of the j–th flywheel spin rate, l–th satellite angular velocity and

m–th quaternion component, respectively:

fωrw,j = ωrwy,j − ωrw,j (j = 1, ..., 4)
fωl

= ωy,l − ωl (l = 1, ..., 3)
fqm = qy,m − qm (m = 1, ..., 4)

(10)

It is worth noting that physical attitude sensor faults generally can have an effect on all the
components of the provided quaternion vectors simultaneously, thus each physical attitude sensor
fault is actually considered as a single additive fault vector fq = [fq1 , fq2 , fq3 , fq4 ]

T affecting the
measurement of the quaternion vector q in the rest of the paper.
The presence of fault terms in the output equations of the system does not allow the direct
exploitation of the NLGA as described in [7]. However, the exploitation of an augmented model, as
described in [17] and in the following Section 4, allows to represent the actual output sensor faults
as input faults in the augmented model, and subsequently makes the system model suitable for the
exploitation of the NLGA.
It is worth noting that in this paper, only additive fault representations are considered, due to the
requirement of nonlinear system models affine both in the inputs and faults for the exploitation of
the Nonlinear Geometric Approach (NLGA). The multiplicative model is, usually, a natural way to
model a wide variety of sensor and actuator faults, but cannot be used to represent more general
component faults [25]. On the other hand, the additive faults representation is more general than the
multiplicative one and can be used to model a wide class of faults, including sensor, actuator, and
component faults [25]. In addition, the additive faults representation is more suitable for the design
of FDI/FDD schemes because the faults are represented by one signal rather than by changes in
the dynamic model of the system, as is the case with the multiplicative representation. Finally, for
actuator faults, the equivalent multiplicative fault magnitude is needed for controller redesign, and
this involves that actuator command is available. However, for actuator fault mitigation, we often
choose to disregard actuators with faults and mitigate using remaining healthy actuators. The latter
approach is fully supported by the diagnosis presented in this paper. Multiplicative faults can always
be modelled in an equivalent but additive form. Both additive and multiplicative fault representations
can be equivalently exploited to model a wide variety of abrupt, incipient, intermittent actuator and
sensor faults due to different causes (e.g. mechanical, electrical, thermal, magnetic causes, etc.).

3. STRUCTURAL ANALYSIS OF FAULT DETECTABILITY AND ISOLABILITY

Before starting with the design of the fault diagnosis system, it is worth observing that the
availability of two different attitude sensors has been actually considered in this work. This hardware
redundancy is necessary for the complete sensor fault isolability and comes as outcome of the
application of fault detectability and isolability study to the considered fault scenarios. A structural
analysis has been performed as illustrated in [1]. For a comprehensive detailed application of the
structural analysis, refer to [1].
The structural analysis has be applied to the spacecraft model (13), which can be interpreted as a set
of constraints (i.e. a set of nominal input-output relations), to define a structure graph describing the
direct interactions among the signals within the dynamical system and independently of the nature
of these constraints. This graph gives a qualitative representation of the links between constraints
and the variables and parameters occurring in each constraint and allows to analyse the redundancies
within the system, which can be exploited for fault diagnosis.
The behavioural model of a system is defined by a pair S = (C,Z) where Z = {z1, z2, ..., zN}
is a set of variables and parameters and C = {c1, c2, ..., cM} is a set of constraints describing the
relations among the variables. The structural model of the system S = (C,Z) is a bipartite graph
G = (C,Z, E) where E ⊂ C × Z is the set of edges (ci, zj) ∈ E if the variable zj appears in the
constraint ci. In this undirected graph, all the variables and parameters zj ∈ Z that are connected
with a given constraint–vertex ci ∈ C have to satisfy the equation or rule that this constraint–vertex
represents.

Manuscript accepted by Int. J. Robust. Nonlinear Control (2018)



6 P. BALDI ET AL.

The system variables and parameters Z can be classified as known and unknown ones. Unknown
variables X are not directly measured, though there might exist some way to compute their value
from the values of known variables K. Similarly, the set of constraints C can be partitioned into the
subsets of constraints CK, which link only known variables, and CX , in which at least one unknown
variable appears.
The basic tool for the structural analysis concerning fault detectability and isolability is the
concept of matching in bipartite graphs G = (C,Z, E). A matching is a causal assignment, i.e.
the introduction of some orientations of the originally undirected structure graph edges, which
associates with every unknown system variable of X a constraint that can be used to determine
the variable assuming the other variables of Z to be known. Unknown variables that do not appear
in a matching cannot be calculated, whereas variables that can be matched in several ways can be
determined in different (redundant) ways. The last situation provides a means for fault detection and
isolation. A matching is called complete with respect to C if it has cardinality |M| = |C|, whilst it is
called complete with respect to X if |M| = |X | For a matchingM that is complete with respect to
C, each constraint belongs to exactly one edge of the matching:

∀c ∈ C : ∃x ∈ X such that (c, x) ∈M (11)

Similarly, for a matching that is complete with respect to X , every variable belongs to an edge:

∀x ∈ X : ∃c ∈ C such that (c, x) ∈M (12)

A graph G = (C,Z, E) is called over–constrained if there is a complete matching on the variables
X but not on the constraints C, just–constrained if there is a complete matching on the variables X
and on the constraints C and under–constrained if there is a complete matching on the constraints C
but not on the variables X .
As illustrated in [1], a system is said to be structurally diagnosable or monitorable if it is possible
to test whether the system constraints are satisfied or not. The analysis of system monitorability and
the FDI algorithms are based on Analytical Redundancy Relations (ARR)s, which become available
when there are constraints that are not needed to match the unknown variables in a system and some
redundant information exists. These additional constraints, as well as all others, need be satisfied
when the system operates according to its normal operation behaviour.
It is clear that ARRs can be defined only for over–constrained graphs, i.e. X–complete matchings,
because such matchings show a way to determine all the unknown variables of the system. The
redundancy relations are identified as the unmatched constraints in which all the unknown variables
have been matched, and subsequently the relations are expressed by known variables through
backtracking to known variables, according to the matching.
Considering the occurrence of actuator or flywheel spin rate sensor faults fMi

and fωrw,i
(i =

1, ..., 4), each reaction wheel can be considered as a distinct subsystem. The obtainable graphs
Gi = (Ci,Zi, Ei) (i = 1, ..., 4) corresponding to the reaction wheel model equations (8) result to
be over–constrained since the matching is complete on the unknown variables Xi but not on the
constraints Ci, i.e. |Mi| = |Xi| ≤ |Ci|. Therefore, it would be possible to define a distinct ARR for
each reaction wheel subsystem from the resulting unmatched constraints.
However, since both actuator and sensor faults fMi

and fωrw,i
affecting the i–th reaction wheel

subsystem are considered in this paper, it would not be possible to obtain the complete fault isolation
only by means of these ARRs, but only the fault detection when the constraint is violated and the
ARR not satisfied. In fact, each ARR results to be sensitive to both the actuator and sensor faults
affecting a specific reaction wheel subsystem.
In order to allow the complete fault isolation, some additional constraints can be introduced to obtain
an extended over–constrained graph by exploiting also the satellite dynamic equations (1). However,
since in the considered spacecraft dynamic model (1) the aerodynamic disturbance is characterized
by parameters whose actual values are generally not exactly known, the disturbance term d =
1
2 ρSp V

2 CD is considered as an unknown variable. As a consequence, the constraints associated
with the equations (1) could be not satisfied even in case of no faults if the unknown aerodynamic
parameters have actual values different from the assumed nominal ones. These discrepancies might

Manuscript accepted by Int. J. Robust. Nonlinear Control (2018)



SATELLITE FAULT DIAGNOSIS 7

lead to false alarms in the fault detection procedure. Therefore, the ARRs determined on the basis
of these constraints would be not robust to aerodynamic parameter uncertainties.
As it will be shown in Section 5.4, the exploitation of the NLGA allows to define an additional math-
ematical variable xadd, whose dynamic equation ẋadd = f(ω1, ω2, ω3,q, ωrw,1, ωrw,2, ωrw,3, ωrw,4)
is exactly decoupled from the aerodynamic disturbance and any actuator fault fMi

(i = 1, ..., 4),
and generally sensitive to all the sensor faults, including any sensor fault fωrw,i

(i = 1, ..., 4). yadd
represents the corresponding output variable. The constraints associated with this new variable
and its dynamic and output equations allow to determine an additional ARR that is robust to the
aerodynamic parameter uncertainties and exploitable for the complete isolation of faults fMi or
fωrw,i

(i = 1, ..., 4) affecting any reaction wheel subsystem. Since the NLGA variable xadd actually
is not sensitive to any actuator fault and sensitive to any flywheel spin rate sensor fault, only the
occurrence of any actual fault fωrw,i

(i = 1, ..., 4) results in a violation of the constraints linked
to xadd. The new graph is still over–constrained. Therefore, it would be possible to define five
structured ARRs from the resulting unmatched constraints, which allow the complete detection and
isolation of any actuator or flywheel spin rate sensor fault, without the risk of false alarms due to
the aerodynamic parameter uncertainties.
On the other hand, considering the occurrence of satellite attitude and angular velocity sensor faults
fωl

(l = 1, ..., 3) and fq and the presence of a single attitude sensor, the kinematic equations (2) of the
satellite attitude can be considered in the structural analysis. In this case, the corresponding graph
G = (C,Z, E) results to be again over–constrained since the matching is complete on the unknown
variables X but not on the constraints C, i.e. |M| = |X | ≤ |C|. Therefore, it would be possible to
define an ARR from the resulting unmatched constraint.
However, since the occurrence of both satellite attitude and angular velocity sensor faults fωl

(l = 1, ..., 3) and fq is now considered, it would not be possible to obtain the fault isolation only
by means of a single ARR, but only the fault detection when the constraint is violated and the
ARR is not satisfied. In fact, this ARR results to be sensitive to all the satellite attitude and angular
velocity sensor faults fωl

(l = 1, ..., 3) and fq.
In order to allow the complete fault isolation, some additional constraints need again to be
introduced. In this case, the equations describing the behaviour of the reaction wheel subsystems
can not be exploited since they are functions only of the satellite attitude and angular velocities,
and thus they are not sensitive to any fault affecting the satellite attitude or angular velocity sensors.
Moreover, the NLGA variable xadd previously introduced for the detection and isolation of actuator
and flywheel spin rate sensor faults can not be effectively exploited since it leads to an additional
ARR that is actually not satisfied when any sensor fault occurs. Hence, another way to determine
additional ARRs to be exploited for the fault isolation task is necessary.
In order to determine structured ARRs exploitable for the complete isolation of attitude and angular
velocity sensor faults, a two–steps procedure can be used. Firstly, the NLGA can be exploited
to determine nine new mathematical variables xadd,i (i = 1, ..., 9), whose each dynamic equation
ẋadd,i = f(ω,q) (i = 1, ..., 9) actually results to be decoupled from a specific angular velocity
sensor fault fωl

(l = 1, ..., 3) and sensitive to the couple of remaining angular velocity sensor faults
and to the attitude sensor fault fq. yadd,i represent the corresponding output variables. Further details
about these NLGA variables are given in Section 5.5. The constraints associated with these new
variables and their dynamic and output equations allow to determine ARRs that are structured with
respect to the angular velocity sensor faults fωl

(l = 1, ..., 3), thought they are still all sensitive to the
attitude sensor fault fq. Hence, in case of any angular velocity sensor fault, only a subset of ARRs
is not satisfied, thus allowing to recognize the occurred angular velocity sensor fault. However,
an additional ARR is still required in order to recognize if an attitude sensor fault or any angular
velocity sensor fault actually occurred, and thus obtain the complete fault isolation.
Actually, the only practical way to determine this last ARR consists in the exploitation of some
hardware sensor redundancy, which leads to the introduction of additional constraints on the
unknown variables. In this paper, the presence of a redundant attitude sensor is then considered. The
attitude measurements of these redundant sensors are represented in the following by means of two
different quaternion vectors qy,k (k = 1, 2), which are calculated on the basis of the information

Manuscript accepted by Int. J. Robust. Nonlinear Control (2018)



8 P. BALDI ET AL.

provided by two physical attitude sensors (e.g. star trackers). As a consequence, these attitude
measurements can be affected by the corresponding sensor faults fq,k (k = 1, 2).
Again, the corresponding graph G = (C,Z, E) results to be over–constrained since the matching is
complete on the unknown variables X but not on the constraints C, i.e. |M| = |X | ≤ |C|. Therefore,
exploiting both the NLGA and an additional hardware attitude sensor redundancy, it is possible
to define a sufficient number of ARRs from the resulting unmatched constraints, which allow the
detection and complete isolation of any possible attitude sensor fault fq,k (k = 1, 2) affecting one of
the two redundant sensors or any angular velocity sensor fault fωl

(l = 1, ..., 3).

4. AUGMENTED NONLINEAR MODEL

The overall nonlinear spacecraft model can be briefly written in the following form:{
ẋ = n(x) + g(x)u+ `a(x) fa + p(x) d
y = h(x) + `s(x) fs

(13)

in which the state vector is x(t) ∈ X (an open subset ofRn), u(t) ∈ Rm is the nominal control input
vector, fa(t) ∈ Rh and fs(t) ∈ Rq are the actuator and sensor fault vectors, respectively, whilst
d(t) ∈ Rr is the disturbance vector, and y ∈ Rp is the output vector. n(x), the columns of `a(x),
`s(x), g(x) and p(x) are smooth vector fields, and h(x) is a smooth map. In particular, for the
complete spacecraft model, embedding also the reaction wheel models, the following vectors are
defined:

x = [ω1, ω2, ω3, q, ωrw,1, ωrw,2, ωrw,3, ωrw,4]
T

u = [Mc,1, Mc,2, Mc,3, Mc,4]
T

d = Faero = 1
2 ρSp V

2 CD
fa = [fM 1, fM 2, fM 3, fM 4]

T

fs =
[
fω1

, fω2
, fω3

, fq,1, fq,2, fωrw,1
, fωrw,2

, fωrw,3
, fωrw,4

]T
y = [ωy,1, ωy,2, ωy,3, qy,1, qy,2, ωrw,1, ωrw,2, ωrw,3, ωrw,4]

T

(14)

with all the state variables assumed to be measurable,

h(x) = `s(x) =

 I3 0 0
0 I4 0
0 I4 0
0 0 I4

 (15)

due to the considered attitude sensor redundancy and the terms n(x), g(x), `a(x) and p(x) derived
from the equations of (1), (2) and (8).
Considering the approach proposed in [17] for the diagnosis of sensor faults, the spacecraft model
can be augmented by adding new state variables z =

∫ t
0
y(τ)dτ corresponding to the integrated

output variables, so that ż(t) = h(x) + `s(x)fs. The augmented system model with the new state
variables z and the corresponding new output variables w is therefore given as ẋ = n(x) + g(x)u+ `a(x) fa + p(x) d

ż = h(x) + `s(x) fs
w = z

(16)

or more synthetically as {
˙̄x = f̄(x̄) + ḡ(x̄)u+ ¯̀(x̄) f + p̄(x̄) d
ȳ = w = h̄(x̄)

(17)

where, for the considered spacecraft model, it results

x̄ =
[
xT , zT

]T
z =

[
zω1

, zω2
, zω3

, zq1 , zq2 , zωrw,1
, zωrw,2

, zωrw,3
, zωrw,4

]T
f =

[
fa
T , fs

T
]T (18)
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f̄(x̄) =

[
n(x)
h(x)

]
, ḡ(x̄) =

[
g(x)

0

]
, h̄(x̄) =

[
0 I15

]
(19)

¯̀(x̄) =

 `a(x) 0

0 `s(x)

 , p̄(x̄) =

[
p(x)

0

]
(20)

where zωl
(l = 1, ..., 3), the vectors zqk

(k = 1, 2), zωrw,j (j = 1, ..., 4) correspond to the integrated
output variables

∫ t
0
ωy,l(τ)dτ ,

∫ t
0

qy,k(τ)dτ ,
∫ t

0
ωrwy,j

(τ)dτ of the l–th satellite angular velocity
measurement, k–th quaternion vector measurement and j–th flywheel spin rate measurement,
respectively. It can be seen that the augmented model (17) of the spacecraft now results to be affine
in all the control inputs and both actuator and sensor fault inputs. Thus, the NLGA can be exploited
to design aerodynamic and fault decoupled adaptive observers also for the sensor fault diagnosis, as
described in Section 5.

5. FAULT DIAGNOSIS

5.1. Nonlinear Geometric Approach

The NonLinear Geometric Approach was formally developed in [7], and it relies on a coordinate
change in the state and output spaces providing an observable subsystem which, if it exists, is
affected by the fault, but unaffected by disturbances and the other faults to be decoupled. The
NLGA estimation filters for FDD are designed by exploiting the properties of this subsystem. For a
comprehensive detailed application of the NLGA, refer to [7].
In particular, the approach consider a generic nonlinear system model in the form{

ẋ = n(x) + g(x)u+ `(x) f + p(x) d
y = h(x)

(21)

in which the state vector x ∈ X (an open subset of R`n), u(t) ∈ R`u is the nominal control input
vector, f(t) ∈ R is the fault, d(t) ∈ R`d the disturbance vector (including also the faults to be
decoupled), and y ∈ R`m the output vector. n(x), `(x), the columns of g(x) and p(x) are smooth
vector fields, and h(x) is a smooth map. Therefore, if P represents the distribution spanned by the
column of p(x), the NLGA method can be devised as follows [7]:

1. determine the minimal conditioned invariant distribution containing P (denoted with
∑

P
∗ );

2. by using (
∑

P
∗ )⊥ (i.e. the maximal conditioned invariant codistribution contained in P⊥),

determine the largest observability codistribution contained in P⊥ (denoted with Ω∗);
3. if `(x) /∈ (Ω∗)

⊥, the design procedure can continue, otherwise the fault is not detectable;
4. whenever the previous condition is satisfied, it can be found a surjection Ψ1 and a function

Φ1 fulfilling Ω∗ ∩ span{dh} = span{d(Ψ1 ◦ h)} and Ω∗ = span{d(Φ1)}, respectively.

The functions Ψ(y) and Φ(x) defined as

Ψ(y) =

(
ȳ1

ȳ2

)
=

(
Ψ1(y)
H2y

)
,Φ(x) =

 x̄1

x̄2

x̄3

 =

 Φ1(x)
H2h(x)
Φ3(x)

 (22)

are (local) diffeomorphisms, where H2 is a selection matrix (i.e. a matrix in which any row has all
0 entries but one, which is equal to 1). x̄1 = Φ1(x) represents the measured part of the state which
is affected by f and not affected by d, whilst x̄2 and x̄3 represent the measured and not measured
part of the state, which are affected by f and d. In many cases x̄3 it is not present. In the new (local)
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coordinate defined previously, the system is described by the relations:

˙̄x1 = n1(x̄1, x̄2) + g1(x̄1, x̄2)u+ `1(x̄1, x̄2, x̄3) f
˙̄x2 = n2(x̄1, x̄2, x̄3) + g2(x̄1, x̄2, x̄3)u+

+`2(x̄1, x̄2, x̄3) f + p2(x̄1, x̄2, x̄3) d
˙̄x3 = n3(x̄1, x̄2, x̄3) + g3(x̄1, x̄2, x̄3)u+

+`3(x̄1, x̄2, x̄3) f + p3(x̄1, x̄2, x̄3) d
ȳ1 = h(x̄1)
ȳ2 = x̄2

(23)

with `1(x̄1, x̄2, x̄3) 6= 0 not identically zero. Denoting x̄2 with ȳ2 and considering it as an
independent input, the x̄1–subsystem, which is affected by the single fault fu and decoupled from
the disturbance vector d (embedding also the other faults to be decoupled), can be defined as follows:{

˙̄x1 = n1(x̄1, ȳ2) + g1(x̄1, ȳ2)u+ `1(x̄1, ȳ2, x̄3) f
ȳ1 = h(x̄1)

(24)

with `1(x̄1, ȳ2, x̄3) 6= 0 not identically zero. This subsystem is exploited for the design of the
adaptive observers and residual filters for fault diagnosis purpose.

5.2. Generic Adaptive Input Fault Estimation Filter

An adaptive observer can be designed for state observation and estimation of generic faults on the
basis of the work presented in [17]. Consider a generic nonlinear system described by{

˙̄x(t) = Āx̄(t) + W̄ f̄(x̄(t), t) + B̄u(t) + D̄fa(t)
ȳ(t) = C̄x̄(t)

(25)

where x̄ ∈ Rn̄, u ∈ Rm̄ and ȳ ∈ Rp̄ denotes, respectively, the vector of state variables, inputs and
outputs, fa ∈ Rq̄ is a not measurable vector which is considered as an additive term resulting
from generic input faults. The nonlinear continuous term f̄(x̄(t), t) ∈ Rj̄ is assumed to be known.
Ā ∈ Rn̄×n̄, B̄ ∈ Rn̄×m̄, C̄ ∈ Rp̄×n̄, D̄ ∈ Rp̄×q̄ (p̄ ≥ q̄), and W̄ ∈ Rn̄×j̄ are known constant matrices
with C̄ and D̄ being of full rank. The following assumptions are made:

Assumption 1. For every complex number s with nonnegative real part,

rank

[
sIn̄ − Ā

C̄

]
= n̄ (26)

Assumption 2. The nonlinear term f̄(x̄(t), t) is assumed to be known and Lipschitz about x̄
uniformly, i.e. ∀x̄, ˆ̄x ∈ Rn̄, ∥∥f̄(x̄(t), t)− f̄(ˆ̄x(t), t)

∥∥ ≤ Lf ∥∥x̄(t)− ˆ̄x(t)
∥∥ (27)

where Lf is the Lipschitz constant and assumed to be unknown.

Assumption 3. The fault vector fa and its derivative ḟa satisfy the following norm bounded
constraints:

‖fa‖ ≤ ρa,
∥∥ḟa∥∥ ≤ ρaa (28)

where ρa and ρaa are known positive constants.

Lemma 1. The pair (Ā, C̄) is observable if Assumption 1 holds.

This Lemma is directly derived from the Popov-Belevitch-Hautus (PBH) observability criterion.
It follows from Lemma 1 that there exists a matrix L ∈ Rn̄×p̄ such that Ā− LC̄ is stable, and thus
for any Q > 0, the Lyapunov equation

(Ā− LC̄)TP + P (Ā− LC̄) = −Q (29)

has a unique solution P = PT > 0, where P ∈ Rn̄×n̄ is a symmetric positive definite matrix and
Q ∈ Rn̄×n̄.
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Remark 1. It follows from Assumption 1 that the pair (Ā, C̄) is observable, which provides the
necessary and sufficient condition for the existence of an observer for system (25). Assumption 2
states that the considered nonlinear system is Lipschitz. Many practical systems satisfy the Lipschitz
condition, at least locally. In Assumption 2 the generic input fault fa is assumed to be nonzero and
differentiable after its occurrence. This assumption is quite general either for constant faults and
time–varying faults at limited rates.

Assumption 4. There exists an arbitrary matrix F ∈ Rh̄×p̄ such that

D̄TP = FC̄ (30)

For system (25) an adaptive observer is proposed in the following form:{
˙̄̂x(t) = Āˆ̄x(t) + W̄ f̄(ˆ̄x, t) + B̄u(t) + L(ȳ − ˆ̄y) + 1

2 k̂W̄H(ȳ − ˆ̄y) + D̄f̂a
ˆ̄y = C̄ ˆ̄x

(31)

where the observer gain L ∈ Rn̄×p̄, H ∈ Rj̄×p̄ is a matrix to be determined and k̂ satisfies the
following adaptation law:

˙̂
k = lk

∥∥H(ȳ − ˆ̄y)
∥∥2

(32)

where lk is a positive constant.
The term f̂a represents the estimated fault and its dynamics is defined as:

˙̂
fa = ΓF (ȳ − ˆ̄y)− εΓf̂a (33)

where Γ ∈ Rh̄×h̄ is a symmetric positive definite matrix representing the learning rate, F ∈ Rh̄×p̄ is
a matrix to be determined and ε is a positive scalar.
Denote ex = x̄− ˆ̄x, ey = ȳ − ˆ̄y and ef = fa − f̂a. Then, after the occurrence of the fault, the
dynamics of the state estimation error is obtained from

ėx = (Ā− LC̄)ex + W̄ (f̄(x, t)− f̄(ˆ̄x, t)) + D̄ef (34)

The following regions can be defined:

Ω1 =

{
(ey, f̂a)|λmin(P )

‖C̄‖2 ‖ey‖
2

+ λmin(Γ−1)
2

∥∥∥f̂a∥∥∥2

≤ λmin(Γ−1)ρ2
a + µ3

µ6

}
Ω2 =

{
(ey, f̂a)|λmin(P )

‖C̄‖2 ‖ey‖
2

+ λmin(Γ−1)
2

∥∥∥f̂a∥∥∥2

> λmin(Γ−1)ρ2
a + µ3

µ6

}
µ1 = λmin(−(Ā− LC̄)TP − P (Ā− LC̄)− 2In̄) > 0
µ2 = λmin(εI −G) > 0
µ3 = ρ2

aaλmax(Γ−1G−1Γ−1) + ερ2
a

µ4 = min(µ1, µ2)
µ5 = max(λmax(P ), λmax(Γ−1))
µ6 = µ4/µ5

(35)

where G ∈ Rq̄×q̄, P = PT ∈ Rn̄×n̄ are symmetric positive definite matrices and λmin and λmax are
the smallest and largest eigenvalues, respectively.

Theorem 1. Given system (25) with Assumptions 1, 2 and 3, if there exist matrices L, F , H and
P = PT > 0 such that

D̄TP = FC̄ (36)

W̄TP = HC̄ (37)

−Q+ 2In̄ < 0 (38)

where −Q = (Ā− LC̄)TP + P (Ā− LC̄) ∈ Rn̄×n̄, then for a given matrix Γ and a positive scalar
ε, the error dynamics (34) is uniformly bounded and (ey, f̂a) converges to Ω1 at a rate greater than
e−µ6t [17].
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Proof
Consider the Lyapunov function as

V = eTxPex + l−1
k e2

k/2 + eTf Γ−1ef (39)

where ek = k − k̂, k is a constant which is defined as k = L2
f . The time derivative of V can be

shown to be

V̇ ≤ −eTxQex + ‖ex‖2 + (L2
f − k̂)‖HCex‖2 − ek

∥∥HC̄ex∥∥2
+ 2eTf Γ−1ḟa + 2εeTf fa − 2εeTf ef

≤ eTx (−Q+ 2I)ex + 2eTf Γ−1ḟa + 2εeTf fa − 2εeTf ef
(40)

Since 2XTY ≤ 1
αX

TGX + αY TG−1Y holds for any scalar α > 0 and symmetric positive definite
matrix G, therefore

2eTf Γ−1ḟa ≤ eTf Gef + ḟTa Γ−1G−1Γ−1ḟa ≤ eTf Gef + ρaaλmax(Γ−1G−1Γ−1) (41)

Moreover
2εeTf fa ≤ ε‖ef‖

2
+ ερ2

a (42)

Substituting (41) and (42) in (40) gives

V̇ ≤ −eTx (Q− 2I)ex + eTf (G− εI)ef + ρaaλmax(Γ−1G−1Γ−1) + ερ2
a

≤ −µ1‖ex‖2 − µ2‖ef‖2 + µ3

≤ −µ4(‖ex‖2 + ‖ef‖2) + µ3

(43)

Moreover, from (39)

V ≤ λmax(P )‖ex‖2 + λmax(Γ−1)‖ef‖2

≤ max(λmax(P ), λmax(Γ−1))(‖ex‖2 + ‖ef‖2)

= µ5(‖ex‖2 + ‖ef‖2)

(44)

Then
V̇ ≤ −µ6V + µ3 (45)

For any real constant p̄ and q̄ ∈ R, it results that

(p̄− q̄)2 ≥ p̄2

2
− q̄2 (46)

Therefore

V ≥ λmin(P )‖ex‖2 + λmin(Γ−1)‖ef‖2 ≥
λmin(P )

‖C‖2
‖ey‖2 + λmin(Γ−1)


∥∥∥f̂a∥∥∥2

2
− ρ2

a

 (47)

If (ey, f̂a) ∈ Ω2, then V > µ3/µ6 and consequently V̇ < 0. Therefore, it can be concluded that
(ey, f̂a) is uniformly bounded and converges to Ω1 exponentially at a rate greater than e−µ6t.

Remark 2. The problem of finding matrices P = PT , L, H and F to simultaneously satisfy the
inequality (38) and equalities (36) and (37) can be transformed into the following LMI optimization
problem:

minimize γ1 + γ2 subject to P > 0 and

PĀ+ ĀTP − Y C̄ − C̄TY T + 2In̄ < 0[
γ1Iq̄ D̄TP − FC̄

(D̄TP − FC̄)
T

γ1In̄

]
> 0,

[
γ2Ij̄ W̄TP −HC̄

(W̄TP −HC̄)
T

γ2In̄

]
> 0

(48)

where Y = PL.
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5.3. Adaptation of the Generic Adaptive Estimator Filter in case of Output Sensor Faults

In a similar way, an adaptive observer can be designed for state observation and estimation of
generic sensor faults on the basis of the work presented in [17]. Consider a generic nonlinear system
described by {

ẋ(t) = Ax(t) +Wf(x, t) +Bu(t)
y(t) = Cx(t) +Dfs(t)

(49)

where x ∈ Rn, u ∈ Rm and y ∈ Rp denotes, respectively, the vector of state variables, inputs and
outputs, f̄s ∈ Rq̄ is a not measurable vector which is considered as an additive term resulting
from output sensor faults. The nonlinear continuous term f(x, t) ∈ Rj is assumed to be known.
A ∈ Rn×n,B ∈ Rn×m,C ∈ Rp×n,D ∈ Rp×q (p ≥ q), andW ∈ Rn×j are known constant matrices
with D being of full column rank. The following assumptions are made:

Assumption 5. The nonlinear term f(x, t) is assumed to be known and Lipschitz about x uniformly,
i.e. ∀x, x̂ ∈ Rn,

‖f(x(t), t)− f(x̂(t), t)‖ ≤ Lf ‖x(t)− x̂(t)‖ (50)

where Lf is the Lipschitz constant and assumed to be unknown.

Assumption 6. The output sensor fault vector fs and its derivative ḟs satisfy the following norm
bounded constraints:

‖fs‖ ≤ ρs,
∥∥ḟs∥∥ ≤ ρss (51)

where ρs and ρss are known positive constants.

As described in [17], for system (49) a new state variable z =
∫ t

0
y(τ)dτ can be defined so that

ż(t) = Cx(t) +Dfo(t). An augmented system with the new state z and output w is therefore given
as  ẋ(t) = Ax(t) +Wf(x, t) +Bu(t)

ż(t) = Cx(t) +Df̄o(t)
w(t) = z(t)

(52)

or in matricial form as[
ẋ
ż

]
=

[
A 0
C 0

] [
x
z

]
+

[
Wf(x, t)

0

]
+

[
B
0

]
u+

[
0
D

]
fs (53)

This system can further be rewritten in a more compact form as{
˙̄x(t) = Āx̄(t) + W̄f(x̄, t) + B̄u(t) + D̄fo(t)
ȳ(t) = w(t) = C̄x̄(t)

(54)

where x̄ ∈ Rn+p, ȳ = w ∈ Rp, Ā =

[
A 0
C 0

]
∈ R(n+p)×(n+p), B̄ =

[
B
0

]
∈ R(n+p)×m, D̄ =[

0
D

]
∈ R(n+p)×q, C̄ =

[
0 Ip

]
∈ Rp×(n+p), W̄ =

[
W
0

]
∈ R(n+p)×m. It can be noted that

the original sensor fault affecting the system output is now modelled as an input fault in the
augmented system 54. Therefore, the same filter design procedure described in Section 5.2 for
generic input faults fu can be adapted and exploited in order to design an adaptive filter for the
estimation of a generic output sensor fault fo, where n̄ = n+ p, p̄ = p, m̄ = m, q̄ = q and j̄ = j.

5.4. Design of Adaptive Filters for the Estimation of Reaction Wheel Actuator Faults and Flywheel
Spin Rate Sensor Faults

The NLGA FDD system is designed on the basis of a input affine nonlinear model structure (21)
as described in [7]. With the assumption of a single actuator or sensor fault occurring at any time,
it is possible to design distinct adaptive observers, which are specifically designed to accurately
estimate a particular actuator or sensor fault. The provided fault estimates can be directly exploited
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as diagnostic signals for the FDI task.
Considering the occurrence of possible actuator faults fMi (i = 1, ..., 4) and since the measurements
of the flywheel spin rate sensors are assumed to be available, the NLGA can be exploited in order
to design four scalar adaptive observers as described in Section 5.2 starting from actuator model
(8). These adaptive observers provide accurate estimates of the actuator faults and result to be
independent of the aerodynamic disturbance and satellite attitude and angular velocity sensor faults.
The scalar state variables x̄ of these four NLGA adaptive observers are defined as follows:

x̄1 = Irwωrw,1 x̄3 = Irwωrw,3
x̄2 = Irwωrw,2 x̄4 = Irwωrw,4

(55)

Therefore, considering the generic nonlinear model (25) and the related adaptive observer model
(31), the following terms can be defined for each observer:

Ā = − b
Irw

, B̄ = 1, C̄ = 1, D̄ = 1, W̄ = 1

f(x̄i, t) = −csgnx̄i, ui = Mi, fa,i = fMi
(i = 1, ..., 4)

(56)

where b is the viscous friction coefficient, c is the Coulomb friction coefficient and Irw is the
flywheel inertia.
The model of each of these four adaptive observers for i = 1, ..., 4 is given by{

˙̄̂xi(t) = Āˆ̄xi(t) + W̄f(ˆ̄xi, t) + B̄ui(t) + L(ȳi − ˆ̄yi) + 1
2 k̂W̄H(ȳi − ˆ̄yi) + D̄f̂a,i

ˆ̄yi(t) = C̄ ˆ̄x
(57)

The term f̂a,i represents the estimated actuator fault affecting the i–th reaction wheel motor.

Remark 3. The provided fault estimates f̂a,i (i = 1, ..., 4) are directly exploited as diagnostic signals
ξi (i = 1, ..., 4) also for the FDI task.

On the other hand, considering the occurrence of possible flywheel spin rate sensor faults fωrw,j

(j = 1, ..., 4), starting from the augmented nonlinear spacecraft model (17), the NLGA can be
exploited in order to design four vectorial adaptive observers as described in Section 5.3. These
adaptive observers provide accurate estimates of the flywheel spin rate sensor faults and result to be
independent of the aerodynamic disturbance and satellite attitude and angular velocity sensor faults.
The augmented state vectors x̄ of these four NLGA adaptive observers are defined as follows:

x̄1 =
[
ωrw,1, zωrw,1

]T
x̄3 =

[
ωrw,3, zωrw,3

]T
x̄2 =

[
ωrw,2, zωrw,2

]T
x̄4 =

[
ωrw,4, zωrw,4

]T (58)

where ωrw,j (j = 1, ..., 4) are the spin rates of the four flywheels and zωrw,j
(j = 1, ..., 4) are the

corresponding new state variables introduced through the model augmentation described in Section
4 by means of the integration of the output variables.
Therefore, considering the generic nonlinear model (49) and the related adaptive observer model
(31), the following terms can be defined for each observer:

Ā =

[
− b
Irw

0

1 0

]
, B̄ =

[
1
Irw
0

]
, C̄ =

[
0 1

]
, D̄ =

[
0
1

]
, W̄ =

[
1
0

]
f(x̄j , t) = − csgnωrw,i

Irw
, uj = Mj , fsj = fωrwj

(j = 1, ..., 4)

(59)
The model of each of these four adaptive observers for j = 1, ..., 4 is given by:{

˙̄̂zj(t) = Āˆ̄zj(t) + W̄f(ˆ̄zj , t) + B̄uj(t) + L̄(ȳj − ˆ̄yj) + 1
2 k̂W̄ H̄(wj − ŵj) + D̄f̂s,j

ˆ̄y = ŵj = C̄ ˆ̄xj
(60)

In this case, the term f̂s,j represents the estimated fault affecting the j–th flywheel spin rate sensor.
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Remark 4. The provided fault estimates f̂s,j (j = 1, ..., 4) are directly exploited as diagnostic signals
ξi (i = 5, ..., 8) for the FDI task.

Remark 5. It is worth noting that, actually, each of the eight NLGA adaptive observers described
above results to be sensitive to the couple of faults fMi

, fωrw,j
(i = j), i.e. the actuator and flywheel

spin rate sensor faults related to the same i–th reaction wheel, respectively.

In fact, the flywheel spin rate sensor fault fωrw,j
directly affects the residual signal ȳi −ˆ̄yi driving

the actuator fault estimate of the adaptive filters relying on the variables (55). On the other hand,
the actuator fault fMi

still indirectly affects, through the integration of the measured sensor outputs,
the residual signal ȳj −ˆ̄yj driving the sensor fault estimate of the adaptive filters relying on the
variables (58).
However, since each of these eight adaptive estimation filters is designed to provide accurate
estimates with respect to the occurrence of a specific actuator or flywheel spin rate sensor fault,
the provided signals f̂a,i (i = 1, ..., 4) result to be correct fault estimates only in case of actuator
faults fMi

, whilst they do not represent estimates of the actual faults in case of flywheel spin rate
sensor faults fωrw,j . Analogously, the provided signals f̂s,j (j = 1, ..., 4) result to be correct fault
estimates only in case of sensor faults fωrw,j

, whilst they do not represent estimates of the actual
faults in case of actuator faults fMi

.
Therefore, in general, these estimates allow for the isolation of the reaction wheel subsystem
affected by a possible actuator or sensor fault, but it could not be possible to achieve an exact and
complete fault isolation by exploiting only these signals. This can be achieved, thanks to the NLGA,
by designing and exploiting an additional residual filter in order to precisely classify a detected fault
as an actuator or sensor fault with the assumption of a single actuator or sensor fault occurring at
any time. The use of the NLGA results to be fundamental to design an additional residual filter that
results to be decoupled from the aerodynamic disturbance in order to obtain a diagnostic signal not
subject to detection errors due to parametric uncertainties of the aerodynamic disturbance model.
This NLGA residual filter exploits also satellite attitude and angular speed measurements in addition
to the flywheel spin rate measurements. The dynamic equation determined through the NLGA
results to be insensitive to any possible actuator fault and sensitive to a mathematical combination
of all the spacecraft sensor faults, and thus also to the flywheel spin rate sensor faults.
Starting from (24), a generic residual generator in filter form is modelled as follows:{

ξ̇ = n1(ȳ1, ȳ2) + g1(ȳ1, ȳ2)uc + L(ȳ1 − ξ)
ε = ȳ1 − ξ

(61)

where L > 0 is the gain of the asymptotically stable residual filter and ε is the generated diagnostic
signal. The state vector x̄ of this additional residual generator, obtained by means of the NLGA on
the basis of (13), is defined as follows:

x̄ =
[
rxcp(Ixxω1 + T1Irwωrw) + rycp(Iyyω2 + T2Irwωrw) + rzcp(Izzω3 + T3Irwωrw)

]
(62)

where T1, T2 and T3 are the rows of the matrix Trw, zωl
(l = 1, ..., 3).

Remark 6. The provided residual signal ε is exploited as additional diagnostic signal ξ9 to precisely
classify a detected fault as an actuator or flywheel spin rate sensor fault for the complete isolation.
After the correct isolation of the occurred actuator or sensor fault, the corresponding accurate
estimate is selected among the diagnostic signals ξ1, ..., ξ8.

5.5. Design of Adaptive Filters for the Estimation of Satellite Attitude and Angular Velocity Sensor
Faults

Considering the occurrence of possible faults fq,k (k = 1, 2) affecting the two considered attitude
sensors, starting from the augmented nonlinear spacecraft model (17), the NLGA can be exploited
in order to design two adaptive observers as described in Section 5.3. These adaptive observers
provide accurate estimates of the attitude sensor fault vectors and result to be independent of the
aerodynamic disturbance and actuator and sensor faults affecting the reaction wheel subsystems.
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It is worth noting that, since the measurements of two attitude sensors are assumed to be available,
each observer exploits the measurements of a different attitude sensor, in addition to the shared
angular velocity measurements.
The augmented state vectors x̄ of these two NLGA adaptive observers are defined as follows:

x̄1 =
[
qT , zTq1

]T
, x̄2 =

[
qT , zTq2

]T (63)

where q is the quaternion state vector and zqk
(k = 1, 2) are the corresponding new state vectors

introduced through the model augmentation described in Section 4 by means of the integration of the
available output vectors provided by the two considered attitude sensors. Each of these two observer
exploits the quaternion measurements qy,k (k = 1, 2) of a specific k–th attitude sensor and provides
the accurate estimate of the corresponding fault vector fq,k = [fq1 , fq2 , fq3 , fq4 ]

T (with k = 1, 2).
Therefore, considering the generic nonlinear model (49) and the related adaptive observer model
(31), the following terms can be defined for each observer:

Ā =



0 0 ω0
2 0 0 0 0 0

0 0 0 ω0
2 0 0 0 0

−ω0
2 0 0 0 0 0 0 0

0 −ω0
2 0 0 0 0 0 0

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0


, C̄ =

[
0 I4

]
, D̄ =

[
0
I4

]
, W̄ = 1

2

[
I4
0

]

f(z̄k, y, t) =

 ω3q2 − ω2q3 + ω1q4 + ω0q3
−ω3q1 + ω1q3 + ω2q4 + ω0q4
ω2q1 − ω1q2 + ω3q4 − ω0q1
−ω1q1 − ω2q2 − ω3q3 − ω0q2

 , fsk = fq,k (k=1,2)

(64)
where ω0 is the orbital angular velocity, q = [q1, q2, q3, q4]

T and the measurements of the satellite
angular velocity terms ωl (l = 1, ..., 3) are considered as independent measured inputs as illustrated
in Section 5.1. The model of each of these two adaptive observers for k = 1, 2 is given by{

˙̄̂xk(t) = Āˆ̄xk(t) + W̄f(ˆ̄xk, y, t) + L̄(ȳk − ˆ̄yk) + 1
2 k̂W̄ H̄(ȳk − ˆ̄yk) + D̄f̂s,k

ˆ̄yk = ŵk = C̄ ˆ̄xk
(65)

In this case, the term f̂s,k represents the estimated fault vector affecting the k–th attitude sensor.

Remark 7. The estimated fault vectors f̂s,1 and f̂s,2 are directly exploited as two sets of diagnostic
signals ξi (i = 10, ..., 13) and ξi (i = 14, ..., 17), respectively, for the FDI task.

These estimates allow the isolation of the attitude sensor affected by a possible fault since only
the NLGA adaptive observer specifically exploiting the faulty attitude sensor measurements provide
a fault estimate f̂s,k (k = 1, 2) different from zero with the assumption of a single fault occurring at
any time.
However, it is worth noting that, actually, both of these NLGA adaptive observers result to be
sensitive also to any angular velocity sensor fault fωl

(l = 1, ..., 3). In fact, the angular velocity
sensor faults fωl

directly affects, through the use of the corresponding measured sensor outputs as
independent inputs, the observer dynamic model and then the residual signal ȳk −ˆ̄yk driving the
adaptive fault estimate. Since the same angular velocity measurements are exploited as independent
inputs by both of the adaptive observers, in case of any angular velocity sensor fault fωl

(l =

1, ..., 3), both of the provided fault estimates f̂s,k (k = 1, 2) result to be different from zero and
with the same behaviour.
Moreover, since the adaptive observers are specifically designed with respect to the occurrence of
attitude sensor faults, the provided signals f̂s,k (k = 1, 2) result to be accurate fault estimates only
in case of attitude sensor faults fq,k, whilst they do not represent accurate estimates of the actual
faults in case of any angular velocity sensor fault fωl

(l = 1, ..., 3). On the other hand, considering
the occurrence of possible satellite angular velocity sensor faults fωl

(l = 1, ..., 3), starting from the
nonlinear spacecraft model (13), the NLGA can be exploited in order to design an adaptive observer

Manuscript accepted by Int. J. Robust. Nonlinear Control (2018)



SATELLITE FAULT DIAGNOSIS 17

as described in Section 5.2. In particular, this adaptive observer provide accurate estimates of the
angular velocity faults and results to be independent of the aerodynamic disturbance and actuator
and sensor faults affecting the reaction wheel subsystems.
The state vector x̄ of this NLGA adaptive observer is defined as follows:

x̄ =



(q2
1 − q2

2 − q2
3 + q2

4)
(−q2

1 + q2
2 − q2

3 + q2
4)

(−q2
1 − q2

2 + q2
3 + q2

4)
2(q1q2 + q3q4)
2(q1q3 + q2q4)
2(q1q4 + q2q3)
2(q1q2 − q3q4)
2(q1q3 − q2q4)
2(q2q3 − q1q4)


(66)

Therefore, considering the generic nonlinear model (25) and the related adaptive observer model
(31), the following terms can be defined for this observer:

Ā =



0 0 0 0 0 0 0 ω0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 −ω0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 ω0 0 0 0 0 0 0
0 0 0 0 0 0 −ω0 0 0
0 0 0 0 0 ω0 0 0 0
−ω0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


, C̄ = I9, D̄ = I9, W̄ = I9

f(x̄, y, t) =



−2ω2(q1q3 + q2q4) + 2ω3(q1q2 − q3q4)
2ω1(q2q3 − q1q4)− 2ω3(q1q2 + q3q4)
−2ω1(q1q4 + q2q3) + 2ω2(q1q3 − q2q4)

−2ω2(q2q3 − q1q4) + ω3(−q2
1 + q2

2 − q2
3 + q2

4)
−2ω1(q1q2 − q3q4) + ω2(q2

1 − q2
2 − q2

3 + q2
4)

ω1(−q2
1 − q2

2 + q2
3 + q2

4)− 2ω3(q1q3 − q2q4)
2ω1(q1q3 + q2q4)− ω3(q2

1 − q2
2 − q2

3 + q2
4)

2ω3(q1q4 + q2q3)− ω2(−q2
1 − q2

2 + q2
3 + q2

4)
2ω2(q1q2 + q3q4)− ω1(−q2

1 + q2
2 − q2

3 + q2
4)



fa =



−2fω2
(q1q3 + q2q4) + 2fω3

(q1q2 − q3q4)
2fω1

(q2q3 − q1q4)− 2fω3
(q1q2 + q3q4)

−2fω1(q1q4 + q2q3) + 2fω2(q1q3 − q2q4)
−2fω2(q2q3 − q1q4) + fω3(−q2

1 + q2
2 − q2

3 + q2
4)

−2fω1
(q1q2 − q3q4) + fω2

(q2
1 − q2

2 − q2
3 + q2

4)
fω1

(−q2
1 − q2

2 + q2
3 + q2

4)− 2fω3
(q1q3 − q2q4)

2fω1
(q1q3 + q2q4)− fω3

(q2
1 − q2

2 − q2
3 + q2

4)
2fω3(q1q4 + q2q3)− fω2(−q2

1 − q2
2 + q2

3 + q2
4)

2fω2(q1q2 + q3q4)− fω1(−q2
1 + q2

2 − q2
3 + q2

4)



(67)

where the elements of the additive fault vector fa that is actually estimated by the adaptive observer
are functions of the observer state vector x̄ and actual satellite angular velocity sensor faults fωl

(l = 1, ..., 3). In the same way, considering the satellite angular velocity terms ωl (l = 1, ..., 3)
as independent measured inputs as illustrated in Section 5.1, the nonlinear terms of the adaptive
observer are functions of the observer state vector x̄ and satellite angular velocities ωl (l = 1, ..., 3).
Therefore, the model of this adaptive observer is given by:{

˙̄̂x(t) = Āˆ̄x(t) + W̄f(ˆ̄x, y, t) + L(ȳ − ˆ̄y) + D̄f̂a
ˆ̄y = C̄ ˆ̄x

(68)
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where the term f̂a represents the estimated additive fault vector defined in (67).

Remark 8. The estimated fault vector f̂a is directly exploited as a set of diagnostic signals ξi
(i = 18, ..., 26) also for the FDI task.

The use of the NLGA allows to design an adaptive observer whose each state vector element is
characterised by dynamics actually sensitive only to a specific couple of physical angular velocity
sensor faults fωl

(l = 1, ..., 3) through the mathematical relations of fa,1 in (67). Therefore, the
provided diagnostic signals ξi (i = 18, ..., 26) can be organised as a generalised scheme.
In particular, the three diagnostic signals ξ18, ξ21, ξ25 are sensitive only to the two angular velocity
sensor faults fω2 , fω3 and not sensitive to the fault fω1 . The three diagnostic signals ξ19, ξ23, ξ24 are
sensitive only to the two angular velocity sensor faults fω1 , fω3 and not sensitive to the fault fω2 .
Finally, the three diagnostic signals ξ20, ξ22, ξ26 are sensitive only to the two angular velocity sensor
faults fω1

, fω2
and not sensitive to the fault fω3

. These diagnostic signals allow for the accurate
isolation of the angular velocity sensor actually affected by a possible fault through a proper cross–
check and decision logic.
Once a faulty angular velocity sensor has been correctly detected and isolated, the estimate f̂ωl

(l = 1, ..., 3) of the actual fault fωl
(l = 1, ..., 3) affecting the sensor can be derived by means of the

mathematical relations of fa in (67) and by exploiting the available attitude measurements thanks
to the assumption of a single angular velocity sensor fault occurring at any time.

6. DIAGNOSTIC SIGNAL CROSS–CHECK SCHEME

The FDI task is achieved by means of a proper cross–check procedure of the diagnostic signals
and exploiting a suitable decision logic to correctly detect and isolate the occurred fault, with the
assumption of single fault at any time.
It is important to observe that in this paper the fault estimates ξ1, ..., ξ26 obtained by the designed
NLGA adaptive filters are directly exploited as diagnostic signals also for the FDI task. These
diagnostic signals are simultaneously checked to detect and isolate any of the considered actuator
and sensor faults, without making any a–priori assumption regarding the occurring type of fault.
Moreover, due to the presence of measurement noise, thresholds have to be properly selected for the
generated diagnostic signals ξ1, ..., ξ26 in order to achieve the best performances in terms of false
alarm and missed detection rates. The values reported in Table I have been empirically selected
for each diagnostic signal by means of a 6− σ rule in a fault-free condition without parametric
uncertainty.

Table I. Selected residual threshold values.

Diagnostic signal: Threshold: Diagnostic signal: Threshold: Diagnostic signal: Threshold:

ξ1 2.58 · 10−2 ξ10 3.67 · 10−5 ξ18 5.54 · 10−5

ξ2 3.06 · 10−2 ξ11 3.65 · 10−5 ξ19 2.85 · 10−5

ξ3 3.00 · 10−2 ξ12 4.08 · 10−5 ξ20 5.11 · 10−5

ξ4 2.52 · 10−2 ξ13 1.45 · 10−5 ξ21 8.28 · 10−5

ξ5 0.5298 ξ14 3.67 · 10−5 ξ22 6.95 · 10−5

ξ6 0.5496 ξ15 3.65 · 10−5 ξ23 8.72 · 10−5

ξ7 0.4074 ξ16 4.08 · 10−5 ξ24 7.71 · 10−5

ξ8 0.7128 ξ17 1.45 · 10−5 ξ25 6.61 · 10−5

ξ9 1.52 · 10−2 ξ26 8.11 · 10−5

6.1. Fault Detection and Isolation Scheme for Actuator and Flywheel Spin Rate Sensor Faults

Assuming a single fault at any time, possible faults affecting the actuated reaction wheel motor
torques or flywheel spin rate measurements can be detected and isolated by cross–checking the nine
signals ξ1, ..., ξ9 provided by the NLGA adaptive observers relying on the variables (55), (58) and
(62) described in Section 5.4, as follows:
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1. Firstly, the two sets diagnostic signals ξ1, ..., ξ4 and ξ5, ..., ξ8 are analyzed. The first four
signals represent accurate estimates only of possible faults affecting the actuated control
torques, whilst the other four represent accurate estimates only of possible flywheel spin rate
sensor faults. Since each of the corresponding observers is sensitive only to the couple of
possible actuator and sensor faults affecting a specific reaction wheel, the faulty reaction
wheel subsystem can be easily detected and isolated as a fault estimate exceeds a properly
selected threshold.

2. Subsequently, a check on the additional diagnostic signal ξ9 allows to precisely isolate also
the type of the occurred fault (i.e. its location in the reaction wheel subsystem) since this
signal is sensitive only to a combination of sensor faults and insensitive to any actuator fault.
The diagnostic signal fξ9 does not exceed the selected threshold after the occurrence of any
actuator fault, whilst it does after the occurrence of any flywheel spin rate sensor fault.

6.2. Fault Detection and Isolation Scheme for Satellite Attitude and Angular Velocity Sensor Faults

The occurrence of a possible fault affecting the measurements of the satellite attitude and angular
velocity sensors can be detected and isolated by cross–checking the two sets of four diagnostic
signals ξ10, ..., ξ13 and ξ14, ..., ξ17 and the nine diagnostic signals ξ18, ..., ξ26 provided by the NLGA
adaptive observer relying on the variables (63) and (66) described in Section 5.5, respectively, as
follows:

1. Firstly, the two sets ξ10, ..., ξ13 and ξ14, ..., ξ17 are compared. Since each set exploits the
measurements of a different attitude sensor and of the same angular velocity sensors, the two
sets show different signal behaviours in case of attitude sensor faults and the same behaviours
in case of angular velocity sensor faults. Hence, it can be recognized if an attitude or angular
velocity sensor fault has occurred.

2. A faulty attitude sensor is isolated by checking which is the only set with signals exceeding
the selected thresholds.

3. On the other hand, a faulty angular velocity sensor is isolated by checking the three signals
of the set ξ18, ..., ξ26 not sensitive to each specific angular velocity sensor fault and thus not
exceeding the selected thresholds.

7. SIMULATION RESULTS

Some results achieved in Matlab/Simulink R© are reported in the following sections in order to show
the effectiveness of the proposed diagnosis scheme.

7.1. Simulation Parameters and Fault Scenarios

The satellite body is modelled as a rectangular parallelepiped whose the principal dimensions
are d = 0.6 m, w = 2 m, and h = 7.5 m (depth x width x height), rcp = [0.10, 0.15, −0.35] m
is the aerodynamic torque displacement vector, while the inertia values are Ixx = 330 kg ·m2,
Iyy = 280 kg ·m2, Izz = 60 kg ·m2.
A circular orbit at an altitude of 350 km and null inclination, with a low Earth equatorial orbit
radiusR = 6728.140 km is considered. The atmosphere density is ρ = ρmax = 6 · 10−11 kg/m3, the
drag coefficient is CD = 2.2, the orbital velocity is V = 8187.63 m/s, and the Earth’s gravitational
constant µ = 39.86004418 · 1013 m3/ s2.
The reaction wheels maximal torque is set to 0.75 Nm. The viscous and Coulomb fric-
tion coefficients are b = 5.16 · 10−6 Nms and c = 0.8795 · 10−3 Nm, respectively. A fly-
wheel moment of inertia Irw = 0.05 kg ·m2 and initial flywheel spin rate values ω0 =
[1500, 1500, − 1500, − 1500]T rpm for the four considered reaction wheels are assumed.
A standard Sliding Mode Controller (SMC) has been implemented in the ACS. A gradual attitude
change manoeuvre is considered, commencing at tman = 10 s from the initial attitude q0 =

[−0.0570, 0.3180, 0.1663, 0.9316]
T to reach the final one q = [−0.0429, 0.2732, 0.1815, 0.9437]

T .
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These quaternion vectors correspond to [φ0, θ0, ψ0, ]
T

= [−15, 35, 25]
T deg and [φ, θ, ψ, ]

T
=

[−12, 30, 25]
T deg for the attitude in Euler angles (i.e. roll, pitch and yaw angles), respectively.

Assuming a single fault at any time, four additive fault scenarios commencing at tfault = 20 s are
considered:

1. Actuator fault: fM2
= −aM ωrw2

− bM with aM linearly passing from zero at t = 20 s to
0.003 Nms at t = 30 s and bM = 0.05 Nm;

2. Flywheel sensor fault: fωrw,2
= −aωrw

with aωrw
linearly passing from zero at t = 20 s to

−0.5235 rad/s = −100 rpm at t = 45 s and then changing from −0.5235 rad/s = −100 rpm
at t = 50 s to −0.2618 rad/s = −50 rpm at t = 55 s;

3. Attitude sensor fault: fq,1 additive on the first quaternion measurement, corresponding to a
constant bias of 8.7266 · 10−4 rad = 0.05 deg on the roll angle measurements;

4. Angular velocity sensor fault: fω3
= −aω sin(bωt) with aω linearly passing from zero at

t = 20 s to 6.9808 · 10−4 rad/s at t = 40 s and bω = 0.05π rad/s = 0.025 Hz.

It is noted that the proposed diagnosis scheme does not assume any a–priori hypothesis regarding
the fault type and that the diagnosis system takes into account the possible occurrence of faults
affecting any actuator or sensor of the satellite ADCS. Moreover, the generic additive faults can
be used to represent different fault causes (e.g. mechanical, electrical, thermal, magnetic damages
and malfunctions, parameter variations, etc.), and behaviours (e.g. lock–in–place, failure, loss of
effectiveness, drift, bias, etc.). Sensor noises are modelled by Gaussian processes with zero mean.
Standard deviations equal to 3 arcsec, 3 arcsec/s and 1 rpm are assumed for the attitude measured in
Euler angles, satellite angular speed and flywheel spin rate measurements, respectively. A simulation
time of 60 s with a sampling time of 0.025 s is considered.

7.2. Fault Scenario 1 - Diagnosis of Actuator Faults

In case of the actuator fault fM2 , the FDI task can be carried out by cross–checking the five
diagnostic signals ξ1, ..., ξ4 and ξ9 described in Section (5.4), on the basis of the decision logic
described in Section (6.1). Fig. 1 shows the four diagnostic signals ξ1, ..., ξ4, provided by the
NLGA adaptive observers based on the state variables (55), and the diagnostic signal ξ9, which
is sensitive only to sensor faults and decoupled from the aerodynamic disturbance and actuator
faults. In particular, the signal ξ2 is sensitive to the couple of faults fM2 , fωrw,2 , although it actually
represents the correct estimate of fM2

only. The selected thresholds are depicted for each signal by
means of red lines. It is possible to detect and isolate the faulty subsystem just by means of the four
diagnostic signals ξ1, ..., ξ4. After the isolation of the faulty reaction wheel subsystem, a check on
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Figure 1. Actuator fault: four diagnostic signals sensitive to faults on a specific reaction wheel and additional
residual signal sensitive only to sensor faults.
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Figure 2. Estimate of the actuator fault fM2
.

the signal ξ9 allows to precisely isolate also the type of the occurred fault (i.e. its location) since this
residual is sensitive only to sensor faults and insensitive to actuator faults. It does not exceed the
selected threshold in case of actuator faults.
Once an actuator fault fMi (i = 1, ..., 4) has been detected and isolated, the corresponding estimate
is directly given by the related diagnostic signal f̂Mi

= ξi (i = 1, ..., 4), which has been exploited
also for the FDI task. Fig. 2 shows the estimate f̂M2

of the actuator fault fM2
provided by the

corresponding NLGA adaptive observer. It can be seen that the adaptive observer provides an
accurate estimate of the occurred fault, even in case of a generic fault function.

7.3. Fault Scenario 2 - Diagnosis of Flywheel Spin Rate Sensor Faults

On the other hand, in case of the flywheel spin rate sensor fault fωrw,2 , the FDI task can be carried
out by cross–checking the five diagnostic signals ξ5, ..., ξ9 described in Sections (5.4), on the basis
of the decision logic described in Section (6.1). Fig. 3 shows the four diagnostic signals ξ5, ..., ξ8
provided by the NLGA adaptive observers based on the variables (58). In particular, the signal ξ6 is
sensitive to the couple of faults fM2 , fωrw,2 , although it actually represents the correct estimate of
fωrw,2 only. As already described, the diagnostic signal ξ9 is sensitive only to flywheel sensor faults
and decoupled from the aerodynamic disturbance and actuator faults and allows to precisely isolate
also the type (i.e. its location) of the occurred fault since this residual is sensitive only to sensor
faults and insensitive to actuator faults. In this case, it does exceed the selected threshold after the
sensor fault occurrence. Hence, the occurred flywheel sensor fault can be correctly isolated thanks
to the different behaviour of this additional diagnostic signal. Once a flywheel spin rate sensor fault
fωrw,j (j = 1, ..., 4) has been detected and isolated, the corresponding estimate is directly given by
the related diagnostic signal f̂ωrw,j = ξi (i = 6, ..., 9), which has been exploited also for the FDI
task. Fig. 4 shows the estimate f̂ωrw,2

of the sensor fault fωrw,2
.

Remark 9. It is worth noting that, even if there are detection delays to exceed thresholds, the fault
estimates do not suffer from delay since these signals coincide with the diagnostic signals exploited
also by the FDI system, which are available in real time, and there are no estimation filters to be
activated and initialized after the fault isolation.

7.4. Fault Scenario 3 - Diagnosis of Satellite Attitude Sensor Faults

The occurrence of faults affecting one of the two considered attitude sensors can be detected and
isolated by exploiting the first two NLGA adaptive observers described in Section 5.5.
The diagnostic signals ξ10, ..., ξ13 and ξ14, ..., ξ17 obtained by means of the corresponding two
adaptive observers represent the correct estimates of the components of possible attitude sensor
faults fq,1 and fq,2 affecting the first and second attitude sensor, respectively. Therefore, assuming a
single fault occurring at any time, in case of attitude sensor fault the two observers, each providing
the estimate of a possible additive fault fq,k (k = 1, 2) affecting a specific attitude sensor, are
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Figure 3. Flywheel sensor fault: four diagnostic signals sensitive to faults on a specific reaction wheel and
additional residual signal sensitive only to sensor faults.
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Figure 4. Estimate of the flywheel sensor fault fωrw,2 .

characterised by diagnostic signals with different behaviours, as described in Section 6.2. Fig. 5
shows on the left the diagnostic signals ξ10, ..., ξ13 provided by the adaptive observer exploiting
the measurements of the first attitude sensor and angular velocity sensors the diagnostic signals
ξ14, ..., ξ17 provided by the adaptive observer exploiting the measurements of the second attitude
sensor and same angular velocity sensors. In can be seen that the two sets of diagnostic signals are
characterised by different behaviours. Hence, the occurrence of a fault affecting a specific attitude
sensor, which is feeding the set whose diagnostic signals exceed the selected thresholds, can be
isolated as described in Section 6.2.
Fig. 6 shows the estimate f̂q,1 obtained once the considered additive fault fq,1 affecting the
first attitude sensor has been properly isolated. The estimates of the additive fault components
are directly given by the related diagnostic signals f̂q,1 = [ξ10, ξ11, ξ12, ξ13]

T , which have been
exploited also for the FDI task.

7.5. Fault Scenario 4 - Diagnosis of Satellite Angular Velocity Sensor Faults

The occurrence of faults affecting any satellite angular velocity component can be detected and
isolated by exploiting the three NLGA adaptive observers described in Section 5.5.
The diagnostic signals ξ10, ..., ξ13 and ξ14, ..., ξ17 are actually sensitive also to the occurrence of
faults affecting any satellite angular velocity component since the two observers exploit also the
angular velocity measurements as independent inputs. Therefore, assuming a single fault occurring
at any time, in case of angular velocity sensor fault fω3

the two observers are characterised by
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Figure 5. Attitude sensor fault: two sets of diagnostic signals provided by the adaptive observer exploiting
the measurements of the first (left) and second (right) attitude sensor, respectively.
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Figure 6. Estimate of the additive quaternion fault vector fq,1 associated to the physical attitude sensor fault.

diagnostic signals with the same behaviours and exceeding the selected thresholds, since they exploit
the same angular velocity measurements, as described in Section 6.2. However, it is not yet possible
to isolate the specific faulty angular velocity sensor on the basis of these diagnostic signals only.
Therefore, once a fault affecting a generic angular velocity sensor has been detected, the nine
diagnostic signals ξ18, ..., ξ26 have to be exploited in order to accurately isolate the specific faulty
angular velocity sensor. In particular, Fig. 7 shows the three diagnostic signals ξ18, ξ21, ξ25 that
are sensitive only to the two angular velocity sensor faults fω2

, fω3
and not sensitive to the fault

fω1
. Fig. 8 shows the three diagnostic signals ξ19, ξ23, ξ24 that are sensitive only to the two angular

velocity sensor faults fω1 , fω3 and not sensitive to the fault fω2 . Finally, Fig. 9 shows the three
diagnostic signals ξ20, ξ22, ξ26 that are sensitive only to the two angular velocity sensor faults fω1 ,
fω2

and not sensitive to the fault fω3
. In this case, in Fig. 9 the last three signals ξ20, ξ22, ξ26 ,

which results to be decoupled from possible faults affecting the third angular velocity sensor, do not
exceed the selected thresholds. On the contrary, the other six signals generally result to be sensitive
to the occurred angular velocity sensor fault.
Finally, Fig. 10 shows the estimate f̂ω3 obtained once the fault fω3 has been properly isolated. The
estimate of the actual fault is mathematically derived directly from the diagnostic signals ξ18, ..., ξ26,
which have been exploited to complete the fault isolation task.
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Figure 7. Angular velocity sensor fault: set of three diagnostic signals sensitive to fω2 and fω3 , not sensitive
to fω1 .
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Figure 8. Angular velocity sensor fault: set of three diagnostic signals sensitive to fω1 and fω3 , not sensitive
to fω2 .

7.6. Robustness analysis

In order to assess the robustness and reliability of the proposed fault detection and isolation scheme,
several Monte–Carlo simulations have been performed in case of different parametric uncertainties.
The following parameters have been assumed as uncertain in the actual satellite model or in the
filters model with the following distributions and characteristic values directly reported in the
following tables:

1. Drag coefficient CD in filter model: normal distribution with standard deviation σCD
and

mean (nominal) value µCd = 2.2;
2. Air density ρ in satellite model: uniform distribution between ρmin = 2 · 10−12 kg/m3 and
ρmax = 6 · 10−11 kg/m3;

3. Earth gravitational constant µ in satellite model: uniform distribution between µmin/max =

39.86004418± 0.00000008 · 1013 m3/ s2;
4. Inertia vector Isat in filter model: normal distributions with standard deviation σIst for each

single component and mean (nominal) values Isat = [330, 280, 60] kg ·m2;
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Figure 9. Angular velocity sensor fault: set of three diagnostic signals sensitive to fω1 and fω2 , not sensitive
to fω3 .
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Figure 10. Estimate of the angular velocity sensor fault fω3 .

5. Aerodynamic displacement vector rcp in filter model: normal distributions with
standard deviation σr for each single component and mean (nominal) value rcp =
[0.10, 0.15, −0.35] m;

Remark 10. No uncertainties affecting the flywheel moments of inertia or reaction wheel friction
parameters have been considered in this analysis, since the flywheel moments can be easily and
accurately verified by means of laboratory tests during the satellite design phase, whilst any possible
variation or uncertainty of the friction parameters with respect to the nominal values has been
considered as actually due to mechanical actuator faults to be detected, isolated and estimated (e.g.
due to loss of lubrication, mechanical bearing damages, etc.). Moreover, the accurate knowledge of
the flywheel moment of inertia in the reaction wheel model allows to obtain accurate estimates of
the actuator and flywheel spin rate sensor faults exploiting the proposed adaptive observers.

For performance analysis of the proposed fault detection and isolation scheme, Sensitivity (Sens),
Specificity (Spec), and Accuracy (Accu) performance metrics are calculated as follows [26]:

Sens = TP
(TP+FN) Spec = TN

(TP+FN) Accu = TN+TP
(TN+TP+FN+FP ) (69)

where true positive (TP ) represents the number of trials during which the fault is correctly detected
and isolated over the whole number of trials of each Monte–Carlo trials run (correct detection), true
negative (TN ) represents the number of trials which are correctly recognized as normal operating
conditions, false positive (FP ) denotes the number of trials during which actual faulty operating
conditions are incorrectly recognized as normal ones (missed detection or incorrect isolation), and
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false negative (FN ) represents to the number of actual normal conditions which are incorrectly
recognized as faulty ones (false alarm). In particular, the accuracy performance index is equal to
1.00 in the best situation (100% of correct fault isolations or rejections) and lower in case of some
missed isolations or false alarms.
Each table reports the FDI performance results regarding a specific actual fault condition, i.e.
actuator fault fM2

(Tables II and III), sensor fault fωrw,2
(Table IV) or fault–free condition (Table

V). Different standard deviation values have been implemented for the normal distributions of the
parameters. Moreover, the number of trials for each test configuration and the numbers of TP, TN,
FP and FN are reported along with the sensitivity, specificity and accuracy parameters.
For each performance index and counter, two different values are given in each table and uncertainty
condition: the first one regards the number of TP, TN, FP or FN and the resulting Sens, Spec
and Accu obtained taking into exam the diagnostic signals for the detection and isolation of a
hypothetical fault fM2

, the second one regards the signals taken into exam for the detection and
isolation of a hypothetical fault fωrw,2 .

Remark 11. The robustness analysis has been performed only for actuator faults fMi (i=1,...,4) and
flywheel spin rate sensor faults fωrw,j (j=1,...,4). In fact, it is worth noting that the models of the
adaptive observers exploited for the FDD of satellite angular velocity and attitude sensor faults fq,k
(k=1,2) and fωl

(l=1,...,3) are actually functions only of the state variables and no other uncertain or
time–varying parameters are involved. Therefore, these adaptive observers and the diagnosis of the
related faults are automatically robust to any parameter uncertainty.

As it can be seen from the Tables II–V, both in stationary attitude and manouvre conditions,
the proposed detection and isolation scheme results to be robust to several parameter uncertainties
also in case of quite high uncertainty standard deviations. In particular, since the aerodynamic
disturbance is analytically decoupled in the observer and filter models, the corresponding diagnostic
signals result to be completely independent from any uncertainty affecting the drag coefficient
and air density values. Moreover, the effect of the uncertainty affecting the gravitational constant,
with the considered bound limits based on realistic values related to the Earth gravitational field,
results to be actually negligible. The considered realistic and very narrow experimental bounds
of the gravitational parameter confirm the assumption of a gravitational disturbance model almost
perfectly known.
Finally, the proposed scheme results to be generally robust also to uncertainties affecting the
knowledge of the satellite moments of inertia and aerodynamic displacement vector rcp. Just in case
of actual actuator fault and in the manouvre condition, it can be seen that some missed detections
and isolations or false alarms can occur due to the presence uncertainty affecting the knowledge
of the satellite moments of inertia, mainly due to the modulation and amplification of the model
error related to the parametric uncertainty by the satellite angular velocity values associated to the
manoeuvre. In this situation, the uncertainty leads to a misleading recognition of the occurred fault
type on the basis of the obtained additional diagnostic signal ξ9 given by the additional NLGA
residual filter.
Therefore, the accurate knowledge of the satellite moments of inertia results to be the most critical
aspect regarding the robustness and reliability of the proposed fault detection and isolation scheme
in case of actual actuator faults. However, it can be seen that the obtained isolation error consists
essentially in the wrong classification of the actual type of an occurring actual fault, due to the
structure of the exploited decision logic scheme. In the absence of any actuator or sensor fault, or
in case of flywheel spin rate sensor faults, the proposed scheme allows to obtain the correct fault
rejection or isolation even in case of manouvre and inertial parameter uncertainties.

8. CONCLUSION

This paper presented a novel practical scheme for diagnosis of actuator and sensor faults that
affect the attitude determination and control system (ADCS) of a low Earth orbit satellite. A
structural analysis was exploited to qualitatively assess the detectability and isolability of defects
in the ADCS. This analysis showed that partial hardware sensor redundancy is required in order
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Table II. Robustness analysis for the FDI of hypothetical faults fM2
, fωrw,2 in case of actual fault fM2

w.r.t. parametric uncertainties (percent standard deviations w.r.t. nominal values) without attitude change
manouvre.

fM2
Trials TPM2 TNM2 FPM2 FNM2 SensM2 SpecM2 AccuM2 TPω2 TNω2 FPω2 FNω2 Sensω2 Specω2 Accuω2

µ 100 100 0 0 0 1.00 — 1.00 0 100 0 0 — 1.00 1.00
ρ 100 100 0 0 0 1.00 — 1.00 0 100 0 0 — 1.00 1.00

CD : σ = 2% 100 100 0 0 0 1.00 — 1.00 0 100 0 0 — 1.00 1.00
CD : σ = 5% 100 100 0 0 0 1.00 — 1.00 0 100 0 0 — 1.00 1.00
CD : σ = 10% 100 100 0 0 0 1.00 — 1.00 0 100 0 0 — 1.00 1.00
rcp : σ = 3% 100 100 0 0 0 1.00 — 1.00 0 100 0 0 — 1.00 1.00
rcp : σ = 5% 100 100 0 0 0 1.00 — 1.00 0 100 0 0 — 1.00 1.00
rcp : σ = 10% 100 100 0 0 0 1.00 — 1.00 0 100 0 0 — 1.00 1.00
Isat : σ = 1% 100 100 0 0 0 1.00 — 1.00 0 100 0 0 — 1.00 1.00
Isat : σ = 2% 100 100 0 0 0 1.00 — 1.00 0 100 0 0 — 1.00 1.00
Isat : σ = 5% 100 100 0 0 0 1.00 — 1.00 0 100 0 0 — 1.00 1.00

Table III. Robustness analysis for the FDI of hypothetical faults fM2
, fωrw,2 in case of actual fault fM2

w.r.t.
parametric uncertainties (percent standard deviations w.r.t. nominal values) with attitude change manouvre.

fM2
Trials TPM2 TNM2 FPM2 FNM2 SensM2 SpecM2 AccuM2 TPω2 TNω2 FPω2 FNω2 Sensω2 Specω2 Accuω2

Isat : σ = 1% 100 100 0 0 0 1.00 — 1.00 0 100 0 0 — 1.00 1.00
Isat : σ = 2% 100 98 0 2 0 1.00 0.00 0.98 0 98 0 2 0.00 1.00 0.98
Isat : σ = 5% 100 56 0 44 0 1.00 0.00 0.56 0 56 0 44 0.00 1.00 0.56

Table IV. Robustness analysis for the FDI of hypothetical faults fM2
, fωrw,2 in case of actual fault fωrw,2

w.r.t. parametric uncertainties, both with and without attitude change manouvre.

fωrw,2
Trials TPM2 TNM2 FPM2 FNM2 SensM2 SpecM2 AccuM2 TPω2 TNω2 FPω2 FNω2 Sensω2 Specω2 Accuω2

µ 100 0 100 0 0 — 1.00 1.00 100 0 0 0 1.00 — 1.00
ρ 100 0 100 0 0 — 1.00 1.00 100 0 0 0 1.00 — 1.00

CD : σ = 2% 100 0 100 0 0 — 1.00 1.00 100 0 0 0 1.00 — 1.00
CD : σ = 5% 100 0 100 0 0 — 1.00 1.00 100 0 0 0 1.00 — 1.00
CD : σ = 10% 100 0 100 0 0 — 1.00 1.00 100 0 0 0 1.00 — 1.00
rcp : σ = 3% 100 0 100 0 0 — 1.00 1.00 100 0 0 0 1.00 — 1.00
rcp : σ = 5% 100 0 100 0 0 — 1.00 1.00 100 0 0 0 1.00 — 1.00
rcp : σ = 10% 100 0 100 0 0 — 1.00 1.00 100 0 0 0 1.00 — 1.00
Isat : σ = 1% 100 0 100 0 0 — 1.00 1.00 100 0 0 0 1.00 — 1.00
Isat : σ = 2% 100 0 100 0 0 — 1.00 1.00 100 0 0 0 1.00 — 1.00
Isat : σ = 5% 100 0 100 0 0 — 1.00 1.00 100 0 0 0 1.00 — 1.00

Table V. Robustness analysis for the FDI of hypothetical faults fM2
, fωrw,2 in case of actual fault–free

condition w.r.t. parametric uncertainties, both with and without attitude change manouvre.

Fault–free Trials TPM2 TNM2 FPM2 FNM2 SensM2 SpecM2 AccuM2 TPω2 TNω2 FPω2 FNω2 Sensω2 Specω2 Accuω2

µ 100 0 100 0 0 — 1.00 1.00 0 100 0 0 — 1.00 1.00

ρ 100 0 100 0 0 — 1.00 1.00 0 100 0 0 — 1.00 1.00
CD : σ = 2% 100 0 100 0 0 — 1.00 1.00 0 100 0 0 — 1.00 1.00
CD : σ = 5% 100 0 100 0 0 — 1.00 1.00 0 100 0 0 — 1.00 1.00
CD : σ = 10% 100 0 100 0 0 — 1.00 1.00 0 100 0 0 — 1.00 1.00
rcp : σ = 3% 100 0 100 0 0 — 1.00 1.00 0 100 0 0 — 1.00 1.00
rcp : σ = 5% 100 0 100 0 0 — 1.00 1.00 0 100 0 0 — 1.00 1.00
rcp : σ = 10% 100 0 100 0 0 — 1.00 1.00 0 100 0 0 — 1.00 1.00
Isat : σ = 1% 100 0 100 0 0 — 1.00 1.00 0 100 0 0 — 1.00 1.00
Isat : σ = 2% 100 0 100 0 0 — 1.00 1.00 0 100 0 0 — 1.00 1.00
Isat : σ = 5% 100 0 100 0 0 — 1.00 1.00 0 100 0 0 — 1.00 1.00

to achieve complete isolation of all possible sensor faults. The proposed diagnosis algorithm
exploited fault estimates provided by adaptive observers as diagnostic signals, and a generalised
estimation filter design was obtained using an approach based on an augmented spacecraft.
Aerodynamic disturbance decoupling was achieved using the nonlinear geometric approach.
The use of adaptive fault estimation filters allowed to estimate generic fault functions without
needing any a-priori information about fault internal models. Simulation results served to assess the
effectiveness of the proposed diagnosis scheme and verified that the method is able to achieve quick
and correct fault detection and isolation and also provide accurate fault estimates. A robustness
and reliability analysis with respect to system parameter uncertainties and disturbances verified
very satisfactory performances of the proposed fault diagnosis scheme. Further developments
could concern the integration of the proposed scheme in an active fault-tolerant control system.
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6. Edelmayer, A., Bokor, J., Szabó, Z. and Szigeti, F. (2004). Input reconstruction by means of system inversion:
A geometric approach to fault detection and isolation in nonlinear systems. International Journal of Applied
Mathematics and Computer Science, 14(2), 189–199.

7. De Persis, C., and Isidori, A. (2001). A geometric approach to nonlinear fault detection and isolation. IEEE
Transactions on Automatic Control, 45, 853–865.

8. Patton, R., Uppal, F., Simani, S., and Polle, B. (2008). Reliable fault diagnosis scheme for a spacecraft attitude
control system. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability,
222, 139–152.

9. Wu, Q., and Saif, M. (2009). Model–based robust fault diagnosis for satellite control systems using learning and
sliding mode approaches. Journal of Computers, 4(10), 1022–1032.

10. Azarnoush, H. (2010). Fault diagnosis in spacecraft attitude control system: a model–based approach. LAP
LAMBERT Academic Publishing.

11. Baldi, P., Blanke, M., Castaldi, P., Mimmo, N., and Simani, S. (2015). Combined Geometric and Neural Network
Approach to Generic Fault Diagnosis in Satellite Reaction Wheels. 9th IFAC Symposium on Fault Detection,
Supervision and Safety for Technical Processes - SAFEPROCESS’15, Paris (France), 48(21), 194–199.

12. Mattone, R., and De Luca, A. (2006). Nonlinear fault detection and isolation in a three–tank heating system. IEEE
Transactions on Control Systems Technology, 14(6), 1158–1166.

13. Baldi, P., Blanke, M., Castaldi, P., Mimmo, N., and Simani, S. (2016). Combined Geometric and Neural Network
Approach to Generic Fault Diagnosis in Satellite Actuators and Sensors. 20th IFAC Symposium on Automatic
Control in Aerospace - ACA 2016, Sherbrooke (Canada), 49(17), 432–437.

14. Chen, W., and Saif, M. (2007). Observer–based fault diagnosis of satellite systems subject to time–varying thruster
faults. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 129(3), 352–356.

15. Meskin, K., and Khorasani, N. (2007). Fault detection and isolation in a redundant reaction wheels configuration
of a satellite. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics – ICSMC 2007,
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