Downloaded from orbit.dtu.dk on: Apr 10, 2018

Technical University of Denmark

=
—
—

i

Handwritten Digit Classication using 8-bit Floating Point based Convolutional Neural
Networks

Gallus, Michal; Nannarelli, Alberto

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Gallus, M., & Nannarelli, A. (2018). Handwritten Digit Classication using 8-bit Floating Point based Convolutional
Neural Networks. DTU Compute. (DTU Compute Technical Report-2018, Vol. 01).

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

http://orbit.dtu.dk/en/publications/handwritten-digit-classication-using-8bit-floating-point-based-convolutional-neural-networks(b68c970a-c3b4-458e-91f7-b1c1801edddc).html

Handwritten Digit Classification using 8-bit Floating
Point based Convolutional Neural Networks

Michal Gallus and Alberto Nannarelli (supervisor)
Danmarks Tekniske Universitet
Lyngby, Denmark
s172679 @student.dtu.dk

Abstract—Training of deep neural networks is often con-
strained by the available memory and computational power.
This often causes it to run for weeks even when the underlying
platform is employed with multiple GPUs. In order to speed up
the training and reduce space complexity the paper presents an
approach of using reduced precision (8-bit) floating points for
training hand-written characters classifier LeNeT-5 which allows
for achieving 97.10% (Top-1 and Top-5) accuracy while reducing
the overall space complexity by 75% in comparison to a model
using single precision floating points.

Keywords—approximate computing, deep learning

I. INTRODUCTION

Image classification has recently been dominated by Con-
volutional Neural Networks (CNNs) that provide state of the
art accuracy, sometimes reaching human level capabilities. In
order to achieve better results by means of accuracy, the deep
neural network models rapidly grow in size, resulting in long
training times, high demand for memory and computational
power. One of the most commonly seen solutions to this prob-
lem concerns employing large CPU Clusters [1], or Graphical
Processing Units (GPUs) [2] which recent models of started
including deep learning specific hardware units, such as Tensor
Cores in Nvidia Volta [3]. Application Specific Integrated
Circuits (ASICs) as well as FPGA solutions have also been
proposed [4].

What the majority of aforementioned solutions fail to
exploit is the inherent resilience to errors associated with deep
learning applications. Because the neural networks are exposed
to work with real-life noisy data while maintaining successful
results [5], they do not require full precision range provided
by the hardware in a form of 64-, 32- and even 16-bit floating
point numbers. Limiting the precision of underlying primitives
which build up the network can result in power, time and
memory savings.

Nearly all of the state of the art convolutional neural net-
work models spend most of the processing time on convolution
and max pooling layer [6], [7], [8]. Timespan of performing
all convolution operations on the whole network amounts to
80% of total time spent on training [9]. At the same time,
nearly 20% of remaining time is spent on subsampling, also
known as max pooling operations. These on the other hand
are memory bound, and their speed is limited by the CPU’s
cache size and bandwidth of the bus.

This work was done as part of the coursework in “Design of Arithmetic
Processors” under the supervision of A. Nannarelli.

In order to address this problem, this paper proposes usage
of 8-bit floating point instead of single precision floating point
which allows to save 75% space for all trainable parameters,
and possibly reduce power and computation time. To test the
proposed solution the computations are ran on LeNeT-5 [10]
network using MNIST hand-written images dataset [11].

The paper is organised in the following manner: Section
II presents the current advancements in the field. Section III
concerns the main topic of the paper where the structure of 8-
and 12-bit float will be presented along with the architecture
known as LeNeT-5. In section IV reader can find the results
of training and validation of the aforementioned network using
floats of different bit-widths. Finally the section V concludes
the paper and proposes further improvements.

II. RELATED WORK

During the design of special purpose hardware intended
for deep neural networks processing, one of the key factors to
consider is the used precision and format of numbers used for
storing the results and performing the computations. Most of
the literature so far has focused on using limited precision dur-
ing the forward pass (also known as inference), while training
the network on single precision. Some of the recent works have
presented usage of custom hardware implementations [12],
while others have employed the usage of FPGAs [4] for the
sake of reconfigurability or using SSE3 vector instructions to
perform multiple (up to 16) 8-bit operations in parallel [13].

Other studies concern usage of different number format.
In [14] 24-bit floating point processing units are used, while
[15] uses 16-bit fixed point with stochastic rounding, achieving
errors of 0.70% on modified LeNeT-5 architecture. This result
has later been reproduced along with introduction of dynamic
fixed point by [16]. Hammerstrom [17] shows successful train-
ing of the network using 16- and 8-bit fixed-point arithmetic.

This work presents that both training and inference is possi-
ble using not only fixed- but also low precision (down to 8-bits)
floating point arithmetic. This includes direct application to not
only simple perceptron networks, but also models of higher
complexity, such as LeNeT-5 architecture which can be used
as fully functional module for Optical Character Recognition
(OCR) program.

III. TRAINING LOW PRECISION DEEP NEURAL NETWORK

Typical implementations of deep neural networks using
gradient descent training method use 32-bit floating point

sign exponent mantissa

r'*Y_)ﬁ/—‘Lﬁ
1fofofafa]1]o]1]
8-bit float
oft1]ofof1]1]1]0]

1]ofs]of1]of1]1]ofo]o]t]
12-bit float
ofr[+]ofofo]ofofofofo]1]

Representation of low precision floating points used

Fig. 1.

representation of real numbers. In order to prove that such
high precision is not necessary for successful training and
inference, the complete from-scratch C++ implementation of
LeNeT-5 has been created that would easily allow for switch-
ing between underlying data type that is used for storing
image data, weights, and all intermediaries. All the operations
performed on the data use single-precision floating point
arithmetic. Therefore the type representing floating point of
variable precision had to have its conversion operators from-
and to-32-bit float defined. These, along with other details on
implementation have been presented in the following section.

A. Low-precision floating point

Floating point format is an industry standard of repre-
senting real numbers. A single number consists of a sign,
exponent and finally a mantissa, all portrayed in the Figure
1. Exponent is used to allow for representing a wide range of
the real numbers, while mantissa serves for assuring adequate
precision. A real number computed from its floating point
format can be computed based on the following formula:

value = (_1)sign X (1 + ma;tzssa) X 2emponent—bias

where M is the amount of bits used to represent mantissa,
while bias is equal to 2~ — 1, E being the number of bits
used for exponent.

Bit-width ~ Exponent bits ~ Mantisa bits
32 8 23

16 5 10

12 5 6

8 4 3

TABLE I PRECISION USED DURING TRAINING AND INFERENCE

Table 1 shows all four representations that have been
subject to neural network training and testing during the
experiment.

B. Implementation

Since the current CPUs do not support floats of bit-
width lower than 32-bits, the need for implementing the low-
precision primitives has arised. This could potentially include
building a class representing a minifloat and including all
the arithmetic operations on the software level. This however,
would incur a very high overhead, which along with typically
long neural network training times would result in unaccept-
able amount of days and hours spent on debugging and testing.
Therefore, the decision has been made to develop a primitive
that would only store the value of low-precision float, and
define conversions from and to a single precision float. The

conversions are needed, so that all the arithmetic operations
can be performed on primitives that can benefit from hardware
acceleration.

The following subsections cover how the conversions are
being handled. Please note, that from now on, the notion of
minifloat will be used to denote a non-standard low precision
floating point number such as 8- or 12-bit float.

C. Float — minifloat conversion

In ordert to convert 32-bit floating point number to mini-
float, the following steps need to be performed:

1) Determine and set the sign bit
2) Compute rounding of mantissa
a) Determine guard, last, round and sticky bits
b) Compute G(L+ R+ T') and save result to 7
3) Shift float mantissa right by (23 —.S) and save to m
4) Save the minifloat mantissa m,,, as a sum of obtained
shift m and the rounding r
5) Determine if overflow has occured using equation
o=r-m
6) Extract the float exponent ey and subtract the float
bias e, = e; — (27 — 1) to obtain the raw exponent
er
7) Compute minifloat exponent e,, by adding the mini-
float bias and an mantissa overflow flag e,,, = e, +
2F1 1) 4o
8) Ife, <O0:
a) Determine the value of the guard bit (the
most significant bit that will be truncated)
and store it in G,
b) Compute the new mantissa using equation
(M +29)-28m 4G, where 29 is the hidden
bit, 2™ shifts the value right by an absolute
value of minifloat exponent, and addition of
G, approximates rounding
¢) Set minifloat exponent e,, to zero
Else if e,, > 2F — 1:
a) Based on the sign, set the number to positive
or negative infinity, by setting exponent to
(2 — 1) and mantissa to 0

Where S and E are the bit lengths of minifloat significant and
exponent respectively.

D. Minifloat — float conversion

Conversion between minifloat and single precision float can
be summed up in the following algorithm:

1) Check if the minifloat represents an infinity, and if it
does, return the float version of it
2) If the exponent e,, = 0 (subnormal):
a) If the mantissa m,, = 0 return 0
b) Else, determine the position of leading one
in mantissa, and save it to p
c) Set float mantissa my to m,, shifted left by
(23 — p) bits using equation m,,, - 22377
d) Calculate raw exponent using equation e, =
—p— (2" —1)
3) Else:

a) Shift minifloat mantissa left by (23 — 5),
using formula m; = m,, - 22377
b) Calculate raw exponent by subtracting the
bias using equation e, = e,, — (2671 — 1)
4) Compute float exponent by adding bias: ef = e, +
2E-1 1
5) Determine and save the sign.

E. MNIST dataset

The dataset used for the training has been chosen to be
the collection of handwritten digits, collected and published
by Lecun in [11]. Sample of examined data has been shown
in Figure 2. The set consists of 60,000 training images and
10,000 validation images. Each image has a size of 28 x 28
and represents a digit from 0 to 9. Pixel values have been
normalized to lay in [0, 1] range. The data did not undergo
any augmentation.

00000000000000200D0000
VA2 T T U T A A O A Y A B
22244222228 A232223%82
$33313235%3333352%2,33%33
Y9H444UdY4Yd1dYY €494y
55555755558 5588555¢65
bblbbtebeCboeebtbélbé
77173 F)F7F¥721 77+ ¥ 73
SEETIECBEE3¥ETPLEBOFL
A799799727799999949%94

g

Fig. 2. Visualisation of small subset of MNIST - the training dataset

F. LeNeT-5 Architecture

In order to test the influence of the floating point precision
on the training and inference of recognition of handwritten
characters, the architecture proposed by Lecun in [10] called
LeNeT-5 is used.

The network consists of the following layers:

1) Input Layer

2) Convolution 5 x 5, 6 feature maps
3) MaxPooling 2 x 2

4) Convolution 5 x 5, 16 feature maps
5) MaxPooling 2 x 2

6) Convolution 5 x 5, 120 feature maps
7) Fully Connected, 10 feature maps

The amount of trainable parameters, amounts to 60500.
From the most common activation functions such as ReLU,
sigmoid, the hyperbolic tangent has been chosen to activate
feature maps for both convolutional and fully connected layers.
The network doesn’t use any special learning improvements
such as weight decay which would slightly decrease weights
magnitude after each epoch or learning rate decay which would
do similar, but with respect to the learning rate parameter.
Instead it maintains a constant learning rate of 0.0015. The
loss function used is a Mean-Square-Error (MSE).

IV. RESULTS

The results of running simulation on different precisions
presented in Table II show that there is a very low (2.06%)
loss of accuracy between usage of 8- and 32-bit floating points.
On the other hand, 12-bit floating points show very little
performance degradation (by 0.63%). At the same time the
16-bit format preserves the same accuracy as single precision
format, and as displayed in Figure 3 it has a comparable to
32-bit speed of convergence.

8-bit float 12-bit float 16-bit float 32-bit float
97.11% 98.63% 99.18% 99.17%
TABLE II. HIGHEST ACCURACY ACHIEVED DURING THE TRAINING

If the application in question can sacrifice the 2% of
accuracy, it’ll allow for overall memory reduction by a factor of
4. This implication associates with itself several consequences.
First of all, when used in CPU with embedded on-chip cache
memory, it allows for storing 4x as many values as in case
of single precision float. This is important especially for
subsampling layers which are memory bound. Moreover, since
in some cases CNNs are used in real-time systems such as
i. e. Autonomous driving cars, usage of low-precision floats
would loosen the bandwidth requirements, or allow for sending
images at greater resolution than in case of 32-bits, or sending
image frames at higher rate.

Furthermore, an arithmetic unit operating on the 8-bit
floating point can be proposed. Such unit would cover lower
amount of area compared to ordinary 32-bit floating point
ALU. Lower amount of bits decreases carry propagation
time, as well as number of partial products computed during
multiplication, so often used when computing convolutions.
Due to reduced area, more of such units could be embedded
on the chips, resulting in greater parallelism.

Alternatively, since the smaller-area units use lower amount
of energy, these could be used in mobile device CPUs, and
continue the trend of off-loading simple recognition tasks from
cloud-computing to embedded systems.

1

0,99 =

__.———“——
0,98 /A
7
.
9 0,97 ——38-bit
2 // 12-hit
£ 09 / ~bi
16-hit
0,95
——32-bit
0,94
0,93
1 2 3 4 5 6 7 8 9
Epochs elapsed
Fig. 3. Plot of accuracy vs. epochs elapsed during the network training

V. SUMMARY AN FUTURE WORKS

This paper has shown that training and inference of deep
neural networks can be conducted using very low-precision

floating point primitives. This can be exploited to significantly
optimize memory usage (up to 4 times) and to design either
a power- or compute-efficient hardware dedicated for deep
learning purposes.

Nevertheless, the increase of 2% in error classification
when 8-bit floats are used can be unacceptable for accuracy-
critical applications. Moreover, the hardware used for rounding
implementation is crucial for retaining utmost of number’s
identity, yet expensive, therefore some future works could
concentrate on implementation of simpler rounding schemes
than those presented in the paper.

Potentially, results of this work could be extended to exam-
ine and cover usage of low-precision floating-point numbers in
different than image classification deep learning applications.

REFERENCES

[1] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,
P. Tucker, K. Yang, Q. V. Le et al., “Large scale distributed deep
networks,” in Advances in neural information processing systems, 2012,
pp. 1223-1231.

[2] A. Coates, P. Baumstarck, Q. Le, and A. Y. Ng, “Scalable learning for
object detection with gpu hardware,” in Intelligent Robots and Systems,
2009. IROS 2009. IEEE/RSJ International Conference on. 1EEE, 2009,
pp. 4287-4293.

[3] 1. Volta, “The worlds most advanced data center gpu,”
https://devblogs. nvidia. com/parallelforall/inside-volta, 2017.

[4] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and
Y. LeCun, “Neuflow: A runtime reconfigurable dataflow processor
for vision,” in Computer Vision and Pattern Recognition Workshops
(CVPRW), 2011 IEEE Computer Society Conference on. IEEE, 2011,
pp. 109-116.

[5] D. Rolnick, A. Veit, S. Belongie, and N. Shavit, “Deep learning is robust
to massive label noise,” arXiv preprint arXiv:1705.10694, 2017

URL

(6]

(71

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097-1105.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1-9.

J. Cong and B. Xiao, “Minimizing computation in convolutional neural

networks,” in International conference on artificial neural networks.
Springer, 2014, pp. 281-290.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278-2324, 1998.

Y. LeCun, “The mnist database of handwritten digits,” http://yann.
lecun. com/exdb/mnist/, 1998.

J. Kim, K. Hwang, and W. Sung, “X1000 real-time phoneme recognition
vlsi using feed-forward deep neural networks,” in Acoustics, Speech and
Signal Processing (ICASSP), 2014 IEEE International Conference on.
IEEE, 2014, pp. 7510-7514.

V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of
neural networks on cpus,” in Proc. Deep Learning and Unsupervised
Feature Learning NIPS Workshop, vol. 1, 2011, p. 4.

A. Iwata, Y. Yoshida, S. Matsuda, Y. Sato, and N. Suzumura, “An
artificial neural network accelerator using general purpose 24 bits
floating point digital signal processors,” in IJCNN, vol. 2, 1989, pp.
171-182.

S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in Proceedings of the 32nd
International Conference on Machine Learning (ICML-15), 2015, pp.
1737-1746.

M. Courbariaux, Y. Bengio, and J.-P. David, “Training deep neu-
ral networks with low precision multiplications,” arXiv preprint
arXiv:1412.7024, 2014.

D. Hammerstrom, “A vlsi architecture for high-performance, low-cost,
on-chip learning,” in Neural Networks, 1990., 1990 IJCNN International
Joint Conference on. 1EEE, 1990, pp. 537-544.

