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Abstract. AES is probably the most widely studied and used block
cipher. Also versions with a reduced number of rounds are used as a
building block in many cryptographic schemes, e.g. several candidates of
the CAESAR competition are based on it.
So far, non-random properties which are independent of the secret key are
known for up to 4 rounds of AES. These include differential, impossible
differential, and integral properties.
In this paper we describe a new structural property for up to 5 rounds
of AES, differential in nature and which is independent of the secret
key, of the details of the MixColumns matrix (with the exception that
the branch number must be maximal) and of the SubBytes operation.
It is very simple: By appropriate choices of difference for a number of
input pairs it is possible to make sure that the number of times that
the difference of the resulting output pairs lie in a particular subspace is
always a multiple of 8.
We not only observe this property experimentally (using a small-scale
version of AES), we also give a detailed proof as to why it has to exist.
As a first application of this property, we describe a way to distinguish
the 5-round AES permutation (or its inverse) from a random permutation
with only 232 chosen texts that has a computational cost of 235.6 look-
ups into memory of size 236 bytes which has a success probability greater
than 99%.

Keywords: Block cipher, Permutation, AES, Secret-Key Distinguisher

1 Introduction

Block ciphers play an important role in symmetric cryptography providing the
basic tool for encryption. They are the oldest and most scrutinized cryptographic

This is the extended version of the article which appears in the proceedings of EU-
ROCRYPT 2017. It includes a more formal description of the main result based on
the subspace trail notation [15] recently introduced at FSE 2017.



tools. Consequently, they are the most trusted cryptographic algorithms that are
often used as the underlying tool to construct other cryptographic algorithms,
whose proofs of security are performed under the assumption that the underlying
block cipher is ideal.

While the security of public-key encryption schemes are related to the hard-
ness of well-defined mathematical problems, informally a block cipher is consid-
ered secure if an (efficient) adversary, with access to the encryptions of messages
of its choice, cannot tell apart those encryptions from the values of a truly ran-
dom permutation. In other words, this means that an (efficient) adversary, with
access to the encryptions of messages of its choice, cannot tell the difference
between the block cipher (equipped with a random key) and a truly random
permutation. This notion of block cipher security was introduced and formally
modeled by Luby and Rackoff [20] in 1988, and it was motivated by the design of
DES. To be a bit more precise (but without going into the details), a secret key
distinguisher is one of the weakest cryptographic attacks that can be launched
against a secret-key cipher. In this attack, there are two oracles: one that sim-
ulates the cipher for which the cryptographic key has been chosen at random
and the other simulates a truly random permutation. The adversary can query
both oracles and his task is to decide which oracle is the cipher and which is the
random permutation. The attack is considered to be successful if the number of
queries required to make a correct decision is below a well defined level.

The Rijndael block cipher [9] has been designed by Daemen and Rijmen in
1997 and was chosen as the AES (Advanced Encryption Standard) by NIST in
2000. Nowadays, it is probably the most used and studied block cipher. The
possibility to set up a secret key distinguisher for 5-round of AES that exploits
a property which is independent of the secret key was already considered in
[22] and improved in [15]. However, only partial solutions have been proposed
and the problem is still open. As we will argue below, the solutions so far are
partial because the distinguishers are derived from a key-recovery attack and
they actually exploit as property the existence of a sub-key for which a property
on 4 rounds holds.

In this paper, we present (and practical verify) the first secret-key distin-
guisher for 5-round AES which exploits a new structural/differential property
which is independent of the secret key, that is a property that can be verified
without needing to know or to get to know any information of the secret key.
As we are going to show, it requires 232 chosen plaintexts/ciphertexts and has a
computational cost of 235.6 table look-ups.

1.1 Secret-Key Distinguishers for AES-128

In the usual security model, the adversary is given a black box (oracle) access to
an instance of the encryption function associated with a random secret key and
its inverse. The goal is to find the key or more generally to efficiently distinguish
the encryption function from a random permutation.

More formally, a block cipher is a family of functions E : K×S → S, with K
a finite set called the key space and S a finite set called the domain or message
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space. For every k ∈ K, the function Ek(·) = E(k, ·) is a permutation. The
inverse of the block cipher E is defined as a function E−1 : K × S → S that
satisfies E−1k (Ek(s)) = s for each k ∈ K and for each s ∈ S. A block cipher
Ek(·) with key space K is a (q, t, ε)-pseudorandom permutation (PRP) if any
adversary making at most q oracle queries and running in time at most t can
distinguish Ek (for a random key k) from a uniformly random permutation with
advantage at most ε.

Definition 1. Let E be block cipher defined as before, and Perm(S) be the set
of all permutations of S. Let D be a distinguisher with oracle access to a permu-
tation and its inverse, and returning a single bit. The (Strong PseudoRandom
Permutation) SPRP-advantage of D against E is defined as

AdvsprpE (D) = |Prob(π ← Perm(S) : Dπ(·),π−1(·) = 1)

− Prob(k ← K : DEk(·),E−1
k (·) = 1)|.

For integers q and t, the SPRP-advantage of E is defined as

AdvsprpE (q, t) = max
D

AdvsprpE (D),

where the maximum is taken over all distinguishers making at most q oracle
queries and running in time at most t. E is a (q, t, ε)-SPRP if AdvsprpE (q, t) ≤ ε.

Note that if AdvE(D) ' 0, then the Ek(·) behaves (exactly) like a random
permutation from the distinguisher point of view.

Before we focus on the 5-round distinguisher, we briefly summarize in Sect. 3
the properties exploited by the secret key distinguisher on AES-like permutations
up to 4 rounds. We stress that, even if a key-recovery attack can also be used as
a secret key distinguisher in this paper we focus only on secret-key distinguisher
that are independent of the secret key.

The most competitive secret-key distinguishers up to 3-round are based on
the differential [5] and on the truncated differential cryptanalysis [18]. These dis-
tinguishers exploit the fact that some r-round differential characteristics exist
with higher probability for an AES permutation than for a random one. In [8],
Daemen et al. proposed an attack vector that uses a 3-round distinguisher to
attack up to 6 rounds of the cipher and later became known as integral attacks.
In an integral distinguisher, given inputs with particular properties, one exploits
the fact that the sum of the corresponding ciphertexts is zero with probability
1 for an AES permutation, while this happens with a (much) lower probabil-
ity for a random permutation. Finally, another possible distinguisher exploits
the impossible-differential cryptanalysis, which was independently proposed by
Knudsen [19] and by Biham et al. [3]. In impossible-differential cryptanalysis,
the idea is to exploit the fact that some differential trails hold with probability
0 for an AES permutation (i.e. impossible differential trails), while they have
probability greater than 0 for a random permutation.
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5-Round “Distinguisher” for AES-128: State of Art. A distinguisher
for five rounds of AES-128 has been recently proposed by Sun, Liu, Guo, Qu,
and Rijmen at Crypto 2016 [22]. This distinguisher - which requires the whole
input-output space to work - has been improved in [15], where authors set up
a secret key distinguisher in the same setting of the one proposed in [22], but
which requires only 298.2 chosen plaintexts.

Both these two distinguishers are derived by a key-recovery attack on AES-
128 with a secret S-Box. In particular, they are able to distinguish a random
permutation from an AES one exploiting the existence of a (secret) key for
which a property on 4-round is verified. In more details, the property on 4-
round used in [22] is the balance property, while the one used in [15] is the
impossible differential one. With respect to a classical key-recovery attack, these
distinguishers require the knowledge only of a single byte of the secret subkey
to distinguish an AES permutation with a secret S-Box from a random one.

For a complete comparison with the distinguisher presented in this paper,
we briefly recall how they are set up, and we refer to [22] and [15] for a complete
discussion. In both cases, authors first assume to know the difference of two bytes
(i.e. 1 byte) of one secret subkey. Using this knowledge, they are able to extend
a four rounds distinguisher to five rounds. In order to turn these distinguishers
into secret-key ones, the idea is simply to iterate these distinguishers on all the
28 possible values of the difference of these two bytes of the secret subkey. The
idea is that for an AES permutation there exists one difference of these two
bytes for which a property (which is independent of the secret key) on 4-round
is satisfied, while for a random permutation this property on 4-round is never
satisfied (with high probability) for any of the 28 possible values.

We stress that both these distinguishers require to find part of the secret key
in order to verify a property on 4 rounds, i.e. they work as key-recovery attacks.
Note that the research of a secret-key distinguisher which is independent of
the secret key is of particular interest and importance since it (theoretically)
allows to set up key recovery attacks, as it already happened for the secret-key
distinguishers up to 4 rounds just described. Moreover, we highlight that both
these distinguishers are independent of the details of the S-Box, but they depend
on the details of the MixColumns matrix (in particular, they exploit the fact that
for at least one column of the MixColumns matrix or its inverse two elements
are identical).

1.2 Our Result: the First 5-Round Secret-Key Distinguisher for
AES-128 Independent of the Secret Key

The results presented in the previous two papers don’t solve the problem to set
up a 5-round secret key distinguisher of AES which exploits a property which is
independent of the secret key. In Sect. 4 of this paper, we provide a solution to
this problem, that is we propose the first secret-key distinguisher on 5-round
AES which exploits a new property which is independent of the secret key and
of the details of the S-Box. To present this new distinguisher in an easy and
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natural way, we use the subspace trail notation1 introduced at FSE 2017 in [15],
which is briefly recalled in Sect. 3.

The high-level idea is very easily described. By appropriate choices of differ-
ence for a number of input pairs it is possible to make sure that the number of
times that the difference of the resulting output pairs lie in a particular subspace
is always a multiple of 8.

More concretely, suppose to use a coset of a particular subspace D of the
plaintexts space, and the corresponding ciphertexts after 5 rounds. Let M be a
particular subspace of the ciphertexts space. The idea is to count the total num-
ber of different ciphertext pairs that belong to the same coset of this subspace
M. As we show in detail in the paper, for an AES permutation this number can
only be a multiple of 8 (independently of the dimensions of D and ofM), while
it does not have any particular property for the case of a random permutation.
As we will see in the comparison, the resulting distinguisher proposed in this
paper is much more efficient than those proposed earlier, it works both in the
encryption and in the decryption mode of AES and it does not depend on the de-
tails of the MixColumns matrix (with the exception that the branch number must
be five) or/and of the SubBytes operation. A formal statement of this property
used by our distinguisher is given in Theorem 3 in Sect. 4.1, and its detailed
proof is given in Sect. 6.

Comparison with 4-Round Secret-Key Distinguishers. These last prop-
erties also highlight a difference between our new distinguisher and the others
currently used in literature. In most cases, especially in the cryptanalysis of
AES, one does not have the necessity to investigate the details of the S-Boxes.
Consider for example the 4-round secret-key distinguishers, based on the inte-
gral [14] and on the impossible-differential [4] properties. In the first one, given
a set of chosen plaintexts of which part is held constant and another part varies
through all possibilities, it is possible to prove that their XOR-sum after 4-round
is always equal to 0. In the second one, given a set of chosen plaintexts with anal-
ogous properties, it is possible to prove that the difference of each possible pair
of ciphertexts after 4-round can not take some values (some differences have
prob. 0, i.e. they are impossible). In both cases, the corresponding results are
independent of the key and of the non-linear components. That is, if some other
S-Boxes with similar differential/linear properties are chosen in a cipher, the
corresponding cryptanalytic results remain the same.

Although there are already 4-round impossible differentials and zero-correlation
linear hulls for AES, the effort to find new impossible differentials and zero-
correlation linear hulls that could cover more rounds has never been stopped. In
Eurocrypt 2016, Sun et al. [23] proved that, unless the details of the S-Boxes are

1 Our choice to use the subspace trail notation to present our new distinguisher on
5-round AES is motivated by the fact that such notation allows to describe it in
an easier and more formal way than using the “classical” one. An example of this
fact is given in [15], where all the secret-key distinguisher up to 4-round AES are
re-described using the subspace trail notation.
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Table 1. 5-round Secret-Key Distinguishers for AES with a Single Secret S-Box. In this
table, we limit to consider the distinguishers that exploit a property which is indepen-
dent of the key, or which are derived by a key-recovery attack but are independent of the
S-Box and require the knowledge of only part of the key. The complexity is measured
in minimum number of chosen plaintexts CP or/and chosen ciphertexts CC which are
needed to distinguish the AES permutation from a random one with probability higher
than 99%. Time complexity is measured in memory accesses (M) or XOR operations
(XOR). The case in which the final MixColumns operation is omitted is denoted by
“r.5 rounds”, that is r full rounds and the final round. “Key-Independence” denotes
a distinguisher which is able to distinguish 5-round AES from a random permutation
without discovering any information of the secret key or of part of it.

Property Rounds Data CP CC Cost Key-Independence Ref.

Subspace Trail 4.5− 5 232 3 3 235.6 M 3 Sect. 4

Impossible Diff. 4.5− 5 298.2 3 2107 M [15]

Integral 5 2128 3 2128 XOR [22]

exploited, one cannot find any impossible differential or zero-correlation linear
hull of the AES that covers 5 or more rounds. Moreover, due to the link among
impossible differential, integral and zero correlation linear cryptanalysis [24], an
analogous result holds also for the integral case. On the other hand, our new
property presented in this paper holds up to 5-round of AES independently of
the key and of the details of the S-Box (and of the MixColumns operation), and
allows to answer an almost 20-year old problem: given a set of chosen plaintexts
similar to the one used by the integral and impossible differential distinguishers
just recalled, is there any property which is independent of the secret key after
5-round AES?

Comparison of 5-Round Secret-Key Distinguishers. For a better com-
parison between this new secret-key distinguisher proposed in this paper and
earlier ones, we propose to classify the secret-key distinguishers in the following
way (from strongest to weakest):

1. a distinguisher which is completely independent of the secret key (e.g., it
exploits properties that are not related to the existence of a key) and inde-
pendent of the details of the S-Box;

2. a distinguisher which depends on the existence of a key and is derived by a
key-recovery attack.

A comparison between our new distinguisher and the ones proposed in [22]
and [15] is given in Table 1, where “Key-Independence” denotes a secret-key
distinguisher which is derived by a key-recovery attack, i.e. that does not exploit
a property which is independent of the secret key. Moreover, with respect to the
previous classification, a complete comparison of all the secret-key distinguishers
and key recovery attacks (used as distinguishers) for 5-round AES is provided
in Table 2 - App. C.

6



2 Preliminary - Description of AES

The Advanced Encryption Standard [9] is a Substitution-Permutation network
that supports key size of 128, 192 and 256 bits. The 128-bit plaintext initializes
the internal state as a 4 × 4 matrix of bytes as values in the finite fields F256,
defined using the irreducible polynomial x8 + x4 + x3 + x + 1. Depending on
the version of AES, Nr round are applied to the state: Nr = 10 for AES-128,
Nr = 12 for AES-192 and Nr = 14 for AES-256. An AES round applies four
operations to the state matrix:

– SubBytes (S-Box) - applying the same 8-bit to 8-bit invertible S-Box 16 times
in parallel on each byte of the state (it provides non-linearity in the cipher);

– ShiftRows (SR) - cyclic shift of each row to the left;

– MixColumns (MC) - multiplication of each column by a constant 4 × 4
invertible matrix MMC (MC and SR provide diffusion in the cipher2);

– AddRoundKey (ARK) - XORing the state with a 128-bit subkey.

One round of AES can be described as R(x) = K ⊕MC ◦ SR ◦ S-Box(x). In
the first round an additional AddRoundKey operation (using a whitening key)
is applied, and in the last round the MixColumns operation could be omitted.

Finally, as we don’t use the details of the AES key schedule in this paper, we
refer to [9] for a complete description.

The Notation Used in the Paper. Let x denote a plaintext, a ciphertext,
an intermediate state or a key. Then xi,j with i, j ∈ {0, ..., 3} denotes the byte
in the row i and in the column j. We denote by kr the key of the r-th round,
where k0 is the secret key. If only the key of the final round is used, then we
denote it by k to simplify the notation. Finally, we denote by R one round of
AES, while we denote r rounds of AES by Rr. We sometimes use the notation
RK instead of R to highlight the round key K. As last thing, in the paper we
often use the term “partial collision” (or “collision”) when two texts belong to
the same coset of a given subspace X.

3 Subspace Trails Cryptanalysis

Subspace trails [15] - recently introduced at FSE 2017 - are a generalization of in-
variant subspaces and allow to express techniques such as truncated differentials,
impossible differentials, or integral properties in the same framework.

Let F denote a round function in a iterative block cipher and let V ⊕a denote
a coset of a vector space V . Then if F (V ⊕ a) = V ⊕ a we say that V ⊕ a is
an invariant coset of the subspace V for the function F . This concept can be
generalized to trails of subspaces.

2 SR makes sure column values are spread, MC makes sure each column is mixed.
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Definition 2. Let (V1, V2, ..., Vr+1) denote a set of r+1 subspaces with dim(Vi) ≤
dim(Vi+1). If for each i = 1, ..., r and for each ai ∈ V ⊥i , there exist (unique)
ai+1 ∈ V ⊥i+1 such that

F (Vi ⊕ ai) ⊆ Vi+1 ⊕ ai+1,

then (V1, V2, ..., Vr+1) is subspace trail of length r for the function F . If all the
previous relations hold with equality, the trail is called a constant-dimensional
subspace trail.

This means that if F t denotes the application of t rounds with fixed keys, then
F t(V1 ⊕ a1) = Vt+1 ⊕ at+1. We refer to [15] for more details about the concept
of subspace trails. Our treatment here is however meant to be self-contained.

3.1 Subspace Trails of AES

In this section, we recall the subspace trails of AES presented in [15]. For the
following, we only work with vectors and vector spaces over F4×4

28 , and we denote

by {e0,0, ..., e3,3} the unit vectors of F4×4
28 (e.g. ei,j has a single 1 in row i and

column j). We also recall that given a subspace X, the cosets X ⊕ a and X ⊕ b
(where a 6= b) are equivalent (that is X ⊕ a ∼ X ⊕ b) if and only if a⊕ b ∈ X.

Definition 3. The column spaces Ci are defined as

Ci = 〈e0,i, e1,i, e2,i, e3,i〉.

For instance, C0 corresponds to the symbolic matrix

C0 =

{
x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0

 ∣∣∣∣ ∀x1, x2, x3, x4 ∈ F28

}
≡


x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0

 .
Definition 4. The diagonal spaces Di are defined as

Di = SR−1(Ci) = 〈e0,i (mod 4), e1,(i+1) (mod 4), e2,(i+2) (mod 4), e3,(i+3) (mod 4)〉.

Similarly, the inverse-diagonal spaces IDi are defined as

IDi = SR(Ci) = 〈e0,i (mod 4), e1,(i−1) (mod 4), e2,(i−2) (mod 4), e3,(i−3) (mod 4)〉.

For instance, D0 and ID0 correspond to symbolic matrix

D0 ≡


x1 0 0 0
0 x2 0 0
0 0 x3 0
0 0 0 x4

 , ID0 ≡


x1 0 0 0
0 0 0 x2
0 0 x3 0
0 x4 0 0


for all x1, x2, x3, x4 ∈ F28 .
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Definition 5. The i-th mixed spaces Mi are defined as

Mi = MC(IDi).

For instance, M0 corresponds to symbolic matrix

M0 ≡


0x02 · x1 x4 x3 0x03 · x2

x1 x4 0x03 · x3 0x02 · x2
x1 0x03 · x4 0x02 · x3 x2

0x03 · x1 0x02 · x4 x3 x2


for all x1, x2, x3, x4 ∈ F28 .

Definition 6. Let I ⊆ {0, 1, 2, 3}. The subspaces CI , DI , IDI and MI are
defined as follow:

CI =
⊕
i∈I
Ci, DI =

⊕
i∈I
Di, IDI =

⊕
i∈I
IDi, MI =

⊕
i∈I
Mi.

As shown in detail in [15]:

– for any coset DI⊕a there exists unique b ∈ C⊥I such that R(DI⊕a) = CI⊕b;
– for any coset CI⊕a there exists unique b ∈M⊥I such that R(CI⊕a) =MI⊕b.

This simply states that a coset of a sum of diagonal spaces DI encrypts to a
coset of a corresponding sum of column spaces. Similarly, a coset of a sum of
column spaces CI encrypts to a coset of the corresponding sum of mixed spaces.
It follows that:

Theorem 1. For each I and for each a ∈ D⊥I , there exists one and only one
b ∈M⊥I such that

R2(DI ⊕ a) =MI ⊕ b. (1)

We refer to [15] for a complete proof of this theorem. Observe that b depends
on a and on the secret key k, and that this theorem does not depend on the
particular choice of the S-Box (i.e. it is independent of the details of the S-Box).

Observe that if X is a generic subspace, X ⊕ a is a coset of X and x and y
are two elements of the (same) coset X ⊕ a, then x⊕ y ∈ X. It follows that:

Lemma 1. For all x, y and for all I ⊆ {0, 1, 2, 3}:

Prob(R2(x)⊕R2(y) ∈MI |x⊕ y ∈ DI) = 1. (2)

We finally recall that for each I, J ⊆ {0, 1, 2, 3}:

MI ∩ DJ = {0} if and only if |I|+ |J | ≤ 4, (3)

as demonstrated in [15]. It follows that:

Theorem 2. Let I, J ⊆ {0, 1, 2, 3} such that |I| + |J | ≤ 4. For all x, y with
x 6= y:

Prob(R4(x)⊕R4(y) ∈MI |x⊕ y ∈ DJ) = 0. (4)
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For the following, note that two texts t1 and t2 belong in the same coset
of D if the bytes of their difference t1 ⊕ t2 that lie on n diagonals3 for n ≤ 3
(depending on the dimension of D) are equal to zero. As example, t1⊕ t2 ∈ Di if
and only if t1 and t2 have equal bytes on the i-th diagonal, or in other words if
t1j,i+j = t2j,i+j for each j = 0, 1, 2, 3 where the index i+ j is computed modulo 4.

In a similar way, two texts t1 and t2 belong in the same coset of M if the bytes
of their difference MixColumns−1(t1 ⊕ t2) that lie on n anti-diagonals n ≤ 3
(depending on the dimension ofM) are equal to zero. As example, t1⊕t2 ∈Mi if
and only if MC−1(t1) and MC−1(t2) have equal bytes on the i-th anti-diagonal,
or in other words if MC−1(t1⊕t2)j,i−j = 0 for each j = 0, 1, 2, 3 where the index
i− j is computed modulo 4.

4 New 5-round Secret Key Distinguisher for AES

4.1 Statement of the Property

Consider a set of plaintexts in the same coset of the diagonal space DI , that is
DI ⊕ a for a certain a ∈ D⊥I , and the corresponding ciphertexts after 5 rounds.
In order to set up the distinguisher on 5 rounds of AES, the idea is to count the
number of different pairs of ciphertexts that belong to the same coset ofMJ for
a fixed J , and to exploit the property that only for an AES permutation this
number is a multiple of 8 with probability 1.

In more detail, given a set of plaintexts/ciphertexts (pi, ci) for i = 0, ..., 232·|I|−
1 - where all the plaintexts belong to the same coset of DI , the idea is to construct
all the possible pairs of ciphertexts (ci, cj) for i 6= j and to count the number of
different pairs4 of ciphertexts (ci, cj) such that ci ⊕ cj ∈ MJ for a certain fixed
J ⊂ {0, 1, 2, 3}. It is possible to prove that for 5-round AES this number has
the special property to be a multiple of 8 independently of the dimension ofMJ

(i.e. |J |) or of DI (i.e. |I|). Instead, for a random permutation the same number
does not have any special property (e.g. it has the same probability to be even
or odd). This allows to distinguish 5-round AES from a random permutation.

Before we go on, we formalize the concept of different pairs of ciphertexts,
defining the partial order5 ≤:

Definition 7. Given two different texts t1 and t2, we say that t1 ≤ t2 if t1 = t2

or if there exists i, j ∈ {0, 1, 2, 3} such that (1) t1k,l = t2k,l for all k, l ∈ {0, 1, 2, 3}
with k+4 · l < i+4 · j and (2) t1i,j < t2i,j. Moreover, we say that t1 < t2 if t1 ≤ t2
(with respect to the definition just given) and t1 6= t2.

3 The i-th diagonal of a 4 × 4 matrix A is defined as the elements that lie on row r
and column c such that r− c = i mod 4. The i-th anti-diagonal of a 4× 4 matrix A
is defined as the elements that lie on row r and column c such that r+ c = i mod 4.

4 Two pairs (ci, cj) and (cj , ci) are considered equivalent. We formalize this concept
in the following using a partial order ≤.

5 If P is an order set with respect to the relation ≤, then the following relationships
hold: (1) reflexivity ∀a ∈ P then a ≤ a; (2) antisymmetry ∀a, b ∈ P s.t. a ≤ b and
b ≤ a, then a = b; (3) transitivity ∀a, b ∈ P s.t. a ≤ b and b ≤ c, then a ≤ c.
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Theorem 3. Let DI and MJ the subspaces defined as before for certain fixed I
and J , and assume |I| = 1. Given an arbitrary coset of DI - that is DI ⊕ a for
a fixed a ∈ D⊥I , consider all the 232 plaintexts and the corresponding ciphertexts
after 5 rounds, that is (pi, ci) for i = 0, ..., 232 − 1 where pi ∈ DI ⊕ a and
ci = R5(pi). The number n of different pairs of ciphertexts (ci, cj) for i 6= j such
that ci ⊕ cj ∈MJ (i.e. ci and cj belong to the same coset of MJ)

n := |{(pi, ci), (pj , cj) | ∀pi, pj ∈ DI ⊕ a, pi < pj and ci ⊕ cj ∈MJ}| (5)

is a multiple of 8, that is ∃n′ ∈ N such that n = 8 · n′.

Only for completeness, if the final MixColumns operation is omitted, then the
above theorem holds in the same way with IDJ instead of MJ .

Idea of the Proof - Lemma 2. As we have seen in the previous section, a
coset of DI is always mapped into a coset of MI after two rounds, that is for
each a ∈ D⊥I there exists unique b ∈ MI such that R2(DI ⊕ a) =MI ⊕ b. This
statement holds also in the same way in the reverse direction, that is for each
b′ ∈M⊥I there exists unique a′ ∈ DI such that R−2(MI ⊕ b′) = DI ⊕ a′. Since

DI ⊕ a
R2(·)−−−−→
prob. 1

MI ⊕ b
R(·)−−→ DJ ⊕ a′

R2(·)−−−−→
prob. 1

MJ ⊕ b′,

the idea is to focus only on the central round MI ⊕ b → DJ ⊕ a′ in order to
prove the statement of Theorem 3. In particular, this theorem on 5 rounds of
AES (and its proof) is related to the following lemma on 1-round AES.

Lemma 2. Let MI and DJ the subspaces defined as before for certain fixed I
and J , and assume |I| = 1. Given an arbitrary coset of MI , consider all the
232 plaintexts and the corresponding ciphertexts after 1 round, that is (p̂i, ĉi) for
i = 0, ..., 232−1 where ĉi = R(p̂i). The number n of different pairs of ciphertexts
(ĉi, ĉj) for i 6= j such that ĉi ⊕ ĉj ∈ DJ (i.e. ĉi and ĉj belong to the same coset
of DJ) is a multiple of 8, that is ∃n′ ∈ N s.t. n = 8 · n′.
The complete proof is provided in the next section - Sect. 6. We emphasize that
the proof of Theorem 3 follows immediately by the proof of Lemma 2. Indeed,
note that considering 232 plaintexts in the same coset of DI is equivalent to
consider 232 texts in the same coset of MI after two rounds. Moreover, note
that the number of collisions (i.e. a pair of texts that belong to the same coset of
a given subspace) in the same coset ofMJ is the same of the number of collisions
in the same coset of DJ two rounds before.

To prove the lemma, the idea is show that if one pair of ciphertexts satisfies
the requirement to belong to the same coset of DJ , then also other pairs of
ciphertexts have the same property with probability 1. The complete proof is
given in Sect. 6. We highlight that the statement given in Theorem 3 (or Lemma
2) does not depend on the details of the MixColumns matrix (with the exception
that the branch number must be five) or/and of the SubBytes operation. In other
words, the only property that the proof - given in the next section - exploits is
the branch number of the MixColumns matrix.
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4.2 Setting Up the Distinguisher

Our 5-round distinguisher exploits the property just described that the above
defined number of collisions n is a multiple of 8 for 5-round AES, while it can
take any possible value in the case of a random permutation. Thus, assume
J ⊆ {0, 1, 2, 3} fixed with |J | = 3. First of all, since the probability that two
ciphertexts belong to the same coset of MJ is 2−128+32·|J| = 2−32 for |J | = 3,
we expect that on average(

232

2

)
· 2−32 = 231 · (232 − 1) · 2−32 ' 231

different pairs of ciphertexts belong to the same coset of MJ both for an AES
permutation and for a random one. However, while for an AES permutation
this number is a multiple of 8 with probability 1, for a random permutation
this happens only with probability 0.125 ≡ 2−3. In particular, consider s initial
arbitrary cosets of DI and for each of them count the number of different pairs
of ciphertexts that belong to the same coset ofMJ for |J | = 3 fixed. For an AES
permutation, each of these numbers is a multiple of 8, while the probability that
this happens for a random permutation is only 2−3·s. In order to distinguish
the AES permutation from the random one with probability at least pr, it is
sufficient that for a random permutation at least one of these numbers is not a
multiple of 8, which happens with probability pr:

pr = 1− 2−3·s.

Thus, the probability of success of this distinguisher is greater than 99% (i.e.
pr ≥ 0.99) for s ≥ 3. Note that for each initial coset DI with |I| = 1, it is
possible to count the number of collisions for at most 4 different subspaces MJ

for |J | = 3 (note that there are
(
4
3

)
= 4 different J with |J | = 3). It follows that

using a single initial coset DI with |I| = 1 (for a total of 4 different subspaces
MJ in the ciphertexts space), it is possible to distinguish 5-round AES from a
random permutation with a probability of success of approximately 99.975%.

In conclusion, a single initial arbitrary coset of DI with |I| = 1 in the plain-
texts space are sufficient to distinguish a random permutation from an AES one,
for a total data complexity of 232 chosen plaintexts. An approximation of the
computational cost is given in the following. For completeness, it is also possible
to set up a distinguisher for the cases |J | = 2 or |J | = 1. However, it should
be noticed that the average number of collisions in these cases are respectively
231 · (232 − 1) · 2−64 ' 2−1 and 231 · (232 − 1) · 2−96 ' 2−33. As a consequence,
the data and computational cost of these cases is not lower than for the case
|J | = 3.

4.3 The Computational Cost

We have just seen that 232 chosen plaintexts (i.e. one coset of DI with |I| = 1)
are sufficient to distinguish a random permutation from 5 rounds of AES, simply
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counting the number of pairs of ciphertexts that belong to the same coset ofMJ

and checking if it is a multiple of 8 or not. Here we give an estimation of the
computational cost of the distinguisher, which is approximately given by the
sum of the cost to construct all the pairs and of the cost to count the number
of collisions. As a result, the total computational cost can be well approximated
by 235.6 table look-ups.

Assume the final MixColumns operation is not omitted. As we have just said,
for each initial coset of DI the two steps of the distinguisher are (1) construct
all the possible pairs of ciphertexts and (2) count the number of collisions. First
of all, note that the cost to check that a given pair of ciphertexts belong to
the same coset of MJ is equal to the cost of a XOR operation and an inverse
MixColumns operation6.

As we are going to show, the major cost of this distinguisher regards the
construction of all the possible different pairs, which corresponds to step (1).
Since it is possible to construct approximately 263 pairs for each coset, the sim-
plest way to do it requires 263 table look-ups. In the following, we present a way
to reduce the total cost to approximately 235.6 table look-ups, where the used
tables are of size 232 texts (or 232 · 16 = 236 byte).

The basic idea is to implement the distinguisher using a data structure. As-
sume J ⊆ {0, 1, 2, 3} is fixed. The goal is to count the number of pairs of cipher-
texts (c1, c2) such that c1 ⊕ c2 ∈MJ , or equivalently

MC−1(c1)i,j−i = MC−1(c2)i,j−i ∀i = 0, 1, 2, 3 (6)

where j = {0, 1, 2, 3} \ J , and the index is computed modulo 4. To do this,
consider an array A of 232 elements completely initialized to zero. The element
of A in position x for 0 ≤ x ≤ 232− 1 - denoted by A[x] - represents the number
of ciphertexts c that satisfy the following equivalence (in the integer field N):

x = c0,0−j + 256 ·MC−1(c)1,1−j +MC−1(c)2,2−j · 2562 +MC−1(c)3,3−j · 2563.

It’s simple to observe that if two ciphertexts c1 and c2 satisfy (6), then they
increment the same element x of the array A. It follows that given r ≥ 0 texts
that increment the same element x of the array A, then it is possible to construct(

r

2

)
=
r · (r − 1)

2

different pairs of texts that satisfy (6). The complete pseudo-code of such an
algorithm is given in Algorithm 1.

What is the total computational cost of this procedure? Given a set of 232

(plaintexts, ciphertexts) pairs, one has first to fill the array A using the strategy
just described, and then to compute the number of total of pairs of ciphertexts
that satisfy the property, for a cost of 3 · 232 = 233.6 table look-ups - each one

6 As example, given a pair (c1, c2) and for the subspace M{1,2,3}, this operation can
be reduced to check that MC−1(c1 ⊕ c2)i,i = MC−1(c1)i,i ⊕MC−1(c2)i,i = 0 for
each i = 0, ..., 3 - note that c1 ⊕ c2 ∈MJ if and only if MC−1(c1 ⊕ c2) ∈ IDJ .
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Data: 232 (plaintext, ciphertext) pairs (pi, ci) for i = 0, ..., 232 − 1 in a coset of
DI with |I| = 1.

Result: 1 for an AES permutation, 0 otherwise (prob. ≥ 99%)
Let (pi, ci) for i = 0, ..., 232 − 1 the (plaintext, ciphertext) pairs;
for all j ∈ {0, 1, 2, 3} do

Let A[0, ..., 232 − 1] an array initialized to zero;
for i from 0 to 232 − 1 do

x← 0;
for k from 0 to 3 do

x← x+MC−1(ci)k,j−k · 256k; // MC−1(ci)k,j−k denotes the

byte of MC−1(ci) in row k and column j − k mod 4

end
A[x]← A[x] + 1; // A[x] denotes the value stored in the x-th
address of the array A

end
n← 0;
for i from 0 to 232 − 1 do

n← n+A[i] · (A[i]− 1)/2;
end
if (n mod 8) 6= 0 then

return 0;
end

end
return 1.

Algorithm 1: Secret-Key Distinguisher for 5 Rounds of AES which exploits a
property which is independent of the secret key - probability of success: ≥ 99%.

of these three operations require 232 table look-ups. Since one has to repeat this
algorithm 4 times - i.e. one time for each one of the four anti-diagonal, the total
cost is of 4·233.6 = 235.6 table look-ups, or equivalently 229 five-round encryptions
of AES (using the approximation7 1 table look-up ≈ 1 round of AES).

Another possible way to implement our distinguisher exploits a re-ordering
algorithm. In order to count the number of pairs of ciphertexts that belong to the
same coset of DJ , the idea is to re-order the texts using a particular numerical
order � which depends on J . Then, given a set of ordered texts, the idea is to
work only on two consecutive elements in order to count the total number of
pairs of ciphertexts with the required property. In other words, given ordered
ciphertexts, one can work only on approximately 232 different pairs (composed of
consecutive elements with respect to the used order) instead of 263 for each initial
diagonal set. All the details of this method are given in App. D. This second
implementation could be in some cases more efficient than the one proposed in

7 We highlight that even if this approximation is not formally correct - the size of the
table of an S-Box look-up is lower than the size of the table used for our proposed
distinguisher, it allows to give a comparison between our proposed distinguisher and
the others currently present in literature. At the same time, we note that the same
approximation is largely used in literature.
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details in this section when e.g. it is required to do further operations on the
pairs of ciphertexts (c1, c2) such that c1 ⊕ c2 ∈MJ .

4.4 Practical Verification

Using a C/C++ implementation8, we have practically verified the distinguisher
on a small scale variant of AES, as presented in [6]. While in “real” AES, each
word is composed of 8 bits, in this variant each word is composed of 4 bits.
We refer to [6] for a complete description of this small-scale AES, and we limit
ourselves to describe the results of our 5-round distinguisher in this case.

First of all, note that Theorem 3 holds exactly in the same way also for this
small-scale variant of AES (the proof is independent by the fact that each word
of AES is of 4 or 8 bits). Thus, our verification on the small-scale variant of AES
is strong evidence for it to hold for the real AES.

We have verified the theorem for each possible |J | (i.e. for |J | = 1, 2, 3) and
for |I| = 1. For the verification of the secret-key distinguisher, we have chosen
|I| = 1 and |J | = 3 fixed. As result, we have verified that for 5-round AES the
number of collisions is a multiple of 8, while this number does not have any
particular property for a random permutation. Moreover, we have found that a
single initial coset is largely sufficient to distinguish a random permutation from
an AES permutation also from a practical point of view, as predicted.

The differences between this small-scale AES and the real AES regard the
total number of pairs of ciphertexts that satisfy the required property (equal
bytes in 1 fixed diagonal), which in this case is well approximated by 215 · (216−
1)·2−16 ≈ 215 for each diagonal set, and the lower computational cost, which can
be approximated by 217.6 · 4 ≈ 219.6 memory look-ups for each initial diagonal
set, besides the memory costs. The average practical results of our experiments
are in accordance with these numbers.

4.5 Generalizations of the Central Theorem

Until now we have considered only a particular case in order to set up our
distinguisher. However, here we show that it is possible to generalize Theorem
3 as follows.

Firstly, note that the same distinguisher works also in the reverse direction
(i.e. in the decryption mode) with the same complexity. In this case, the strategy
is to choose a coset ofMI , and (as before) to count the number of different pairs
of plaintexts that belong to the same coset of DJ . This number has the same
properties given in Theorem 3, while for a random permutation it can take any
possible value. A formal statement for this case (i.e. in the decryption direction)
is provided in App. A.

Secondly, Theorem 3 can be generalized for the cases |I| = 2 and |I| = 3. In
particular, it is possible to prove that the result given in Theorem 3 is completely

8 The source code is available at https://github.com/Krypto-iaik/AES_5round_

SKdistinguisher
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Fig. 1. Differential Trail over 2-round AES.

independent of |I|, i.e. given a coset of DI for an arbitrary I ⊆ {0, 1, 2, 3} with
1 ≤ |I| ≤ 3, then the number of collisions after 5 rounds in the same coset of
MJ is a multiple of 8. A formal statement is the following:

Theorem 4. Let DI and MJ the subspaces defined as before, where 1 ≤ |I| ≤ 3
and J are fixed. Given an arbitrary coset of DI - that is DI ⊕ a for a fixed
a ∈ D⊥I , consider all the 232·|I| plaintexts and the corresponding ciphertexts
after 5 rounds, that is (pi, ci) for i = 0, ..., 232·|I| − 1 where pi ∈ DI ⊕ a and
ci = R5(pi). The number n of different pairs of ciphertexts (ci, cj) for i 6= j such
that ci ⊕ cj ∈MJ (i.e. ci and cj belong to the same coset of MJ)

n := |{(pi, ci), (pj , cj) | ∀pi, pj ∈ DI ⊕ a, pi < pj and ci ⊕ cj ∈MJ}| (7)

is a multiple of 8, that is ∃n′ ∈ N such that n = 8 · n′.

The proof of this theorem is given in App. B - it is simply a generalization of
the proof of Theorem 3 given in the next section.

5 Description of the 5-round Secret-Key Distinguisher
using a Classical Notation

For sake of completeness, we re-describe the 5-round secret-key distinguisher
just presented using a classical notation. Before to do this, we recall the 2-round
truncated differential trail of AES illustrated in Fig. 1 (see [10] or [11] for details)
using a classical notation.

5.1 Differential Trail over 2-round AES and the Subspace Trail
Notation

Let R2(·) denote two AES rounds with fixed random round keys. Consider two
plaintexts which are equal in all bytes except for the ones in the i-th diagonal
for a certain i = 0, 1, 2, 3, i.e. for the bytes in row j and column i + j for each
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j = 0, 1, 2, 3 (the index i+ j is taken modulo 4). After one round, the two texts
are equal in all bytes except for the ones in the i-th column, i.e. for the bytes in
row j and column i for each j. After the second and last round - assuming the
final MixColumns is omitted, the two texts are equal in all bytes except for the
ones in the i-th anti-diagonal, i.e. for the bytes in row j and column i − j for
each j (the index i− j is taken modulo 4).

For the following, we work with diagonal sets of 232 plaintexts, defined as
sets of texts which are equal in 3 diagonals, i.e. texts with active bytes in the i-th
diagonal for a certain i = 0, 1, 2, 3 and with constant bytes in the other three:

A C C C
C A C C
C C A C
C C C A

 R(·)−−→


A C C C
A C C C
A C C C
A C C C

 Rf (·)−−−→


A C C C
C C C A
C C A C
C A C C

 ,
where A denotes an active byte (i.e. a byte in which every value in F28 appears
the same number of times) and C denotes a constant byte (i.e. a byte in which
the value is fixed to a constant for all texts). For completeness, we label the last
set by inverse-diagonal set, i.e. a set of texts where the bytes in one (or more)
anti-diagonal(s) are active while the others are constant.

If the final MixColumns is not omitted, certain linear relations - which are
given by the definition of the MixColumns matrix - hold between the bytes of
the texts that lie in the same column:

A C C C
C A C C
C C A C
C C C A

 R(·)−−→


A C C C
A C C C
A C C C
A C C C

 R(·)−−→MC ×


A C C C
C C C A
C C A C
C A C C

 ,
In this case, we label the last set by mixed set. As an example, consider two
plaintexts p1 and p2 which are equal in all bytes except for the ones in the 0-
th diagonal, i.e. except for the bytes in positions (j, j) for each j = 0, 1, 2, 3.
After 2 (complete) rounds, there exist x, y, z, w ∈ F28 such that their difference
R2(p1)⊕R2(p2) can be re-written as:

R2(p1)⊕R2(p2) =


0x02 · x y z 0x03 · w

x y 0x03 · z 0x02 · w
x 0x03 · y 0x02 · z w

0x03 · x 0x02 · y z w

 . (8)

Finally, the same truncated differential analysis of 2-round can be generalized
to the cases of an initial diagonal set with more than a single active diagonal,
i.e. a set of plaintexts which are equal in all bytes except for the ones that lie in
two or three diagonals (instead of only one).

5.2 Description of the 5-round Secret-Key Distinguisher using a
Classical Notation

Consider a diagonal set of plaintexts - i.e. a set of 232 plaintexts which are
equal in all bytes except for the ones in i-diagonal for a certain i = 0, 1, 2, 3,
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and the corresponding ciphertexts after 5 rounds. Assume the final MixColumns
operation is omitted. In order to set up the distinguisher on 5 rounds of AES, the
idea is to count the number of different pairs of ciphertexts which are equal in d
anti-diagonals for a certain 1 ≤ d ≤ 3 - that is the number of pairs of ciphertexts
with zero-difference in the bytes in positions (i, j − i) for all i = 0, 1, 2, 3 and
j ∈ J for a certain J ⊆ {0, 1, 2, 3} with |J | = d - and to exploit the property
that for an AES-like permutation this number is a multiple of 8 with probability
1.

In more detail, given a set of plaintexts/ciphertexts (pi, ci) for i = 0, ..., 232−1
- where all the plaintexts are in the same diagonal set, the idea is to construct
all the possible pairs of ciphertexts (ci, cj) for i 6= j and to count the number
of different pairs9 of ciphertexts (ci, cj) for which the bytes of the difference
ci ⊕ cj that lie in d anti-diagonals are equal to zero (where 1 ≤ d ≤ 3 and
the anti-diagonals are fixed in advance). It is possible to prove that for 5-round
AES this number has the special property to be a multiple of 8 independently
of d - that is on the number of considered anti-diagonals. Instead, for a random
permutation the same number does not have any special property (e.g. it has
the same probability to be even or odd). This allows to distinguish 5-round AES
from a random permutation.

Proposition 1. Given 232 plaintexts in the same diagonal set defined as before,
consider the corresponding ciphertexts after 5 rounds, that is (pi, ci) for i =
0, ..., 232 − 1 where ci = R5(pi) The number n of different pairs of ciphertexts
(ci, cj) for i 6= j for which the bytes of the difference ci ⊕ cj that lie in d anti-
diagonals are equal to zero (where 1 ≤ d ≤ 3 and the anti-diagonals are fixed in
advance) is a multiple of 8, that is ∃n′ ∈ N such that n = 8 · n′.

Idea of the Proof - Lemma 3. As we have seen in the previous section,
a diagonal set is always mapped after two rounds into a mixed set. In other
words, if two plaintexts have equal bytes expect for the ones in one diagonal,
then after two rounds some particular linear relationships (given in (8)) hold
among the bytes of the difference of these two texts that lie in the same column
with probability 1. In the same way, if two ciphertexts have equal bytes in d anti-
diagonals, then these two texts have equal bytes in d diagonals two rounds before
(due to the 2-round differential trail described in Sect. 5.1). In other words, a
inverse-diagonal set is mapped into a diagonal set two rounds before (assuming
the final MixColumns operation is omitted).

Assume for simplicity that the 232 plaintexts are chosen in a diagonal set
with the active bytes in the first diagonal (analogous for the other cases). Due
to these two previous considerations, Proposition 3 on 5 rounds of AES (and its
proof) is strongly related to the following lemma on 1-round AES.

9 The two pairs (ci, cj) and (cj , ci) are considered equivalent. To formalize this concept,
one can consider the number of ciphertexts (ci, cj) with i < j for which the bytes of
the difference ci ⊕ cj that lie in d anti-diagonals are equal to zero.
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Lemma 3. Given 232 plaintexts in a mixed set of the form

MC ·


A C C C
C C C A
C C A C
C A C C

 , (9)

consider the corresponding ciphertexts after 1 round, that is (p̂i, ĉi) for i =
0, ..., 232 − 1 where ĉi = R(p̂i). The number n of different pairs of ciphertexts
(ĉi, ĉj) for i 6= j for which the bytes of the difference ci⊕cj that lie in d diagonals
are equal to zero (where 1 ≤ d ≤ 3 and the diagonals are fixed in advance) is a
multiple of 8, that is ∃n′ ∈ N s.t. n = 8 · n′.

We emphasize that the proof of Proposition 1 follows immediately by the proof
of Lemma 3, due to the 2-round truncated differential trail described in Sect.
5.1. In particular, note that considering 232 plaintexts in the same diagonal set
(that is 232 plaintexts which are equal in three diagonals and with active bytes
in the other one) is equivalent to consider 232 texts in the same mixed set as
defined in (9) after two rounds. In other words, all 232 plaintexts of Lemma 3 are
definitely reachable in 2 rounds from the initial plaintext (diagonal) structure
defined in Proposition 1. We highlight that the statement given in Proposition 1
(or Lemma 3) does not depend on the details of the MixColumns matrix (with
the exception that the branch number must be five) or/and of the SubBytes
operation. In other words, the only property that the proof - given in the next
section - exploits is the branch number of the MixColumns matrix.

5.3 Generalizations of the Central Theorem

Until now we have considered only a particular case in order to set up our
distinguisher. However, here we show that it is possible to generalize Proposition
1 as follows.

Firstly, note that the same distinguisher works also in the reverse direction
(i.e. in the decryption mode) with the same complexity. Assume that the final
MixColumns operation is omitted. In this case the strategy is to choose 232

ciphertexts in a single initial inverse-diagonal set, i.e. a set of 232 ciphertexts
which are equal in all the bytes expect for the ones in the i-th anti-diagonal for
a certain i = 0, 1, 2, 3 (similar definition of the diagonal set). As before, the idea is
to count the number of different pairs of plaintexts for which the bytes that lie in
d diagonals are equal, for d fixed diagonals with 1 ≤ d ≤ 3. This number has the
same properties given in Proposition 1, while for a random permutation it can
take any possible value. A formal statement for this case (i.e. in the decryption
direction) is provided in App. A.

Secondly, Proposition 1 can be generalized for the cases of diagonal sets in
which more than a single diagonal is active. As an example, diagonal sets with
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2 or 3 active diagonals can be
A A C C
C A A C
C C A A
A C C A

 or


A A A C
C A A A
A C A A
A A C A

 .
It is possible to prove that the result given in Proposition 1 is completely inde-
pendent of the number of active diagonals. In other words, independently of the
number of active diagonals of the initial diagonal set of the plaintexts, then the
number of pairs of ciphertexts for which the bytes that lie in d anti-diagonals
are equal (for d fixed anti-diagonals with 1 ≤ d ≤ 3) is a multiple of 8. A formal
statement is the following:

Proposition 2. Given 232·D plaintexts in the same diagonal set with 1 ≤ D ≤ 3
active diagonals defined as before, consider the corresponding ciphertexts after 5
rounds, that is (pi, ci) for i = 0, ..., 232 − 1 where ci = R5(pi) The number n of
different pairs of ciphertexts (ci, cj) for i 6= j for which the bytes of the difference
ci ⊕ cj that lie in d anti-diagonals are equal to zero (where 1 ≤ d ≤ 3 and the
anti-diagonals are fixed in advance) is a multiple of 8, that is ∃n′ ∈ N such that
n = 8 · n′.

6 A Detailed Proof of Theorem 3 - Lemma 2

In this section we give a detailed and formal proof of Theorem 3. As we have al-
ready said, since it is sufficient to prove Lemma 2 in order to prove the Theorem,
we focus on this Lemma, which is recalled in the following.

Lemma 2. Let MI and DJ the subspaces defined as before for certain fixed I
and J , and assume |I| = 1. Given an arbitrary coset ofMI -MI⊕a for a certain
a ∈ M⊥I , consider all the 232 plaintexts and the corresponding ciphertexts after
1 round, that is (pi, ci) for i = 0, ..., 232 − 1 where ci = R(pi). The number n of
different pairs of ciphertexts (ci, cj) for i 6= j s.t. ci ⊕ cj ∈ DJ (i.e. ci and cj

belong to the same coset of DJ)

n := |{(pi, ci), (pj , cj) | ∀pi, pj ∈MI ⊕ a, pi < pj , and ci ⊕ cj ∈ DJ}| (10)

is a multiple of 8, that is ∃n′ ∈ N such that n = 8 · n′.
Proof. Consider two elements p1 and p2 in the same coset ofMi⊕a for a ∈M⊥i .
Without loss of generality (W.l.o.g.), assume i = 0 (it is analogous for the other
cases). By definition of Mi, there exist x, y, z, w ∈ F28 and x′, y′, z′, w′ ∈ F28

such that:

p1 = a⊕


2 · x y z 3 · w
x y 3 · z 2 · w
x 3 · y 2 · z w

3 · x 2 · y z w

 , p2 = a⊕


2 · x′ y′ z′ 3 · w′
x′ y′ 3 · z′ 2 · w′
x′ 3 · y′ 2 · z′ w′

3 · x′ 2 · y′ z′ w′


where 2 ≡ 0x02 and 3 ≡ 0x03. For the following, we say that p1 is “generated” by
the variables 〈x, y, z, w〉 and that p2 is “generated” by the variables 〈x′, y′, z′, w′〉.
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First case. First, we consider the case in which three variables are equal.
W.l.o.g. we assume for example that y = y′, z = z′, w = w′ and x 6= x′

(the other cases are analogous). In other words, we suppose that the two texts
p1 and p2 belong to the same coset of M0 ∩ C0 ⊕ a, where a ∈ (M0 ∩ C0)⊥.

SinceM0∩C0 ⊆ C0, it follows that if p1⊕p2 ∈ C0, then R(p1)⊕R(p2) ∈M0.
SinceMI ∩DJ = {0} for each I and J with |I|+ |J | ≤ 4 (see (3)), it follows that
R(p1)⊕ R(p2) /∈ DJ for each J ⊆ {0, 1, 2, 3} with |J | ≤ 3. In other words, with
the given hypothesis for this case, it is not possible that the two texts belong to
the same coset of a diagonal space DJ for each |J | ≤ 3 after one round.

For completeness, it is also possible to show the same result in a different
way. By definition, R(p1)⊕R(p2) ∈ DJ for a certain J with |J | = 3 if and only
if (R(p1) ⊕ R(p2))i,j+i = 0 for each i = 0, ..., 3 (i.e. the four bytes of the j-th
diagonal of R(p1)⊕R(p2) are equal to zero), where the indexes are taken modulo
4 and j = {0, 1, 2, 3} \ J . As we are going to show, due to the given hypothesis
of this case and since the branch number of the MixColumns operation is equal
to five, it follows that R(p1)⊕R(p2) /∈ DJ for all J with |J | = 3. In other words,
R(p1)⊕R(p2) ∈ DJ for |J | = 3 if and only if x = x′, that is p1 = p2.

In more details, by simple computation the first column (analogues for the
other ones) of SR◦ S-Box(p1)⊕ SR◦ S-Box(p2) - denoted by (SR◦ S-Box(p1)⊕
SR◦ S-Box(p2))·,0 - is equal to:

(SR◦ S-Box(p1)⊕SR◦ S-Box(p2))·,0 =


S-Box(2 · x⊕ a0,0)⊕ S-Box(2 · x′ ⊕ a0,0)

0
0
0

 .
After the MixColumns operation (note R(p1)⊕R(p2) = MC(SR ◦ S-Box(p1)⊕
SR ◦ S-Box(p2)) = MC ◦ SR ◦ S-Box(p1)⊕MC ◦ SR ◦ S-Box(p2)), since only
one input byte10 is different from zero, it follows that at least four output bytes
must be different from zero, that is all the output bytes are different from zero.
This simply implies that it is not possible that R(p1)⊕R(p2) ∈ DJ for |J | ≤ 3.

Second case. Secondly, we consider the case in which two variables are equal,
that is w.l.o.g. we assume for example that z = z′ and w = w′, while x 6= x′ and
y 6= y′ (the other cases are analogous). That is, we suppose that the two texts
p1 and p2 belong to the same coset of M0 ∩ C0,1 ⊕ a, where a ∈ (M0 ∩ C0,1)⊥.

Assume that - for certain z = z′ and w = w′ - there exist two elements p1

(generated by 〈x, y〉) and p2 (generated by 〈x′, y′〉) defined as before in the same
coset of M0 that belong to the same coset of DJ for a certain J with |J | = 3
after one round. In other words, let j = {0, 1, 2, 3} \ J and assume that there
exist x, y and x′, y′ and j such that the generated elements p1 and p2 satisfy
(R(p1) ⊕ R(p2))i,i+j = 0 for each i = 0, 1, 2, 3, where the indexes are taken
modulo 4.

10 Note that S-Box(2 · x⊕ a0,0)⊕ S-Box(2 · x′ ⊕ a0,0) = 0 if and only if x = x′, which
can never happen for hypothesis.
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This implies that the two elements p̂1 (generated by 〈x, y′〉) and p̂2 (generated
by 〈x, y′〉)

p̂1 = a⊕


2 · x′ y 0 0
x′ y 0 0
x′ 3 · y 0 0

3 · x′ 2 · y 0 0

 , p̂2 = a⊕


2 · x y′ 0 0
x y′ 0 0
x 3 · y′ 0 0

3 · x 2 · y′ 0 0


belong to the same coset of DJ after one round. To prove this fact, it is sufficient
to compute R(p1)⊕R(p2) and R(p̂1)⊕R(p̂2), and to prove that they are equal,
i.e.

R(p1)⊕R(p2) = R(p̂1)⊕R(p̂2).

Since R(p1)⊕R(p2) ∈ DJ , it also follows that R(p̂1)⊕R(p̂2) ∈ DJ . In particular,
by simple computation the first column of R(p1)⊕R(p2) is given by:

(R(p1)⊕R(p2))0,0 = 2 · (S-Box(2 · x⊕ a0,0)⊕ S-Box(2 · x′ ⊕ a0,0))⊕
⊕ 3 · (S-Box(y ⊕ a1,1)⊕ S-Box(y′ ⊕ a1,1)),

(R(p1)⊕R(p2))1,0 = S-Box(2 · x⊕ a0,0)⊕ S-Box(2 · x′ ⊕ a0,0)⊕
⊕ 2 · (S-Box(y ⊕ a1,1)⊕ S-Box(y′ ⊕ a1,1)),

(R(p1)⊕R(p2))2,0 = S-Box(2 · x⊕ a0,0)⊕ S-Box(2 · x′ ⊕ a0,0)⊕
⊕ S-Box(y ⊕ a1,1)⊕ S-Box(y′ ⊕ a1,1),

(R(p1)⊕R(p2))3,0 = 3 · (S-Box(2 · x⊕ a0,0)⊕ S-Box(2 · x′ ⊕ a0,0))⊕
⊕ S-Box(y ⊕ a1,1)⊕ S-Box(y′ ⊕ a1,1).

Due to the definition of p̂1 and p̂2, it follows immediately that (R(p1)⊕R(p2))·,0 =
(R(p̂1)⊕R(p̂2))·,0. The same holds for the other columns. Note that the existence
of the two elements p̂1 and p̂2 is guaranteed by the fact that we are working with
the entire coset ofM0. This implies that the number of collisions must be even,
that is a multiple of 2.

Question: given p1 and p2 as before, is it possible that x, y, x′, y′ exist such
that R(p1) ⊕ R(p2) ∈ DJ for |J | = 3? Yes, again because the branch number
of the MixColumns operation is five. Indeed, compute SR◦ S-Box(p1) ⊕ SR◦
S-Box(p2) and analyze the first column (the others are analogous):

(SR◦ S-Box(p1)⊕SR◦ S-Box(p2))·,0 =


S-Box(2 · x⊕ a0,0)⊕ S-Box(2 · x′ ⊕ a0,0)

S-Box(y ⊕ a1,1)⊕ S-Box(y′ ⊕ a1,1)
0
0

 .
After the MixColumns operation (note R(p1)⊕R(p2) = MC(SR ◦ S-Box(p1)⊕
SR◦ S-Box(p2))), since two input bytes11 are different from zero, it follows that

11 Note that S-Box(2 ·x⊕a0,0)⊕S-Box(2 ·x′⊕a0,0) = 0 if and only if x = x′, which can
never happen for hypothesis. In the same way, S-Box(y⊕a1,1)⊕S-Box(y′⊕a1,1) = 0
if and only if y = y′, which can never happen for hypothesis.
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at least three output bytes must be different from zero, or at most one output
byte could be equal to zero (similar for the other columns). In other words, it is
possible that p1 and p2 exist such that R(p1)⊕R(p2) ∈ DJ for |J | = 3. Moreover,
this also implies that it is not possible that two or more output bytes in the same
column are equal to zero, or in other words that R(p1)⊕R(p2) ∈ DJ for |J | ≤ 2,
with the previous conditions.

Moreover, observe that R(p1) ⊕ R(p2) ∈ DJ for |J | = 3 if and only if four
bytes (one per column) of R(p1)⊕R(p2) are equal to zero. Since there are four
“free” variables (i.e. x, y, x′, y′) and a system of four equations, such a system
can have a non-negligible solution.

Finally, since the previous result is independent of the values of z = z′ and
w = w′, it follows that the number of collisions for this case must be a multiple
of 217. Indeed, assume that for certain ẑ and ŵ there exist x, y, x′, y′ such that
the two elements p1 and p2 in M0 ∩ C0,1 ⊕ a generated respectively by 〈x, y〉
and by 〈x′, y′〉 satisfy the condition R(p1) ⊕ R(p2) ∈ DJ for a certain J . By
simple computation, the difference R(p1)⊕R(p2) doesn’t depend on z = z′ and
on w = w′, that is for each byte of (R(p1) ⊕ R(p2))k,l for k, l = 0, 1, 2, 3 there
exist constant Ai, Bi, Ci for i = 0, 1, 2, 3 - that depend only on the coefficients
of the MixColumns matrix or/and of the secret-key - such that

(R(p1)⊕R(p2))i,j =A0 · (S-Box(B0 · x⊕ C0)⊕ S-Box(B0 · x′ ⊕ C0))⊕
⊕A1 · (S-Box(B1 · y ⊕ C1)⊕ S-Box(B1 · y′ ⊕ C1))⊕
⊕A2 · (S-Box(B2 · z ⊕ C2)⊕ S-Box(B2 · z′ ⊕ C2))⊕
⊕A3 · (S-Box(B3 · w ⊕ C3)⊕ S-Box(B3 · w′ ⊕ C3)) =

=A0 · (S-Box(B0 · x⊕ C0)⊕ S-Box(B0 · x′ ⊕ C0))⊕
⊕A1 · (S-Box(B1 · y ⊕ C1)⊕ S-Box(B1 · y′ ⊕ C1)).

It follows that - under the previous hypothesis - each pair of elements p1 and p2

respectively generated by (1) 〈x, y, z, w〉 and by 〈x′, y′, z, w〉 or (2) 〈x, y′, z, w〉
and by 〈x′, y, z, w〉 for each possible value of z and w satisfy the condition R(p1)⊕
R(p2) ∈ DJ . Thus, the number of collisions for this case must be a multiple of
2 · (28)2 = 217. As before, the existence of all these elements is guaranteed by
the fact that we are working with the entire coset of M0.

Third case. Thirdly, we consider the case in which only one variable is equal,
that is w.l.o.g. we assume for example w = w′, while x 6= x′, y 6= y′ and z 6= z′

(the other cases are analogous). That is, we suppose that the two texts p1 and
p2 belong to the same coset of M0 ∩ C0,1,2 ⊕ a, where a ∈ (M0 ∩ C0,1,2)⊥.

Assume there exist two elements p1 (generated by 〈x, y, z〉) and p2 (generated
by 〈x′, y′, z′〉) defined as before in the same coset ofM0 that belong to the same
coset of DJ for a certain J with |J | ≥ 2 after one round. In other words, assume
there exist x, y, z and x′, y′, z′ such that the generated elements p1 and p2 satisfy
R(p1)⊕R(p2) ∈ DJ for a certain J with |J | ≥ 2 Similar to before, it follows that
also the following three pairs of elements in the same coset ofM0 generated by:
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– 〈x′, y, z〉 and 〈x, y′, z′〉
– 〈x, y′, z〉 and 〈x′, y, z′〉
– 〈x, y, z′〉 and 〈x′, y′, z〉

belong after one round in the same coset of DJ for the same J of p1 and p2, for
a total of four different pairs. As before, in order to prove this fact it is sufficient
to show that R(p1)⊕R(p2) = R(p̂1)⊕R(p̂2), where p̂1 and p̂2 are generated by
the previous combinations of variables. Note that the existence of these elements
is guaranteed by the fact that we are working with the entire coset ofM0. This
implies that the number of collisions must be a multiple of 4.

Finally, we have only to prove that such x, y, z and x′, y′, z′ can exist. As
before, we compute SR◦ S-Box(p1)⊕SR◦ S-Box(p2) and analyze the first column
(the others are analogous):

(SR◦ S-Box(p1)⊕SR◦ S-Box(p2))·,0 =


S-Box(2 · x⊕ a0,0)⊕ S-Box(2 · x′ ⊕ a0,0)

S-Box(y ⊕ a1,1)⊕ S-Box(y′ ⊕ a1,1)
S-Box(2 · z ⊕ a2,2)⊕ S-Box(2 · z′ ⊕ a2,2)

0

 .
After the MixColumns operation, since three input bytes12 are different from
zero, it follows that at least two output bytes must be different from zero, or
at most two output bytes could be equal to zero. This implies that the event
R(p1)⊕R(p2) ∈ DJ for |J | ≥ 2 is possible. Moreover, this also implies that it is
not possible that three output bytes (of the same column) are equal to zero, or in
other words that R(p1)⊕R(p2) ∈ DJ for |J | = 1, with the previous hypothesis.
Also in this case, variables x, y, z and x′, y′, z′ can exist since the number of
equations is less or equal than the number of variables.

Finally, since the previous result is independent of the values of w = w′, it
follows that the number of collisions for this case must be a multiple of 4·28 = 210.
As before, assume that for a certain ŵ there exist x, y, z, x′, y′, z′ such that the
two elements p1 and p2 inM0 ∩C0,1,2⊕a generated respectively by 〈x, y, z〉 and
by 〈x′, y′, z′〉 satisfy the condition R(p1) ⊕ R(p2) ∈ DJ for a certain J . Also in
this case, the idea is to show that the difference R(p1)⊕R(p2) doesn’t depend on
w = w′, that is for each byte of (R(p1)⊕R(p2))i,j there exist constant Ai, Bi, Ci
for i = 0, 1, 2 - that depend only on the coefficients of the MixColumns matrix
or/and of the secret-key - such that

(R(p1)⊕R(p2))i,j = A0 · (S-Box(B0 · x⊕ C0)⊕ S-Box(B0 · x′ ⊕ C0))⊕
⊕A1 · (S-Box(B1 · y ⊕ C1)⊕ S-Box(B1 · y′ ⊕ C1))⊕
⊕A2 · (S-Box(B2 · z ⊕ C2)⊕ S-Box(B2 · z′ ⊕ C2)).

It follows that - under the previous hypothesis - each pair of elements p1 and p2

respectively generated by one of the four different combinations of the variables

12 Note that S-Box(2·x⊕a0,0)⊕S-Box(2·x′⊕a0,0) = S-Box(y⊕a1,1)⊕S-Box(y′⊕a1,1) =
S-Box(2 · z ⊕ a2,2)⊕ S-Box(2 · z′ ⊕ a2,2) = 0 if and only if x = x′, y = y′ and z = z′,
which can never happen for hypothesis.
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〈x, y, z, w〉 and 〈x′, y′, z′, w〉 for each possible value of w satisfy the condition
R(p1)⊕R(p2) ∈ DJ . As before, the existence of all these elements is guaranteed
by the fact that we are working with the entire coset of M0.

Fourth case. Fourthly, we consider the case in which all the variables are
different, that is w.l.o.g. we assume that x 6= x′, y 6= y′, z 6= z′ and w 6= w′.
That is, we suppose that the two texts p1 and p2 belong to the same coset of
M0 ⊕ a, where a ∈M⊥0 and where p1 ⊕ p2 /∈ CJ for each |J | ≤ 3.

Assume there exist two elements p1 (generated by 〈x, y, z, w〉) and p2 (gen-
erated by 〈x′, y′, z′, w′〉) defined as before in the same coset of M0 that belong
to the same coset of DJ for a certain J with |J | ≥ 1 after one round. In other
words, assume there exist x, y, z, w and x′, y′, z′, w′ such that the generated ele-
ments p1 and p2 satisfy R(p1)⊕R(p2) ∈ DJ for a certain J with |J | ≥ 1. Similar
to before, it follows that also the following seven pairs of elements in the same
coset of M0 generated by:

– 〈x′, y, z, w〉 and 〈x, y′, z′, w′〉
– 〈x, y′, z, w〉 and 〈x′, y, z′, w′〉
– 〈x, y, z′, w〉 and 〈x′, y′, z, w′〉
– 〈x, y, z, w′〉 and 〈x′, y′, z′, w〉
– 〈x′, y′, z, w〉 and 〈x, y, z′, w′〉
– 〈x′, y, z′, w〉 and 〈x, y′, z, w′〉
– 〈x′, y, z, w′〉 and 〈x, y′, z′, w〉

belong after one round in the same coset of DJ for the same J of p1 and p2,
for a total of eight different pairs. As before, in order to prove this fact it is
sufficient to show that R(p1)⊕R(p2) = R(p̂1)⊕R(p̂2). Moreover, as before note
that existence of these elements is guaranteed by the fact that we are working
with all the coset of M0. This implies that the number of collisions must be a
multiple of 8.

Finally, we have only to prove that such x, y, z, w and x′, y′, z′, w′ can exist.
As before, we compute SR◦ S-Box(p1) ⊕ SR◦ S-Box(p2) and analyze the first
column (the others are analogous):

(SR◦ S-Box(p1)⊕SR◦ S-Box(p2))·,0 =


S-Box(2 · x⊕ a0,0)⊕ S-Box(2 · x′ ⊕ a0,0)

S-Box(y ⊕ a1,1)⊕ S-Box(y′ ⊕ a1,1)
S-Box(2 · z ⊕ a2,2)⊕ S-Box(2 · z′ ⊕ a2,2)

S-Box(w ⊕ a3,3)⊕ S-Box(w′ ⊕ a3,3)

 .
After the MixColumns operation, since four input bytes13 are different from
zero, it follows that at least one output byte must be different from zero, or
at most three output bytes could be equal to zero. This implies that the event
R(p1)⊕R(p2) ∈ DJ for |J | ≥ 1 is possible. Also in this case, variables x, y, z, w
and x′, y′, z′, w′ can exist since the number of equations is less or equal than the
number of variables.
13 Note that S-Box(2·x⊕a0,0)⊕S-Box(2·x′⊕a0,0) = S-Box(y⊕a1,1)⊕S-Box(y′⊕a1,1) =

S-Box(2·z⊕a2,2)⊕S-Box(2·z′⊕a2,2) = S-Box(w⊕a3,3)⊕S-Box(w′⊕a3,3) = 0 if and
only if x = x′, y = y′, z = z′ and w = w′, which can never happen for hypothesis.
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Conclusion. We summarize the previous results and we prove the lemma. Given
a coset ofMi, we analyze the number of collisions in the same coset of DJ after
one round.

If |J | = 1, it is possible to have a collision only in the case in which all the
variables that generate the two texts are different, that is x 6= x′, y 6= y′, and so
on. In this case, the number of collisions n must be a multiple of 8, that is there
exists n′ ∈ N such that n = 8 · n′.

If |J | = 2, it is possible to have a collision only if at least three variables that
generate the two texts are different (i.e. at most one variable can be equal). If
all the variables are different, the number of collisions is a multiple of 8, while if
one is equal then the number of collisions is a multiple of 1024 ≡ 210. In other
words, there exist n′, n′2 ∈ N such that the total number of collisions n is equal
to n = 8 · n′ + 1024 · n′2 = 8 · (n′ + 128 · n′2), i.e. it is a multiple of 8.

If |J | = 3, it is possible to have a collision only if at least two variables that
generate the two texts are different (i.e. at most two variables can be equal). If
all the variables are different, the number of collisions is a multiple of 8, if one
is equal then the number of collisions is a multiple of 1024 ≡ 210, while if two
are equal then the number of collisions is a multiple of 131072 ≡ 217. In other
words, there exist n′, n′2, n

′
3 ∈ N such that the total number of collisions n is

equal to n = 8 · n′ + 210 · n′2 + 217 · n′3 = 8 · (n′ + 27 · n′2 + 214 · n′3), i.e. it is a
multiple of 8.

This proves the lemma. ut

For completeness, we briefly recall why the proof of Lemma 2 implies Theo-
rem 3. As we have already said, consider the following description of 5-round of
AES:

DI ⊕ a
R2(·)−−−−→
prob. 1

MI ⊕ b
R(·)−−→ DJ ⊕ a′

R2(·)−−−−→
prob. 1

MJ ⊕ b′.

By Lemma 2 and focusing in the middle round, we know that the number of
collision n must a multiple of 8. Then, the backward extension is simply given
by the fact that a coset of MI is mapped into a coset of DI two rounds before.
About the forward extension, for the same reason note that if two texts belong
to the same coset of DJ , then they belong to the same coset of MJ after two
rounds. Since these two events hold with probability 1, this finally proves the
theorem.

7 Conclusion, applications and open problems

In this paper, we have presented a new non-random property for 5 rounds of
AES. Additionally, we showed how to set up an efficient 5-round secret-key dis-
tinguisher for AES which exploits this property, which is independent of the
secret key, improving the very recent results [22] and providing answers to the
questions posed in [22]. This distinguisher is structural in the sense that it is in-
dependent of the details of the MixColumns matrix (with the exception that the
branch number must be five) and also independent of the SubBytes operation.
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As such it will be straightforward to apply to many other AES-like constructions.
Starting from our results, a range of new questions arise for future investigations:

Application to schemes that directly use round-reduced AES. Round-
reduced AES is a popular construction to build different schemes. For example,
in the on-going “Competition for Authenticated Encryption: Security, Applica-
bility, and Robustness” (CAESAR) [1], which is currently at its third round,
several candidates are designed based on an AES-like SPN structure. Focusing
only on the third-round candidates14, among many others, AEGIS [16] uses four
AES round-functions in the state update functions while ELmD [21] recommends
to use round-reduced AES including 5-round AES to partially encrypt the data.
Although the security of these candidates does not completely depend on the
underlying primitives, we believe that a better understanding of the security of
round-reduced AES can help get insights to both the design and cryptanalysis
of authenticated encryption algorithms.

Further Extensions. Is it possible to set up a secret-key distinguisher for 6-
round of AES which exploits a property which is independent of the secret key?
Is it possible to set up efficient key recovery attacks for 6- or more rounds of AES
that exploits this new 5-round secret-key distinguisher proposed in this paper or
a modified version of it?

Permutation and Known-Key Distinguishers. The new 5-round property
(or its approach to derive it) might find applications to permutation distinguish-
ers or known-key distinguishers. Permutation distinguisher are usually set up by
combining two secret-key distinguishers in an inside-out fashion. It is not im-
mediately clear how the 5-round secret-key distinguisher presented in this paper
used in an inside-out approach would be able to maintain the property in both
directions simultaneously, but it seems interesting to investigate this direction
also.

Acknowledgements. The work in this paper has been partially supported
by the Austrian Science Fund (project P26494-N15).

References

1. “CAESAR: Competition for Authenticated Encryption: Security, Applicability,
and Robustness,” http://competitions.cr.yp.to/caesar.html.

2. A. Biryukov, D. Khovratovich, “PAEQ v1,” http://competitions.cr.yp.to/round1/
paeqv1.pdf.

14 Among previous-round candidates, it is also possible to include PRIMATEs [13]
which design is based on an AES-like SPN structure, while 4-round AES is adopted
by Marble [17] and used to build the AESQ permutation in PAEQ [2].

27



3. E. Biham, A. Biryukov, and A. Shamir, “Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials,” in Advances in Cryptology - EUROCRYPT
1999: International Conference on the Theory and Application of Cryptographic
Techniques, Czech Republic. Proceedings, ser. LNCS, vol. 1592, 1999, pp. 12–23.

4. E. Biham and N. Keller, “Cryptanalysis of Reduced Variants of Rijndael,” unpub-
lished, 2001, http://csrc.nist.gov/archive/aes/round2/conf3/papers/35-ebiham.
pdf.

5. E. Biham and A. Shamir, Differential Cryptanalysis of the Data Encryption Stan-
dard. Springer-Verlag, 1993.

6. C. Cid, S. Murphy, and M. J. B. Robshaw, “Small Scale Variants of the AES,”
in Fast Software Encryption - FSE 2005: 12th International Workshop, France.
Revised Selected Papers, ser. LNCS, vol. 9054, 2005, pp. 145–162.

7. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo-
rithms, Third Edition, 3rd ed. The MIT Press, 2009.

8. J. Daemen, L. R. Knudsen, and V. Rijmen, “The Block Cipher Square,” in Fast
Software Encryption - FSE 1997: 4th International Workshop, Israel. Proceedings,
ser. LNCS, vol. 1267, 1997, pp. 149–165.

9. J. Daemen and V. Rijmen, The Design of Rijndael: AES - The Advanced Encryp-
tion Standard, ser. Information Security and Cryptography. Springer, 2002.

10. ——, “Two-round aes differentials,” Cryptology ePrint Archive, Report 2006/039,
2006, http://eprint.iacr.org/2006/039.

11. ——, “Understanding Two-Round Differentials in AES,” in Security and Cryptog-
raphy for Networks - SCN 2006: 5th International Conference, Italy, 2006, Pro-
ceedings, ser. LNCS, vol. 4116, 2006, pp. 78–94.

12. P. Derbez, “Meet-in-the-middle attacks on AES,” Ph.D. thesis, Ecole Normale
Supérieure de Paris - ENS Paris, (Dec 2013), https://tel.archives-ouvertes.fr/
tel-00918146.

13. E. Andreeva, B. Bilgin, A. Bogdanov, A. Luykx, F. Mendel, B. Mennink, N. Mouha,
Q. Wang, K. Yasuda, “PRIMATEs v1.02 Submission to the CAESAR Competi-
tion,” http://competitions.cr.yp.to/round2/primatesv102.pdf.

14. N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner, and D. Whiting,
“Improved Cryptanalysis of Rijndael,” in Fast Software Encryption - FSE 2000:
7th International Workshop, USA, 2000, Proceedings, ser. LNCS, vol. 1978, 2001,
pp. 213–230.

15. L. Grassi, C. Rechberger, and S. Rønjom, “Subspace Trail Cryptanalysis and its
Applications to AES,” IACR Transactions on Symmetric Cryptology, vol. 2016,
no. 2, pp. 192–225, 2017. [Online]. Available: http://ojs.ub.rub.de/index.php/
ToSC/article/view/571

16. H. Wu, B. Preneel, “A Fast Authenticated Encryption Algorithm,” http://
competitions.cr.yp.to/round1/aegisv1.pdf.

17. J. Guo, “Marble Version 1.1,” https://competitions.cr.yp.to/round1/marblev11.
pdf.

18. L. R. Knudsen, “Truncated and higher order differentials,” in Fast Software En-
cryption - FSE 1994: Second International Workshop, Belgium. Proceedings, ser.
LNCS, vol. 1008, 1995, pp. 196–211.

19. ——, “DEAL - a 128-bit block cipher,” Technical Report 151, Department of
Informatics, University of Bergen, Norway, Feb. 1998.

20. M. Luby and C. Rackoff, “How to Construct Pseudorandom Permutations from
Pseudorandom Functions,” SIAM J. Comput., vol. 17, no. 2, pp. 373–386, 1988.

21. N. Datta, M. Nandi, “ELmD v2.0,” http://competitions.cr.yp.to/round2/elmdv20.
pdf.

28



22. B. Sun, M. Liu, J. Guo, L. Qu, and V. Rijmen, “New Insights on AES-Like SPN
Ciphers,” in Advances in Cryptology – CRYPTO 2016: 36th Annual International
Cryptology Conference, Santa Barbara, CA, USA. Proceedings, Part I, ser. LNCS,
vol. 9814, 2016, pp. 605–624.

23. B. Sun, M. Liu, J. Guo, V. Rijmen, and R. Li, “Provable Security Evaluation of
Structures Against Impossible Differential and Zero Correlation Linear Cryptanal-
ysis,” in Advances in Cryptology - EUROCRYPT 2016: 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Austria.
Proceedings, Part I, ser. LNCS, vol. 9665, 2016, pp. 196–213.

24. B. Sun, Z. Liu, V. Rijmen, R. Li, L. Cheng, Q. Wang, H. AlKhzaimi, and C. Li,
“Links Among Impossible Differential, Integral and Zero Correlation Linear Crypt-
analysis,” in Advances in Cryptology - CRYPTO 2015: 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, 2015, Proceedings, Part I, ser. LNCS, vol.
9215, 2015, pp. 95–115.

25. T. Tiessen, “Polytopic Cryptanalysis,” in Advances in Cryptology - EUROCRYPT
2016: 35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Austria. Proceedings, Part I, ser. LNCS, vol. 9665, 2016,
pp. 214–239.

26. T. Tiessen, L. R. Knudsen, S. Kölbl, and M. M. Lauridsen, “Security of the AES
with a Secret S-Box,” in Fast Software Encryption - FSE 2015: 22nd International
Workshop, Turkey. Revised Selected Papers, ser. LNCS, vol. 9054, 2015, pp. 175–
189.

A Secret-Key Distinguisher on 5 Rounds AES -
Decryption Direction

The secret-key distinguisher on 5-round AES presented in Sect. 4 works also in
the decryption direction. Here we give a formal theorem for this case.

Theorem 5. Let MI and DJ the subspaces defined as before for certain fixed I
and J , and assume |I| = 1. Given an arbitrary coset ofMI - that isMI⊕a for a
fixed a ∈ M⊥I , consider all the 232 ciphertexts and the corresponding plaintexts
5 rounds before, that is (pi, ci) for i = 0, ..., 232 − 1 where pi ∈ MI ⊕ a and
ci = R−5(pi). The number n of different pairs of ciphertexts (ci, cj) for i 6= j
such that ci ⊕ cj ∈ DJ (i.e. ci and cj belong to the same coset of MJ)

n := |{(pi, ci), (pj , cj) | ∀pi, pj ∈MI ⊕ a, pi < pj and ci ⊕ cj ∈ DJ}|

is a multiple of 8, that is ∃n′ ∈ N s.t. n = 8 · n′.

The proof of this theorem is completely analogous to the one proposed for
Theorem 3. Thus, we limit ourselves to give the sketch of the proof, and we refer
to the previous case for all the details.

As before, the idea is to focus on the middle round, that is given 232 texts
in the same coset of DI with |I| = 1, the idea is to prove that the number of
collisions n in the same coset of MJ one round before is a multiple of 8.
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In particular, consider two element p1 and p2 in the same coset of Di⊕ a for
a ∈ D⊥i . W.l.o.g., assume i = 0 (analogous for the other cases). By definition of
Di, there exist x, y, z, w ∈ F28 and x′, y′, z′, w′ ∈ F28 such that:

p1 = a⊕


x 0 0 0
0 y 0 0
0 0 z 0
0 0 0 w

 , p2 = a⊕


x′ 0 0 0
0 y′ 0 0
0 0 z′ 0
0 0 0 w′

 ,
where a ∈ D⊥i fixed. We say that p1 is “generated” by 〈x, y, z, w〉 and p2 is
“generated” by 〈x′, y′, z′, w′〉.

As before, the idea is to analyze in details the following four cases: (1) only
one variable is different (e.g. x 6= x′ and y = y′, z = z′, w = w′), (2) two
variables are different, (3) three variables are different and (4) all the variables
are different.

For completeness, we analyze only the case (2) - the other cases are analogous.
W.l.o.g. we assume for example that x 6= x′, y 6= y′ and z = z′, w = w′. Assume
that there exist x 6= x′, y 6= y′ and z = z′, w = w′ such that p1 generated by
〈x, y, z, w〉 and p2 generated by 〈x′, y′, z′, w′〉 belong to the same coset of MJ

one round before. As before, it is possible to prove that also the elements p̂1

and p̂2 in Di ⊕ a generated by 〈x′, y〉 and 〈x, y′〉 belong one round before in the
same coset of MJ for the same J of p1 and p2. To prove this, it is sufficient
to show that R−1(p1)⊕R−1(p2) = R−1(p̂1)⊕R−1(p̂2). Moreover, showing that
all the bytes of R−1(p1) ⊕ R−1(p2) = R−1(p̂1) ⊕ R−1(p̂2) are independently of
z = z′ and w = w′, it follows that the number of collisions must be a multiple
of 2 · (28)2 = 217. Note that the existence of all these elements p̂1 and p̂2 is
guaranteed by the fact that we are working with the entire coset of D0.

We finally prove that the variables x, y, x′ and y′ can exist. By simple com-
putation - where for the following b ≡ MC−1(a ⊕ k) and k is the secret key of
the round, the first column of R−1(p1)⊕R−1(p2) is given by (analogous for the
others):

[R−1(p1)⊕R−1(p2)]·,0 =


S-Box−1(E · x⊕ b0,0)⊕ S-Box−1(E · x′ ⊕ b0,0)

0
0

S-Box−1(D · y ⊕ b3,1)⊕ S-Box−1(D · y′ ⊕ b3,1)

 ,
where E ≡ 0x0E, B ≡ 0x0B, D ≡ 0x0D and 9 ≡ 0x09 (analogous for the
other columns). Note that two bytes of the first column are different from zero
(since x 6= x′ and y 6= y′). Since R−1(p1) ⊕ R−1(p2) ∈ MJ if and only if
MC−1(R−1(p1)⊕R−1(p2)) ∈ IDJ and since the InverseMixColumns matrix has
branch number 5, it follows that at most one output byte of each column can be
equal to zero, that is J must satisfy |J | ≥ 3. Moreover, R−1(p1)⊕R−1(p2) ∈MJ

implies only one condition for each column, for a total of four conditions. Since
there are four variables, the variables x, x′, y and y′ can exist.

The complete proof of the theorem is obtained working in a similar way also
for the other cases, as for Theorem 3 - see Sect. 6 for details.
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B Generalization of Theorem 3

In Theorem 3 given in Sect. 4, we only considered the case |I| = 1. A natural
question arises: is it possible to generalize the theorem also for |I| = 2 or/and
|I| = 3? The answer is yes, and it is given in Theorem 4 recalled in the following.
In particular, we prove in this section that the result obtained in Theorem 3 is
independent of |I| = 1, or, in other words, the property of n to be a multiple of
8 is independent of I.

Theorem 4. Let DI and MJ the subspaces defined as before, where 1 ≤ |I| ≤ 3
and J are fixed. Given an arbitrary coset of DI - that is DI ⊕ a for a fixed
a ∈ D⊥I , consider all the 232·|I| plaintexts and the corresponding ciphertexts
after 5 rounds, that is (pi, ci) for i = 0, ..., 232·|I| − 1 where pi ∈ DI ⊕ a and
ci = R5(pi). The number n of different pairs of ciphertexts (ci, cj) for i 6= j such
that ci ⊕ cj ∈MJ (i.e. ci and cj belong to the same coset of MJ)

n := |{(pi, ci), (pj , cj) | ∀pi, pj ∈ DI ⊕ a, pi < pj and ci ⊕ cj ∈MJ}|

is a multiple of 8, that is ∃n′ ∈ N s.t. n = 8 · n′.

Since the proof for the case |I| = 1 is given in Sect. 6, we focus on the cases
|I| = 2 and |I| = 3. Also for these cases, the idea is to analyze the middle round
and to study each possible case, as done in Sect. 6. Thus, given pair of texts in
the same coset ofMI , we analyze the property of the number of collisions in the
same coset of DJ after one round.

Since the idea of the proof for |I| = 2 and |I| = 3 is analogous to that
given for |I| = 1, we limit ourselves to do some considerations which justify
the theorem. A complete proof can be easily obtained exploiting the following
considerations and using the same strategy proposed in Sect. 6.

First Consideration. As first consideration, note that we are considering pairs
of plaintexts/ciphertexts (p1, c1) and (p2, c2) such that p1⊕ p2 ∈MI for |I| = 2
and |I| = 3 (note that we analyze the middle round). Since MI can be seen as
the union of set of MÎ for each |Î| = 1 and |I| ≥ 2 such that Î ⊆ I

MI ≡
⋃

x∈MI\Î

MÎ ⊕ x,

then if n is a multiple of 2m then m must satisfy m ≤ 3. This follows immediately
by Theorem 3 (which can be applied to each coset MÎ ⊕ x defined previously)
and the corresponding proof of Sect. 6.

Thus, we have to prove that n is a multiple of 2m and that m = 3 also for
the cases |I| = 2 and |I| = 3.
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B.1 Case |I| = 2

We start studying the case |I| = 2. As we show in details in the following, the
same analysis can be simply modified and adapted for the case |I| = 3.

W.l.o.g we assume I = {0, 1} (the other cases are analogous). Consider two
texts p1 and p2 in the same coset of MI , that is MI ⊕ a for a given a ∈
M⊥I . By definition, there exist x0, x1, y0, y1, z0, z1, w0, w1 ∈ F28 and x′0, x

′
1, y
′
0,

y′1, z
′
0, z
′
1, w

′
0, w

′
1 ∈ F28 such that:

p1 = a⊕MC ·


x0 y0 0 0
x1 0 0 w0

0 0 z0 w1

0 y1 z1 0

 , p2 = a⊕MC ·


x′0 y

′
0 0 0

x′1 0 0 w′0
0 0 z′0 w

′
1

0 y′1 z
′
1 0

 .
For the following, let 2 ≡ 0x02 and 3 ≡ 0x03.

Following the same strategy of Sect. 6, the idea is to consider all the possible
cases in which some or no-one variables of p1 are equal to the ones of p2. Note
that the case x1 = x′1, y1 = y′1, z1 = z′1 and w1 = w′1 (i.e. two texts that belong
to the same coset ofMI for |I| = 1) has already been considered. In particular,
by Theorem 3 it follows that in this case the number n is a multiple of 8.

First Case. W.l.o.g. we consider the case y1 = y′1, wi = w′i and zi = z′i for
i = 0, 1, while y0 6= y′0 and xi 6= x′i for i = 0, 1 (the other cases are analogous).

Assume that for certain there exist x0, x1, y0 and x′0, x
′
1, y
′
0 such that the

generated elements p1 and p2 satisfy R(p1) ⊕ R(p2) ∈ DJ for a certain J for
|J | = 3. First of all, we show that such variables can exist if |J | = 3. The
condition R(p1) ⊕ R(p2) ∈ DJ for a certain J with |J | = 3 implies that four
bytes (one per column) of R(p1)⊕R(p2) must be equal to 0. Since there are six
independent variables, a solution can exist (note that the number of variables is
higher than the number of equations, so two variables are still “free”). Moreover,
this is also due to the branch number of the MixColumns operation, which is five.
Indeed, by simple computation the first column of SR(S-Box(p1)⊕ S-Box(p2))
(analogous for the others) is given by:

SR(S-Box(p1)⊕ S-Box(p2))0,0 = S-Box(2 · x0 ⊕ 3 · x1 ⊕ a0,0 ⊕ a1,0)⊕
⊕ S-Box(2 · x′0 ⊕ 3 · x′1 ⊕ a0,0 ⊕ a1,0),

SR(S-Box(p1)⊕ S-Box(p2))1,0 = S-Box(y0 ⊕ a1,1)⊕ S-Box(y′0 ⊕ a1,1),

SR(S-Box(p1)⊕ S-Box(p2))2,0 = SR(S-Box(p1)⊕ S-Box(p2))3,0 = 0.

Thus, if we compute MC ◦SR(S-Box(p1)⊕ S-Box(p2)) (that is, R(p1)⊕R(p2)),
since at most two input bytes are different from zero, then it follows that at
least three output bytes must be different from zero, or equivalently at most
one output byte can be equal to zero. As a consequence, it is possible that
R(p1) ⊕ R(p2) ∈ DJ for |J | = 3, but not for |J | ≤ 2. We emphasize that with
respect to the case |I| = 1, it is possible that one input byte of the MixColumns
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operation can be equal to zero. Indeed, it is possible that exist x0 and x′0 such
that SR(S-Box(p1)⊕ S-Box(p2))0,0 (analogous for the others columns).

As before, the idea is to consider the pairs of texts generated by all the
possible combinations of these six variables, as for example 〈x0, x1, y′0〉 and
〈x′0, x′1, y0〉, 〈x0, x′1, y0〉 and 〈x′0, x1, y′0〉, 〈x′0, x1, y0〉 and 〈x0, x′1, y′0〉, 〈x1, x0, y′0〉
and 〈x′0, x′1, y0〉 (note that the elements generated by 〈x0, x1, y′0〉 and by 〈x1, x0, y′0〉
are different) and so on.

We analyze these cases. It is simple to observe that if p1 generated by
〈x0, x1, y0〉 and p2 generated by 〈x′0, x′1, y′0〉 belong to the same coset of MJ

for |J | = 3 after one round, then also the elements generated by 〈x0, x1, y′0〉 and
〈x′0, x′1, y0〉 have the same property. To prove this fact, it is sufficient to show
that R(p1)⊕R(p2) = R(p̂1)⊕R(p̂2). As an example, by simple computation, it
is simple to observe that for the first column:

SR(S-Box(p̂1)⊕ S-Box(p̂2))i,0 = SR(S-Box(p1)⊕ S-Box(p2))i,0 ∀i,

which implies the statement.
Consider now the elements p̂1 generated by 〈x0, x′1, y0〉 and p̂2 generated by

〈x′0, x1, y′0〉 (similar for the elements generated by 〈x′0, x1, y0〉 and 〈x0, x′1, y′0〉). By
simple computation, the first column of SR(S-Box(p̂1)⊕ S-Box(p̂2)) (analogous
for the others) is given by:

SR(S-Box(p̂1)⊕ S-Box(p̂2))0,0 = S-Box(2 · x0 ⊕ 3 · x′1 ⊕ a0,0 ⊕ a1,0)⊕
⊕ S-Box(2 · x′0 ⊕ 3 · x1 ⊕ a0,0 ⊕ a1,0)

and for i = 1, 2, 3

SR(S-Box(p̂1)⊕ S-Box(p̂2))i,0 = SR(S-Box(p1)⊕ S-Box(p2))i,0.

Since the S-Box is a non-linear operation, three different cases can happen:

1. SR(S-Box(p̂1)⊕ S-Box(p̂2))0,0 = 0;
2. SR(S-Box(p̂1) ⊕ S-Box(p̂2))0,0 6= 0 and the elements p̂1 and p̂2 belong to

the same coset of DJ after one round (for the same J of p1 and p2);
3. SR(S-Box(p̂1)⊕ S-Box(p̂2))0,0 6= 0 and the elements p̂1 and p̂2 don’t belong

to the same coset of DJ after one round (for the same J of p1 and p2).

We analyze in details these three cases, starting from the first one. As first
thing, note that this case can happen since R(p1) ⊕ R(p2) ∈ DJ imposes a
condition only on four out of six variables, that is two variables are still “free”.
If SR(S-Box(p̂1) ⊕ S-Box(p̂2))0,0 = 0, it follows that only one byte (i.e. the
second one) of the first column of SR(S-Box(p̂1)⊕ S-Box(p̂2)) is different from
0 (since y0 6= y′0). Thus, since MixColumns operation has branch number 5, all
the bytes of the first column of R(p̂1)⊕R(p̂2) must be different from zero, that
is R(p̂1) ⊕ R(p̂2) /∈ DJ for |J | ≤ 3. However, note that also in this case it is
possible to deduce something. Indeed, by the previous consideration, it follows
that the elements generated by 〈x0, x′1, y′0〉 and by 〈x′0, x1, y0〉 can not belong to
the same coset of R(p̂1)⊕R(p̂2) /∈ DJ .
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Consider now the other two cases. Since the S-Box is a non-linear operation,
it is not possible to guarantee that

SR(S-Box(p̂1)⊕ S-Box(p̂2))0,0 = SR(S-Box(p1)⊕ S-Box(p2))0,0.

In other words, they can be equal (which implies that the elements p̂1 and p̂2

belong to the same coset of DJ after one round for the same J of p1 and p2) or
different. In this second case, one can not say anything about the fact that the
elements p̂1 and p̂2 belong or not to the same coset of DJ after one round for
the same J of p1 and p2. However, suppose that p̂1 and p̂2 belong to the same
coset of DJ after one round for the same J of p1 and p2 (which is independent by
the previous condition). In the same way of before, note that also the elements
generated by 〈x0, x′1, y′0〉 and p̂2 generated by 〈x′0, x1, y0〉 have the same property.

Thus, assume that p1 generated by 〈x0, x1, y0〉 and p2 generated by 〈x′0, x′1, y′0〉
belong or not to the same coset of DJ after one round. By previous considera-
tions, it follows that also the p̂1 generated by 〈x0, x′1, y0〉 and p̂2 generated by
〈x′0, x1, y′0〉 have the same property. Thus, even if we can not do any claim for
the other texts generated by a different combination of these six variables, it is
possible to conclude that - for fixed y1 = y′1, wi = w′i and zi = z′i for i = 0, 1 -
the number of collisions must be a multiple of 2 for this case.

Finally, since we are working with the entire coset ofM0,1 - that is, y1 = y′1,
wi = w′i and zi = z′i for i = 0, 1 can take any possible value - and due to the
same considerations of Sect. 6, it follows that the number of collisions must be
a multiple of 2 · (28)5 = 241 for this case.

Second Case. Similar considerations can be done for the case wi = w′i and
zi = z′i for i = 0, 1, while xi 6= x′i and yi 6= y′i for i = 0, 1 (the other cases are
analogous).

Assume there exist x0, x1, y0, y1 and x′0, x
′
1, y
′
0, y
′
1 such that the generated

elements p1 and p2 satisfy R(p1)⊕R(p2) ∈ DJ for a certain J with |J | = 3. As
before, note that this is possible since this implies that four bytes of R(p1)⊕R(p2)
(one per column) must be equal to 0. Since there are eight independent variables,
a solution can exist (note that the number of variables is higher than the number
of equations, so four variables are still “free”). Due to the branch number of the
MixColumns operation, even if four variables are still “free” it is not possible
that R(p1)⊕R(p2) ∈MJ for |J | ≤ 2. Indeed, the first column of SR(S-Box(p1)⊕
S-Box(p2)) (analogous for the others) is given by:

SR(S-Box(p1)⊕ S-Box(p2))0,0 = S-Box(2 · x0 ⊕ 3 · x1 ⊕ a0,0 ⊕ a1,0)⊕
⊕ S-Box(2 · x′0 ⊕ 3 · x′1 ⊕ a0,0 ⊕ a1,0),

SR(S-Box(p1)⊕ S-Box(p2))1,0 = S-Box(y0 ⊕ y1 ⊕ a0,1 ⊕ a3,0)⊕
⊕ S-Box(y′0 ⊕ y′1 ⊕ a0,1 ⊕ a3,0),

SR(S-Box(p1)⊕ S-Box(p2))2,0 = SR(S-Box(p1)⊕ S-Box(p2))3,0 = 0.
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After the MixColumns operation MC◦SR(S-Box(p1)⊕ S-Box(p2)), since at most
two input bytes are different from zero, then it follows that at least three output
bytes must be different from zero.

Thus, given x0, x1, y0, y1 and x′0, x
′
1, y
′
0, y
′
1, the idea is to consider all the pos-

sible combinations as before. Also in this case, we can do a claim only on one of
them. In particular, if two elements p1 generated by 〈x0, x1, y0, y1〉 and p2 gener-
ated by 〈x′0, x′1, y′0, y′1〉 satisfies R(p1)⊕R(p2) ∈ DJ , we can only claim that also
the elements p̂1 generated by 〈x′0, x′1, y0, y1〉 and p̂2 generated by 〈x0, x1, y′0, y′1〉
have the same property. Considerations for the other combinations are similar
to the previous case. Thus, we can claim that - for fixed wi = w′i and zi = z′i for
i = 0, 1 - also for this case the number of collisions is a multiple of 2.

Finally, since we are working with the entire coset ofM0,1 - that is, wi = w′i
and zi = z′i for i = 0, 1 can take any possible value - and due to the same
considerations of Sect. 6, it follows that the number of collisions must be a
multiple of 2 · (28)4 = 233 for this case.

Second Consideration. What can we deduce by the previous two cases? Sup-
pose to have two texts p1 generated by 〈x ≡ (x0, x1), y ≡ (y0, y1)〉 and p2

generated by 〈x′ ≡ (x′0, x
′
1), y′ ≡ (y′0, y

′
1)〉 that satisfy R(p1) ⊕ R(p2) ∈ DJ

for |J | = 3 and where x, y ∈ F28 × F28 ≡ F2
28 . We have seen that given

these two elements, one can only claim that also the texts p̂1 generated by
〈x′ ≡ (x′0, x

′
1), y ≡ (y0, y1)〉 and p̂2 generated by 〈x ≡ (x0, x1), y′ ≡ (y′0, y

′
1)〉

have the same property, that is R(p̂1) ⊕ R(p̂2) ∈ DJ for the same J of p1 and
p2. In the same way, if R(p1) ⊕ R(p2) /∈ DJ for |J | = 3 one can claim that
R(p̂1)⊕R(p̂2) /∈ DJ , where p1, p2, p̂1 and p̂2 are defined as before.

As a consequence, the idea for the case |I| = 2 is not to consider the variables
that generate the texts and that are in the same column as independent. In
other words, the idea is to work with variables in F2

28 and not in F28 , i.e. to
consider only all the possible combinations of x ≡ (x0, x1), y ≡ (y0, y1) and
x′ ≡ (x′0, x

′
1), y′ ≡ (y′0, y

′
1), and not of x0, x1, y0, y1 and x′0, x

′
1, y
′
0, y
′
1. Using this

strategy and working in the same way of Sect. 6, it is possible to analyze all the
possible cases.

For example, consider the case in which wi = w′i for i = 0, 1 and x ≡
(x0, x1) 6= x′ ≡ (x′0, x

′
1), y ≡ (y0, y1) 6= y′ ≡ (y′0, y

′
1) and z ≡ (z0, z1) 6= z′ ≡

(z′0, z
′
1). In the same way of before, it is only possible to prove that if there exist

p1 generated by 〈x, y, z〉 and p2 generated by 〈x′, y′, z′〉 such that R(p1)⊕R(p2) ∈
DJ for |J | ≥ 2, then a total of four elements generated by

– 〈x, y, z〉 and 〈x′, y′, z′〉
– 〈x′, y, z〉 and 〈x, y′, z′〉
– 〈x, y′, z〉 and 〈x′, y, z′〉
– 〈x, y, z′〉 and 〈x′, y′, z〉

have the same property. No claim can be made about other combinations of
variables (as before, this is due to the fact that the S-Box is non-linear). It
follows that - for fixed wi = w′i for i = 0, 1- the number of collisions must be a
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multiple of 4 for this case. As before, since we are working with the entire coset of
M0,1 it follows that the number of collisions must be a multiple of 4 ·(28)2 = 218.
Moreover, since the branch number of the MixColumns operation is five, note
that it is not possible that R(p1)⊕R(p2) ∈ DJ for |J | = 1 if wi = w′i for i = 0, 1
(even if R(p1) ⊕ R(p2) ∈ DJ for |J | = 2 imposes only 8 conditions while the
number of variables is 12, so 4 variables are still “free”).

Similar considerations can be done for the case in which all the variables are
different. As a consequence, the theorem is proved for the case |I| = 2.

B.2 Case |I| = 3

The case |I| = 3 is analogous to the case |I| = 2 and to the proof given in Sect.
6. For this reason, we limit ourselves to show how to adapt the proof of the case
|I| = 2 for this case.

W.l.o.g assume I = {0, 1, 2} and consider two texts p1 and p2 in the same
coset of MI , i.e. MI ⊕ a for a ∈ M⊥I . By definition, there exist x0, x1, x2, y0,
y1, y2, z0, z1, z2, w0, w1, w2 ∈ F28 and x′0, x

′
1, x
′
2, y
′
0, y
′
1, y
′
2, z
′
0, z
′
1, z
′
2, w

′
0, w

′
1, w

′
2 ∈

F28 such that:

p1 = a⊕MC ·


x0 y0 z0 0
x1 y1 0 w0

x2 0 z1 w1

0 y2 z2 w2

 , p2 = a⊕MC ·


x′0 y

′
0 z
′
0 0

x′1 y
′
1 0 w′0

x′2 0 z′1 w
′
1

0 y′2 z
′
2 w
′
2

 .
Similarly to the case |I| = 2, the idea is to work with variables in F3

28 ≡ F28 ×
F28 × F28 , e.g. x ≡ (x0, x1, x2), y ≡ (y0, y1, y2) and so on. In other words, the
idea is to consider the variables in the same column as not independent, that is
to consider the possible combinations only of variables in F3

28 and not in F28 .

C Comparison of 5-Round Secret-Key Distinguishers

We recall the categorization of secret-key distinguishers proposed in Sect. 1.1:

1. a distinguisher which is completely independent of the secret key (that is, it
exploits property that are not related to the existence of a key) and inde-
pendent of the details of the S-Box;

2. a distinguisher which depends on the existence of a key and is derived by
a key recovery attack; in particular, we highlight two properties that the
distinguisher of this category can have, which are
(a) a distinguisher which requires the knowledge only of a part (e.g. one

byte) of the key;
(b) a distinguisher which is independent of the details of the S-Box, i.e. which

does not find or/and exploit any information of the S-Box.
We stress that these two properties are not mutually exclusive.

A complete comparison of all the secret key distinguishers and key recovery
attacks (used as distinguishers) is provided in Table 2.
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Table 2. Properties of 5-round secret-key Distinguishers for AES. In this table, we
consider all the possible secret-key distinguishers for AES (included the key-recovery
attacks), and we highlight the major properties. In particular, based on the previous
categorization: “(1)” denotes a distinguisher which exploits a property which is inde-
pendent of the secret key; “(2)” denotes a distinguisher which requires the knowledge
of the entire secret key, while “(2a)” denotes a distinguisher which requires only the
knowledge of part of the secret key; “MC” denotes a distinguisher which is indepen-
dent of the final MixColumns; “Secret S-Box” denotes the case of AES with a secret
S-Box and “(b)” denotes a distinguisher which does not find/exploit any information
of the secret S-Box.

Property (1) (2) (2a) MC Secret S-Box (b) Reference

Subspace Trail × × × × Sect. 4

Impossible Differential × × × [15]

Integral × × × × [22]

Impossible Differential × × [4] - [15, App. I]

Integral × × × [26]

Integral × × [8]

Polytopic × × [25]

MitM × × [12, Sec. 7.5.1]

D Implementation of the Distinguisher using a
re-Ordering Algorithm

In Sect. 4 we have presented an implementation of the distinguisher using data
structures. In this appendix, we propose another way to implement the distin-
guisher which exploits a re-ordering algorithm. This implementation could be
in some cases more efficient than the one proposed in Sect. 4 when e.g. it is
required to do further operations on the pairs of ciphertexts (c1, c2) such that
c1 ⊕ c2 ∈ MJ . For simplicity (and in order to have a direct comparison with
the other implementation), we present this strategy based on the re-ordering
algorithm for the case |J | = 3, which has a total cost of approximately 239 table
look-ups for each of the four subspaces MJ for |J | = 3, where the used tables
are of size 232 texts (or 232 · 16 = 236 byte).

The basic idea to do this is to re-order the ciphertexts. In particular, since
our goal is to check if two texts belong to the same coset ofMJ for |J | = 3, the
idea is to re-order the texts using a particular numerical order which depends by
J . Then, given a set of ordered texts, the idea is to work only on two consecutive
elements in order to count the total number of collisions. In other words, given
ordered ciphertexts, one can work only on approximately 232 different pairs
(composed of consecutive elements with respect to the used order) instead of 263

for each coset of DI . For this reason, we define the following partial order �:

Definition 8. Let I ⊂ {0, 1, 2, 3} with |I| = 3 and let l ∈ {0, 1, 2, 3} \ I. Let
t1, t2 ∈ F4×4

28 with t1 6= t2. The text t1 is less or equal than the text t2 with
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respect to the partial order � (i.e. t1 � t2) if and only if one of the two following
conditions is satisfied (the indexes are taken modulo 4):

– there exists j ∈ {0, 1, 2, 3} such that for all i < j:

MC−1(t1)i,l−i = MC−1(t2)i,l−i and MC−1(t1)j,l−j < MC−1(t2)j,l−j ;

– for all i = 0, ...., 3:

MC−1(t1)i,l−i = MC−1(t2)i,l−i and MC−1(t1) ≤MC−1(t2),

where ≤ defined as in Def. 7.

To better explain this definition and the re-ordering algorithm, we provide a
concrete example in App. D.2. Thus, as first step, one must re-order the 232

ciphertexts of each coset with respect to the partial order relationship � defined
before.

After the re-ordering process, in order to count the number of pairs of texts
that belong to the same coset ofMJ , one can work only on consecutive ordered
elements. Indeed, consider r consecutive elements cl, cl+1, ..., cl+r−1, with r ≥ 2.
Suppose that for each k with l ≤ k ≤ l + r − 2:

ck ⊕ ck+1 ∈MJ .

Since MJ is a subspace, it follows immediately that for each s, t with l ≤ s, t ≤
l + r − 2

cs ⊕ ct ∈MJ .

Thus, given r ≥ 2 consecutive elements that belong to the same coset ofMJ , it
follows that (

r

2

)
=
r · (r − 1)

2

different pairs belong to the same coset of MJ . In the same way, consider r
consecutive elements cl, cl+1, ..., cl+r−1 with r ≥ 2, such that ck ⊕ ck+1 /∈ MJ

for eachk with l ≤ k ≤ l+ r− 2. SinceMJ is a subspace, it follows immediately
that cs ⊕ ct /∈MJ for each s, t with l ≤ s, t ≤ l + r − 2.

In other words, thanks to the ordering algorithm, it is possible to work only
on 232 − 1 pairs (i.e. the pairs composed of two consecutive elements), but at
the same time to have information on all the 231 · (232− 1) ' 263 different pairs.
The pseudo-code of such algorithm is given in Algorithm 2.

What is the total computational cost of this procedure? Given a set of n
ordered elements, the computational cost to count the number of pairs that
belong to the same coset ofMJ is well approximated by n look-ups table, since
one works only on consecutive elements. Using the merge sort algorithm to order
this set (which has a computational cost of O(n log n) memory access), the total
computational cost for the verifier is approximately of

n · (1 + log n) table look-ups.
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Data: 232 (plaintext, ciphertext) pairs (pi, ci) for i = 0, ..., 232 − 1 in a single
coset of DI with |I| = 1.

Result: 1 for an AES permutation, 0 otherwise (prob. of success: ≥ 99%)
for all J with |J | = 3 do

Re-order the 232 (plaintexts, ciphertexts) pairs using the partial order
relationship � defined in Def. 8; // remember that the order �
depends on J

Let (p̃i, c̃i) for i = 0, ..., 232 − 1 the order (plaintext, ciphertext) pairs;
n← 0; // n denotes the number of collisions in MJ

i← 0;
while i < 232 do

r ← 1;
j ← i;
while c̃j ⊕ c̃j+1 ∈MJ do

r ← r + 1;
j ← j + 1;

end
i← j + 1;
n← n+ r · (r − 1)/2;

end
if (n mod 8) 6= 0 then

return 0;
end

end
return 1.

Algorithm 2: Secret-Key Distinguisher for 5 Rounds of AES which exploits a
property which is independent of the secret key - probability of success: ≥ 99%.

In our case, since the verifier has to consider a single coset of DI of 232 elements
and to repeat this procedure four times (i.e. one for each MJ with |J | = 3),
the cost is well approximated by 4 · 232 · (1 + log 232) = 239 table look-ups, or
equivalently 232.4 five-round encryptions of AES (using the approximation15 1
table look-up ≈ 1 round of AES).

D.1 Practical Verification

Using a C/C++ implementation, we have practically verified the distinguisher
implemented using a re-ordering algorithm as described in this section on a small
scale variant of AES, as presented in [6].

We refer to Sect. 4 for a complete discussion about the implementation on
small-scale AES and the results, and we limit here to focus on the computational
cost. The differences between this small-scale AES and the real AES regard the

15 We highlight that even if this approximation is not formally correct - the size of the
table of an S-Box look-up is lower than the size of the table used for our proposed
distinguisher, it allows to give a comparison between our proposed distinguisher and
the others currently present in literature. At the same time, we note that the same
approximation is largely used in literature.
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total number of collisions, which in this case is well approximated by 215 · (216−
1) · 2−16 ≈ 215 for each coset, and the lower computational cost, which can
be approximated by 4 · 216 · (log 216 + 1) = 221 memory look-ups for each coset,
besides the memory costs. The average practical computational cost found in our
experiments is approximately 222 memory look-ups. This difference (a factor 2)
can be simply justified by the fact that the cost of the merge sort algorithm is
O(n · log n) and by the definition of the big O notation (recalled in App. D.2).

D.2 The Merge Sort Algorithm: a Concrete Example

In App. D we have used the merge sort algorithm to set up our new secret-key
distinguisher on 5 rounds of AES. In this section, we recall some concepts of this
sort algorithm, and we provide an example for our case.

The merge sort algorithm is a sort algorithm for rearranging lists (or any
other data structure that can only be accessed sequentially) into a specified
order. Assume a sequence of n elements A is given, which we assume is stored in
an array A[1, ..., n]. The objective is to output a permutation of this sequence,
sorted in increasing order. This is normally done by permuting the elements
within the array A. Given a list of n elements, merge sort has an average and
worst-case performance of O(n · log(n))16.

Merge sort algorithm is an example of “divide-and-conquer” algorithm, which
major elements are:

– Divide: Split A down the middle into two subsequences, each of size roughly
n/2;

– Conquer : Sort each subsequence (by calling MergeSort recursively on each
subsequence);

– Combine: Merge the two sorted subsequences into a single sorted list.

The dividing process ends when we have split the subsequences down to a single
item. A sequence of length one is trivially sorted. The key operation where all
the work is done is in the combine stage, which merges together two sorted lists
into a single sorted list.

We refer to [7] for a complete explanation of the merge sort algorithm, and we
limit here to give an example for our case. Assume to have four texts A,B,C,D ∈

16 Let f and g be two functions defined on some subset of the real numbers. One
writes f(x) = O(g(x)) if and only if there exists a positive real number C and a
real number x0 such that |f(x)| ≤ C · |g(x)| for all x ≥ x0. The notation can also
be used to describe the behavior of f near some real number x0, that is one writes
f(x) = O(g(x)) if and only if there exists a positive numbers δ and C such that
|f(x)| ≤ C · |g(x)| for |x− a| < δ.
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F4×4
28 :

A =


0x27 0xa3 0x46 0x01
0x12 0x55 0xa6 0xbc
0x46 0x30 0xd4 0x93
0x65 0xf2 0x07 0x21

 , B =


0x27 0x03 0x10 0xaa
0x66 0x55 0x32 0xbc
0x52 0xa3 0x27 0x01
0xf2 0x97 0xff 0x23

 ,

C =


0x27 0x76 0x22 0x7d
0x08 0xa3 0x00 0xbc
0x26 0xa3 0xd4 0x35
0x17 0xf2 0x0c 0x2b

 , D =


0x64 0x14 0x15 0x03
0x32 0x17 0x5c 0xb1
0x23 0x88 0xd4 0x37
0xbb 0xf3 0x43 0x96

 .
Our goal is to re-order them, using the merge sort algorithm and the partial order
relationship � defined in Sect. 4, where we assume l = {0} and I = {1, 2, 3} (the
example can be easily generalized for each number of texts and for each possible
I and l). The final goal is to count the number of collisions among the ciphertexts
in the same coset of MC−1(M1,2,3) = ID1,2,3. For simplicity, we assume that an
InverseMixColumns operation has been already applied to the four ciphertexts.

By definition 8, we are only interested in the bytes in positions - (row, col-
umn): (0, 0), (1, 3), (2, 2), (3, 1). Indeed, two texts p and q belong to the same
coset of ID1,2,3 (that is p ⊕ q ∈ ID1,2,3) if and only if p0,0 = q0,0, p1,3 = q1,3,
p2,2 = q2,2 and p3,1 = q3,1.

Using the merge sort algorithm, as first step one works on the pair A and B.
Since A0,0 = B0,0, A1,3 = B1,3 and B2,2 < A2,2, we can deduce that B � A with
respect to the defined partial order �. Thus, after the first step, the elements
are re-ordered as B,A,C,D. In a similar way, one then works on the pair C
and D. In this case, C � D since C0,0 < D0,0. Thus, after the second step, the
elements are re-ordered as B,A,C,D. At the third step, note that Ai,−i = Ci,−i
for each i = 0, ..., 3. However, since C ≤ A with respect to ≤ defined in Def. 7,
one obtains the final sequence B,C,A,D17.

Given an ordered array, in order to count the number of pairs whose texts
belong to the same coset of ID1,2,3, one can work only on consecutive elements,
that is on the pairs (B,C), (C,A) and (A,D). In this case, only one pair of texts
(that is, (C,A)) belongs to the same coset of ID1,2,3.

As second example, consider the previous case in which the element D is
defined as follow:

D =


0x27 0x14 0x15 0x03
0x32 0x17 0x5c 0xbc
0x23 0x88 0xd4 0x37
0xbb 0xf2 0x43 0x96

 .
In this case, the re-ordered array is given by B,C,A,D18. In this case, working
again on consecutive pairs (B,C), (C,A) and (A,D), two pairs of texts (that is,

17 Only for completeness, we highlight that since Ai,−i = Ci,−i for each i = 0, ..., 3, the
final sequence B,A,C,D is equivalent to B,C,A,D for our goal.

18 As before, we highlight that for our goal the elements A,C,D can be ordered in any
possible way.
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(C,A) and (A,D)) belongs to the same coset of ID1,2,3). Thus, one can conclude
that there are 2 · (2 + 1)/2 = 3 pairs of texts (that is, also (C,D)) that belongs
to the same coset of ID1,2,3.

We stress that after the re-ordering process, it is sufficient to work on consec-
utive texts in order to count the total number of texts that belong to the same
coset of ID1,2,3 - in other words, it is not necessary to construct all the possible
pairs.
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