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BOUNDARY FEEDBACK STABILIZATION OF DISTRIBUTED 
PARAMETER SYSTEMS: An Appl ica t ion  of Pseudo- 
D i f f e r e n t i a l  Boundary Opera tors .  

Michael Pedersen 

Inst i tute  of Mathemtics and Physics 
Roskilde University Centre 
4000 Roskilde DEWARK 

The theory of pseudo-differential boundary operators 
proves to be a f ru i t fu l  approach to prcblenr; arizinq in 
control and stabilization theory of distributed parame- 
ter systems. By use of the basic pseudo-differential ca- 
lculus we can i n  a direct and shple way obtain existen- 
ce ad stabi l i ty  theorems for  boundary feedback semigro- 
ups. 

I. llTEfNXCI'ION 
In this paper we present a brief introduction to 

the method of pseudo-differential stabilization as deve- 
loped in [9 I ,  and based on the fdan-entals f m  refs. 
[31 and [41. 

ly  e l l i p t i c  differential operator of order h, w i t h  smo- 
oth coefficients on I7 , where R is an open, bounded set 
i n  Rn, n>l, with m t h  boundary r. The Dirichlet reali- 
zation A of A is then the aperator acting like A i n  
L (521, and with daMin 

Y 

L e t  A be a formally selfadjoint, uniformly strong- 

7 r - Y  

(1) D ( A  = { u E H ~ ~ ( Q )  I y u  = 0 } 

= H ~ ~ ( R )  n H ~ ( R ) .  

Hereyis the Dirichlet trace operator 

(a/an)is the normal derivative, and Ha(R) is the usual 
sobolev space of order h, consisting of L -functions 
with L2-derimtives  up to order h. 

l ic evolution equation: 

-%(x,t) + Au(x,t) = 0 for  XER and t> 0, d t  

YU = ( utr,(a/an)uir , . . ,(a/an)m-ti, l T  (2) 

2 

The realization % i s  associated w i t h  the parakc- 

yu(x,t) = 0 for  xcR and t> 0, (3) 
u(x,O) = uo(x) for  XER ; 

and it is well known that  A is the infinitesimal gene- 
rator of an analytic semigroup, -(-A t) , t> 0,  on 
L~ (Q) , giving the solution to (3) as 

U ( X r t )  = eXp(- A t ) U o ( X )  

for  u0eL (a,  x a  and t& 0. 
Since A has a canpact resolvent, the spectrum of A 

m i s t s  of a sequence of real eigenvalues, converging 
to infinity. There are only f ini te ly  m y  negative ei- 
genvalues, so we w r i t e  them as a nondecreasing sequence 

(5) 

Y 

Y 

(4) 
Y 2 

Y Y 

A1s 5 s  3 s  .. .'<k-l-<o< k '< ... 
where xK is the first positive eigenvalue. Moreover, 
for simplicity asstme that a l l  the negative eigenvalues 
are simple. Because of the negative eigenvalues of A 

Y 

there are i n i t i a l  data uo for which the corresponding 
solution to (3) blows up ( in L -norm ) as t tends to 
infinity. This is easily observed f m  the spectral re- 
presentation of the solution 

2 

where the 'pj, j = 1 ,2 ,  ... 
2 and ( . , .) is the usual L (RI -inner product. The boundary 

stabilization problem is t o  design a boundary feedback 
mechanism T'u, such that  i f  the boundary condition yu=O 
i n  (3) is replaced by a new boundary condition yu=T'u, 
the resulting boundary feedback system is stable, in the 

sense that for  any initial data u0cL (a), the L -r" of 
the corresponding solution goes t o  zero as t tends to 
infinity. Moreover, the fedback mechanism we consider 
are of the form: 

is the set of eiqenfunctions 

2 2 

T'u = (u,w)g , (7) 

where w E C ~ ( R )  and g Ecm(r) are functions to be determi- 
ned. ( For certain choices of R or  i f  saw of the neqa- 
t ive  eigenvalues have multiplicities > 1, the feedback 
must consist of a sum of terms l ike (7); these technical 
details are d i s c u s s  in [5 I and 19 I ) .  

11. THE FEEDBACK SYSTEM AND 
THE PSEUIXFDEFEREKRIAL TRANSE'ORWTION 

The boundary feedback stabilization problem can be 
stated as: 

that  the boundary feedback system 
can we determine funations w E Cm(R) ,  qE C m ( r ) ,  such 

&(x,t) + Au(x,t) = 0 for  xER and t> 0, 

yu (x , t )  = (u,w)g(x) for  xER and for -0, (8) 
u(x,O) = U (x) for xER , 

is stable i n  the sense that  the L'-norm of a solution 
u(x,t) is expnentially decreasing as t tends to infini- 
ty, for  any i n i t i a l  data u0c L ~ ( R ) ?  

we assume that: 
The answer to the above problem is affirmative i f  

The negative eigenvalues are sinple (9) 
and ._._ 

the N e u "  traces (i.e. the normal boundary 
derivatives of order bm) 

(10) (=?-)kIpj l r  , k = m,ni+1,...,2rrl, 
j = 1 , 2  ,..., K-1, 

of the eigenfunctions cp ., j = 1 , 2 , .  . . ,K-1 
1 

are  linearly independent. 
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( When the assumptions (9)-(10) do not hold, the situ- 
ation is m e  canplicated and, i n  general, mre terms 
in the feedback are required ; for  details, see [5Ir[6I 
[71 and [91.) 

The treatment of the system (8) is ccmplicated by 
the fact  that the associated realization AI of the op- 
erator A has the damin 

2m (11) D(A1) = {uEH (Q)I yu = (UrW)g) r 

which i n  contrast to the dcmain for is given by a 
variable, non-local boundary mridition. Consider now 
the solution operator 5 to the stationaxy Dirichlet 
prablem for A, i.e. K naps cp into the solution U of 

Y 

Au = 0 i n  52 
yu=cp on r (12) 

I$ is a standard type of Poisson Operator, as defined 
in the psedo-differential boundary operator calculus, 
(see [31, [41). Moreover, the operator T' (7) is a stan- 
dard type Trace Operator in  this theory. Hawwer, the 
nost important property w i t h  respect to the problem a t  
hand is that the ccmposition K T' is also a standard 

c p r a t o r  of the class called S i n g u l a r  Green Operato=, 
( introduced i n  [2] ) . 'Be properties of Singular Green 
operators is throughly discussed i n  refs. 131 and r41. 
In the present case w need only the fact  that  it is 
possible to choose T' of the form (71, such that  the 
c p r a t o r  1-K T' defines a hanmmqh "I and an isansr- 

&ism i n  H 

Y 

?my (Q), such that 

1-KyT' : D(A1) D(Ay) . (13) 

"hen, i f  uED(A1), v = (l-KyT')U belongs to D(A ) and Y 
Au = AV . This establishes i n  a precise " e r  the fac- 
torization 

(14) A1 = A (1-K TI)  
Y Y  

h ich can IMW be used i n  the discussion of (8). 
The evolution problem 

(d/dt)u + Au = 0, LIED(%) (15) 

transforms by (13) and (14) into 

(d/dt) (l-KYT')-'v + AV = 0, vED(Ay) (16) 

or  alternatively 

(d/dt)v + (1-5T')Av = 0 , vED(\) . (17) 

Since A is a differential aperator w i t h  smooth coeffi- 
cients, the operator G = -K TI is also a Singular Green 

Y 
Operator ( of f in i te  rank ) , so we observe that ou1: fe- 
edback problem (8) ( by the transformtion (15)-(17) ) 
is i n  fact  nothing but a f in i te  dimensional pertubati- 
on: 

(d/dt)v + AV + Gv = 0 , 

of the Dirichlet ewlution problem (3) : 

vE D(Ay) (18) 

(d/dt)v + AV = 0 , V E  D(Ay) (19) 

AS sham i n  refs. [91 , [lo] and [ l l l  r the shbi l iza-  
tion of the system (18) is straightforward, as  f in i te  
djmmsional pole placement techniques can be q l o y e d r  
( cf.[12] ) .  The result is that under the a s s q t i o m  
@ ) - ( l o ) ,  the operator T' (7) can be chosen Such that 

l-KyT' has the akwemntioned properties, and such that 

is the infinitesimal generator of an analytic semigroup, 

eV(- (A+G) t) , t a  0, on L2, giving the solution to (18) 
as: 

the operator A + G w i t h  dchoain D(Ay) = H 2m (62) ll $(Q) , 

V ( X r  t) = q (- (AtGI t) Vo (XI (20) 
2 where XES2 , taO, for  init ial  data v ~ L  (62). 

Also ( what is the key point 1: 

I I V ( . , t )  I I M €Xp(-(k+&)tIl lVol I , (21) 

with M > l , & > O .  
As shown i n  [91, the aperator A1r w i t h  danain D(%) , is 
then also the infinitesimal generator of an analytic 
S&i.grOUpr €Xp(-Alt), t 30, On L (62) I which is the tra- 
nsfoirn of the semigroup q ( - ( ~ + ~ ) t )  under (I-K TI): 

2 

Y 

exp(-Alt) = (l-KyT')-'exp(-(A+G)t) (1-K Y T') (22) 

for  which we have the estimate 

1 lu(.,t) I I 4 M q ( - ( $ + e ) t )  I lUoI I , (23) 

far  the solution u(x, t )  of (8). 

The f o m l a  (22) shaws that when we impose a barn- 
diny feedback on the originally "free" system (31, we 
are perfonning a pseudo-differential"charrge of coordi- 
nates" i n  the space fl(~). %e pseao-differential ag 
proach allows u s  to obtain stabilization results on the 
system (8) , together w i t h  other perturbations of the 
free s y s t e ~ ~  (31, i n  a unified setting. Moreover, we can 
consider hyperbolic probl- as ell as parabolic prcr 
bl-r described in ref. 191 . 

111 

r21 

[31 

[41 

153 

[61 
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