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Abstract 12 

A Grignard-based batch process, for the preparation of Melitracen HCl, has been redesigned to 13 

fit a continuous reactor system. The Grignard addition is carried out at room temperature, with 14 

subsequent hydrolysis of the magnesium alkoxide intermediate followed by dehydration of the 15 

resulting alcohol. The product is further worked-up by simple gravimetric phase separation and 16 

then crystallized with 2 M HCl in diethyl ether to afford pure Melitracen HCl. All steps in the 17 

laboratory setup were concatenated and the setup was proven capable of producing a significant 18 

portion of the commercial quantities of Melitracen HCl. The flow setup profits from a reduced 19 

footprint, lower energy consumption, fewer synthetic steps and reduced raw material usage 20 

compared to the batch process. 21 

Keywords: Grignard alkylation, Flow chemistry, API synthesis, liquid phase separation. 22 

  23 
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Introduction 24 

The efficiency of the pharmaceutical industry has been a widely discussed topic throughout the 25 

past decade. The debate has been broad, ranging from early target drug development to the actual 26 

production and distribution of pharmaceuticals.1–6 Expiring patents and empty pipelines have 27 

forced pharmaceutical companies to look for alternative methods to remain competitive against 28 

generic manufacturers.7–9 Furthermore, the industry has one of the highest solvent-to-carbon 29 

ratios,10 which in combination with the fact that most of these solvents have high environmental 30 

impacts has given the industry a somewhat damaged reputation.5,10–13 In addition, the authorities 31 

have steadily increased the tightening of legislative requirements for pharmaceutical 32 

manufacturing, in both development and production.3,5 33 

With respect to the production of active pharmaceutical ingredients (APIs), the focus has 34 

especially been on batch methods and their insufficiency, especially their mass and heat transfer 35 

properties.14,15 As early as the 1970s, Popov16 suggested continuous manufacturing as a method 36 

for improving the efficiency of pharmaceutical production. However, it was not until the last 37 

decade that progress was seen. The establishment of the pharmaceutical round table and the 38 

increased interest from academia and industry have been driving the transformation 39 

forwards.4,5,17–20 The authorities have since 2002 acknowledged new production methods and 40 

strategies within manufacturing. Process analytical technology (PAT) approaches and 41 

Quality-by-Design (QbD) concepts have been important factors in the acceptance of continuous 42 

manufacturing by the authorities.9,21,22 43 

Earlier publications concerning the new paradigm of pharmaceutical manufacturing often 44 

focused on single synthesis steps and unit operations, often with the use of microreactor 45 

technology.23,24 Later trends have changed the focus towards multiple synthesis steps, 46 
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pharmacy-on-demand and end-to-end manufacturing.17–19,25 As the trend has moved from single 47 

step to end-to-end manufacturing,18 the previous out-scaling concept23 of microreactors has also 48 

been replaced by mini-scale flow systems.18,20,26–28 The scale-up of a continuous setup needed to 49 

meet full-scale requirements is often minor; hence the benefits such as mass and heat transfer are 50 

almost comparable to microreactor technology.15 51 

Reactions having multiple phases still pose a significant challenge within flow chemistry.29–31 52 

Flow reactors are known for being poor at handling solid material due to clogging issues, with 53 

some exceptions such as packed bed reactors with fixed catalytic material. Breakthroughs for 54 

flow reactors that can handle solid reactants or products have within recent years been 55 

demonstrated, such as the desulfurization of substituted thioimidazoles by Baxendal et al.32, the 56 

powder dosing unit for a CSTR demonstrated by Hu et al.33 and precipitation in flow 57 

demonstrated by Baxendal et al.34 58 

The pharmaceutical industry is notorious for their usage of solid compounds, either as 59 

reactants, intermediates or APIs.29,31 Low solubility is often a huge obstacle for applying the 60 

chemistry to a flow setup, unless alternative methods are applied.2,31 Solubility is one of the key 61 

parameters when designing a reactor setup and an instructive discussion may be found in 62 

Pedersen et al.20 In cases of high solubility, the simple use of a plug flow reactor (PFR) can be 63 

applied, often with great success and larger throughput.28,35 The challenging part then becomes 64 

the purification of the product from impurities and unreacted reactants, as well as the final 65 

isolation of the product. Many old batch processes utilize the benefits of precipitation as a 66 

purification step, hence altering an old batch process to fit a flow setup requires new ways to 67 

overcome these challenges.2,20,29 68 
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Grignard reactions serve as a commonly used method for the formation of carbon-carbon 69 

bonds in the development of APIs36,37. The exothermic behavior of the Grignard reaction makes 70 

it ideal for continuous production. Several demonstrations of Grignard reactions in flow have 71 

been done within the last decade: Kopach et al.38,39 demonstrated the use of a CSTR technology; 72 

Pedersen et. al20,26,40 demonstrated the use of a heterogeneous slurry filter reactor; Mateos et al.41 73 

studied the formation of ketone by nucleophilic Grignard addition to nitril groups by use of flow 74 

methods; Lonza42–44 has demonstrated the use of micro reactor technology. 75 

Chemistry 76 

As illustrated in Scheme 1, four synthetic steps are involved in the manufacturing of 77 

Melitracen HCl (6). The four steps are a classic Grignard addition to a ketone, a hydrolysis of a 78 

magnesium alkoxide, a dehydration of an alcohol and a salt precipitation to isolate the API. The 79 

Grignard addition is between 10,10-dimethylanthrone (10,10-DMA (1)) and 80 

3-(N,N-dimethylamino)propylmagnesium chloride (DMPC-MgCl (2)), resulting in formation of 81 

the magnesium alkoxide 3. The magnesium alkoxide 3 is then hydrolyzed to the alcohol 4 and 82 

dehydrated to form product 5. The last step is a crystallization of the API as a salt, where HCl is 83 

added to obtain the Melitracen HCl (6). 84 

Scheme 1: Syntheses of magnesium alkoxide 3, alcohol 4 and dehydrated product 5 in the 85 

manufacturing process of Melitracen HCl 6, from ketone 1 and Grignard reagent 2. 86 
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Current Batch Synthesis 88 

The current batch synthesis involves individual synthetic steps, as illustrated in Figure 1. 89 

DMPC-MgCl 2 is made in-house before it is used, due to its limited storage shelf life, in a 90 

toluene-THF solvent mixture. THF is present in trace amounts in order to stabilize the 91 

magnesium in the Grignard reagents.45 A solution of 10,10-DMA 1 is prepared in toluene and is 92 

slowly transferred to the DMPC-MgCl 2, maintaining a temperature of 50°C. DMPC-MgCl 2 is 93 

used in an equivalence of 1.6 compared to 10,10-DMA 1. The formed magnesium alkoxide 3 is 94 

hydrolyzed with water and acetic acid (80%). The aqueous phase is discarded and concentrated 95 

hydrochloric acid (37%) is used to dehydrate alcohol 4 to form dehydrated product 5. Toluene is 96 

replaced with ethanol by a solvent swap. Crystallization of the dehydrated product 5 from the 97 

ethanol phase is done with HCl gas to obtain the final Melitracen HCl (6), which is subsequently 98 

isolated by filtration. 99 
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 100 

Figure 1: The operational steps involved in the current batch method and the simplification 101 

achieved by the flow setup. 102 

Investigational Strategy 103 

The API manufacturing strategy at H. Lundbeck A/S is focused on continuous production. 104 

Melitracen HCl synthesis currently occupies significant production facilities and is produced by 105 

routine batch synthesis procedures. The process shows potential for being redesigned to fit a 106 

continuous reactor setup, with potential for significant simplification of the operation and the 107 

synthetic route. This article describes the laboratory work for redesigning the process to fit a 108 

continuous reactor setup for the Grignard addition to the final Melitracen HCl crystallization. 109 
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Experimental Section 110 

Screening Experiments 111 

The routine batch synthesis for production of Melitracen HCl 6 was considered suitable for 112 

redesign into a flow process, as most of the synthetic steps are categorized as fast reactions.31 113 

The current batch methods could possibly be transferred directly into a flow setup, providing the 114 

common benefits achieved when changing from batch to continuous processing. However, 115 

additional savings could potentially be achieved with the flow setup if simplifications of aspects 116 

such as the solvent choice and synthetic steps were possible. Classic batch screening experiments 117 

were conducted to assist in the decision on and design of a flow setup and, based on these 118 

experiments, the flow setup decided on was to be experimentally verified afterwards. 119 

Solubility of Reactants and Products in Solvents 120 

The first consideration in the process for redesigning Melitracen HCl 6 synthesis is the 121 

solubility of reactants, intermediates and products. Solubility is one of the key parameters when 122 

designing a reactor setup. The primary focus was on the Grignard addition step, where reactants 123 

10,10-DMA 1, DMPC-MgCl 2 and magnesium alkoxide product 3 are of interest. DMPC-MgCl 124 

2 already has a high solubility and was not tested further. 10,10-DMA 1 is a solid starting 125 

material and needs to be dissolved before it can react with DMPC-MgCl 2. The solubility of 126 

10,10-DMA 1 should therefore be tested in potential solvents and at different temperatures. 127 

Magnesium alkoxide 3 is not easily isolated, as the magnesium halide part easily reacts with 128 

water and moisture. Instead of determining the exact solubility of magnesium alkoxide 3, a 129 

qualitative first estimate of its capability to stay in solution could be sufficient. The requirement 130 

is, of course, that the concentration of magnesium alkoxide 3 in the reaction mixture is 131 
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representative of the concentrations of the 10,10-DMA 1 and DMPC-MgCl 2 intended for the 132 

synthesis. The later synthetic steps should be tested accordingly for solubility where necessary, 133 

since low solubility in these steps could require a lower concentration of 10,10-DMA 1 and 134 

DMP-MgCl 2 to have a fully operational flow setup from start to end of the synthesis. 135 

The solubility experiments on 10,10-DMA 1 focused on three solvents to be verified: toluene, 136 

tetrahydrofuran (THF) and 2-methyltetrahydrofuran (MeTHF), all of which are suitable 137 

candidates for later full-scale production. The solubility temperature was tested up to 20°C, 138 

which is to be considered the high limit due to ambient temperatures if no heat tracing should be 139 

applied to pumps and pipes. Figure 2 shows the solubility of 10,10-DMA 1 in the three solvents, 140 

where THF shows a significantly higher solubility than toluene or MeTHF. 141 

 142 

Figure 2: The solubility of 10,10-DMA 1 in toluene (), THF () and MeTHF (). The 143 

10,10-DMA 1 has high solubility even at low temperatures in the tested solvents. The solubility 144 

in THF is significantly higher compared to MeTHF and Toluene (approximately 100 g/L more 145 

10,10-DMA 1). 146 
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The significantly higher solubility of 10,10-DMA 1 in THF makes it obvious to use THF. If 147 

toluene were to be used as in the batch process, trace amounts of ether would still be needed to 148 

stabilize the magnesium in DMPC-MgCl 2. 149 

The concentration of 10,10-DMA 1 in THF was set to the lower side of 20°C (1.8 mol/L, 400 150 

g/L) to minimize the risk of precipitation while operating a flow setup. The DMPC-MgCl 2 was 151 

available at approximately 1.5 M concentration in THF from the production and it was decided 152 

to proceed with this concentration. A couple of quick qualitative batch experiments were carried 153 

out to verify whether the magnesium alkoxide 3 could remain soluble in the reaction mixture, as 154 

it was not possible to isolate the unstable magnesium alkoxide 3 for a solubility study. These 155 

experiments came out positive for the desired concentrations of 10,10-DMA 1 and DMPC-MgCl 156 

2 and no further testing of the solubility of magnesium alkoxide 3 was found necessary. 157 

Phase Separation: Organic Phase and Aqueous Waste 158 

 159 

A batch experiment, representing the expected concentration for the flow setup, was used to 160 

verify the potential for phase separation of THF from the aqueous phase. The DMPC-MgCl 2 161 

was slowly added in excess amounts with a dripping funnel to a round-bottom flask of the 162 

10,10-DMA 1 solution. The mixture was afterwards hydrolyzed with water and acetic acid 163 

(80%). The addition of the acid caused the pH of the mixture to become slightly acidic (pH ∼6) 164 

and an one-phase mixture was achieved. The pH was adjusted with aqueous ammonia (25%) and 165 

at pH 8 a two-phase mixture appeared. Alcohol 4 was distributed with 63% in the organic phase 166 

and 37% in the aqueous, according to HPLC assay. Adjusting the pH in the aqueous phase to 10 167 

with additional aqueous ammonia (25%) resulted in an additional organic phase, with less than 168 

1% alcohol 4 left in the aqueous phase. 169 
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Alcohol 4 in the organic phase was then dehydrated with hydrochloric acid (37%), followed by 170 

adjustment of the pH to 10 with aqueous ammonia (25%). Adjusting the pH to 10 allowed a 171 

phase separation with more than 99% of the product in the organic phase and with a ∼99% purity 172 

of the dehydrated product 5. During the hydrolysis and dehydration, a minor precipitation of 173 

solid material was formed that easily dissolved as the reaction progressed and should therefore 174 

not be a major concern for a flow setup. 175 

At pH ≥ 10 the tertiary amine is completely deprotonated, causing the products 4 and 5 to 176 

become almost insoluble in water, thereby achieving excellent separation. At pH ≤ 10 the tertiary 177 

amine becomes protonated and is soluble both in the aqueous and organic phase. If a clean phase 178 

separation had not been possible, changing the synthesis solvent to MeTHF could have 179 

simplified the workup of the products 4 or 5 from the aqueous phase, as MeTHF is not miscible 180 

with water. 181 

One-Step Hydrolysis and Dehydration 182 

The ability to phase separate both the alcohol 4 and the dehydrated product 5 in THF enabled a 183 

simplification of the targeted flow method. Ideally, hydrolysis and dehydration should be 184 

possible in one step, hence saving a phase separation and combining two synthetic steps into one. 185 

Screening for a potential acid for the one-step hydrolysis and dehydration was done, focusing on 186 

acetic acid and hydrochloric acid, either separately or in combination. Table 1 shows the results 187 

of the product formation based on the different acid systems. 188 

Table 1: Screening of different acids for direct hydrolysis and dehydration of the magnesium 189 

alkoxide 3 to the dehydrated product 5. 190 

Acid Solution Product (%) Phase Separation (%) 
HCl 37% (aq.) Dehydrated 5 (100%) >99 
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AcOH 80% (aq.) Alcohol 4 (100%) >99 
HCl 37% (aq.)/AcOH 80% (aq.) (1:1) Dehydrated 5 (90%) 

Alcohol 4 (10%) 
>99 

 191 

As seen in Table 1, only hydrochloric acid was able to hydrolyze and dehydrate the 192 

magnesium alkoxide mixture in one step. The experiment with hydrochloric acid resulted in 193 

significant heat development and an immediate precipitation of solids that potentially could be 194 

critical, even though it dissolved within a few minutes. An additional set of screening 195 

experiments was done to verify the potential of a lower concentration of hydrochloric acid. 196 

These experiments were carried out to verify whether the immediate precipitation of solid could 197 

be avoided and whether the energy released from the hydrolysis and dehydration could be 198 

distributed, as both steps are exothermic. Equal volumes of hydrochloric acid with different 199 

concentrations (1, 3, 6, 9 and 12 M) were used. For the concentrations lower than 6 M, it was not 200 

possible to achieve full dehydration at ambient temperature. For the concentrations equal to 6 M 201 

and higher, full dehydration was obtained, but all concentrations resulted in precipitation of a 202 

white solid that dissolved after few minutes of standing. From a production and environmental 203 

perspective, the more concentrated hydrochloric acid is the optimal choice; less aqueous waste is 204 

generated if the acid used is stoichiometric. Given the fact that precipitation could not be avoided 205 

and the production perspective, it was decided to proceed with 12 M hydrochloric acid. 206 

Precipitation of Melitracen HCl from THF 207 

The dehydrated product 5 was crystallized as the final HCl salt in the THF in a batch 208 

experiment, in order to remove a solvent swap to ethanol. The crystallization was carried out 209 

with 2 M HCl in Et2O, as this was considered more suited for a later flow process and more 210 

easily implemented in the laboratory setup. An equivalence of 1.1 HCl was used and the 211 
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requirement was an achievement of pH<2. The mixture was kept stirred during the 212 

crystallization and carried out at ambient temperature. After 10 minutes, fine white solids started 213 

to form, followed by a massive precipitation of Melitracen HCl 6. The Melitracen HCl 6 was 214 

filtered with a Büchner funnel and washed with THF. The isolated yield was 80% and within the 215 

specifications for the in-house analysis methods used in the routine production (CHN, TGA, 216 

UV-vis, HPLC, melting point). Figure 3 is a microscope picture of the isolated Melitracen HCl 6. 217 

For full-scale production, the HCl gas would still be more desirable for the crystallization and the 218 

2 M HCl in Et2O merely serves as a proof of concept for the laboratory flow setup. 219 

 220 

Figure 3: Microscope picture of the isolated Melitracen HCl 6 from the THF solution. 221 

Flow Process 222 

The initial batch screening experiments all indicated that the chemistry should be run in PFRs. 223 

This decision is based on several parameters from the screening experiments. In particular, the 224 

high solubility of the reactants and products makes the synthesis ideal for PFRs. Additionally, all 225 

of the synthesis steps are categorized as fast (full conversion within minutes) and hence small 226 

reactor volumes can be used. The final setup is illustrated in Figure 4 as a flow sheet. All tubing 227 

was 1/8” OD and 1/16” ID and made from PTFE; the T-mixer was of PEEK material ID 0.04”. 228 
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All synthetic steps were performed at ambient temperature, with no active cooling or heating. If 229 

the reactor system was to be scaled significantly, consideration of active cooling and heating 230 

should be taken into account due to potential safety and control related issues. Every step, except 231 

for the addition of acetic acid and the decanter phase separation, is exothermic. The decanter was 232 

a 100 mL glass bottle, fitted for the purpose with an in-house-made PTFE lid. After the Grignard 233 

addition (T1,C1) of DMPC-MgCl 2 to 10,10-DMA 1, a flow IR 10 µL head from Mettler Toledo 234 

was applied for in-line monitoring of the conversion and reaction. After the acetic acid addition 235 

(T3,C3), a 100 psi back pressure regulator (BPR) was applied to avoid boiling of the THF due to 236 

the hydrolysis and dehydration taking place at the HCl addition (T2,C2). The choice of placing 237 

the BPR is due to precipitation of solid material right after the HCl addition that is fully 238 

dissolved throughout the acetic acid coil. The HCl precipitation was done by collection of the 239 

two streams in a flask. A number of different pumps were used, all of them being positive 240 

displacement pumps for dosing purposes. Knauer Azura P 2.1S HPLC pumps with 10 mL 241 

stainless steel pump heads (P1 and P2) were used for the 10,10-DMA (1) and DMPC-MgCl (2); 242 

a Syrris Asia pump (dual pump) equipped with 0.5 and 1.0 mL glass syringes was used for both 243 

hydrochloric acid (P3) and acetic acid (P4). A Merck-Hitachi HPLC pump with a 10 mL 244 

stainless steel pumphead was used for the aqueous ammonia (P5) and Ismatec Reglo RH00 245 

piston pumps were used for the decanter outlet (P6) and the 2 M HCl in Et2O (P7). The two 246 

Knauer pumps were specially ordered with PTFE gasket intended for Grignard reagents and THF 247 

solvent. The remaining pumps were chosen based on availability in the laboratory. The flow rate 248 

was determined in accordance with the maximum capacity of each pump and the limitation was 249 

the pump used for the acetic acid. 250 
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Figure 4: Flow sheet of the flow reactor setup for the redesign of the Melitracen HCl synthesis. 253 

Pump (P), Coil (C), T-mixer (T), Infrared In-line flow cell (IR), Back pressure regulator (BPR). 254 

Results and Discussion 255 

Stepwise Verification of Flow Reactor Parts 256 

A stepwise implementation and verification of each step was done to minimize the risk of 257 

operational problems, while operating the entire setup as illustrated in Figure 4. The major risks 258 

were considered to be clogging issues and separation performance. 259 

The Grignard addition of DMPC-MgCl 2 to 10,10-DMA 1 was the first part to be verified and 260 

an equivalence of 1.1 DMPC-MgCl 2 was used to ensure full conversion of 10,10-DMA 1. Only 261 

a few minutes of residence time were needed for the reaction to achieve full conversion of the 262 

10,10-DMA 1. The reaction was easily followed visually, as the magnesium alkoxide 3 becomes 263 

dark red/orange. The product stream was collected in a flask, where it turned to a more orange-264 

like appearance over time. 265 
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Implementation of the HCl stream for hydrolysis and dehydration caused boiling of the THF 266 

solvent, but full conversion was achieved within minutes. Implementing the acetic acid stream 267 

resulted in some alteration of the setup to account for the boiling of the THF, as full conversion 268 

was not achieved. A back pressure regulator (BPR) of 100 psi was added to prevent the boiling 269 

of the THF (65 °C at STP). The BPR provided a stable flow that ensured a steady residence time 270 

in the HCl coil (C2), resulting in the desired full conversion of the magnesium alkoxide 3 to the 271 

dehydrated product 5. Adding the aqueous ammonia stream to the setup caused precipitation of 272 

ammonium chloride salt. The precipitate was easily dissolved by addition of water. Due to lack 273 

of pumps, it was decided to dilute the acetic acid to 40% from the original 80% and to double the 274 

flow rate. From a production perspective, an additional pump with water would be better suited 275 

as 80% acetic acid is the standard concentration in production. Acetic acid serves to assure that 276 

the magnesium salt complex remains soluble after pH adjustment to basic conditions. The BPR 277 

was originally implemented right after the HCl coil, but the white solid precipitate later caused 278 

clogging of the BPR, so it was moved to be after the acetic acid stream where a full liquid 279 

homogeneous phase was present. The choice of not moving it to be after the aqueous ammonia 280 

coil was due to a small risk of having precipitation upon the addition thereof, as this was 281 

observed in a previous run. At the end of the acetic acid addition during all adjustments, a full 282 

one-phase homogeneous stream was constantly present and it was considered more stable to add 283 

the BPR at this point in case of any fluctuation. 284 

Having the entire setup running, the decanter was tested for the setup. A previous flow setup 285 

had proved the decanter’s capability for separating organic and aqueous phases from each other, 286 

so that a single experiment was enough to demonstrate the decanter for this separation. The last 287 

stream to be implemented was the 2 M HCl (Et2O) stream for crystallization. At first, mixing of 288 
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the two streams was attempted in a T-mixer (2.5 mm ID), but the low pressure pumps used 289 

(Ismatec pumps) could not deliver a high enough pressure to avoid clogging. The clogging was 290 

caused by evaporation of the solvents due to the low boiling points of both THF and Et2O and 291 

the crystallization of Melitracen HCl (6) happening in the T-mixer. As an alternative, the two 292 

streams (P6 and P7) were pumped individually into the collecting bottle. No optimization was 293 

done to control the crystallization, as this was not the scope of the project, and for a full-scale 294 

setup HCl gas would be a preferred choice. Figure 5 shows the fractions collected from the setup. 295 

 296 

Figure 5: The collected fractions of product streams from the setup during continuous operation. 297 

To the left is the aqueous waste from the decanter, at the center is the organic phase containing 298 

dehydrated product 5 and to the right is the crystalline Melitracen HCl 6 API and the mother 299 

liquid. 300 

Operation of Full Flow Setup 301 

The final flow setup, as illustrated in Figure 4, was operated for 300 minutes under steady state 302 

conditions. The experiment was terminated at the point of complete utilization of the 2 M HCl 303 

(Et2O). For the first 30 minutes the setup was not in steady state due to a tube burst and fittings 304 
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around the IR flow cell, but a steady state was achieved shortly after replacement of the broken 305 

fittings. The tube burst was a result of a clog formed from Grignard reagent reacting with 306 

residual water in the IR flow cell from previous cleaning. The flow rate of the system is given in 307 

Table 2 and Table 3 provides the residence times in the important parts of the reactor. 308 

Table 2: The reactor configurations and residence times, along with important observations, for 309 

the Melitracen HCl 6 synthesis as operated with the flow setup (Figure 4). 310 

Reactor part Flow Rate 
(mL/min) 

Reactor 
Volume (mL) 

Residence 
Time (s) 

Observation 

Coil 1 4.5 4.95 66 Deep red color from reaction. 
Temperature higher than ambient, 

lower than the boiling point of THF. 
Coil 2 5.5 1.98 21.6 Temperature is above the boiling 

point of THF, 100 psi suppress 
boiling. 

Stream becomes transparent with a 
white solid that disappears into an 

one-phase system. 
pH < 2 

Coil 3 8.0 0.99 7.4 One-phase system 
pH < 2 

Coil 4 9.9 1.98 6.0 Two-phase system 
pH > 10 

Decanter 
(Org/Aq) 

9.9 (4.5/5.4) 100 606.1 Two-phase system 
pH > 10 

 311 

Table 3: The flow rates and concentrations of the different reactants used in the flow setup. 312 

Reactants Flow rate (mL/min) Concentration (M) Equivalence to 10,10-DMA 1 
10,10-DMA 1 2.0 1.8 1.0 

DMPC-MgCl 2 2.5 1.5 1.05 
HCl (aq) 1.0 12 (37%) 3.33 

AcOH (aq) 2.50 7 (40%) 4.86 
NH3 (aq) 1.9 13.4 (25%) 7.07 
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HCl (Et2O) 2.25 2 1.25 
 313 

An IR flow cell was placed after coil 1 and was used to follow and ensure that full conversion 314 

of 10,10-DMA 1 was achieved. Figure 6 shows the carbonyl peak of the 10,10-DMA 1 as it 315 

progressed throughout the experiment. The trend line absorbance intensity of the peak is based 316 

on area to zero baseline for the IR region of 1610-1580 cm-1 and is given in arbitrary units. The 317 

off-line HPLC data in Table 4 confirms full conversion of 10,10-DMA 1. The replacement of the 318 

tubing caused an exposure of the magnesium alkoxide 3 to the surrounding atmosphere (i.e. 319 

moisture in the air), resulting in the deposit of magnesium salts on the IR diamond window. 320 

Despite an attempt to clean the window, some deposit was still present, causing the small offset 321 

from the zero baseline, which explains why zero is not achieved. 322 

 323 

Figure 6: The IR data on the flow setup run, following the peak of the carbonyl functional group 324 

of 10,10-DMA (1) and the reference samples for off-line HPLC analysis given in Table 4. Steady 325 
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state conditions were achieved after 30 minutes; the initial 30 minutes of unstable flow were 326 

related to bursting and replacing of tubing and fittings. 327 

A portion of the Melitracen HCl (6) was collected by filtration in a Büchner funnel, washed 328 

with THF and dried in a vacuum oven at 50 °C for 24 hours. The product was subjected to 329 

complete release analysis for the API and all product attributes were found to be within 330 

specification. A total of 300 g of dry Melitracen HCl (6) was isolated from the flow setup, 331 

requiring a consumption of approximately 240 g 10,10-DMA (1) starting material. 332 

Table 4: The HPLC samples, where samples were collected from the aqueous waste stream of 333 

the decanter, the crystallized Melitracen HCl (6) and the mother liquid, and a few from the 334 

organic phase of the decanter. 335 

Sample 
No. 

Compound Crystallized 
Product 
(Area%) 

Mother 
Liquid 

(Area%) 

Decanter 
Aqueous 
(Area%) 

Decanter 
Organic 
(Area%) 

1 Melitracen (5 or 6) 
Alcohol (4) 

10,10-DMA (1) 
Other Impurities 

100 
nd 
nd 
nd 

97.65 
nd 
2.1 
0.2 

62.0 
38.0 
nd 
nd 

No sample 

2 Melitracen (5 or 6) 
Alcohol (4) 

10,10-DMA (1) 
Other Impurities 

100 
nd 
nd 
nd 

97.8 
nd 
2.0 
0.2 

37.8 
62.1 
nd 
nd 

No sample 

3 Melitracen (5 or 6) 
Alcohol (4) 

10,10-DMA (1) 
Other Impurities 

100 
nd 
nd 
nd 

96.3 
nd 
3.5 
0.2 

20.5 
79.5 
nd 
nd 

No sample 

4 Melitracen (5 or 6) 
Alcohol (4) 

10,10-DMA (1) 
Other Impurities 

100 
nd 
nd 
nd 

99.0 
nd 
0.8 
0.2 

nd 
100 
nd 
nd 

No sample 

5 Melitracen (5 or 6) 
Alcohol (4) 

99.9 
0.1 

99.1 
nd 

nd 
100 

No sample 
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10,10-DMA (1) 
Other Impurities 

nd 
nd 

0.7 
0.2 

nd 
nd 

6 Melitracen (5 or 6) 
Alcohol (4) 

10,10-DMA (1) 
Other Impurities 

100 
nd 
nd 
nd 

99.3 
nd 
0.5 
0.2 

nd 
100 
nd 
nd 

100 
nd 
nd 
nd 

7 Melitracen (5 or 6) 
Alcohol (4) 

10,10-DMA (1) 
Other Impurities 

100 
nd 
nd 
nd 

39.8 
60.2 
nd 
nd 

39.3 
60.7 
nd 
nd 

99.8 
0.2 
nd 
nd 

8 Melitracen (5 or 6) 
Alcohol (4) 

10,10-DMA (1) 
Other Impurities 

100 
nd 
nd 
nd 

56.4 
43.6 
nd 
nd 

26.2 
73.8 
nd 
nd 

100 
nd 
nd 
nd 

 336 

Conclusions 337 

A full redesign of a current batch synthesis to a full flow setup has been possible, from the 338 

starting material to the final salt crystallization of the active pharmaceutical ingredient, 339 

Melitracen HCl. The flow process was significantly simplified compared to the batch process, 340 

with removal of a phase separation and usage of tetrahydrofuran (THF) only as a solvent 341 

compared to the previous toluene-THF solvent mixture. All synthetic steps were carried out at 342 

ambient temperature, whereas routine batch production requires active heating (up to 50°C) and 343 

cooling in several steps. The crystallization of the Melitracen HCl was proven possible in THF 344 

with 2 M HCl in diethyl ether (Et2O) and eliminated a solvent swap to ethanol. The 345 

crystallization was not optimized and would most likely be done with HCl gas, with an expected 346 

additional gain in yield from the lower volume of solvent. The isolated yield in the given study 347 

was approximately 85%. The phase separation achieved with the decanter was higher than 99% 348 

product in the organic phase, with a HPLC purity of greater than 99%. The isolated Melitracen 349 

HCl was analyzed in accordance with the in-house release methods required for current batch 350 
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production and all measurements were in accordance with requirements. A production of 60 g/h 351 

of isolated Melitracen HCl can be achieved with the flow setup. Furthermore, the setup 352 

demonstrated great robustness towards fluctuations in reactant streams. The one-step hydrolysis 353 

and dehydration could potentially be applicable for other Grignard additions, as could the 354 

subsequent decanter phase separation. 355 
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