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Abstract

Materials science increasingly relies on powerful microscopes to study the relationship between a

material property and its underlying structure. Understanding this relationship is critical for catal-

ysis, due to the importance of structure at the nanoscale. High-Resolution Transmission Electron

Microscopy (HRTEM) has become a routine analysis tool for structural characterization at atomic

resolution, and with the recent development of in-situ TEMs, it is now possible to study catalytic

nanoparticles under reaction conditions. However, the connection between an experimental image,

and the underlying physical phenomena or structure is not always straightforward. The aim of this

thesis is to use image simulation to better understand observations from HRTEM images.

Surface strain is known to be important for the performance of nanoparticles. Using simulation, we

estimate of the precision and accuracy of strain measurements from TEM images, and investigate

the stability of these measurements to microscope parameters.

This is followed by our efforts toward simulating metal nanoparticles on a metal-oxide support

using the Charge Optimized Many Body (COMB) interatomic potential. The simulated interface

structures are used as input for image simulations, to understand how support-induced strain

influences a HRTEM image.

This thesis also introduces two novel analysis tools for atomic-resolution images. The first tool

is an automatic method for calculating strain from HRTEM images with several advantages over

previous methods. The second tool, is a neural network based algorithm for recognition of the

local structure in images. The neural network was trained entirely from image simulations, but is

capable of making correct predictions on experimental images.





Resumé

Materialevidenskaben afhænger i stigende grad af kraftfulde mikroskoper til at undersøge forholdet

mellem en materiale-egenskab og den underlæggende struktur. At forst̊a dette forhold er særligt

vigtigt indenfor katalyse, hvor strukturen p̊a nanoskala er ekstremt vigtig. ’High-resolution Elec-

tron Microscopy’ (HRTEM) er en meget udbredt mikroskopi-metode med atomar opløsning, og

med den nye udvikling indenfor in-situ TEM er det muligt at undersøge nanopartiklerne under

reaktionstilstande. Forbindelsen mellem et eksperimentelt billede og den underlæggende struktur

er dog ikke altid klar. Målet med denne afhandling er derfor at bruge simulerede billeder til bedre

at forst̊a eksperimentelle observationer.

Det er kendt, at tøjning (p̊a engelsk ’strain’) ved overfladen er vigtigt for ydeevnen af nanopartikler.

Ved hjælp af simuleringer estimerer vi præcisionen og nøjagtigheden af m̊alinger af tøjning og

undersøger, hvor stabile disse m̊alinger er overfor ændringer af mikroskopets parametre.

Dette bliver efterfulgt af vores arbejde henimod simulering af metal-nanopartikler p̊a et substrat af

metaloxid ved hjælp af interatomare potentialer. De simulerede strukturer bliver brugt som input

i en billedsimulering for at forst̊a, hvordan de strukturer, som opst̊ar ved grænsefladen mellem

partiklen og oxidet, p̊avirker billedet.

Denne afhandling introducerer ogs̊a to nye værktøjer til at analysere billeder med atomar opløsning.

Det første værktøj er en automatisk metode til at beregne tøjning fra HRTEM-billeder med flere

fordele i forhold til tidligere metoder. Det andet værktøj er en algoritme baseret p̊a et neuralt

netværk, der automatisk kan genkende lokale strukturer i billeder med atomar opløsning. Det

neurale netværk er trænet udelukkende med simuleret data, men kan lave korrekte forudsigelser p̊a

eksperimentelle billeder.





Contents

1 Introduction 1

1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Modeling the Transmission Electron Microscope and PyQSTEM 3

2.1 The instrument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Specimen potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Multislice algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Imaging system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 Partial coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.7 PyQSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.7.1 HRTEM simulation with PyQSTEM . . . . . . . . . . . . . . . . . . . . . . . 12

3 Strain Analysis and Structural Template Matching 17

3.1 Strain analysis from images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Geometric Phase Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.2 Real space analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Structural template matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Separating the local lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.2 Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.3 Template matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.4 Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.5 Comparison to GPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Accuracy of Strain Measurements in Nanoparticles from HRTEM Images 33

4.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



CONTENTS

4.2.1 Atomic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.2 Image simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.3 Strain measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 What is measured? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.1 Origin of imaging errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Accuracy and precision of strain measurements . . . . . . . . . . . . . . . . . . . . . 39

4.4.1 Influence of defocus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.2 Influence of tilt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.3 Influence of noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Interatomic Potentials for Modelling Oxide-Supported Metal Nanoparticles 47

5.1 Modelling large-scale supported nanoparticles . . . . . . . . . . . . . . . . . . . . . . 47

5.1.1 Interatomic potentials for metal/oxide systems . . . . . . . . . . . . . . . . . 48

5.1.2 COMB potential formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Fitting interatomic potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.1 Fitting algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.2 DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.3 Material properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Fitting the COMB potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4.1 Pt/c-ZrO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4.2 Pt/anatase-TiO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.6 Tables of material properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Structural Recognition using Convolutional Neural Networks 71

6.1 Classification and detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 Feed forward neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2.1 Convolutional neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3.1 Image-to-image CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3.2 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3.4 Network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3.5 Interpretating the probability maps . . . . . . . . . . . . . . . . . . . . . . . 82

6.3.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3.7 Image simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



CONTENTS

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4.1 Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4.2 Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4.3 Atom-counting in nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A Included papers 125

A.1 Paper 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.2 Paper 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.3 Paper 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.4 Paper 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158



Chapter 1

Introduction

With dwindling oil reserves worldwide and increasing environmental impact of burning fossil fuels,

it is imperative that we find new technological solutions. There is no single replacement for fossil

fuels, however catalysis is likely to play a major role. Catalysis is already a big workhorse in

the chemical industry, where it is involved in nearly 90 % of all chemical processes: including

the production of fuels, plastics and fertilizers [1]. Developing materials to act as catalysts with

improved performance have been a major area of many researchers over the past decade. With

a limited supply of the precious metals often used in these catalysts, their effective use becomes

increasingly important.

In heterogeneous catalysis, solids are used to catalyze reactions of molecules in gaseous or liquid

form. The reactants adsorb on the solid surface, their bonds are broken and new ones formed, the

products then desorb from the surface. The catalytic process exploits the weakening of the internal

bonds of a molecule, as it interacts with the solid surface. Metal catalysts normally consists of

nanoparticles, deposited on a high surface area substrate in order to maximize the ratio between

the surface area of the catalyst and the amount of metal used.

Modern materials science relies on studying the fundamental relationships between structure and

property, for example the relationship between catalyst surface area and increase in rate of a chemi-

cal reaction (the catalyst activity). Understanding how different physical processes and phenomena

impact the surface area of a nanoparticle, provides valuable input towards establishing new synthesis

methods for improved nanostructures.

The surface area depends not only on the particle size, but also on their shape and morphology,

the latter being influenced by the substrate and chemical environment [2]. The morphology does

not stay constant during use of the catalyst, it changes both in response to the instantaneous

environment and over time, where sintering leads to increased particle size. The surface area is not

the only structural parameter that determines activity. For most catalysts the chemical reaction

occurs only on sites with a specific atomic structure [3] and in addition, dramatic improvements of

the activity can be gained by even relatively small surface strains [4].

1



2 CHAPTER 1. INTRODUCTION

Electron microscopes allow us to study materials at the atomic scale, and directly observe the

physical structures and phenomena that gives rise to desireable or undesireable material properties.

The capability to introduce gases into the microscope, now opens up the possibility to study changes

in particle morphology with high temporal and spatial resolution under reaction conditions [5].

However, the connection between an experimental image and an underlying physical phenomena or

structure is not always straightforward. Effective materials research relies on both experimental and

theoretical techniques. A synergistic feedback loop has developed where experimental measurements

are used as input to computer simulations, which in turn provide a deeper understanding of the

underlying physical phenomena.

The association between experiment and theoretical calculations is especially strong, when the

theoretical calculations directly simulate the experiment. Simulation of electron microscopy images

allows us to start from an assumed structure and obtain a corresponding image approximating the

experiment. This allows researchers to strengthen or reject a hypothesis, or go back and modify

the assumptions of the theoretical calculations until agreement is reached. Image simulation can

also act as the link between experiment and theoretical calculations that predicts the structure and

properties of materials using quantum mechanics. Lastly, since the true structure is defined, image

simulation also facilitates easy prototyping and benchmarking of analysis methods. Although, this

thesis stays close to concrete experimental measurements, it is firmly to the theoretical side.

1.1 Outline

The rest of this thesis is ordered as follows:

Chapter 2 describes the electron microscope and how to simulate images. We also present the

simulation program PyQSTEM.

Chapter 3 gives an introduction to measuring small structural changes (i.e. strain) from electron

microscopy images. We also introduce a novel method for strain measurements from images.

Chapter 4 describes our results on the precision and accuracy of strain measurements from

nanoparticles.

Chapter 5 details our efforts towards simulating supported nanoparticles. In addition, we show

results for measuring the strain in supported nanoparticles.

Chapter 6 presents a method based on deep learning for automatically extracting quantitative

structural information from atomic resolution images.



Chapter 2

Modeling the Transmission Electron Microscope

and PyQSTEM

High-resolution transmission electron microscopes (HRTEM) are a type of microscope, which forms

the image by transmitting electrons through the specimen. The tiny de Broglie wavelength of

high-energy electrons and strong electron-matter interaction, enables the instrument to capture

images of extreme resolution - even resolve individual atoms. The TEM has, since its introduction

in the 1930s, evolved into a standard instrument for characterizing materials at the nanoscale [6].

The image formation in HRTEM relies on phase contrast. Since phase is not directly observable,

this means that we observe the interference in the image plane of the electron beam with itself.

In phase-contrast imaging, contrast is not necessarily intuitively interpretable, principally due to

the large influence of aberrations resulting from imperfect imaging lenses. Hence, simulation is an

important tool for relating an image to the specimen structure [7].

In this chapter, we detail the process of simulating electron microscopy images. We also introduce

the Python-based program for image simulation, called PyQSTEM, which was developed during

this project.

2.1 The instrument

A schematic cross section of a modern HRTEM instrument is shown in Fig. 2.1(a). From the top

down, the first component is the electron source. Modern instruments has a field emission gun

instead of a thermionic source for improved brightness and coherence [6]. A system of electromag-

netic condenser lenses transfer the accelerated electrons onto the specimen as a plane wave (ideally).

The the exit wave emerges at the other side of the specimen, after interacting with the electrostatic

potential of the nucleii and electrons in the specimen through elastic scattering (ideally).

The objective lens focus the exit wave onto the back-focal plane, after which projector lenses are

used to expand the beam onto an imaging device. This can be a layer of photographic film, or a

3



4 CHAPTER 2. MODELING THE TEM AND PYQSTEM

(a)

Image recording system
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Aberration corrector

Projector lenses

Specimen holder

Condensor system

Accelerator

Objective lens

Electron gun

(b)

Incident electrons

Imaging system

Back-focal plane

Specimen interaction 

Detection

x,y

z

Figure 2.1: (a) Cross section of a generic HRTEM. Adapted from Wikimedia Commons. (b)

Simplified model (not to scale) of a HRTEM. The condenser lenses (above the top of the drawing)

and projector lenses have been ignored.
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Figure 2.2: The atomic coordinates and species defined by the input atomic model are used to

generate the electrostatic potential. The multislice algorithm is used to propagate the input plane

wave through the specimen to produce the exit wave function. The aberrations of the objective lens

are applied to the exit wave function through the contrast transfer function, defining for example

the defocus. Lastly, the detected intensity is calculated from the intensity of distorted exit wave,

taking into account the point spread function of the detector and finite electron dose.

sensor such as a charge-coupled device (CCD). The wave function is magnified by an amount equal

to the ratio of distances from the objective lens to the specimen and specimen to the image plane.

For the rotationally symmetric lens design, positive spherical aberrations are unavoidable [7]. In

modern microscopes, this is corrected with an aberration corrector. This have resulted in dramatic

improvements to the instrumental resolution over the last decade [6].

As a whole transmission electron microscopes are incredibly complicated instruments. However,

much of this complexity can be ignored when simulating images. For example, the condenser

system, once aligned, can be reduced to the properties of the illuminating rays (i.e. coherence and

angular distribution), and since any defects in the objective lens are greatly magnified, the projector

lenses have comparatively little effect on the final image resolution.

The image formation process can be simplified to the model described by Fig. 2.1(b). The model

consists of three parts: Interaction of the incident plane wave with the specimen, aberrations

introduced by the objective lens and finally the detection of the wave function intensity. An overview

of the steps involved in the modelling the electron microscope is illustrated in Fig. 2.2. Each of the

steps will be treated in the following sections.

2.2 Specimen potential

The electron beam interacts with the specimen through the Coulomb potential of the electrons and

nucleii in the specimen. The electron charge distribution of an atom can be calculated from first-
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Figure 2.3: (a) The multislice method successively transmits the electron wave through each slice

of the potential and then propagates it to the next slice. (b) The contrast transfer function of a

HRTEM operated at 300 kV with Cs = 0.6 mm and ∆f = −41.25 nm (Scherzer defocus). The

point resolution qp corresponds to the first crossing of zero for the imaginary part of the CTF. At

Scherzer defocus qp is maximized. The partial coherence envelopes dampens the high frequency

components of the CTF leading to a delocalization in real space.

principles electronic structure calculation, while an atomic nucleus is a point charge at the resolution

of a TEM. Given a charge distribution, the potential can be obtained via Poisson’s equation.

Simulation codes generally include a parametrization of the atomic potentials, with a table of

parameters for each element fitted to Hartree-Fock calculations. The full specimen potential, V (r),

is then obtained as a linear superposition of the atomic potentials

V (r) =
∑

i

Vi(r − ri) , (2.1)

where Vi(r) is the atomic potential of the i’th atom. This model obviously neglects any effect due

to bonding and charge transfer. However, since the nucleus and core electrons constitutes most

of the charge in an atom, this is a reasonable approximation, that gets progressively better as the

atomic number increases. Nonetheless, due to recent improvements in microscopes, interest in going

beyond this approximation have started. For example, it have been shown that simulated images

based on potentials from DFT calculations can provide a better match with experimental data for

light elements [8].

2.3 Multislice algorithm

The energy of the incident plane wave (100 - 1000 keV) is much greater than the specimen potential,

which provides only minor perturbations on the forward motion of the electrons. Hence, it is useful



2.3. MULTISLICE ALGORITHM 7

to write the wave function, ψ, of the propagating electrons as a slowly varying plane wave along

the optical axis, z, with an amplitude modulation

ψ(r) = φ(r) exp(2πiz/λ) , (2.2)

where r = (x, y, z) and λ is the de Broglie wavelength of the electrons. Substituting this into the

Schrödinger equation [9] we obtain

− h̄2

2m

[
∇2
xy +

∂2

∂z2
+

4πi

λ

∂

∂z
+

2meV (r)

h̄2

]
φ(r) = 0 ∇2

xy =
∂2

∂x2
+

∂2

∂y2
. (2.3)

In the high energy approximation, we assume that the wavefunction varies slowly in the z-direction

compared to the potential and that the wavelength is small, thus
∣∣∣∣
∂2φ

∂z2

∣∣∣∣�
∣∣∣∣
1

λ

∂φ

∂z

∣∣∣∣ (2.4)

Hence, Eq. (2.3) can be written as a first order differential equation in z

∂φ(r)

∂z
=

[
iλ

4π
∇2
xy + iσV (r)

]
φ(r) , (2.5)

where σ = 2πmeλ/h2 is the interaction parameter. This equation is integrated numerically by

slicing the potential into thin slices, such that the influence of each slice can be approximated as a

simple phase shift of the wave function. The wave function is propagated between slices as a small

angle outgoing wave (Fresnel diffraction), see Fig. 2.3(b). The transmission and propagation across

a single slice can be written

φ(x, y, z + ∆z) = p(x, y,∆z) ∗ [t(r)ψ(r)] +O(∆z2) , (2.6)

where ∗ represents a convolution. The transmission function, t(r), for the portion of the potential

between z and z + ∆z is

t(r) = exp

[
iσ

∫ z+∆z

z

V (x, y, z)dz′

]
, (2.7)

and the Fresnel propagator p(x, y,∆z) is

p(x, y,∆z) =
1

iλz
exp

[
iπ

λ∆z
(x2 + y2)

]
. (2.8)

The wave at the exit plane of the specimen is obtained by sequentially applying Eq. (2.6) starting

with an assumed input wave. A full derivation of the above may be found in Kirklands book [7].

The convolution in Eq. (2.6) can be performed efficiently by utilizing the Fast Fourier Transform

(FFT). The implemented form of Eq. (2.6) is

φz+∆z(x, y) = F−1{P (kx, ky,∆z)F [t(r)φ(r)]} , (2.9)
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where P is the Fourier transform of Eq. (2.8). The computational cost for the FFT scales as

N log(N) with the number of samples N . Typically, partial coherence is neglected in the interaction

with the specimen, since the influences of energy spread and angular spread are insignificant.

2.4 Imaging system

Ideally a lens forms a spherical wave converging on or emerging from a single point. In practice

aberrations cause the wave to deviate from a spherical surface. This deviation can be represented

as a phase error χ. The specimen is always very near the optical axis so positional errors can be

ignored leaving only the angular deviations α. It is customary to write the phase error as a power

series expansion in α, or equivalently the spatial frequencies

χ(qx, qy) =
2π

λ

∑

n,m

Cn,mα
n
xα

m
y =

2π

λ

∑

n,m

Cn,mλ
2qnxq

m
y , (2.10)

where (qx, qy) is the spatial frequencies and the relation α = λq was used.

If the microscope is well aligned then off-axis aberrations (astigmatisms) are small and the phase

error is dominated by the first two isotropic terms

χ(q) ≈ 2π

λ

(
λ2q2

2
∆f +

λ4q4

2
Cs

)
, (2.11)

where ∆f = C1,1 is the defocus and Cs = C3,3 is the third order spherical aberration. The effect of

a coherent imaging system on an exit wavefunction, ψ0, can thus be modelled by a Fourier space

multiplication

ψ(q) = ψ0(q) exp[−iχ(q)] = ψ0(q)T (q) , (2.12)

where T is called the contrast transfer function (CTF). Choosing the optimum defocus is crucial to

fully exploit the capabilities of a HRTEM. If one sets the defocus to zero, the sample is in focus, and

the contrast is localized (no information overlap from other parts of the specimen). Unfortunately,

the CTF now becomes a function that oscillates quickly with Csq
4. This means that the contrast

is reversed for certain spatial frequencies, and the image becomes difficult to interpret. In Scherzer

defocus, one aims to counter the term in q4 with the parabolic term ∆fq2. Thus by choosing the

right defocus value ∆f one flattens χ(q) and creates a wide band, where low spatial frequencies q

are transferred into image intensity with a similar phase, see Fig. 2.3(b).

In modern aberration corrected microscopes, the Cs value can be very small. This means that more

aberrations have to taken into accoundt in Eq. (2.11), in particular residual astigmatism (C1,2 and

C2,1) and fifth order spherical aberration (C5,5).
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2.4.1 Partial coherence

Partial spatial and temporal coherence cause a delocalization or blurring of the image. The electron

beam illuminating the specimen, will always have a small distribution of angles. These are quantified

by the convergence semi-angle β which is subtended at the sample by the condenser aperture.

In principle each angle is incoherent with other angles, so the images due to each angle should

be summed incoherently by adding intensities |ψ|2 and not amplitudes ψ. However, in modern

microscopes, particularly microscopes equipped with a field emission gun (FEG), the distribution

of angles are so narrow that the wave functions can be summed coherently (the quasi-coherent

approximation) [7, 10]. If p(kβ) represents the (probability) distribution of illumination angles,

then the summed wave function can be written

ψ(q) =

∫
ψ0(q)T (q + qβ)p(qβ)dqβ , (2.13)

where qβ defines a particular direction of propagation, with the probability

p(qβ) =
1

q2
sπ

exp

(
−
q2
β

q2
s

)
, (2.14)

and qs = β/λ is the 1/e width of the Gaussian distribution. Note that in Eq. (2.13), the distribution

of incident directions are incorporated into T (q) rather than ψ0(q), an approximation which is valid

for quasi-coherent illumination [10]. Evaluation of Eq. (2.13) gives

ψ(q) = ψ0(q)T (q)Es(q) , (2.15)

where Es is the spatial coherence envelope function

Es(q) = exp

(
− β

4λ2

∣∣∣∣
∂χ(q)

∂q

∣∣∣∣
2
)

. (2.16)

A small spread in energy, ∆E, of the incident electrons is equivalent to a small spread in defocus,

due to the chromatic aberration of the objective lens. Fluctuations in the focusing currents, ∆I, in

the objective lens also produce an incoherent spread in defocus. Combining these effects, the 1/e

width of the distribution of defocus values (the focal spread) can be written

∆ = Cc
√

4∆I2 + ∆E2 . (2.17)

As in our treatment of spatial coherence above, we assume that ∆ is small. Then, it can be shown

that focal spread can be approximated as a simple envelope function

Et(q) = exp

(
−δ

2

4

∣∣∣∣
∂χ(q)

∂∆f

∣∣∣∣
2
)

. (2.18)
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Blurring can also be caused by all kinds of noise leading to a random deflection of the image relative

to the detector, such as vibrations, drift of the stage, and time-dependent magnetic noise fields

resulting from eddy currents in the material of the lenses [11]. Assuming that the image deflection

is small and follows a Gaussian distribution, this can be included as an additional envelope

Ed(q) = exp

(
−σ

2q2

2

)
(2.19)

where σ is the 1/e amplitude of the deflection. Thus, in the quasi-coherent approximation the wave

function at the image plane, given the exit wave ψ0, can be written

ψ(q) = ψ0(q)T (q)Es(q)Et(q)Ed(q) . (2.20)

2.5 Temperature

In the creation of the specimen potential the atoms were treated as completely stationary. At room

temperature, at which most electron microscopy is conducted, the atomic vibrations are small

compared to a typical interatomic distance, so the effect of temperature is expected to subtle. In

particular, the thermal vibrations lead to a diffuse background intensity, which lowers the contrast of

the images [12]. A general theory of imaging and diffraction in the presence of thermal vibrations can

be rather involved. However, there exists a simple, if somewhat brute force approach to numerically

simulate, the effects of thermal vibrations in the specimen, this is known as the frozen phonon

approximation. It is a semi-classical model based on the assumption that a single high-energy

electron passing through the specimen, at about half the speed of light, can only probe a single

frozen ”snapshot” of the vibrating crystal. The image is produced by averaging incoherently over

many snapshots, where the atoms are slightly displaced from their equilibrium positions. The

frozen phonon model has been shown to be numerically equivalent to the full quantum-mechanical

treatment of the inelastic phonon scattering process [12]. The displacements can be calculated

accurately using MD, however most simulation codes use the Einstein approximation, where the

atomic vibrations are assumed to be independent [13] and the vibrational magnitudes are tabulated.

Temperature can also be modelled with the less accurate, but much faster method, of using a time-

averaged potential [14].

2.6 Detection

TEM images are typically recorded using charge-coupled detectors (CCD) with a fiber-optics cou-

pled scintillator. In the ideal case, each electron is only detected by one of the detector pixels. In

practice, a single imaging electron can cause signals in more than one pixel because of multiple

scattering within the scintillator material and the creation of an excitation volume [15]. This effect
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Figure 2.4: The normalized noise spectral density of an experimental image and a fit of the form

in Eq. (2.21).

can be expressed by the point-spread function (PSF), describing the response of a detector to a

point source or point object (i.e. the impulse response). The effect of the PSF, or equivalently its

Fourier transform the modulation transfer function (MTF), are typically implemented through a

parametrization of its influence. The easiest method of measuring the MTF is through the spectral

density of a noisy image without a signal, i.e. the noise spectral density (NSD) [15]. A more accu-

rate method for measuring the MTF exists, however this requires a specialized measurement [16].

In our simulations, we use the following parametrization for the MTF

MTF(q) =
1− a1

1 +
(

q
2a2qN

)a3 + a1 , (2.21)

where qN is the Nyquist frequency related to the sampling δ by δ = 1/2qN . A common alternative

choice for parametrizing the MTF is a mix of an exponential function and a Gaussian.

In HRTEM we can usually assume that the noise is dominated by shot noise, hence the measured

electron count in each pixel can be modelled by a Poisson distribution [17]. The average number

of electrons N collected by the i’th detector pixel is given by

Ni = Dδ2Ii (2.22)

The signal-to-noise ratio of the whole image is given by [18]

SNR =
N̄

σ(N)
, (2.23)

where N̄ is the average number of electrons per pixel and σ(N) is the standard deviation of the

number of electrons collected by each pixel. In the limit of low dose this can be reduced to [19]

SNR =
√
N̄ =

√
DIδ , (2.24)
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whereas in the limit of high dose other sources of noise are dominant (e.g. thermal noise) and the

SNR becomes constant. We are only including shot noise in the simulations.

2.7 PyQSTEM

There exists a vast number of commercial and open source programs for simulating the electron

microscope. Most of these programs are based on a graphical user interface. This useful for some

applications, however it is impractical for purposes that require a large numbers of automatically

generated simulations such as statistical analysis, optimization and machine learning. In addition,

many simulation programs are rather rigid with respect to modifying individual aspects of a simula-

tion, such as supplying custom potentials from DFT. These packages are typically also stand-alone

requiring import/export to other programs for further analysis. PyQSTEM was developed during

this project, in order to provide a single scripting environment, for doing everything related to

image simulation from model building to analysis.

PyQSTEM is a Python based interface and extension to the well-established multislice simulation

program QSTEM based on C++ and the FFTW library. It was created in collaboration with

Christoph Koch the original creator of QSTEM.

Python has become a leading language for scientific applications. This is especially due to the

large number of free and open-source numerical libraries. Packages such as numpy, scipy and scikit-

image provide easy access to a multitude of common tools for data analysis, including many tools

which are common in the analysis of HRTEM images. Additionally, Python is dominant in machine

learning due to libraries such as scikit-learn and tensorflow.

In PyQSTEM, the task of setting up the atomic model is solved with the Atomic Simulation

Environment (ASE), a very popular tool in the computational materials community [20]. ASE has

modules for defining a wide range of different structures including nanotubes, bulk lattices, surfaces,

and nanoparticles. A large degree of manual control is provided, and import capability for most

atomic structure files. Lastly, ASE makes it easier to integrate results from atomistic simulations

into image simulations, including DFT potentials and phonons from MD simulations.

PyQSTEM and all its dependencies are open source under the GNU license. It is available on all

platforms from the github repository 1.

2.7.1 HRTEM simulation with PyQSTEM

We exemplify the use of PyQSTEM through the process of simulating the image of the gold nanopar-

ticle in Fig. 2.2. More advanced examples are available in the online repository. The atomic model

1https://github.com/jacobjma/PyQSTEM
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is defined by specifying 6 layers in the (100) directions, 9 in the (110) directions and 5 in the (111)

directions.

>>> from ase.cluster.cubic import FaceCenteredCubic

>>> surfaces = [(1, 0, 0), (1, 1, 0), (1, 1, 1)] # Miller indices

>>> layers = [6, 9, 5] # Number of layers

>>> nanoparticle = FaceCenteredCubic('Au', surfaces, layers)

>>> nanoparticle.rotate('y', 0.7853981) # Rotate by pi/4

>>> nanoparticle.center(vacuum = 2)

Above nanoparticle holds an ASE Atoms object, representing a collection of atoms of a given

chemical species with given Cartesian positions. At the center of PyQSTEM is the PyQSTEM ob-

ject. It connects to the QSTEM backend and handles memory allocation and cleanup. The main

motivation behind this object is to minimize communication of large arrays between Python and

FFTW, while maintaining the ability to work interactively. To run a multislice calculation it is

necessary to attach a wave function and a specimen potential to the PyQSTEM object. Below we

attach a plane wave at a sampling of 0.05 Å/pixel and an energy of 300 keV. We also calculate and

attach the potential given the atomic model created above.

>>> from pyqstem import PyQSTEM

>>> qstem = PyQSTEM('TEM')

>>> qstem.build_wave(sampling=0.05, energy=300, type='plane')

>>> qstem.build_potential(nanoparticle, slice_thickness=0.5)

>>> qstem.run()

The .run() method passes the currently attached wave function once through the potential using

the multislice algorithm, and the attached wave function is now the exit wave function. To continue

we retrieve the wave function from the QSTEM backend into our Python session. The retrieved

Wave object wraps a complex wave function (numpy array) with the energy and a sampling rate.

We simulate the aberrations of the objective lens as well as partial coherence by applying a CTF

object to the wave function (this essentially implements Eq. (2.20)).

>>> from pyqstem.imaging import CTF

>>> exitwave = qstem.get_wave()

>>> ctf = CTF(Cs=0.6*10**7, defocus='Scherzer',

focal_spread=30, abberations={'a40' : 5*10**7})

>>> imagewave = wave.apply_ctf(ctf)

At this point the image is just the absolute square of the wave function. However, the .detect

does several additional operations. In the following order; the image is downsampled to the detector

resolution, shot noise is simulated as a Poisson process and a MTF is applied.
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>>> from pyqstem.detection import MTF

>>> mtf = MTF({'a1' : 1, 'a2' : 0, 'a3' : .5, 'a4' : 2.3})

>>> image = imagewave.detect(resample=0.18, dose=10**4, mtf=mtf)

By default the MTF utilize the parametrization in Eq. (2.21), however a custom function may be

used.

Other features

PyQSTEM includes many features not high-lighted above, these features are best explored in the

online repository, however we have listed some of them below.

STEM Scanning Transmission Electron Microscopy is implemented, see tutorial online.

CBED Convergent Beam Electron Diffraction is implemented, see tutorial online.

Inline holography Any custom wave function can be set using the .set wave method of the

PyQSTEM object. Example applications includes inline holography simulations and phase plate

exit wave reconstruction.

DFT potentials Any custom potential can be set using the .set potential method of the

PyQSTEM object. A guide for STEM and TEM simulations using a potential derived from

DFT can be found in the repository. PyQSTEM also includes a solver for calculating the

electrostatic potential given the all-electron density from DFT (and nucleii positions/charges).

MD frozen phonons Instead of supplying a single Atoms object to PyQSTEM a list of Atoms can

be supplied. The main application is to simulate accurate thermal vibrations in the frozen

phonon approximation using a list of snapshots from a molecular dynamics simulation. When

a list of Atoms objects are supplied to PyQSTEM, a wave function is simulated for each, these

are collected in a special WaveBundle object, which provides most of the same methods as the

Wave object.

MTF estimation A tool for estimating the noise spectral density and converting this to a parametrized

MTF.

Large-scale simulations The full 3d potential for very large atomic models are too memory

intensive, hence PyQSTEM includes the possibility of dividing the unit cell in the direction

of propagation and calculating the required division on the fly.

Exit wave reconstruction The iterative exit wave reconstruction algorithm by Allen et al. is

implemented [10]. See tutorial online.
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Jupyter integration PyQSTEM is designed to work well with Jupyter Notebooks [21]. This

allows the user to create documents that can contain live code, equations, visualizations and

explanatory text. The scripted workflow in Jupyter Notebooks provide a great framework

for sharing simulations, since each step is documented and can be rerun, possibly with small

customizations.

Parallelization A large number of tasks related to simulating the TEM can be trivially paral-

lelized. For example, integration over thermal vibrations or each pixel in a STEM image.

PyQSTEM uses Message Passing Interface (MPI) to parallelize these tasks. For easy mainte-

nance and cross-platform compatibility, parallelization is handled in Python.
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Chapter 3

Strain Analysis and Structural Template Matching

Strain is a key parameter for understanding many physical phenomena at the nanoscale. The me-

chanical and electronic properties of materials are directly related to the strain, and the response

to an applied strain is fundamental to materials engineering. The surface strain is of particular

importance for nanoparticles, as a possible tunable parameter that can be used to optimize the

adsorption energies of surfaces for a particular catalytic reaction [4]. Platinum-based oxygen reduc-

tion catalysis is improved by weakening the binding of adsorbed oxygen intermediates by 0.1 eV,

this can be achieved by a ∼ 2 % compressive strain [22]. Strain in nanoparticles can be generated

by a variety of sources: particle size, shape, twinning, by the lattice mismatch between metals

in multimetallic core–shell nanoparticles or it can be induced by the supporting substrate [23].

Characterizing the influence of these effects requires a technique capable of measuring structural

information at atomic resolution. X-ray diffraction and Raman spectroscopy are two widespread

techniques that offer high strain precision (respectively 10−5 [24] and 10−4 [25]) but limited spatial

resolution δ ≈ 500 nm which makes them unsuitable for characterizing individual nanoparticles.

In TEM, there are several methods that can be used to measure local strain including; transmission

electron microscopy (TEM) [26, 27], convergent-beam [28] and nano-beam [29] electron diffrac-

tion (CBED, NBED), dark-field electron holography [30] (DFEH), and annular dark-field scanning

transmission electron microscopy (ADFSTEM). Reviews and comparisons of the methods are given

elsewhere [31, 32, 33], but notably, each of them have their unique issues. In CBED strain measure-

ments can require significant sample tilt to achieve high-precision and can be vulnerable to crystal

plane bending, while DFEH and NBED techniques each require additional hardware (a bi-prism,

an additional condenser lens, and precession coils respectively) and more involved off-line data

processing. Lastly, in STEM the serial nature of the image means that environmental effects can

distort the image fidelity [34, 35] and the necessary atomic resolution generally requires aberration

correction.

HRTEM have probably been the most widely used technique for strain mapping in nanoparticles,

because of its availability and the the possibility of 2d strain mapping. However, careful choice of

17



18 CHAPTER 3. STRAIN ANALYSIS AND STRUCTURAL TEMPLATE MATCHING

imaging parameters must be chosen to avoid image artefacts or contrast inversions from sample-tilt,

sample-thickness, defocus or aberration changes. Recently, there have been increased interest in

measuring strain from ADF-STEM images due to the incoherent nature of the images. Both of

these techniques rely on high resolution images that resolve the crystal lattice.

3.1 Strain analysis from images

There are several different approaches for extracting strain from a HRTEM image. These can be

broadly classified into two different types: direct measurement of interatomic distances in real space

or analysis in Fourier space. Although they were originally applied to conventional high resolution

TEM images, the same methods are increasingly being applied to ADFSTEM images [35].

3.1.1 Geometric Phase Analysis

The most widely used technique for calculating strain from an atomic resolution image, is the Fourier

space method known as Geometric Phase Analysis [36]. The technique have several advantages.

No real space peak detection is required, hence GPA typically requires less user intervention. This

is particularly an advantage when no clear individual peaks are available. GPA also does inherent

noise filtering and spatial averaging, which leads to superior performance over real space methods,

where these issues are not treated appropriately.

An image with intensities that vary as a function of position, I(r), can be expressed by a Fourier

series, summed over all reciprocal lattice vectors

I(r) =
∑

g

Hg(r) exp(2πg · r) , (3.1)

where g is a reciprocal lattice vector and the Fourier components, Hg(r), are given by

Hg(r) = Ag(r) exp(iPg) , (3.2)

where Ag(r) is the amplitude and Pg(r) is the geometric phase. It can be shown [36] that the

geometric phase is related to the displacement field as

Pg = −2πg · u . (3.3)

In practice, the Fourier components H̃g(k) are extracted in Fourier space by application of a mask

(usually Gaussian) around the reciprocal lattice point g. This is sometimes called Bragg filtering.

An inverse Fourier transform yields Hg(r) and it is then trivial to calculate the displacement u in

the direction of bmg. By repeating this process for a non-collinear g, the full displacement field can

be measured, which is then differentiated to get the strain.
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Unfortunately, we do not think that GPA is a technique, that should be used for calculating strain

in nanoparticles. And in particular, it should not be used for determining surface strain. An

implicit assumption in GPA is that the change in geometric phase for the lattice fringes g is due to

the displacement of the atoms in the material. This is almost always correct, prior to aberration

correction, when the resolution of the image only is sufficient to resolve the crystal lattice. However,

at higher resolutions the shape of the peaks are influenced by changes in the local structure can also

contribute to the geometric phase. This leads to issues when large thickness variations are present,

or if the structure changes from one area to another in the image (e.g. across an interface). The

change in this additional phase will appear as a strain, even if there is no lattice strain [37].

Spatial averaging is implicit in GPA, this can enhance the precision of the technique, however it can

become a problem in the vicinity defects. An example of where GPA fails, is for determining the

strain at surfaces, where spatial averaging including the vacuum is nonsensical. This is demonstrated

later in Fig. 3.6.

3.1.2 Real space analysis

Real space lattice analysis is based on locating peaks associated with the atomic columns that are

recorded in an image. While conceptually simpler than GPA, it is significantly more complex in

practice, requiring several steps.

1. As opposed to GPA, noise filtering is not inherent and have to be applied separately, common

choices include Wiener filtering [38] and Gaussian filtering [39].

2. The positions the atomic columns have to be detected. This can be done automatically in

some cases by employing simple metrics such as local intensity, separation and width of the

intensity distribution.

3. The rough positions have to be refined to sub-pixel accuracy to produce the final measurements

of the positions of the atomic columns. This step is crucial for accuracy and will be described

in detail below.

4. When the atomic structure is represented as a set of discrete lattice points, the strain is

calculated by, comparing the measured positions to an ideal lattice.

Peak refinement

There are two unambiguous ways of measuring the position of an atomic column: from the position

of the intensity extrema or from the center of mass. There is no good theoretical argument for

choosing the center of mass over the peak or vice versa, and generally the methods perform simi-

larly. The maxima is very sensitive to small irregularities in the shape of the peak, however such
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irregularities can also change the integration region which in turn has an influence on the center of

mass. We find that the precision of the two methods are similar, as shown in the supplementary

information of the paper included in A.1.

Since using the intensity extrema is simpler we use this. Determining the intensity extrema with

sub-pixel accuracy is done by fitting a polynomial function, to a region around the detected extrema.

We model the intensity of the extrema as a polynomial function [40]

I(x, y) = c0 + c1x+ c2y + c3x
2 + c4y

2 + c5xy , (3.4)

where (x, y) is a pixel coordinate and ci i = 0, . . . , 5 are parameters to be fitted. The peak position

is then found by setting the derivatives. Alternatively, the intensity can be fitted as an elliptical

Gaussian [41].

Strain calculation

Strain is a concept from continuum physics, and there seems to be no single agreed upon method for

calculating strain from a distorted set of lattice points. The electron microscopy literature provides

two main different methods for calculating strain using the real space method: by direct comparison

to an ideal reference lattice [42, 43], or using Peak Pairs Analysis (PPA) [40].

In the first method, an ideal lattice corresponding to the measured lattice is defined using 6 pa-

rameters: two base vectors, a, b, and the lattice origin x00. These parameters are obtained by

minimizing the distance between the measured and the reference lattice using the least-squares

difference

r =
∑

h 6=0,k 6=0

‖xhk − ha− kb− x00‖22 , (3.5)

where the sum is over the lattice points in a designated reference region. Each lattice point is

indexed using two integers of h and k. The displacement at each lattice point is then obtained as

u(h, k) = xhk − ha− kb− x00 , (3.6)

and the strain may be found as the derivative of this, possibly after transforming the displacements

to a cartesian coordinate system. Our main issue with this method is that the difference in the

numerical derivatives are calculated with respect to just two adjacent lattice points. It is often

preferable, when noise is present, to take additional lattice points into account, in order to reduce

statistical errors. In GPA this is accomplished by reducing the radius of the mask when the image

is Bragg filtered. Another issue is that this method requires the task of assigning indices to each

peak, for which no robust automatic algorithm have been proposed. This is especially problematic

when strain have to be calculated for multiple lattices or when defects are present.
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Figure 3.1: The algorithm for calculating the strain and structural similarity from a set of 2d

atomic positions: The measured local lattices are compared to a set of one or more templates,

using a similarity measure that is invariant to rotation and scale. The most similar template is

used as comparison for calculating the strain.

PPA solves the last of these issues to some extent. In PPA the ideal lattice vectors are extracted in

a fashion similar to above, the next step is to connect each measured lattice point to two adjacent

lattice points by the most probable distorted lattice vectors. The strain tensor at each lattice vector

is the one that transforms the two ideal lattice vectors into the distorted ones. The main advantage

of this method, is that it is automatic. However, this method still have the issue of using just two

of the available lattice vectors.

3.2 Structural template matching

In this section, we describe our proposed method for calculating the strain from a set of measured

points. An overview of the method is given in Fig. 3.1. Strain can only be defined in terms of the

relative positions of neighbouring points. Hence, the first step is to define the local lattice associated

with every point. Each separated local lattice is compared to a set of ideal template lattices and

a similarity measure is extracted for each. Once the best matching template is identified, the

strain is calculated by determining the optimal affine transformation between the template and the

measured local lattice. Since the template generally should consist of more than three points, the

optimal transformation is found in a least-squares sense. An important additional feature of the

method is the ability to categorize the local structure using the similarity measure. This similarity

measure can also be used in a machine learning context, to automatically identify and categorize

local lattices in a set of points. Peter Mahler Larsen’s work was a large inspiration for this method.
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3.2.1 Separating the local lattice

Since the local lattice is an inherently ambiguous concept, we should be clear in how we choose

to define it. As we are considering a set of discrete points, this comes down to how we separate

the points inside the local lattice from those outside. The local lattice will be defined for every

measured point, and will consist of the central point itself and its neighbours. One way to choose

the neighbours is to include all the points within some radius from the central point. However, this

means that the number of points in the local lattice is sensitive to small distortions. Instead we will

define the local lattice for some point, as the point itself and its N nearest neighbours. To ensure

that the local lattice extents approximately equidistantly in all directions, N should be chosen to

fill a neighbour shell. For example, when defining the local structure of graphene N can be 3, 9, 12,

etc.

This definition works well for an ideal or slightly perturbed ideal lattice, however in the presence

of defects, the extent from the central point to the N nearest neighbours becomes irregular and

sensitive to small distortions. Later, we discuss how we treat defects and we introduce an optional

mechanism for locally lowering N .

3.2.2 Similarity

Given two structures described by two sets of N discrete points, V = {v0,v1, . . . ,vN} and W =

{w0,w1, . . . ,wN}. In this context, one set is the local lattice and the other set is a template. We

assume that the first point in both sets are the central point, for which the local lattice is defined.

We also assume that, we have already established a correct point-to-point correspondence between

the two sets, i.e. V and W are ordered optimally. The process of finding the optimal point-to-point

correspondence is described in the next section. We use the Root-Mean-Square-Deviation as our

measure of the similarity between the two sets of points

RMSD(V ,W ) =

√√√√ 1

N

N∑

i=1

‖(vi − v0)− (wi −w0)‖22 , (3.7)

where the central point of both sets have been made to coincide with the origin. The RMSD can

be made invariant to rotation by finding the optimal rotation between the two sets of points

RMSD(V ,W ) = min
U

√√√√ 1

N

N∑

i=1

‖(vi − v0)−U(wi −w0)T ‖22 , (3.8)

where U is a right-handed orthogonal matrix. Often we also want to make the RMSD invariant to

both absolute and relative scale. We can do this by scaling W such that the mean distance of each



3.2. STRUCTURAL TEMPLATE MATCHING 23

point from the origin is 1, and finding the optimal scaling s between the two sets of points

RMSD(V ,W ) == min
U ,s

√√√√ 1

N

N∑

i=1

‖s(vi − v0)− 1

S(W )
U(wi −w0)T ‖22 , (3.9)

where

S(W ) =
1

N

N∑

i=1

‖wi −w0‖ . (3.10)

A solution for finding s is given by Horn [44], who also show that U is independent of s. The

scale-invariant RMSD serves two purposes; it avoids preferential weighting of smaller templates

and avoids the need for selecting bond lengths. Finding U is a well studied problem with many

different solution methods. We use the quaternion characteristic polynomial (QCP) method of D.L.

Theobald [45]. A function call from Python of our C-implementation of the QCP method requires

on the order 0.2 ms on a laptop with an Intel Core I5 processor.

3.2.3 Template matching

The task is to find the permutation of the points in the template that provides the lowest RMSD

with respect to a particular local lattice. Checking all possible permutations for a set of N points,

requires N ! function calls of the QCP method, hence a brute force approach quickly becomes

infeasible. We solve this in one of two ways: If the structure is not distorted too much from

the ideal, it is often possible to sort the points into a few symmetry-equivalent orderings. If this

fails, we fall back on a robust branch and bound search method. The latter requires significantly

more function calls, but guarantees the optimal permutation. Once the optimal permutation and

corresponding RMSD for each template is found, the best match is chosen as the one that has the

lowest RMSD.

Sorting

When calculating similarity with respect to a defined ideal template structure, we can usually take

advantage of rotational symmetry. For example, when matching the 4 nearest neighbours for a

square lattice (e.g. fcc in the in the 〈100〉 zone axis), all neighbours are equivalent by rotational

symmetry. Hence, we can simply order the neighbours by their azimuthal angle around the central

point, see Fig. 3.2.

If we also want to include the second nearest neighbours, there are several non-equivalent ways of

ordering the points by angle. However, we can order the points uniquely by using lexicographic

ordering of the neighbour shell and the angle

(si, αi) ≥ (sj , αj) ∀i < j ,
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Figure 3.2: It is often possible to sort the template points and measured local lattice uniquely by

neighbour shell and azimuthal angle. The ordering of the points in templates for a square lattice is

indicated by the numbering. The dashed circles indicates the neighbour shells.

where s is the shell number and α is the azimuthal angle, see Fig. 3.2. The catch is that the

sorting of the local lattice should be robust to small distortions. This is the reason, that we use the

neighbour shell rather than simply the distance from the central point, where the neighbour shell

is defined with respect to the template. In the local lattice the neighbour shell is identified by the

ordering with regard to the distance to the central point, i.e. for a cubic lattice, s = 0 for the first

four closest points and s = 1 for the next four closest points etc.

The template constructed from the cubic lattice can be ordered, without any regard for the choice

of the first point. This is because the first shell has the same number of points as the rotational

symmetry order. If the order of symmetry is lower than the number of points in the first shell, the

choice of the first point matters. In our implementation this is solved by calculating the RMSD for

all orderings with non-equivalent starting points. We start ordering from the shell with the smallest

number of points and wrap around after the outermost shell is reached. The number of templates

that have to be tested is then the smallest number of points in a shell divided by the rotational

symmetry order.

Sorting the points is not guaranteed to provide the optimal RMSD. If the measured lattice is

distorted too much away from the template, a neighbour shell or azimuthal angle can overlap, see

Fig. 3.3(a,b). The severity this problem is highly dependent on the particular lattice. An especially

difficult example is the 〈110〉 zone axis for an fcc lattice due to the small separation of first and

second neighbour shells. The shells can be separated better using the length of the bounding

polygons of the Voronoi cell of the central point, see Fig. 3.3(c). Given a collection of 2d points

V = {v1,v2, . . . ,vN}, the Voronoi cell of a point vi consists of all points which are at least as close

to vi as to any other vj . The boundary of a Voronoi cell can be defined by a set of polygons, each

of which defines the interface to an adjacent Voronoi cell.
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Figure 3.3: (a) The ordering of a template for the 〈110〉 zone axis of an fcc lattice. By ordering

starting from the outer shell, we obtain a single rotationally invariant ordering. (b) Under small

perturbations from the ideal structure, the neighbour shells starts to overlap. Hence, the same

ordering as the template is not retained. (c) Ordering by the interface between Voronoi cells often

keeps the neighbour shell separation, better than ordering by Euclidean distance.

Branch and Bound

We use branch and bound (BnB) search for finding the optimal permutation between the template

and the measured local lattice. A comparison of other methods is given by Griffiths et. al. in the

context of matching 3d crystal structures [46]. We use this method since the number of points to

match is small, typically on the order of 4 − 12, and the two sets of points typically are distorted

versions of each other. Additionally, BnB allows us to match partial templates at no additional

cost. Our method is similar to that of Hong et. al. [47], it differs somewhat since we use a scale

invariant RMSD, whereas they use a translationally invariant RMSD with a fixed scale.

There are two main ideas in BnB. First, it uses branching to tackle a large problem effectively.

Instead of solving one huge problem, BnB solves many smaller sub problems. Second, it uses

bounding. Unlike naive approaches that explores every feasible solution, BnB attempts to save

computation by progressively increasing the lower bound of the optimal solution of a subproblem

and compare this bound to a known upper bound. In our case, the upper bound is calculated

using the permutation given by the sorting algorithm above. If sorting the points indeed leads to

the optimal solution, the BnB search will recover this permutation quickly. The algorithm relies

on subproblems always having a lower or equal similarity measure, than a larger version of the

problem, hence we use the Root-Sum-Square-Deviation during the search

RSSD =
√
N RMSD . (3.11)

We will exemplify the method by application to a local lattice consisting of four neighbours (and

the central point). This is illustrated in Fig. 3.4. Let the local lattice be given by W = {wi} and

the template by V = {vi}, with i ∈ {1, 2, 3, 4}. For this example, the first step is to branch the
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Figure 3.4: The search tree for our BnB method for matching a template to a local lattice consisting

of four neighbours. The upper number of each node indicates the order with which the node is

visited, and the lower number shows the RSSD value for the permutation the node represents. The

outer rim contains 4! = 24, whereas the BnB algorithm required 18 RSSD evaluations in this case.

zero’th node into four nodes matching the first point in the local lattice to the each point in the

template, i.e. matching W ′ = {w1} to the partial templates V ′ = {vi}. Due to scale invariance

the RSSD is zero, and hence the lower bound is still zero. Each of the four new nodes are expanded

to match V ′ = {v1,v2} to W ′ = {wi,wj} where j 6= i. This costs 12 evaluations of the RSSD.

The smallest RSSD is set as the lower bound and the algorithm traverse down the corresponding

node, expanding two new nodes for each. The partial ordering is extended to include an additional

point, which also fixes the last point. The algorithm always branches the node with the lowest

RSSD, unless it is at the final level and no branching is possible. It is terminated as soon as the

lower bound of any node belongs to a node at the final level. Since the RSSD never decreases along

any branch, this lower bound is guaranteed to correspond to the best possible match.

Partial matching

Using the BnB algorithm, it is also possible to supply a maximum RMSD value, rmax. If this is

surpassed, the node cannot be branched, saving a significant number of evaluations. If it is found

that rmax is surpassed for all nodes, the algorithm can either return no match (r =∞) or a partial

match. If partial matches are desired, the returned match will correspond to the node at the highest

level for which r < rmax. If the partial match is at a user defined too low level, no match can be

returned instead. It should be stressed that the partial match is not in general the best match of a

subset of points in the template and the measured local lattice. The partial match eliminates points

starting from the last point, hence the order of the local lattice is significant for partial matches,
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No partial match Partial match

Template

Figure 3.5: Partial matches become relevant for e.g. calculating surface strain, since the N nearest

neighbours does not match the template well, and it becomes arbitrary which N points are included

in the local lattice. The dots indicate measured lattice points, for which we match the indicated

template. The blue dots are the central points, with their neighbours in red. Without partial

matches the RMSD for the points at the surface, is huge due to the obvious incompatibility with

the template. Using partial matches it is possible to define a smaller template with an equivalent

RMSD to the bulk points, and for which a sensible strain calculation can be computed.

we will use euclidean ordering. The use of partial matches is illustrated in Fig. 3.5.

3.2.4 Strain

The strain is easily obtained once the optimal permutation of the template with respect to the

measured points is found. In general, we calculate the strain for the partial template, V ′, and local

lattice, W ′, with the number of matched points N ′. First we find the optimal affine transformation,

A, between the two sets of points using a least squares fit:

r = min
A

∥∥∥∥∥∥

N ′∑

i=0

wiA
T − vi

∥∥∥∥∥∥
2

, (3.12)

where r is the residual term. The minimization problem in Eq. (3.12) is implemented efficiently by

expressing the set of points as a matrix. The orientation and elastic strain matrices are obtained

via a left-sided polar decomposition of the transformation matrix:

PU = A , (3.13)

where U is an orthogonal right-handed matrix (the rotation matrix), and P is the symmetric

deformation gradient tensor. The choice of a left-sided polar decomposition is arbitrary, but we

find the elastic strain in the same frame of reference preferable for comparison of strains across

different lattices. In the case where P is not the identity matrix, U is not the same rotation

found by minimizing the RMSD, since the addition of strain means, we no longer have a rigid-body

transformation. The residual term in Eq. (3.12) could be used to determine the local structure
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Figure 3.6: (a) An array of Gaussians is used for calculating strain using our method and GPA.

The centers of the Gaussians are displaced to obtain regions with compressive strain. Given this

We show the strain caluclated using our method and using GPA. In the lower left corner, we show

the template used for calculating strain with our method, and indicate reciprocal lattice vectors

used for GPA. (b) The strain along a vertical slice through the strain maps in (a). We show the

strain calculated using GPA with both a small mask (GPA-1) and large mask (GPA-2), used during

Bragg filtering.

instead of the RMSD, however, the elastic strains are typically on the order of 5 %, and the extra

degrees of freedom provided by the strain matrix often results in highly-strained erroneous structural

identifications. Setting the scale of the template was not required during template matching,

however calculating the strain tensor obviously requires us to set a scale. The scale dependent

strain tensor can be calculated as

ε =

(
εxx εxy

εyx εyy

)
=

(
S(V )P0,0

s − 1 P0,1

P1,0
S(V )P1,1

s − 1

)
, (3.14)

where s is the mean distance from the origin to the points in the full template, accounting for pixel

size. We note that this is the only point where setting the scale is required. Contrary to GPA or

PPA we do not require a patch of undeformed lattice as reference. However, it is possible to set

the scale by requiring the mean planar strain to be zero in a specified region.

3.2.5 Comparison to GPA

GPA is simpler to apply, than our method, both computationally and from a user standpoint. The

main difficulty of using our technique is, as with all real space techniques, related to detecting the

lattice points. On the other hand, GPA can be used even when only a single lattice fringe is visible.

However, the ease of applying GPA have resulted in some situations, where we do not think it is

appropriate, such as for surface strain [48] and under certain circumstances for nanoparticles [49].

Fig. 3.6 shows a simple test comparing our technique to GPA. The test case is cubic lattice of

Gaussians, with step function changes in the strain, both in the bulk and at the surface, additionally
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Figure 3.7: (a) Image consiting of a sum of Gaussians placed at the atomic positions from a

simulation of polycrystalline graphene. Given this image we calculated the the strain using (b) our

method and (c) GPA. In the lower left corner, we show the template used for calculating strain

with our method, and indicate reciprocal lattice vectors used for GPA.
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Figure 3.8: The RMSD and rotation determined using our method given the image in Fig. 3.7(a).

a vacancy is included. Analysing the strain, we see that GPA agrees perfectly with with our method

in the bulk, however close to the defect and the surfaces, the results differs significantly. We use

partial matching, hence spatial averaging is directional in the vicinity defects and surfaces. The

spatial averaging is constant in GPA, hence the results becomes non-sensical across defects. The

strain calculated using GPA is frequently used to highlight defects [50], which is a valid use, however

care should be taken when interpreting that strain.

With our technique it is possible to separate the strain in the near-periodic lattice from the defects.

It is still possible to highlight defects using either the RMSD given the full template or the number

of points in the partial template N ′. This gives our method an increased amount of freedom with

respect to how surfaces and defects are treated in the analysis.

Another case where our method shines, is when multiple different sublattices are present. Fig.

3.7 shows the application of our technique to a lattice consisting of three graphene grains, the

positions of the lattice points was obtained as described in section 6.4.1. Since there are three
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differently oriented sublattices, it is not possible to pick a set of two reciprocal lattice vectors, that

will be optimal for all grains. This severely affects the performance of GPA. Our technique, due to

rotational invariance is capable of calculating the strain equally well in each grain, without requiring

any additional user input. It is also possible to obtain the rotation of each grain as shown in Fig.

3.8.

Lastly, we compare the performance of our method to GPA in the presence of noise, see Fig. 3.9.

An image of a cubic lattice of Gaussians with an amplitude of one was created, the centers of which

was displaced according, to the strain given by the test functions

εxx = (x+ y) exp(a(−x2 − y2)) and εyy = (x− y) exp(a(−x2 − y2)) . (3.15)

Gaussian noise with a variance of 0.05 was added independently to each pixel. When our method

was applied the noise was removed with a Wiener filter and the positions of the peaks were refined

according to Eq. (3.4). From the results shown in Fig. 3.9, we conclude that our method is neither

more nor less stable to noise than GPA.
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Figure 3.9: The first two rows of images shows the strain calculated using our method and using

GPA. We interpolated the strain calculated with our method to a uniform grid with the same

resolution as the input image for easier visual comparison to GPA. The two last rows shows a

comparison of the strain error, i.e. the difference between the true strain and the measured strain.

We show results for increasing spatial averaging: For our method this means including more points

in the template, whereas in GPA this means decreasing the size of the Bragg filter mask. In the

lower left corner, we show the template used for calculating strain with our method, and indicate

reciprocal lattice vectors used for GPA.



32 CHAPTER 3. STRAIN ANALYSIS AND STRUCTURAL TEMPLATE MATCHING



Chapter 4

Accuracy of Strain Measurements in

Nanoparticles from HRTEM Images

As described in the introduction of the previous chapter, strain on the order of a few percent can

improve the catalytic performance of nanoparticles dramatically. In this chapter, we analyze the

precision and accuracy of strain measurements from simulated HRTEM images of nanoparticles.

HRTEM images relies on phase-contrast and is extremely sensitive to aberrations of the objective

lens. As a consequence, considerable care have to be shown when extracting quantitative informa-

tion from an image. We consider to what extent it is possible to measure surface relaxations, taking

into account the influence defocus, nanoparticle size, tilt and noise.

4.1 Related work

A first investigation to determine the accuracy with which surface strain could be determined was

undertaken by Marks [51]. Image simulations were used to compare actual relaxations, in the input

atomic models, with the apparent relaxations, measured from the corresponding simulated images.

They found that there was a linear relationship, between apparent and real strain, with a constant

outward shift of about 5 %. They also demonstrated that the true positions of the atomic columns

at the surface could be determined to within 0.2 Å, corresponding to 5 % of the lattice parameter

of gold. This investigation was done before the invention of hardware aberration correction.

Newer investigations have primarily focused on the accuracy of strain measurements in the vicinity

of interfaces in heterostructures [52, 53, 54, 55]. The estimated error has been found to be as low

as 0.1 % [56, 57]. In these studies the specimen thickness was uniform and the lattice was (nearly)

periodic except across the interface. The situation is different for nanoparticles, where thickness

variations and surfaces break the local symmetry. Moreover, in these studies the strain distributions

were fundamentally 2D, i.e. the atomic columns were displaced in the plane perpendicular to the

zone axis. This is different from images of nanoparticles where the true 3D strain is projected on

33
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a 2D plane.

There is no shortage of experimental studies using HRTEM to measure strain in nanoparticles or

in the vicinity of surfaces. These measurements are often backed by comparison with a simulation

approximating the experimental structure and microscope conditions [58, 59, 60, 61, 62, 63]. The

general conclusion seems to be that the measurement error is small enough, that meaningful con-

clusions regarding surface strain can be based on HRTEM images. However, the studies generally

lack a systematic analysis of the sensitivity to experimental variables.

4.2 Methods

4.2.1 Atomic models

Our main investigation considers gold nanoparticles. The overall shape of the model clusters were

determined from a Wulff construction, see Fig. 4.1. Finite temperature was modelled in the frozen

phonon approximation [13]. The snapshots were random steps from a constant temperature MD

simulation using Langevin dynamics at 300 K [64]. We only use steps after the initial equilibration

and the simulation was run for long enough to properly represent the thermal distribution of the

atomic positions.

The difference between the thermally averaged atomic positions and relaxed positions is mainly

a thermal expansion. Hence, simulating temperature in this way, the atomic models are in effect

relaxed. We used a slightly reparametrized version of the COMB potential for gold presented in

section 5.3. The potential was slightly adjusted to predict surface relaxations and other structural

properties of gold, at the cost of some fidelity for e.g. surface energies. Experimental studies

have demonstrated that the surface layer of many clean transition metals relaxes inward [65], while

expansion of the top layer have been found for some surfaces of noble metals [66], including the

{111} facets of gold. For an infinitely extended {111} surface, the COMB potential predicts a 1.2

% surface expansion of the top layer, which is close to the experimental value of 1.3 % [67]. For the

{100} surface an inward relaxation of 1.1 % is predicted. It was not possible to find a corresponding

experimental value, however the prediction is close to 1.2 % [68] and 1.51 % [69] calculated with

DFT.

4.2.2 Image simulation

The microscope conditions were modelled after an aberration corrected FEI Titan microscope op-

erated at 300 kV. Unless otherwise stated the third order spherical aberration were set to Cs = −10

µm and all other aberrations except for defocus was set to zero. We have tested the stability of

our results to inclusion of additional aberrations, in particular two-fold astigmatism on the order

of 5-10 nm and 5th order spherical aberrations on the order of 2.5 mm, and found no significant
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Figure 4.1: Atomic model of a gold nanoparticle. The two rotation axes Ω1 and Ω2 are indicated.

impact on the conclusions of this chapter. The focal spread was ∆ = 2.9 nm and the convergence

angle was set to 15 mrad. We used the parametrization of the MTF given in section 2.21, and

noise were simulated as a Poisson process. The sampling used for the simulations were at least 0.05

Å/pixel, and the simulated images were downsampled to experimental resolution using bilinear

interpolation.

4.2.3 Strain measurements

We benchmark the accuracy of strain measurements by comparing the strain calculated directly

from input atomic models to the strain measured from simulated HRTEM images. We calculate

the strain using structural template matching, with the nearest and the second nearest neighbours,

hence the template is equivalent to that shown in Fig. 3.3. Generally, the positions of the atomic

columns are determined from the corresponding intensity extrema, however we show that the center

of mass provides similar precision and accuracy. We will usually just show the planar strain, εp,

calculated as the average of the normal strains in the x- and y-direction

εp =
1

2
(εxx + εyy) . (4.1)

We define surface relaxations as the strain at the outermost atomic positions in the direction

perpendicular to the same surface. Hence, the surface relaxation associated with an atom on a

surface perpendicular to the unit vector n̂ is found as

εn̂ = n̂T εn̂ . (4.2)
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Figure 4.2: (a) Three differently sized nanoparticles, with the approximate diameter is given. (b)

The distribution of strain given the atomic positions from the slices indicated with red in (a). (c)

The distribution of strain given the average projected positions.

4.3 What is measured?

Given a single image of a crystal in a low index zone-axis, we can only measure the average position

of the atomic columns. The actual strain in nanoparticles is 3D, projected onto a 2D image, this

have some significant consequences, as illustrated in Fig. 4.2.

The true average column position, or projected position, of each column is calculated as the average

of the (x, y)-coordinate of all the atoms belonging to that column. The projected positions exhibit

a significant compressive strain in the bulk of the particle. This strain disappears when we look at

a subset of the atoms in the center of the nanopartiple. Hence, the apparent compressive strain

in the projected positions, is actually due to relaxations close to the front and back surface of the

nanoparticle. Another noteworthy difference is the variation of the surface strain in the projected

positions due to thickness differences along the optical axis. As the size of the particle increase the

discrepancy between the two strains diminishes, since the relative importance of surfaces and edges

is smaller.

In contrast to diffraction-based techniques, an HRTEM image does not measure the average strain:

The average is over positional coordinates, and not strain. In principle this means that the measured

quantity, given a single view is somewhat ambiguous, however in practice this strain is fairly well

correlated with the true average 3D strain. Even if the strain is not the true average, it can be used

as a measure to indicate how environmental factors influence the nanoparticle.

With the above reservation in mind. The next issue is the accuracy with which the strain given the

true projected positions can be measured, and what errors are introduced by the imaging. We will
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Figure 4.3: (a) The intensity of the exit wave function given a 4 nm relaxed gold cluster. The

average column position and the measured intensity extrema is indicated by the and the red dots

respectively. (b) The planar strain error given the positions of the intensity extrema in (a).

define the error

error(ε) = εmeasured − εtrue , (4.3)

where εmeasured is the measured strain given a HRTEM image and εtrue is the strain given the true

projected positions.

Fig. 4.3(a,b) shows the exit wave function, given an ideal and a relaxed model of a 4 nm gold cluster.

The zoomed insets also indicate the projected position of an atomic column and the corresponding

measured intensity extrema. For the ideal exit wave function the measured position corresponds

exactly (within numerical errors) to the true projected position. On the other hand, a discrepancy

is clearly visible for the corresponding relaxed model. This discrepancy corresponds to a difference

in the strain of up to half a percent, and the error approximately follows the thickness gradient

of the nanoparticle. Hence, even a measurement without any optical aberrations, will have some

ambiguity due to the 3D nature of the strain. Moreover, it is common to use a model of an ideal

nanoparticle to estimate errors in the strain measured from HRTEM images [58, 59, 60, 61]. The

above result shows that this practice can be problematic.

4.3.1 Origin of imaging errors

The above errors are only due to the 3D displacement of the atoms, the thickness variation is just

the secondary cause. This can be shown on the basis of the phenomenon of channelling [70, 71].

For gold and a specimen thickness of < 10 nm, each column can to a very good approximation be

thought of as independent. The physical reason is that the strong positive electrostatic potential of

the atomic cores acts as a guide or channel within which electrons can scatter without leaving the

column. The only essential assumption for channelling is a certain spatial separation of adjacent
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Figure 4.4: (a) The intensity of the exit wave function given the full specimen potential. (b) The

intensity of the exit wave function obtained by summing the scattered wave due to each column

independently. (c) 50 times the difference between the images in (a) and (b). (d,e,f) Same

as (a,b,c), however the scattered waves due to each column are summed after applying imaging

aberrations.

atomic columns, a separation that will typically be reached for propagation along a high symmetry

zone axis. Channelling also persists for small tilts or in the the vicinity of surfaces [72].

As a demonstration Fig. 4.4 shows two different simulations of a gold cluster: One is simulated

normally using the full specimen potential. The other is produced by summing the scattered wave

due to each column independently. To make the situations comparable, we define the scattered

wave function for each column

ψs = ψ − ψ0 , (4.4)

where ψ0 is the initial plane wave and ψ is the exit wave function. The following approximation

then holds

ψfull ≈ ψ0 +
∑

i

ψs,i , (4.5)

where ψfull is the exit wave simulated using the full potential, ψs,i is the scattered wave for an

identical simulation where only the i’th column is kept and the sum is over all atomic columns. The

approximation also holds when summing the wave function at the image plane, where the overlap

between adjacent columns is significant.

Fundamentally, the strain measured from the detected image, can be expected have additional

errors, if the scattered wave due to adjacent atomic columns begins overlapping. Hence, it is
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Figure 4.5: (a) The profile of the intensity distribution due to an individual atomic column with

a height of 8 atoms a and a separation between the atoms along the direction of propagation,

equivalent to a view along the 〈110〉 zone axis. (b) The width of the intensity profile due to an

individual atom as a function of defocus.

interesting to look at how imaging parameters influence the delocalization of the image of an atomic

column. To quantify this we (arbitrarily) define the radius of influence, as the radial distance where

the amplitude of the intensity profile is equal to 1 % of its maximum value, see Fig. 4.5(a).

In Fig. 4.5(b) we show this radius as a function of defocus for five different Cs-values. At Cs = −10

µm graph showing the radius is relatively flat area from ∆f = 0 to ∆f = 8 nm, after this point the

radius increase approximately linearly. The curves are rather sensitive to changes in Cs

4.4 Accuracy and precision of strain measurements

4.4.1 Influence of defocus

The top row of Fig. 4.6 shows simulated images at different defocus and the bottom row show the

error in the planar strain measured from these images. The smallest defocus shown is 4.5 nm since

contrast inversion begins to take effect for a smaller defocus. We present results for only a positive

defocus, hence the positions of the atomic columns corresponds to the intensity maxima.

For ∆f up to 8.5 nm the strain errors does not increase much beyond those of the exit wave function,

i.e. the error is on the order of 0.5-1 %. This is expected since the scattered wave due to adjacent

columns only overlap very little at this defocus (see Fig. 4.5).

As the defocus increases to ∆f = 12.5 nm the intensity distributions of adjacent columns starts to

overlap. This affects the error at the surface in particular, due to the asymmetric environment of

surface columns. Due to the sign and location of these errors, they could easily be mistaken for
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Figure 4.6: The top row shows simulated images for a nanoparticle with a diameter of 4 nm. The

bottom row shows the corresponding distribution of errors in the planar strain. The defocus is

different in each column, as indicated in the figure.
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Figure 4.7: The error in the measured surface relaxations averaged across the facets as a function

of defocus, for the three particle sizes given in the legend, for: (a) the {111} facets and (b) the

{100} facets. The bars indicate the standard deviation of the errors in the surface relaxation error

across bthe facets. The bars are shifted slightly from the points for visual clarity.
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Figure 4.8: The top row shows simulated images at increasing tilt around the Ω1-axis for a defocus

∆f = 8.5 nm. The bottom row show the error in the planar strain at each lattice point measured

from these images.

real surface relaxations.

The error in the measured surface relaxations averaged across the facets for the uppermost atomic

layers is shown as a function of defocus in Fig. 4.7. Since this error can vary quite a bit across the

{111} facets, we also show the corresponding standard deviation. For the {100} facet the error is

small up to a defocus of 8.5 nm. For both facets and all sizes the errors stay below 2 % up to a

defocus of ∼ 11 nm, where the mean error increases sharply at the {100} facets. The mean error

does not increase as drastically for the {111} facets. On the other hand the standard deviation

does increase, which is due to the thickness variation along these facets.

4.4.2 Influence of tilt

It is unavoidable that the specimen will be tilted relative to the ideal high symmetry zone axis. Fig.

4.8 show the distribution of errors in the planar strain for increasing tilt, α, around the Ω1-axis. For

tilt α = 1.0◦, the errors have changed very little compared to the untilted crystal. The appearance

of the image have changed in the central part of particle, this is due to an effective diminishing of

the projected potential, as have been reported elsewhere [72]. The errors stay small up to a tilt

α = 2.0◦, but increase sharply in the center of the nanoparticle between α = 2.0◦ and α = 3.0◦.

The error introduced by tilt is very dependent on the height of the atomic columns, since the length

of the footprint of the projection of a tilted column increases linearly with its height.

Fig. 4.9 show the effects of tilt on the errors in the measured surface relaxations for a defocus
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Figure 4.9: The error in the measured surface relaxations averaged across the facets as a function

of tilt, around the axes (a) Ω1 and (b) Ω2. The defocus was ∆f = 8.5 nm. The curves are for the

{100} and {111} facets, as indicated by the legend.

∆f = 8.5 nm. The tilt has a somewhat limited impact on the measured surface relaxations. The

mean and standard deviation of error changes by at most 1 % over the entire tilt range. The effects

of tilt on the strain measurements are also very dependent on defocus. For example at a defocus

∆f = 14.5 nm, the mean surface relaxation error changes by more than 6 % at the {100} facets.

4.4.3 Influence of noise

The evolution of the nanoparticle visibility with respect to the sampling and dose is shown in Fig.

4.10. At a dose of 102 e−/Å
2

the nanoparticle is barely visible, while the images are essentially

unaffected by noise at 105 e−/Å
2
.

To determine the influence of dose on the errors in strain measurements, we simulate a statistically

representative ensemble of images, K = 300, with different distributions of noise. The error due

to noise is quantified using the mean absolute error, MAE, over the ensemble of images for each

lattice point

MAEi =
1

K

K∑

k=0

|ε̃k,i − εi| , (4.6)

where ε̃k,i is the planar strain at the i’th lattice point measured from the k’th noisy image and εi is

the corresponding measured strain without noise. Since the automatic polynomial fitting can fail

at low doses, extreme outliers have been removed before taking the average. Fig. 4.11(a) shows

the distribution of the MAE across a nanoparticle, there is a fairly large difference between the

MAE for different lattice points, varying by a factor of three between the center of the particle
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Figure 4.10: (a) Sections of the simulated images at a defocus of ∆f = 8.5 nm for different doses

and samplings. All images are mapped onto the same range of gray levels. (b) The same images

after applying a Wiener filter.
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Figure 4.11: (a) The MAE of the planar strain due to noise at each lattice point for a Wiener

filtered noisy image at a sampling of 0.2 Å/pixel, a dose of 103 e−/Å
2

and a defocus ∆f = 8.5 nm.

(b) The MAE as a function of the dose for the three lattice points, A, B and C, as indicated in Fig.

4.11. The dots show the MAE calculated from the simulated images and the full lines are curves

of the form given by Eq. (4.7), where the constant of proportionality has been fitted to the dots.

The bars indicate the standard deviations, which for visual clarity are shown only for lattice point

B, proportionally the standard deviations are similar for the other lattice points.
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Figure 4.12: The MAE as a function of defocus for three doses at a sampling of 0.2 Å/pixel at the

lattice point B.

and a corner. The reason for this is mainly that the strain at surfaces is determined on the basis

of fewer surrounding lattice points. The strain at corner atoms is determined on the basis of just

three neighbours, while the measurements in the center relies on twice that number of neighbours.

The MAE at three chosen lattice sites as a function of dose is shown in Fig. 4.11. We find a simple

approximate empirical relationship, assuming constant sampling, between the MAE and the dose

MAE ∝ 1√
D
∝ 1

SNR
, (4.7)

where the constant of proportionality is determined by the number of neighbours, local image

contrast and sampling. The second approximate proportionality assumes low dose and is due to

Eq. (2.24).

In the previous sections, we saw that the defocus should be kept small to obtain strain measurements

that are relatively unaffected by aberrations. The disadvantage of this is that phase contrast

imaging relies on the additional phase added by the objective lens, and hence a too small defocus

will negatively impact the image contrast. This is quantified in Fig. 4.12. At a low dose the errors

grow very large when the defocus is small, but even at a higher dose, errors due to noise increases,

when the defocus is too small. When the defocus is increased the MAE becomes smaller, however

saturation is reached relatively quickly, additional defocus beyond ∆f = 8 nm does not further

improve the MAE.

4.5 Summary

We looked at the accuracy of surface strain measurements from abberation corrected HRTEM

images of nanoparticles.

It was shown that given the exact exit wave function, a strain error of 0.5−1 % should be expected
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due to the 3D nature of the strain. We also pointed out that even if this error was not present,

some care have to be exercised when interpreting the measured 2D strain distribution. We also

showed that the practice of using simulations based on ideal sample models to calibrate strain

measurements is problematic, since the predicted errors from such simulations, does not in general

reflect the errors for an identical model that includes relaxations.

In general the impact of the interaction between tilt, thickness, defocus and other aberrations on

the final strain measurement is both complicated and sensitive to small changes. However, we see

that if the defocus can be kept in a certain Cs-dependent range, the overlap between the scattered

wave of adjacent atomic columns is negligible, and the additional error due to post-sample optics

are small. Additionally, it is found that the error due to tilts away from the ideal {110} zone axis

are small up to the point where the tilt becomes visible.

When all the errors are added it is obvious that the total error is significantly larger than the

0.1 − 0.5 % reported for strain measurements from near periodic images [56]. For a dose of 103

e−/Å
2
, the optimal defocus for the gold nanoparticles is somewhere around 8.5 nm (given Cs = −10

µm), at this defocus the precision and accuracy are 1 % or more. This error is significant compared

to the 1-2 % true surface relaxations in gold.
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Chapter 5

Interatomic Potentials for Modelling

Oxide-Supported Metal Nanoparticles

Details of the interactions between metal nanoparticles and substrates are poorly understood. How-

ever, it is known that this interaction is important for the stability of the resulting material. A

strong interaction can pin the nanoparticles effectively in their position, preventing particle mo-

bility and subsequent growth due to sintering. Thus, characterizing the local atomic structure at

or adjacent to the interface becomes of vital importance as it controls the resulting properties.

Although massive investigations of supported nanoparticles have been performed using HRTEM,

an accurate and quantitative description on the local atomic structure at the interface is difficult

to elucidate. A single edge on image of the interface can establish the orientation relationship, but

hardly provides the full story. Simulation of atomic structures can provide a complementary route

to understanding the interfaces.

The systems we investigate are Pt on ZrO2, Pt on TiO2 and Au on TiO2. These were originally

chosen because it was deemed realistic to investigate them both experimentally and theoretically.

However, since the experimental part ended up going in different directions, this part of my thesis

work, ended being significantly reduced compared to the original intention. More work is currently

needed to bring the contents of this chapter to a publishable state.

5.1 Modelling large-scale supported nanoparticles

There are a range of methods available for theoretical modelling of oxide-supported nanoparticles.

All of these rely on mapping from the set of atomic coordinates to the total energy of the system, a

relationship typically termed the potential energy surface (PES). First principles methods provide

an accurate and general framework for calculating the energy of a system of atoms and density

functional theory (DFT) in particular have had huge success, due to its reasonable computational

cost for many real systems. However, the practical use of DFT is limited to periodic or small non-

47



48 CHAPTER 5. MODELLING SUPPORTED NANOPARTICLES

periodic systems. For this reason, theoretical work has typically focused on gas-phase clusters, or on

individual ideal surface facets and coherent interfaces [73, 74, 75]. Research on supported clusters

have generally focused on sub-nanometric nanoparticles, consisting of on the order 10 metal atoms

[76, 77]. Recently, investigations of larger nanoparticles have been conducted with DFT [78, 79],

however these systems are still smaller and structurally simpler than experimental model systems.

A less expensive computational approach is mandatory, when the supported nanoparticle consists

of over a few hundred atoms, since the cubic scaling of standard DFT, with the number of particles,

makes even single geometry optimizations prohibitively expensive. The use of interatomic potentials

provides a much faster method for evaluating the PES, that scales linearly with system size. The

downside is the loss of accuracy, particularly for the complicated bonding environments present in

mixed systems, such as metal/oxide interfaces.

5.1.1 Interatomic potentials for metal/oxide systems

Interatomic potentials refers to mathematical models, describing the interaction between the parti-

cles of a given system. Given a collection of N particles, with the set of positions {r}, the prediction

for the total energy, is written as an expansion of functional terms that depend on the position of

one, two, three, etc. atoms at a time

V =
∑

i

V1(ri) +
∑

i<j

V2(ri, rj) +
∑

i<j

V2(ri, rj , rk) + . . . , (5.1)

where V1 is the one-body term, V2 is the two-body term and V3 is the three body term.

If there is no external potential, the total energy only depends on the relative positions of the atoms

V =

N∑

i,j

V2(rij) +

N∑

i,j,k

V3(rij , rik, θijk) + . . . , (5.2)

where rij is the distance between particle i and j (the bond length), and θijk is the angle between

the vectors from the position of particle i to the positions of particle j and k (the bond angle).

Simple pair potentials provides a reasonable description of oxides [64]. For example the Coulomb-

Buckingham potential, where the energy for each pair of particles is written

V (rij) = c0 exp (−c1rij)−
c2
r6
ij

+
qiqj

4πε0rij
, (5.3)

where ck, k = 0, 1, 2 are fitted parameters, qi and qj are the charge of the i’th and j’th atom and

ε0 is the vacuum permitivity.

However, pair potentials have some significant limitations, such as the inherent inability to describe

all 3 elastic constants of cubic metals. Describing metals requires the inclusion of many-body effects,
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such as in the Embedded Atom Model (EAM)

V =

N∑

i

Fi


∑

j

ρ(rij)


+

1

2

N∑

i,j

V2(rij) , (5.4)

where Fi is a so-called embedding function, which is a function of the sum contributions to the

electron density of neighbouring atoms. EAM is motivated from density functional theory as the

energy needed to ”embed” an atom into the electron density and can not in general be applied to

covalent insulators or ionic materials, even though extended EAM potentials have been suggested.

While many well-established potentials exists for oxides and metals individually, much fewer have

been created for mixed systems. This is a natural consequence of the combinatorics, but also due

to the challenge of creating accurate models. In general, the potential have to capture multiple-

bonding events, both covalent, metallic and ionic and correctly describe their relative strength.

In our review of the litterature, we found three well-developed frameworks for simulating metallic

nanoparticles on oxides using interatomic potentials.

The Vervisch–Mottet–Goniakowski (VMG) potential [80, 81, 82, 83] and similar approaches [84]

have been applied mainly to non-reactive metal/oxide interfaces, in particular the metal/MgO sys-

tem. Due to the rigidity and simplicity of the compact crystal structure of MgO, a description of the

oxide is neglected, and instead they just include the intermetallic interactions and the interactions

between metal and the oxide. Many-body effects are included as a smooth function the coordina-

tion number with respect to the atoms in the metallic phase. The parameters of the potential are

fitted to small DFT calculations of metal/MgO systems. This approach relies on the weakness of

the interaction at the interface of non-reactive metal/oxide interfaces [85] and the compactness the

MgO substrate.

In particular the metal/TiO2 is known to be reactive [86, 87, 88], and interfacial charge redistribu-

tion have been found to be a significant contributor to interfacial bonding [75]. Additionally, TiO2

is not close-packed, and the assumption that the there is no reciprocal influence of the metal on

the oxide is unrealistic. This requires a mechanism to adjust the interfacial atoms to the mixed

bonding environment at the interface. This is sometimes implemented by directly modifying the

parameters of the first metal-layer [89], however a more elegant approach is to use potentials based

on self-consistent charge equilibration and bond order.

The ReaxFF (reactive force field) method and the charge-optimized many-body (COMB) potentials

are two well-documented variable-charge reactive potentials that are able to simultaneously treat

mixed systems. Both formalisms are based on the very general bond-order concept. This type of

potential have a form that resembles a pair potential, with an attractive part, V A, and a repulsive

part, V R,

Vij(rij) = V R(rij) + bijkV
A(rij) , (5.5)
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however, the strength of V A is modified by the environment of particle i via the bijk term. If

implemented without an explicit angular dependence, this can be shown to be mathematically

equivalent to Eq. (5.4).

In particular the COMB model, have been demonstrated for a range of metal-oxide systems. This

includes many systems with a metal and its own oxide Zr/ZrO2 [90], Cu/Cu2O [91], Al/Al2O3

[92], and Ti/TiO2 [93]. There are some examples of applications to three-element interfacial sys-

tems, most of these have used copper as the metallic phase, some examples include Cu/ZnO [94],

Cu/TiO2 [93] and Cu/SiO2 [95]. The COMB potential is developed for transferability, and hence

the interactions are generally not fitted to particular metal/metal-oxide systems. The metal-metal

interactions are fitted to the properties of bulk metals and alloys both experimental and from first

principles. Equivalently the metal-oxygen interactions are fitted to properties of oxides.

Recently, two new potential types have been introduced that could be a remedy some the restric-

tions physically motivated potential: Gaussian Approximation Potentials (GAP) [96] and potentials

based on artificial Neural Networks (NN) [97]. Both approaches are purely mathematically moti-

vated, and allow the interpolation of the PES using a flexible, non-linear functional form based

on a set of reference structures. The number studies using these approaches for metal/metal-oxide

systems is limited. At present the only study on metal oxide systems is the development and

application to a Cu/ZnO system [98]. However, this is likely to change in the near future.

5.1.2 COMB potential formalism

The COMB potential is based on the Abell-Tersoff potential [99, 100]. This means that the potential

is based on the bond order concept, while also taking the directionality of bonds into account.

Coupled to this the COMB potential uses dynamic charge equilibration, following the principle of

electronegativity equalization by following the formalism of Rappe-Goodard [101]. We will not fully

describe every term in the COMB potential, as it is rather extensive and have been done elsewhere

[95], however we will describe some of the core concepts (i.e. the charge-dependent bond order

potential and the charge equilibriation).

In the COMB potential formalism, the total energy for a collection of atoms with the set relative

positions {r} and charges {q} is given by

Etot[{q}, {r}] = Ees[{q}, {r}] + Eshort[{q}, {r}] + Evdw[{q}, {r}] + Ecorr[{q}, {r}] , (5.6)

where Ees is the electrostatic energy, Eshort takes into account short range interactions (bond order

term), EvdW considers long range van der Waals interactions via a Lennard Jones potential [64]

and the fourth term, Ecorr, is a correction term.

The electrostatic contribution can be expanded as

Ees[{q}, {r}] = Eself [{q}, {r}] + Eqq[{q}, {r}] + EqZ [{q}, {r}] + Epolar[{q}, {r}] , (5.7)
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where Eself is the energy required to form a charge on an atom, Eqq is the charge-charge interaction,

EqZ is charge-nuclei interaction and Epolar is the energy associated with atomic polarizeability.

Using the Mulliken definition of electronegativity, the self energy is the sum of the ionization

energy (or electron affinity energy) of an isolated atom. A correction function, termed the field

effect, reflects environmental changes

Eselfij [{q}, {r}] = Eioni (qi) + Efieldij (rij , qj) . (5.8)

The ionization energy is expressed as a Taylor series expansion with respect to its charge, keeping

the first four terms

Eioni (qi) = χiqi + Jiq
2
i +Kiq

3
i + Liq

4
i , (5.9)

where the parameter χ is identified as the electronegativity, while the higher order terms are as-

sociated with chemical hardness or self-Coulombic interaction. The field energy is associated with

specific bonds and is given by

Efieldij (rij , qj) =
1

4πε0

NN∑

j 6=i

(
Pχijqj

r3
ij

+
P Jijqj

r3
ij

)
. (5.10)

The charges are equilibrated by considering the derivative of the potential with respect to the charge

assigned to each atom. This derivative can be seen as a chemical potential, which at equilibrium

should be equal at all atoms.

The term for the short range interactions is given by

Eshort =
1

2

∑

i

∑

j 6=i

Fc(rij)

[
V R(rij , qi, qj)−

bij + bji
2

V A(rij , qi, qj)

]
, (5.11)

where Fc is the Tersoff cutoff function [100], V A is an exponentially decaying attractive term, V R

is an exponentially decaying repulsive term and bij and bji are the three-body bond order terms.

We note that in general bij 6= bji. V
A and V R are given by respectively,

V R(rij , qi, qj) = Aij exp

[
−λijrij +

1

2
(λiiDi(qi) + λjjDj(qj))

]
(5.12)

and,

V A(rij , qi, qj) = BijB
∗
ij(qi, qj) exp

[
−λijrij +

1

2
(λiiDi(qi) + λjjDj(qj))

]
. (5.13)

The functions Di(q) and B∗ij(qi, qj) modifies the short range interactions according to the local

charge, and the bond order term bij modifies the short-range attraction based on bond angles, local

symmetry and number of nearest neighbors.
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Figure 5.1: Figurative illustration of the error function in parameter space. The deep minima are

separated with higher lying minima in between.

5.2 Fitting interatomic potentials

5.2.1 Fitting algorithm

Fitting an interatomic potential requires a description of the accuracy with which the potential

predicts a set of material properties. This is described by the error function [102]. Let p̃n be the

”true” value of a material property and pn(Θ) be the prediction of an interatomic potential, then

we write the error function as

E(Θ) =
∑

n

(
pn(Θ)− p̃n

δpn

)2

, (5.14)

where δpn is the target relative accuracy and Θ is the set of parameters defining the potential. While

an interatomic potential generally has the capability to describe, with some level of precision, many

properties of a given system, it cannot describe all of the properties of a system with high fidelity. It

is therefore necessary to decide early in the development of the error function which properties are

the most important and choose the appropriate relative accuracies. An additional, consideration

is the accuracy with which the properties are known: Fitting a material property more accurately

than the uncertainty of that value does not make sense. Hence, the target accuracy of a particular

value should be no better than its uncertainty.

When a database of material properties is constructed, the challenge is to find the set of parameters

that minimizes the error function. The error function is highly non-linear and non-convex, and

finding the global minima is generally not possible. We will search for good minima heuristically,

using random walk with local minimization at each step. Local minimization is required, since

the minima are deep and well separated, whereas the jumps during the random walk, lets the

optimization escape poor local minima. This is illustrated in Fig 5.1.

The optimization progresses as follows: At the n’th step of the random walk, given a set of param-

eters Θn, a new set of parameters Θ′n+1 is constructed by applying a random perturbation to each
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parameter based on a normal distribution. We use a normal distribution, rather than a uniform

distribution, since we want to search for sets of parameters close to previous set, while retaining the

ability to possibly make large jumps. The new set of parameters is adjusted by local minimization

using the Nelder-Mead downhill simplex algorithm [103]. We have to resort to this method, rather

than faster gradient descent methods, since the derivative of the error function is unavailable. Once

the local minima is found, the new set of parameters Θn+1 is accepted based on the probability

P (Θ′n+1|Θn) = min

{
1, exp

(
−E(Θn+1)− E(Θn)

E(Θn)T

)}
, (5.15)

where T is a fictitious temperature used to tune the probability for acceptance. If T is low, only

sets of parameters improving on the previous set is likely to be accepted, while if T is large most

new sets will be accepted. If accepted Θn+1 is set to Θ′n+1 and the algorithm makes a new jump,

until a specified number of steps is reached.

We will generally run multiple parallel searches; one node uses the initial input parameters as

starting point, whereas all the others uses randomly generated parameters based on a normal

distribution around the initial guess. The randomly generated potentials can occasionally result in

errors during evaluation of the error function. This is handled by catching all errors and assigning

a very high value to the error function.

5.2.2 DFT

Wherever possible we fit to materials properties from experimental data, when this is not available

we use first-principles data from the literature, and when this is not available, we perform our

own DFT calculations. All DFT calculations are performed with the GPAW code [104, 105]. The

electron exchange and correlation are described with the generalized gradient approximation (GGA)

of Perdew, Burke, and Ernzerhof (PBE) [106], using the atomic setups supplied by GPAW with the

projected augmented wave (PAW) method [107]. The calculations utilize plane-wave basis sets with

a 500 eV energy cutoff. We use a Monkhort-Pack k-point mesh [108] with at least 1000 k-points

per reciprocal atom (i.e. the number of k-points times the number of atoms is 1000 or more).

5.2.3 Material properties

Lattice parameters

The crystalline structure of a material can be described by a basis and a set of lattice parameters

[109]. In many cases the basis is constrained by symmetry, hence the lattice parameter is the

only structural parameter describing the bulk material. Additionally, lattice parameters are well

documented experimentally or easy to obtain from an electronic structure calculation. For a cubic

crystal there is only one degree of freedom; uniform scaling of the unit cell. Hence, the lattice
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constant can be found by calculating the energy for a range of scales spanning 2 % on each side

of the true equilibrium. The optimum lattice parameter is then found by fitting a third order

polynomial to the volume. The same principle can be applied when there are multiple degrees of

freedom. However, we find that this method is generally outperformed by energy minimization with

respect to the lattice parameters using the the simplex algorithm.

Formation energies

The formation energy is the energy required to form a structure given a set of atoms in a reference

structure. The cohesive energy of an elemental crystal is the energy needed to isolate its atoms

Ecoh = Efree − Ebulk , (5.16)

where Ebulk is the energy per atom of the bulk material and Efree is the energy of a free neutral

atom.

The heat of formation of a compound, such as an oxide or an alloy, is the energy needed to separate

the constituents in their ground state reference structure. For the compound C of two different

elements, A and B, the formation energy per atom can be written

Ef =
ECbulk − nAEAref − nBEBref

nA + nB
, (5.17)

where ECbulk is the energy of the compound, Eref is the energy per atom of the reference structure

and n is the number of atoms in the reference structure of a given element. For example, the

formation energy per atom of gold oxide is calculated as

Ef =
5EAu2O3

bulk − 2EAu
bulk − 3

2E
O2
gas

5
, (5.18)

where EAu2O3
bulk , EAu

bulk and EO2
gas are the energy per atom of gold oxide, bulk gold and the oxygen

molecule.

The calculation of adsorbtion energies follows a similar vein

Ead = − 1

NO

[
EO/Au − EAu −NOEO

]
, (5.19)

where EO/Au, EAu, and EO represent the total energy of the adsorbate-substrate system, the clean

surface, and the free oxygen atom, respectively, and NO is the number of oxygen atoms in the unit

cell.

Elastic constants

Elastic constants describes the elastic properties of a material, in particular the energy it takes to

deform the crystal. Assuming small strain, the relationship between stress and strain is described
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by Hooke’s law

σ = Cε , (5.20)

where σ is the stress tensor, ε is the strain tensor and C is the elastic stiffness tensor. Enforcing

zero torque, there are six independent stress and strain components, and hence 36 eleastic stiff

constants. This can be reduced to three using crystal symmetry




σxx

σyy

σzz

σyz

σzx

σxy




=




C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44







εxx

εyy

εzz

εyz

εzx

εxy




(5.21)

. The bulk modulus describes the stiffness of a crystal to a uniform dilation, i.e. a uniform

increase of volume caused by a deformation in all three principal directions. The bulk modulus is

related to the elastic stiffness tensor as

B =
1

3
(C11 + 2C12) . (5.22)

The elastic stiff constants can be calculated by applying a series of strains in different directions.

For example, C11 is found by by applying a series of strains in the x-direction, and calculating the

resulting stresses σxx, from which C11 can be found through a linear fit.

Surface energies

The surface energy is the energy per unit area associated with cleaving a crystal along a given

crystal plane. The equilibrium shape of mesoscopic nanoparticles is determined by the surface

energy, hence it is important that the metal potentials describes the surface energies well.

In principle, the surface energy, γ, can be obtained by calculating the energy of a slab with N layers

and subtract the contribution due to the bulk

γ = lim
N→∞

1

2
(ENslab −NEbulk) , (5.23)

where ENslab is the total energy of the slab and Ebulk is the bulk energy of one layer in the slab.

However, the above expression diverge, if there is a tiny difference in energy between the bulk

energy and the change in energy between a slab with N and N + 1 layers [110].

Instead, we use that, for large N , Eq. (5.23) can be written as [111]

EN ≈ 2γ +NEbulk , (5.24)
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from which, given a series of calculations for increasing N , the surface energy can be obtained from

a linear fit, without reference to the bulk energy. It is difficult to measure the surface energy of

solid metals and generally experimental surface energies are only available for liquid metals, which

can be extrapolated to 0 K. Hence, to describe the anisotropy of the surface energy for different

facets, the surface energy have to be calculated from first-principles calculations. There is a huge

spread in surface energies predicted with DFT depending on the exchange-correlation functional.

The PBE functional generally predicts a too low surface energy, this is especially true for the noble

metals, including gold and platinum. Hence, we use energies based on the PBEsol functional [112],

which have been shown to reproduce surface energies well.

5.3 Fitting the COMB potentials

The complexity of the COMB potential necessitates, that it is fitted in stages. The fitting process

starts with the simplest systems, then slowly adding increasingly more complex systems with more

complex physics, bringing into play additional terms and their associated parameters. We will

optimize the parameters in three stages. We start by fitting the pure metals, then the single-

element charge dependent parameters and lastly we fit the binary parameters for the alloys and

oxides. The process of fitting the COMB potential is well-documented by the original authors [102].

Parameters for O, Zr, and Ti have been taken from existing potentials [93, 90].

The training database for the pure metals, Au and Pt, consists of fourteen properties. The cohesive

energy and bond length of the dimer. The cohesive energy, lattice constant and three elastic

constants of the face-centered cubic phase. The phase change energy of the hexagonal close packed

and body centered cubic phase. Lastly, we included the surface energies of the three low index facets

((111), (100) and (110)). The properties are given in Tables 5.1 and 5.2 for Pt and Au respectively,

along with a comparison of our COMB values to two other potentials.

We compare to the EAM potential because it is known to perform well for metals, and a large

number of predicted properties are available. We also compare with the ReaxFF potential, due to

its similarity to COMB and since a potential for the corresponding oxides exists. After fitting the

metal potentials, a set of parameters for these interactions, were published by the original authors

of the COMB potential [113].

During optimization, the parameters for both metals, were initialized to the published COMB

copper parameters. We used the random walk algorithm to search for minima with a total 400

steps, using jumps of 5 % and a temperature of 0.014. The number of minima within 0.5 % of the

best were 2.4 %.

The training databases for the mixed systems, Pt-Ti, Pt-Zr, Au-Ti, Pt-O and Au-O, mainly con-

sisted of the lattice constants and formation energies of eight different crystal structures for each

interaction. The crystal structures were chosen as known stable structures and some simple hypo-
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thetic phases. The structures were chosen such that different coordinations and bond angles were

probed. In addition to the crystal structures, we included the adsorbtion energy of oxygen for the

metal-oxygen interactions.

Since, we were not interested in the properties of any of the specific oxides or alloys, we have

weighed the different structures fairly equally in the training database, with a moderate bias towards

predicting the known stable structures well. The included crystal structures and predictions for the

minimized energies of the included crystal structures is given in Tables . The structures are defined

using the prototype structure as given in the Inorganic Crystal Structure Database (ICSD) [114].

The parameters for the mixed systems were initialized using the mixing rules given in [95]. As for

the pure metals, we used the random walk algorithm to search for minimas with a total ∼ 100

steps, using jumps of 5 % and a temperature of 0.014. The fewer steps were due to the increased

computational cost of calculating the properties of the mixed systems.

We will not go through an evaluation of each interaction here. This may be done elsewhere, once

the interactions have been further validated for the metal/metal-oxide systems. The final parameter

sheets are likely to be published elsewhere after further validation and are available upon request.

5.4 Application

We were, due to the project ending, unable to really explore the fitted potentials. In some of our

preliminary simulations with Pt and Au on rutile TiO2, we found a strong interaction, which during

thermal equilibration immediately led to significant rearrangements of the atoms at the interface.

From experimental results this is not unrelastic, as this interface is known to be reactive, even

leading to full encapsulation of the nanoparticle by a TiOx overlayer under certain conditions [86,

87, 88]. However, further validation, using DFT simulations, have to be performed before we can

confidently use the potentials.

We instead present an application of the potentials, where this issue is less important. The simula-

tions presented here are preliminary, and serve as a demonstration of using thermal ensembles from

molecular dynamics, as input models for simulations of HRTEM images. Our goal was to better

understand, how the interface influences the strain distribution in a supported nanoparticle, and

what can be inferred about this, from a profile-view HRTEM image. The influence of oxidizing

and reducing the support on the strain distribution of nanoparticles was recently investigated using

HRTEM by López-Haro et al.

We investigate two systems, chosen mainly due to their large difference: Pt supported on cubic

ZrO2 and Pt on anatase TiO2. The lattice mismatch for the Pt(100)‖anatase(100) interface is just

∼ 3.4 %, whereas the lattice mismatch for the Pt(111)‖ ZrO2(111)-interface is ∼ 24 %. The systems

are shown in Fig. 5.2.
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(a) (b)

Figure 5.2: (a) Pt nanoparticle on anatase TiO2. (b) Pt nanoparticle on cubic ZrO2.

5.4.1 Pt/c-ZrO2

The system is initialized by placing the top half of a Wulff constructed nanoparticle, oriented with

the {111}-facet along the interface, on an oxygen terminated ZrO2(111)-slab. The cubic phase of

ZrO2 is only stable at high temperature, or can be stable at room temperature by adding dopants.

We use the cubic phase rather than the monoclinic groundstate for simplicity.

The dimensions of the ZrO2 surface slab is 66 × 68 × 8 and consists of 3,240 atoms, whereas the

nanoparticle consists of 3,091 atoms. A thicker slab may be needed for accurately representing

the oxide, however the thinner slab was used to save computational time. We fix the bottom

layer of the oxide. The only optimization we do is thermal equilibration, with a slightly elevated

temperature, this ensures that the structure can escape shallow local minima. However, it is not

sufficient for searching for global minima. We use Langevin dynamics to bring the system into

thermal equilibrium. This entails coupling all atoms of the system to a thermal bath at a given

temperature, ensuring that all atoms of the system exhibits ensemble behaviour [64].

During equilibration the system is gradually heated to 800 K over 0.25 ns, then cooled to 300 K over

0.25 ns. The time step was 0.5 fs, for a total of 1 million steps. Due to the large lattice mismatch

at the interface, it is not clear, how the surfaces should be rotated or translated with respect to

each other. Hence, we initiated the simulations at various different rotations and translations of the

nanoparticle. Fig. 5.3(a) shows the total potential energy as a function of time during equilibration.

The energy separation between the different rotations is on the order of ∼ 20 eV, corresponding to

the bulk cohesive energy of just 4-6 Pt atoms. Our interpretation is that the lattice mismatch is so

large, that a relative rotation only slightly modifies the adhesion.

In Fig. 5.4, we show the strain distribution of a nanoparticle, which have been brought into thermal

equilibrium as above. The input atomic positions have been averaged over the last 0.05 ns of the

thermal equilibration. The strain is calculated using the method of Larsen et al. [115]. The

strain distribution is seen to be disordered. This is not due to using the thermal average, since

approximately the same strain distribution is found when fully relaxing the nanoparticle.
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Figure 5.3: (a) Total potential energy as a function of time during thermal equlibration for a system

a Pt nanoparticle and a TiO2 substrate. We show a curve for a nanoparticle initialized with the

natural lattice constant of the Pt potential (3.93 Å), and with the lattice constant of the substrate

(3.78 Å).

Even though the strain is generally disordered, there is two features we will highlight for later com-

parison: The extended area with expansive strain in the εxx-map and in the εyy-map the multiple

small areas with compressive strain, with a spacing of approximately four times the lattice spacing

of platinum. The local strain generated by the interface, although quite large, only penetrates

approximately 3-4 layers up from the interface into the nanoparticle.

Fig. 5.6 shows the strain in the average column positions for a projection along the 〈110〉. The

average projected column positions were defined in section 4.3. Comparing this to the actual strain

from the 3d models. We see that both of the highlighted strain features can be recognized to some

extent. The next question is whether this carries over in a strain measurement from a HRTEM

image. Fig. 5.5 shows a simulated HRTEM image, calculated from an average of 40 structures from

the last 0.05 ns of the thermal equilibration. The microscope parameters were the same as those

used in chapter 4, with a defocus ∆f = 10 nm. The electron dose is assumed to be infinite.

The strain error is generally ∼ 2 % or less in the upper part of the nanoparticle, but it is significantly

larger along the interface. Hence, when interpreting the measured strain we should not look at these

layers. Nonetheless, both of the highlighted strain features can be observed to some extent in the

measured strain.

5.4.2 Pt/anatase-TiO2

The system is initialized by placing the top half of Wulff constructed nanoparticle oriented with

the {100}-facet parallel to the interface, on an oxygen terminated anatase TiO2(111)-slab. The
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Figure 5.4: The 3d strain distributions in the three principal directions at slices through a ZrO2

supported Pt particle. In the upper row the slice is perpendicular to the subtrate through the

center of the nanoparticle. In lower row slice is parallel to the interface, and the strain is shown for

the second metal layer from the interface. The coordinate system is indicated in the upper right

corner.

Figure 5.5: Simulated HRTEM image of a platinum nanoparticle on cubic ZrO2. The simulation

parameters follows those used in section 4 with a defocus ∆f = 8 nm.
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Figure 5.6: The first row shows the ”true” 2d strain given the averaged column positions. The

second row shows the strain measured from the electron microscope image in Fig. 5.5. We also

show error, i.e. the difference between the first true and measured strains. The strain was measured

using structural template matching, with partial matching for the surface and edge atoms.

dimensions of the TiO2 surface slab are 62 × 62 × 6.3 and it consists of 2,700 atoms, whereas the

nanoparticle consists of 2,155 atoms. The Pt(100)‖anatase(100)-interface is essentially coherent,

and there is two feasible relative positions of the platinum with respect to the TiO2, Pt on top

of Ti or Pt on top of O. We found that the most stable configuration was, Pt on top of O, which

is in agreement with DFT [75]. When the system was initialized with Pt on top of Ti, it became

extremely unstable due to a large amount of energy released by atomic rearrangements during the

thermal equilibration.

The system is equilibrated at 300 K for 0.5 ns, with a timestep of 0.5 fs. Fig. 5.7 shows the total

potential energy as a function of time during equilibration. The system oscillates violently initially,

but settles without any major rearrangements. We tried initializing the lattice constant of the

platinum to both the actual lattice constant for the Pt potential, and the lattice constant of the

substrate, and found that this resulted in the same final structure.

We found that, after initial equilibration, the nanoparticle completely adapted to the substrate,

in one of the two principal directions parallel to the surface. Since the x and z directions are

symmetrically equivalent, there is no obvious reason for this. Running the same equilibration

multiple times, we saw that the direction that adapts to the support, seems to be randomly chosen.

Hence, the reason could be that adapting to the substrate in both directions, raises the strain energy

too much compared to the energy gained by adapting to the substrate.

In Fig. 5.8, we show the strain distributions, given the thermally averaged atomic positions. This

strain is compared to that of a free nanoparticle, demonstrating the influence of the support.

We observe a large normal strain in the x-direction, as it is compressed to match the support.

Conversely, there is almost no difference between εzz for the supported and the free nanoparticle.
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Figure 5.7: Total potential energy as a function of time during thermal equlibration for a system

a Pt nanoparticle and a ZrO2 substrate. We show curves for initializing the nanoparticle with its

natural lattice constant and with the lattice constant of the substrate.
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Figure 5.8: The 3d strain distributions in the three principal directions at slices through a TiO2

supported Pt particle and a free particle of the same shape. The coordinate system is indicated in

the upper right corner.



5.5. SUMMARY 63

Figure 5.9: Simulated HRTEM image of a platinum nanoparticle on cubic TiO2. The simulation

parameters follows those used in chapter 4 with a defocus ∆f = 8 nm.

Due to the large Poisson ratio of Pt, the nanoparticle is expanded in the y-direction, to compensate

the compression. While the strain is smaller close to the interface for the TiO2-support compared

to ZrO2, the strain penetrates much further into the nanoparticle.

Fig. 5.10 compares the strain from the average column positions, for a projection along the 〈100〉
zone axis to the strain calculated from the simulated HRTEM image in Fig. 5.9. The image was

simulated in the manner described in the section above.

Due to the large thickness variations in the 〈100〉 zone axis, a significant error is introduced, in

particular in vicinity of the surfaces. While the strain measurement does correctly show the overall

strain, in both directions, the asymmetric structure in the measured strain is entirely wrong.

5.5 Summary

Interatomic potentials for Pt/TiO2-, Pt/ZrO2- and Au/TiO2-systems were developed, however more

work is needed to validate the potentials, before they can be applied to predict complex interface

structures and energies with confidence. We did preliminary simulations of Pt nanoparticles on

TiO2 and ZrO2, two systems with very different interfaces. The structural simulations were used

as input for TEM image simulations, from which the strain was measured and compared to the

true 3D strain. We saw that the strain gave a reasonable indication of the support-induced strain.

However, significant errors also means, that it is necessary to be very careful when interpreting the

strain. Nonetheless, by correlating measured strain from TEM, with simulations it may be possible

to obtain a better understanding of interfaces.
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Figure 5.10: The first row shows the ”true” 2d strain given the averaged column positions. The

second row shows the strain measured from the electron microscope image in Fig. 5.9. We also

show error, i.e. the difference between the first true and measured strains. The strain was measured

using structural template matching, with partial matching for the surface and edge atoms.
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5.6 Tables of material properties

Exp. or DFT EAM [116] ReaxFF [117] COMB3

fcc properties

a (0 K) [Å]* 4.06a 4.06 4.06 4.038

a (300 K) [Å] 4.078b 4.078 - 4.058

E0 [eV]* -3.81c -3.93 -3.91 -3.852

B [GPa] 180.3c 178 177 172

C1 [GPa]* 201.6c 193 249 212

C12 [GPa]* 169.7c 165 142 152

C44 [GPa]* 45.4c 45 147 48.4

melting point [K] 1337b 1281 - ∼ 1200

phase transitions

∆E (hcp-fcc) [eV]* 0.002g, 0.0054h 0.007 0.0002 0.007

∆E (bcc-fcc) [eV]* 0.04d, 0.026h 0.04 0.14 0.033

∆E (diamond-fcc) [eV] 1.01h 0.95 1.17 1.00

∆E (sc-fcc) [eV] 0.28h 0.43 0.86 0.54

planar defects

γ(111) [J/m2]* 0.74i, 0.98j , 1.5e 1.15 1.07 0.868

γ(100)/γ(111)* 1.16i, 1.22j 1.06 1.13 1.19

γ(110)/γ(111) 1.31j 1.11 - 1.25

γ (Intrinsic) 〈121̄〉 [J/m2] 27k 30 - 32

γ (Unstable) 〈121̄〉 [J/m2] 94k - - 170

point defects

Ef (V) [eV] 0.89f 0.97 1.07 1.15

Ef (octahedral) [eV] - 3.57 - 3.58

Ef ([111]-dumbbell) [eV] - 4.20 - 4.35

Ef ([110]-dumbbell) [eV] - 3.88 - 3.93

Ef ([100]-dumbbell) [eV] - 3.75 - 3.44

clusters

Ef (Au2) [eV]* -1.17b - -1.2 -1.19

bond length (Au2) [Å] 2.47b - 2.52 2.38
a Exp. [118], b Exp. [119], c Exp. [109], d Exp. [120], e Exp. [121], f Exp. [122], g DFT-PW91 [123],
h DFT-LDA [117], i DFT-PBE [124], j DFT-PBEsol [125], k DFT-PBE [126] .

Table 5.1: Material properties for fitting the COMB Au potential. The star indicates a property

included in the error function.
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Exp. or DFT EAM [116] ReaxFF [127] COMB3

fcc properties

a (0 K) [Å]* 3.91a 3.91 3.95 3.93

a (300 K) [Å] 3.92b 4.078 - 3.94

E0 [eV]* -5.84c -5.77 -5.77 -5.87

B [GPa] 288.4c 282 - 279

C1 [GPa]* 347c 347 - 351

C12 [GPa]* 251c 253 - 243

C44 [GPa]* 77c 78 - 77

melting point [K] 2041b 1890 2047 ∼ 1900

phase transitions

∆E (hcp-fcc) [eV]* 0.03d 0.03 0 0.04

∆E (bcc-fcc) [eV]* 0.16d 0.16 0.12 0.18

∆E (diamond-fcc) [eV] 1.01h 1.16 1.8 1.86

∆E (sc-fcc) [eV] 0.28h 0.37 1.24 0.74

planar defects

γ(111) [J/m2]* 0.74i, 1.91j , 1.5e 1.69 1.68 1.77

γ(100)/γ(111)* 1.16i, 1.17j 1.05 1.13 1.20

γ(110)/γ(111) 1.22j 1.14 1.2 1.24

γ (Intrinsic) 〈121̄〉 [J/m2] - 121 - 126

γ (Unstable) 〈121̄〉 [J/m2] - 320 - 557

point defects

Ef (V) [eV] 0.89f 1.5 - 1.4

Ef (octahedral) [eV] - 5.0 - 6.9

Ef ([111]-dumbbell) [eV] - 6.1 - 8.8

Ef ([110]-dumbbell) [eV] - 5.4 - 7.8

Ef ([100]-dumbbell) [eV] - 5.1 - 6.3

clusters

Ef (Pt2) [eV]* -1.65b - -1.2 -1.64

bond length (Au2) [Å] 2.4b - 2.52 2.32
a Exp. [118], b Exp. [119], c Exp. [109], d Exp. [120], e Exp. [121], f Exp. [122],
g DFT-PBE [127], h DFT-LDA [117], i DFT-PBE [124], j DFT-PBEsol [125] .

Table 5.2: Material properties for fitting the COMB Pt potential. The star indicates a property

included in the error function.
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Exp. or DFT ReaxFF [117] COMB3

formation energies

Ef (A2O3) [eV]* 0.042a, -0.027b, -0.104c -0.095 -0.036

Ef (AuO-Cu2O) [eV]* 0.16a 0.12 0.11

Ef (AuO2-CaF2) [eV]* 0.61a - 0.62

Ef (Au2O-CaF2) [eV]* 0.72a - 0.57

Ef (AuO-NaCl) [eV]* 0.54a - 0.24

Ef (AuO2-CaCl2) [eV]* 0.26a - 0.033

Ef (Au2O-Ag2F) [eV]* 0.47a - 0.26

Ef (Au3O4-Pt3O4) [eV] 0.08a - 0.08

Ef (AuO-CsCl) [eV] 0.79a - 0.74

adsorbtion

0.25 ML (111-fcc) [eV] -3.25d -3.4

0.5 ML (111-fcc) [eV]* -2.91d -2.7

0.75 ML (111-fcc) [eV] -2.45d -2.2

1 ML (111-fcc) [eV] -1.99d -1.9
a This work DFT-PBE, b Experimental [128], c DFT [129], d DFT[130]

Table 5.3: Material properties for fitting the COMB Au/O potential. The star indicates a property

included in the error function. The adsorption energies are calculated with respect to a free oxygen

atom.
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Exp. or DFT ReaxFF [131] COMB3

formation energies

Ef (PtO2-BaSi2) [eV]* -0.43a, -0.46b -0.43 -0.38

Ef (PtO2-CaCl2) [eV]* -0.47a, -0.46b -0.27 -0.41

Ef (PtO-PdO) [eV]* -0.26a -0.25 -0.22

Ef (Pt2O-Cu2O) [eV]* 0.14a 0.11

Ef (PtO-NaCl) [eV]* 0.57a -0.32

Ef (PtO2-CaF2) [eV]* -0.066a -0.07

Ef (PtO-CsCl) [eV]* 0.79a 0.84

Ef (PtO-rutile) [eV]* -0.38a -0.47

adsorbtion

0.25 ML (111-fcc) [eV]* -1.19c -1.17 -1.13

0.5 ML (111-fcc) [eV] -0.91c -0.81 -0.65

0.75 ML (111-fcc) [eV]* -0.52c - -0.35

1 ML (111-fcc) [eV] -0.15c - -0.15
a This work DFT, b Experimental [128], c DFT [132]

Table 5.4: Material properties for fitting the COMB Pt/O interactions. The star indicates a

property included in the error function. The adsorption energies are calculated with respect to the

oxygen molecule.

DFT COMB3

formation energies

Ef (PtTi2-CaF2) [eV]* -0.24 -0.43

Ef (PtTi-CsCl) [eV]* -0.75 -1.0

Ef (TiPt3-AuCu3) [eV]* -0.84 -0.56

Ef (PtTi-NaCl) [eV]* -0.48 -0.49

Ef (PtTi-AuCd) [eV]* -0.88 -1.0

Ef (Pt8Ti-Pt8Ti) [eV]* -0.42 -0.49

Ef (PtTi3-AuCu3) [eV]* -0.48 -0.61

Ef (TiPt2-CaF2) [eV] -0.61 -0.57

Table 5.5: Material properties for fitting the COMB Pt/Ti interactions. The star indicates a

property included in the error function. All target values are calculated using DFT from this work.
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DFT COMB3

formation energies

Ef (PtZr2-CaF2) [eV]* -0.51 -0.51

Ef (PtZr-CsCl) [eV]* -1.15 -0.89

Ef (ZrPt3-AuCu3) [eV]* -0.84 -0.51

Ef (PtZr-NaCl) [eV]* -0.73 -0.76

Ef (Pt3Zr-Ni3Ti) [eV]* -1.11 -1.02

Ef (PtZr-TiI) [eV]* -1.00 -1.07

Ef (PtZr3-AuCu3) [eV]* -0.48 -0.42

Ef (Zr5Pt3-Mn5Pt3) [eV] -0.78 -0.82

Table 5.6: Material properties for fitting the COMB Pt/Zr interactions. The star indicates a

property included in the error function. All target values are calculated using DFT from this work.

DFT COMB3

formation energies

Ef (Au2Ti-Au2Ti) [eV]* -0.42 -0.30

Ef (AuTi-AuCd) [eV]* -0.38 -0.46

Ef (AuTi-CsCl) [eV]* -0.31 -0.46

Ef (AuTi-CuTi) [eV]* -0.27 -0.28

Ef (AuTi2-CaF2) [eV]* 0.10 0.02

Ef (TiAu3-AuCu3) [eV]* -0.093 -0.092

Ef (AuTi-NaCl) [eV]* 0.005 0.005

Ef (Ti3Au-Cr3Si) [eV]* -0.37 -0.42

Ef (AuTi3-AuCu3) [eV] -0.24 -0.51

Table 5.7: Material properties for fitting the COMB Au/Ti interactions. The star indicates a

property included in the error function. All target values are calculated using DFT from this work.



70 CHAPTER 5. MODELLING SUPPORTED NANOPARTICLES



Chapter 6

Structural Recognition using Convolutional

Neural Networks

TEM has become a routine analysis tool for characterizing the structure of materials at the atomic

scale, and with the recent development of a wide range of in-situ TEMs and dedicated environmental

TEM, it has become increasingly interesting to capture the dynamic behaviour of materials as video

[5, 133]. This progress is supported by improved detectors, with increased sensitivity and faster

readout rate, in particular with the introduction of the direct detection cameras [134].

As the process of acquiring large amounts of data becomes easier, our analysis tools also have

to become more efficient. In many applications, accurate identification and classification of local

structure is a crucial first step in deriving useful information from atomic-resolution images and

video. Examples include characterizing the distribution of dopants [135] and defects [136], in situ

imaging of phase transformations [137], structural reordering during materials growth [138, 139]

and dynamic surface phenomena [140].

Crystallography is the traditional tool used to identify and classify local structures in atomic reso-

lution images. However, the restrictive assumptions of symmetry and periodicity leaves some to be

desired. Nevertheless, methods such as Geometric Phase Analysis (GPA) [141], which still adopt

many of the assumptions of traditional crystallography have been very successful at extracting local

structural information, including defects, strain and phase boundaries [142].

Real space approaches typically rely on localization of certain structures such as individual atoms,

atomic columns or small aggregates thereof by their shape in the image. In some cases this can be

done automatically by employing simple metrics such as the width and intensity of local intensity

extrema. Traditional computer vision techniques such as template matching have also had some

success here [43]. Generally, the performance of these automatic approaches are significantly worse

than a human expert. The difficulties arise in some part from the phase contrast nature of TEM,

making the image extremely sensitive to the distance between the sample and the objective lens.

This becomes especially problematic for the analysis of video sequences, since small rotations and

71
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vibrations can modify the appearance of the structures, thus necessitating user involvement at

every frame. In addition, delocalization due to optical aberrations and partial coherence cause the

appearance of a local structure to be influenced by the surrounding structure. These difficulties are

compounded by low signal-to-noise ratios, in cases where the electron dose have to be limited, to

reduce radiation damage to the sample [143].

In chapter 3, we introduced a method that once the positions of the structures are extracted can

classify them using their geometric relationships. Another recently introduced method accom-

plishes a similar task [144]. However, these methods are inherently limited since crucial intensity

information goes unused at the classification stage. In a recent paper this was approached using

unsupervised machine learning. The Laplacian of Gaussian operator was used to extract keypoint

features. Then the scale-invariant feature transform (SIFT) was used to extract descriptors of the

local region around each keypoint, and agglomorative clustering was used to classify the descriptors

[145].

Recently, deep learning has gained much attention, in large part due to the excellent performance

of convolutional neural networks (CNNs) in visual recognition tasks. Deep learning have only been

used to a very limited extent in the context of atomic resolution microscopy. In 2000, Kirchner et

al. published a method for predicting defocus and sample thickness from HRTEM images [146].

Neural networks have also been used for reconstructing the wave function from off-axis electron

holograms [147]. Recently, the back-propagation algorithm from neural networks have been used

to calculate the partial derivatives, required to optimize the full 3d atomic potential from either a

tilt series of TEM images or CBED images [148, 149].

The work highlighted above is either not relevant to our problem, or does not use any of the recent

breakthroughs in the application of CNNs to image recognition. Hence, the main influences for

the work here are recent applications of CNNs in computer vision. Especially recent applications

to biological microscopy imaging, including particle detection [150] and automatic segmentation

of brain images [151] from cryo-electron microscopy images. In this chapter, we describe a CNN

based method that can classify and localize structures in atomic resolution images. The method is

presented for HRTEM, but could in principle be applied to images acquired through other atomic

scale imaging methods. In particular STEM and scanning tunnelling microscopy (STM).

6.1 Classification and detection

The goal in computer vision is to infer estimates of meaningful information that relates the input

image to the scene it captures and our understanding the scene. In many cases, this can be reduced

to classifying the objects present, by predicting class labels along with a description of the locations

of the objects. Some examples of computer vision tasks are shown in Fig. 6.1. Today CNNs are not

only progressing classification of whole images [152], they are also improving on object detection



6.2. FEED FORWARD NEURAL NETWORKS 73

Figure 6.1: Examples of basic tasks in computer vision. Images from pixabay.com.

[153] and pixel level image segmentation [154].

In the simplest case with only one object in the image, the localization can be solved by directly

predicting its bounding box coordinates through regression, i.e. a mapping from the image to four

numbers. Alternatively, this can be recast as a classification task. By using a classifier on subregions

of the full image, it is possible to obtain region-dependent classifications. The classification proba-

bilities in each sub-region may be combined to obtain a prediction of the bounding box coordinate

[155].

Classifying and localizing multiple objects in an image is referred to as detection. Since the number

of objects belonging to each class is generally unknown, it is not possible to build a model for

directly regressing the bounding box coordinates. It is however still possible to use methods based

on sub-region classification, and recent advances in object detection are driven by the success

of region-based CNNs (RCNNs) [155]. This kind of detection has proven to be effective in a wide

variety of related vision tasks, such as real-time localization from photographs [153] or cell detection

in medical images [150, 156].

Semantic segmentation is the task of partitioning the image into semantically meaningful parts, and

to classify each part into one of the pre-determined classes. In pixel-wise semantic segmentation

each pixel of the image is assigned a class. The state-of-the-art in segmentation is based on CNNs,

which have had success in tasks such as road scene parsing [157] and segmentation of brain scan

images [158].

6.2 Feed forward neural networks

Before describing the CNN, we begin with a description of the basic feed-forward neural network. A

neural network is based on a collection of connected units called artificial neurons. The connections

transmit a signal from one neuron to another, and each neuron transforms the incoming signals
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Figure 6.2: A simple feed-forward neural network.

to a single output. The neurons in a network are generally organized into a sequence of layers.

The example network in Fig. 6.2 consists of three layers, an input, a hidden and an output layer.

Here the nodes of adjacent layers are only connected in the forward direction, this is true for all

feed-forward neural networks (but not all neural networks). The connectivity pattern of a neural

network is referred to as the network’s architecture.

We can express the mathematical operation of a single neuron as follows. Let v denote an input

vector to a neuron, then, the neuron computes the activation

a = f

(
N∑

i=1

wixi + b

)
, (6.1)

where wi is the weight associated with the i’th input connection, b is a bias associated with the

neuron and f is a non-linear function (the activation function). Some common activation functions

include the sigmoid and the hyperbolic tangent.

For the network in Fig. 6.2, we can write the output of a unit yk as a composition function as

follows

ŷk(x; Θ) = f (2)




2∑

j=1

W
(2)
kj f

(1)

(
3∑

i=1

W
(2)
kj xi + b

(1)
j

)
+ b

(1)
k


 , (6.2)

where the superscipt denotes a layer index and Θ = {W (1),W (2), b(1), b(2)} is the set of trained

parameters. This process where information propagates through the network is called the forward-

propagation step.

A sufficiently large neural network with a single hidden layer can approximate any continuous

function on a bounded domain [159]. However, overwhelming empirical evidence have shown that

increasing the number of hidden layers is important, this is referred to as as increasing the depth

of the neural network. Deep networks tend to be better at making complex predictions, which
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seem hard to capture using shallow architectures, and deep networks often lead to better practical

performance [160, 161].

The model parameters Θ have to be learned from data. In practice this means optimizing the

parameters with respect to a loss function L. For example the mean squared difference between

the predicted label ŷk(x; Θ) and the true label y, given a training set {x(i),y(i)}, i.e.

L =
∑

i

‖ŷk(x(i); Θ)− y(i)‖22 . (6.3)

The loss function is highly non-linear and non-convex. Hence, we have to resort to an iterative

gradient descent algorithm. To efficiently update the parameters throughout the network, requires a

method for computing the partial derivatives ∂L/∂θ for each parameter θ ∈ {W (1),W (2), b(1), b(2)}.
For a feed-forward neural network, this can be calculated efficiently using the error backpropagation

algorithm [162]. Once the partial derivatives are obtained the weights can be updated as follows

θi = θi − η
∂L

∂θ
, (6.4)

where η is the learning rate and i denotes an iteration index. The update process repeats until

convergence or until reaching the predefined number of iterations. Typically, each update in Eq.

(6.4), utilize a small randomly selected subset (a mini-batch) of training samples (stochastic gradient

descent).

6.2.1 Convolutional neural network

Fundamentally, a CNN is simply a multilayer, feed-forward neural network, with three key distin-

guishing factors: local receptive fields, weight sharing and layers for subsampling (or supersam-

pling).

In fully connected layers, such as those in Fig. 6.2, each neuron is connected to all of the neurons

in the following layer. In tasks involving structured input, such as images, the pixels that are

close together are strongly correlated while pixels that are far apart are weakly correlated. This is

exploited in most standard computer vision algorithms by extracting local features. In the CNN

architecture the same principle is used by constraining each neuron to depend only on a local subset

of the features in the previous layer (so-called local receptive fields).

Weight sharing means that trained weights are shared across neurons in the hidden layers. Each

neuron is computing a weighted linear combination of its input. This is equivalent to filtering the

input values by a linear filter. When weights are shared, this means that the same filter is applied

to the entire image, which amounts to performing a convolution of the image with the filter, see

Fig. 6.3(a). Hence, the CNN effectively learns a set of linear filters applied in a predefined set of

sequences to the images. Weight sharing forces the CNN to learn a spatially invariant representation
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Figure 6.3: (a) Convolving a 3×3 filter over a 5×5 input with padding to maintain the same shape

in the convolutional responses. The convolutional responses are linear combinations of 9 pixels in

the previous layer, weighted by the filter. (b) Max pooling in a convolution neural network. Here

the max pool is over blocks of size 2× 2 on the 4× 4 feature map. The max pool is the maximum

in each block, yielding the 2× 2 pooled response map shown on the right.

of the image, and have the additional significant upside of reducing the number of free parameters,

making the network faster to train.

The basic convolutional layers are typically intermixed with pooling layers. The motivation here is

twofold: to aggregate multiple low-level features to gain spatial invariance and reduce the dimension-

ality of the convolutional maps to improve computational efficiency. In pooling, the convolutional

response map is first divided into a set of blocks over which a pooling function is evaluated yielding

a set of smaller response maps. In the case of max pooling, the response for each block is taken to

be the maximum value over the block responses, see Fig. 6.3(b).

A typical CNN, have multiple hidden layers, alternating between convolution and pooling. For

example, a convolution-pooling layer can be stacked on top of the outputs of the first convolution-

pooling layer. In this case, the outputs of the first set of convolution-pooling layers are simply

treated as the input to the second set of layers. In this way, a multilayered or deep architecture

can be constructed. Intuitively, the first convolutional layers, can be thought of as providing a

low-level encoding of the input data. In the case of image data, this may consist of simple edge

detection. Moving to higher layers, the lower level features are combined to produce increasingly

complex and abstract features. Neural networks for whole-image classification generally connects

the final high-level features directly to a fully connected layers to perform classification.

The use of pooling layers results in very coarse feature maps, hence tasks like semantic segmentation

requires a way of upsampling the output. One way to achieve this is interpolation. For example,

simple bilinear interpolation computes each output from the nearest four inputs by a mapping,

depending only on the relative positions of the input and output pixels. In neural networks interpo-

lation can be a learned operation. Usually termed a transpose convolution, this works by swapping
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Figure 6.4: Upsampling by a factor of 2 a can be accomplished by convolving a filter over a modified

input, obtained by inserting a zero between each pixel. Note that this is equivalent to a transpose

convolution, but does not represent the actual operation as it is implemented.

the forward and backward passes of a convolution [154]. This operation is illustrated in Fig. 6.4.

6.3 Methods

Given a set of 2d atomically resolved images, our task is to classify and localize each instance, n, of

a set of atomic structures by assigning a set of 2d Cartesian coordinates {(xn, yn)} and class labels

{cn} to each. The class label can be chosen from a set of Nc predefined labels L = {l1, . . . , lNc}.
As an intermediate result, each instance is assigned a probability distribution, pn(lk), given our

recognition model, over the set of class labels.

The structure class might be an atom, a column of atoms or a specific configuration of atoms, it

might also be a vacancy, i.e. the absence of an atom. Choosing how to categorize the structures is

problem specific. The choice should depend on how the researcher derives meaning from the image,

and not necessarily rely on the physics.

The outlined problem is an object detection task, for which we mentioned that, recent advances are

driven by the success of region proposal methods. However, classifiers based on region-proposals,

generally rely on each class being visually distinct regardless of context. This is a problem for

atomic resolution images. An atomic structure typically appear as a blob with very little internal

distinguishing structure, and the appearance may change in response to the neighbourhood due to

delocalization. Hence, successful detection requires inclusion of contextual knowledge.

Similar considerations is behind the development of the segDeepM network [163], which utilizes

segmentation to improve object detection. Their approach enabled more accurate bounding boxes

in cases where strong contextual cues were available. Other methods utilize probability (or density)

maps for each class, representing the probability for finding an instance of a particular structure
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Figure 6.5: Our method for structural recognition exemplified by its application to a single sheet

of MoS2. The input images are converted to a set of probability maps. There is one map for each

of the four structure labels L ={”Mo”, ”S”, ”VMo” and ”VS”} and one for the background class.

Finally, the probability maps are interpreted to obtain discrete instances defined by a coordinate

and a class labels.

at a given location in the image. This have been successfully used for e.g. human pose estimation

[164] and mitosis detection [165]. Similar density maps have been successful in object counting

tasks, especially in cases where the distribution of objects is dense [166, 167].

6.3.1 Image-to-image CNN

Our approach is based on generating a set of probability maps using an image-to-image CNN. The

approach is illustrated for the case of MoS2 in Fig. 6.5. The CNN maps from Nf images of size

Nx×Ny to Nc images of the same spatial dimensions. We represent the input as a 3D array of shape

Nx × Ny × Nf . Each component of the input image is denoted, Iijk, and each image is denoted

Ik. The input may just be a single gray scale image (Nf = 1), and if multiple input images are

used, it is assumed that they are resolved over the same spatial domain, for example a focal series.

The output is also a 3D array, with the components Pijk, with the same spatial dimensions as the

input and a depth equal to the number of class labels plus a background class, Nx×Ny × (Nc + 1).

The inclusion of a background class is standard in semantic segmentation, it usually takes the same

form as the models for the classes of interest, but is supervised by negative instances [154]. The

background class ensures competition between the classes by allowing us to impose

∑

k

Pk = 1 . (6.5)

If two instances overlap spatially, we introduce a new class for the combined structure. For example,

in order to classify atomic columns of different heights, we would create a separate class for each

height. In approaches for object counting, the same task is accomplished by predicting a density

proportional to the number of objects in a subregion [167]. The advantage of our model is that the
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uncertainty with respect to, e.g. two very different column heights, can be properly expressed.

6.3.2 Supervised learning

The main drawback of using a deep neural network is that it requires a huge amount of data for

training. Hence, in some fields, researchers have collected databases containing tens of thousands

of hand labelled images from hundreds of categories [168]. Unfortunately, such databases does not

exist for atomic resolution images. Rather than attempt the expensive process of creating a hand-

labelled dataset, we create training data exclusively from simulation. We show that a CNN trained

on simulation is able to generalize from simulation to experiment, without ever being shown a real

image. The idea of leveraging simulation for inexpensive training of neural nets have also been

applied successfully in fields such as robotics [169].

We simulate a new training image for every training iteration, hence the main way the network is

regularized is by ensuring that the data have a large degree of variability. Nonetheless, we found

that a moderate weight decay improves the performance on experimental data. By decaying all

weights, any weights that are not being used by the network to produce meaningful output will

become negligible, rather than persist in the network for no reason. While these weights may not

affect performance on the simulated training data, they may produce errors if the experimental

data deviates slightly from the simulations.

The CNN is trained using the mean squared difference with a penalty on the size of the L2 norm

of the weights

L =
∑

ijk

‖P̃ijk − Pijk‖2 +
1

2
λ
∑

i

W 2
i , (6.6)

where P̃ is the output and P is the ground truth. To evaluate the above during training, we

generate the ground truth probability maps from dot labels created from the center of positions

of the input atomic structures. Each probability map is a 2D representation of the belief that a

particular structure occurs at each pixel location. Ideally, if a single instance occurs in the image,

a single peak should exist in the corresponding probability map; if multiple instances occur, there

should be a peak corresponding to each instance. We generate individual probability maps Pk for

each class label lk. Let (x
(k)
n , y

(k)
n ) be the ground truth position of the instance n with the class

label cn = lk. The value at the position (xij , yij) of the i, j’th pixel is defined as the following

superposition of Gaussians

Pijk =
∑

n

G
(
xi, yj |x(k)

n , y(k)
n , w2

)
k > 0 , (6.7)

where

G(xi, yj |x0, y0, σ
2) = exp

(
− (xij − x0)2 + (yij − y0)2

2σ2

)
, (6.8)
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where σ2 controls the width of the Gaussian. The ground truth for the background, P0, is created

to fulfill Eq. (6.5), hence

P0 = 1−
∑

k

Pijk . (6.9)

We will assume that the overlap between any pair of Gaussians is negligible. If this can not be

assumed a new class combining the classes of overlapping Gaussians should be introduced. The

width of the Gaussian influences the penalty of wrongly assigning a region of the inferred probability

map to the background class. We found that if σ2 were very small, the neural network would be

very cautious: Any region in the images that was difficult to assign to a specific class (e.g. due to

noise), would be assigned to the background class. We also found that a common local minima at

training, was to assign everything to the background. Both issues could be mitigated by increasing

σ2. A better way to control this would be to directly equalize the weight of the different classes by

modifying the loss function, however we have not explored this. We found that a width σ2 = 1 Å

(or ∼ 10 pixels at 0.12Å/pixel) worked well for the cases we have considered.

The Adam algorithm is used to update the parameters during training [170], this is a stochastic

gradient descent algorithm with an adaptive learning rate. We used a base learning rate of 10−4,

this is lower than the standard 10−3 for Adam. We found that a smaller learning rate improved

convergence and helped avoid a bad local minima resulting in checkerboard artifacts during the

upsampling [171].

6.3.3 Preprocessing

We normalize the input at both training and inference to ensure that the experimental images are

within the training domain. An experimental image may locally contain structures, that are not

part of the training set. To avoid skewing the normalization in the valid regions, we use local

contrast normalization. An added benefit of this is to eliminate the need for simulating uneven

illumination. The subtractive normalization operation for each component computes

I ′ijk = Iijk −
1

Nf

∑

pqk

1

2πσ2
N

G(xp, yq|0, 0, σ2
N )Ii+p,j+q,k , (6.10)

where G is defined in Eq. (6.8). We want to preserve the information present in the relative

intensities of the stack of images, hence the background is averaged across the feature dimension

(k-dimension). To keep the loss of spatial information low, the effective radius of the weighting

should be significantly larger than the size of any individual classified structure and its immediate

neighborhood. To normalize the variance we compute the following divisive normalization

I ′′ijk =
I ′ijk

1
Nf

√∑
pqk

1
2πσ2

N
G(xp, yq|0, 0, σ2

N )(I ′′i+p,j+q,k)2
(6.11)
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The denominator is the weighted standard deviation over a spatial neighborhood, averaged over

the feature dimension to preserve relative variance locally.

6.3.4 Network architecture

The network architecture is based on fully convolutional networks for pixel-wise segmentation [154].

Several variants of fully convolutional networks have been proposed since their introduction and

applied in different contexts. One such context is in segmentation of electron microscopy brain

images. Chen et al. proposed a network combining multi-level upsampling layers from several

scales for final segmentation [172]. Ronneberger et al. introduced skip connections for concatenating

feature maps at different scales in their U-net architecture [173]. Quan et al. used additive skips

and residual blocks as a solution to vanishing gradient in their FusionNet allowing for training of

deeper neural networks [151]. Multi-level upsampling and skip connections accomplish the same

task of combining global abstract information from deep coarse paths and local spatially resolved

information from shallow paths. Our design is based on the FusionNet architecture. A pictoral

description is given in Fig. 6.6.

The design is motivated by the need to capture information across multiple scales. Identifying

individual peaks and valleys is essential for recognizing atomic structures, however estimating what

an atomic structure should look like requires contextual information. Whether an atomic column

appears dark or bright, relative to the background, can only be answered from the context, hence

the network must have some mechanism to effectively process and combine features across scales.

The architecture we use have a single pipeline with additive skip connections to preserve spatial

information at each resolution. The network reaches its lowest resolution at one eighth the input

resolution allowing smaller spatial filters to be applied that compare features across large areas.

The shape of the network is symmetric, so for every layer present on the way down there is a

corresponding layer going up.

Each step starts and ends with a convolutional layer, with a residual block in between [174]. The

residual block consists of three convolutional layers and a skip connection that merges the input

using elementwise addition. It is difficult to optimize the depth of a deep neural network. In

theory deeper networks always have more predictive power, than a shallower network, however this

is not true in practice due to the problem of vanishing gradients [175] and curse of dimensionality

[161]. Essentially, if the network is too deep, it is difficult to properly back-propagate the errors.

The use of residual blocks mitigate this problem in two ways: the error can more easily propagate

backwards and in the worst case, the block can learn to be an identity mapping and thus not harm

the performance.

Small convolutional kernels of size 3 × 3 are used everywhere except for the final prediction. We
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256x256x32 256x256x32

128x128x64 128x128x64
64x64x128 64x64x12832x32x256

SoftmaxElementwise addition

Convolution + ReLU Max Pool Residual block Upsampling

Figure 6.6: The architecture of the neural network. Information flows from left to right. The

features are downsampled in an encoding path and upsampled through a decoding path, in addition

several skip connections ensure that it is possible to retain fine spatial information.

use element-wise rectified linear activations after each layer that contains parameters to be trained

h(x) = max{0, x} . (6.12)

These layers are then batch normalized [176]. Batch normalization regularizes the network by

normalizing the data throughout the network, avoiding the problem the authors refers to as ”in-

ternal covariate shift” [177]. The number of feature maps are doubled whenever downsampling is

performed using max pooling. Each step in the upsampling path begins with a transpose convo-

lutional layer, this is merged using elementwise addition with output from the same level of the

downsampling path by a long skip connection. The transpose convolutional layers are initialized

as bilinear interpolation and all other layers use random weight initialization. The final scoring

consists of a convolutional layer with 1× 1 kernel followed by a softmax non-linearity

σ(Pk) =
exp(Pk)

∑Nf

k=1 exp(Pk)
. (6.13)

The network is implemented with TensorFlow using the Python API [178]. TensorFlow is a recently

open sourced deep learning framework developed at Google. All models are trained and tested on a

single NVIDIA GTX 1080 Ti graphics card. Our models and code will be made publicly available.

6.3.5 Interpretating the probability maps

Each probability map will generally contain several peaks associated with different instances of

the same class, hence we need to segment the image in order to associate a subset of pixels with
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Figure 6.7: (a) The position of atomic columns for a small nanoparticle, color coded according to

the corresponding height of the atomic column. (b) The background probability map predicted by

the CNN given a series of images calculated from the nanoparticle shown in (a). (c) Watershed

segmentation of background probability map, color coded according to segment id.

k = 2 k = 3

k = 4 k = 5
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Figure 6.8: (a) Probability maps calculated by the CNN given a focal series. For this example

the Pk probability map correspond to a column height of k. (b) Probability distributions, pn(ck),

predicted by our neural network for classes corresponding to different column heights, at the three

different identified coordinates, A, B and C, shown in (c). (c) The most probable column height

according to our neural Comparing with Fig. 6.7(a) our method made an error at the B coordinate,

however the correct class is the second most likely according to our recognition model.
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each instance. We start by finding all local minima in the background probability map. To avoid

treatment of regions that are obviously in the background, we discard very shallow minima with a

value above a tolerance ε = 0.995. The local minima are used as seeds for basins created using the

watershed principle with Meyers algorithm [179]. To avoid oversegmentation a hard upper limit

for each basin is set to ε. Each resulting image segment Sn is assumed to correspond a candidate

for the instance, n, of an atomic structure. We exemplify the segmentation by its application to

determining the height (in number of atoms) of the atomic columns from a focal series of images.

The example is further evaluated in section 6.4.3. The segmentation of the regressed background

probability map is illustrated in Fig. 6.7.

The corresponding probability distribution over the class labels will be calculated as

pn(ck) =

∑
i,j∈Sn Pijk∑

k

∑
i,j∈Sn Pijk

k > 0 , (6.14)

where the sum is over all pixels belonging to the n’th image segment. The coordinate of the atomic

structure is calculated as the center-of-mass of the image segment

(xn, yn) =

∑
k

∑
i,j∈Sn(xi, yj)Pijk∑
k

∑
i,j∈Sn Pijk

. (6.15)

A number of false identifications of instances of atomic structures will generally be found in the

presence of noise, hence we will eliminate any candidate instance, n, for which

∑
i,j∈Sn Pij0∑

k

∑
i,j∈Sn Pijk

< t , (6.16)

where t is a threshold to be chosen by the user. Some of the final probability distributions for the

example introduced above are shown in Fig. 6.8.

6.3.6 Evaluation

The performance of our method is evaluated in terms of precision and recall. Precision can be

interpreted as the probability that an identified positive identification is a true positive, while recall

is the probability of identifying any given true positive. In terms of total number of true positives

(TP), false positives (FP) and false negatives (FN), precision and recall is defined

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(6.17)

There is natural tradeoff between precision and recall, increasing the threshold t will in general

lower the number of positives, both false and true, this will increase the precision, but lower the

recall. The relationship between precision, recall and threshold is expressed as a precision-recall

curve.
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6.3.7 Image simulation

A main challenge of our approach is to generate simulated training sets, that lets the neural network

generalize from simulation to reality.

When building the input specimen models, we will not attempt to approximate in any way, a true

distribution of the experimental specimens (as this is what we are investigating in the first place).

We will instead generate randomized specimen models, the purpose of this is to provide enough

simulated variability at training time such that, at inference the model is able to generalize to the

actual specimen. The randomized specimen models still have respect the true structure to some

extent. This requires case-specific solutions, which will be exemplified in the next sections.

The multislice algorithm have been shown to provide a quantitative match with experiment on

an absolute contrast scale [180]. Nonetheless, exactly matching the conditions of a particular

real microscope requires difficult measurements of the microscope aberrations. Hence, instead of

attempting to simulate a particular microscope, we simulate an ensemble of random microscope

conditions. We generate the contrast transfer function (CTF) at each training iteration. The effect

of energy spread (i.e. temporal coherence) is included in the quasi-coherent approximation (see

section 2.4.1). Temperature effects are included with the less accurate method of blurring the

atomic potentials. To ensure that the CNN performs well across a range of sampling rates, the

images are resampled randomly. Noise is included by modelling the finite electron dose rate as a

Poisson process. Including the modulation transfer function of the detector is extremely important,

due to its significant effect on the spectral properties of the noise. The MTF is parametrized

according to Eq. (2.21) with randomized values for the parameters. We also slightly adjust the

brightness, contrast and gamma of the images, to ensure a that the recognition model is robust.

During training, the microscope conditions, including the CTF, MTF, dose and partial coherence,

are randomized at every iteration. However, the exit wave functions for the structure models are

calculated beforehand.

6.4 Experiments

6.4.1 Graphene

Graphene is considered a promising material, due to its unique electronic properties. The perfor-

mance of graphene devices depends highly on the atomic structure of individual graphene sheets,

including the presence of defects, strain and the configuration of edges. HRTEM have been exten-

sively used to investigate graphene, and several automatic algorithms for extracting quantitative

information have been proposed [181, 182]. We will compare our deep learning based technique to a

recently introduced technique by Vestergaard et. al. [183]. Their technique combines geometric pri-

ors and image intensity in a coherent model to detect the hexagon centers. The centers are refined
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parameters lower bound upper bound distribution

defocus (∆f) -200 Å 200 Å uniform

3rd order spherical (Cs) -20 µm 20 µm uniform

5th order spherical (C5) 0 5 mm uniform

1st order astigmatism magnitude 0 100 Å uniform

1st order astigmatism angle 0 2π uniform

deflection 0 25 Å uniform

focal spread 20 Å 40 Å uniform

dose 101 e−/Å
2

104 e−/Å
2

exponential

c1 (MTF) 0 0.1 uniform

c2 (MTF) 0.4 0.6 uniform

c3 (MTF) 2 3 uniform

Table 6.1: Randomized parameters for generating training examples of graphene for a 80 kV mi-

croscope. The focal spread and deflection are defined in Eq. (2.18) and (2.19), respectively.

with high accuracy using a model based on Markov Random Fields (MRFs). The experimental

data used for validation in their original paper have been supplied to us by the authors.

Training

We want to train a neural network that is capable correctly localizing the atomic positions, even

when they do not adhere to their ideal or almost ideal positions. Thus, the atomic models used to

generate the training images cannot simply be ideal sheets of graphene. We might instead generate

the atomic positions from a uniform random distribution, however this is incredibly inefficient, as

only a tiny fraction of the training images relates to experimentally interesting situations.

We present an algorithm for generating distributions of atomic position that lie somewhere between

the two extremes. The algorithm is explained in Fig. 6.9. While there is little theoretical reasoning

behind the presented algorithm, the final structures have some nice properties. The ”bond lengths”

are reasonably narrowly distributed around their mean, and by correctly choosing the number

of seed points, the mean bond length, can be chosen to coincide with that of ideal graphene.

Additionally, the structures include a large number of distorted n-gons with n = 5− 8. This same

structure is also found experimentally along grain boundaries.

We generated 500 random structures with a size of 43.2× 43.2 Å, or 360× 360 pixels at a sampling

rate of 0.12 Å/pixel. All the simulations were done at an acceleration voltage of 80 kV.

Fig. 6.10 shows the training loss as a function of the number training samples. The running

standard deviation shows that the variability in the performance is huge. This is a consequence of
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a b c d e

Figure 6.9: Procedure for generating random training for graphene. (a) A square in 2d space is

filled with randomly distributed seed points under the constraint of a minimum separation in terms

of euclidean distance (i.e. a Poisson disc distribution [184]). (b) Next, the Voronoi diagram of

the seed points are generated, and the vertices of the diagram are used as atomic positions while

discarding the original points. (c) To avoid overlap the positions of the Voronoi vertices are relaxed

using Lloyd’s algorithm [185]. (d) Lastly, zero to four holes of varying size and shape are introduced

in the structure.
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Figure 6.10: The running average loss and standard deviation as a function of the number of training

samples. The running average and standard deviation is calculated over ∼ 600 training samples

using a boxcar window. The training is mostly converged after the first 2500 training iterations.
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Figure 6.11: Four random training images and the corresponding output of the trained neural

network. A significant number of the atomic positions are difficult to interpret, either due to

insufficient imaging conditions or due to the difficult structure of training examples.

randomly generating the microscope parameters, a number of the training examples are impossible

to interpret, due to a combination of noise and the relationship between the spherical aberration

and defocus.

Fig. 6.11 shows training examples and corresponding output after the neural network is trained.

Clearly, large regions of the probability maps are far from the ground truth. However, they are

probably as good can be reasonably expected given the difficulty of the training samples. The

neural network performs much better, when it applied to more reasonable experimental images, as

shown in Fig. 6.12.

Application to experimental images

The experimental graphene images were measured using a FEI Titan 80-300 Environmental TEM

equipped with a monochromator at the electron gun and spherical aberration (Cs) corrector at the

objective lens. The acceleration voltage of the microscope was 80 kV, which is below the knock-on

threshold for carbon atoms in pristine graphene. The electron beam energy spread were below

0.3 eV, while the Cs-corrector was aligned to minimize the spherical aberration. The images were

recorded using a Gatan US1000 CCD camera with an exposure time of 1 s.

Fig. 6.13(a) shows a HRTEM image of pristine graphene. The negative Cs imaging (with positive

defocus) results in images where the carbon atoms are bright spots, with the centers of the hexagons
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(a) Experimental image (b) Confidence map (c) Positions (t = 0.01) (d) Positions (t = 0.5)

2 nm
0.0 0.5 1.0

Figure 6.12: A neural network trained exclusively on simulated data is capable of generalizing to

experimental images. (a) Single suspended graphene sheet with a hole formed under the influence

of the electron beam. (b) The regressed probability distribution predicted by the neural network

for the image in (a). ((c)) The local peak positions of the probability map is overlayed on the

image. The peaks are color-coded according to their maximum value. Peaks with a maximum

value less than 0.01 are excluded. (d) A higher tolerance for exclusion is used to remove peaks with

a maximum value less than 0.5.

appearing dark. The output of the CNN is shown in 6.13(b). The neural network detects all atomic

positions. This is accomplished without imposing any hard geometric constraints. Additionally,

the neural network automatically recognizes that the atoms appear bright, which is only the case

for about half of the training images. Fig. 6.13(c) shows the strain given the interpreted positions

from the neural network. The strain is calculated using structural template matching with the first

two neighbour shells (i.e. the 9 nearest neighbours).

Fig. 6.13 shows the strain calculated from a sheet of defective graphene. The strain is small in

the regions above and below the hole, however a significant strain is detected to the left and right.

Figure 6.13: (a) Experimental image of a pristine sheet of graphene. (b) The output of our neural

network given the image in (a). (c) The planar strain given the positions interpreted from (b).
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Figure 6.14: (a) Experimental image of a pristine sheet of graphene. (b) The output of our neural

network given the image in (a). (c) The planar strain given the positions interpreted from (b).
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Figure 6.15: Histograms of detected bond lengths (a) from Fig. 6.13 and (b) from Fig. 6.14. The

bond lengths are binned by 0.05 Åsteps and the counts are normalized for easier comparison. The

histogram in (a) follows a normal distribution with a mean of 1.42 Å and a standard deviation of

0.18 Å. The histogram in (b) have a tail towards shorter bonds lengths.
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This could be explained by out-plane ripples in the graphene sheet, resulting in a projection of the

structure that appears strained. If the graphene sheets are assumed to be flat, we find that the

maximum strain along any direction is ∼ 8 %. This is qualitatively the same strain distribution,

that was found by the method of Vestergaard et. al. We also measure a small compressive strain

along the edge of the hole, which was not found in their study.

Due to the inherent small signal-to-noise ratio in images of graphene, and the continuously induced

damage to the edge structure by the electron beam. Both ours and Vestergaards method have

difficulty completely resolving the edge of the hole. Generally, our method finds that the hole is

zig-zag terminated, which is in agreement with previous findings. However, we also find a few

positions that are clearly ridiculous from an energetic viewpoint. This is not unexpected given that

our method, does not make use of any hard geometric constraints or any prior knowledge about

the real structure graphene.

Fig. 6.15 shows histograms of the bond lengths from the images in Fig. 6.13 and 6.14. The

histogram can be compared to Fig. 3 in an article by Jens Kling et. al. which is based on the same

data [186]. We do not expect any strain in a pristine area of graphene, hence we should expect to

find a narrow distribution of bond lenghs. We find that the bond lengths are normally distributed

around the mean with a standard deviation of 0.18 Å. This standard deviation is comparable or

smaller to what was found using the method of Vetergaard et. al. [186], hence demonstrating that

the positions determined with our method are resistant to noise.

Precision and recall

To quantitatively characterize the performance of our method, we have simulated realistic polycrys-

talline graphene sheets. The initial graphene models are generated using the method of Ophus et al.

[187]. To equilibrate the samples, we first anneal them at 2000 K for 50 ps after which the system is

quenched to 0 K during a 20 ps run. The simulations are carried out with a NPT ensemble [64], a

Langevin thermostat and the reactive bond order potential by Stuart et al. [188]. The final models

exhibits realistic defects along the grain boundary, long range strain and out-of-plane ripples. We

simulate 16 sheets with the dimensions 122.4× 122.4 Å, thus resulting in 1024× 1024 pixel images

at 0.12 Å/pixel.

The images were simulated to match the experimental conditions in the previous section as closely

as possible, hence, the performance evaluation should be seen in this context. An improvement of

the image conditions would also improve the below performance characteristics. The images were

simulated with the following parameters: spherical aberration Cs = −12 µm, defocus δ = 84 nm,

focal spread δ = 35 Å, deflection σ = 25 Å and a MTF parametrized by c1 = 1, c2 = 0.48 and

c3 = 2.45.

Since atoms along the grain boundary are significantly more difficult to recognize than the ideal

lattice, we want to separate the statistics. The atoms are categorized as being locally part of the
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Figure 6.16: Simulation of a poly crystalline sheet of graphene. (a) The atomic positions of the

graphene sheet is colorcoded according to whether the atom is characterized as part of an ideal

hexagonal lattice (green) or not (magenta). (b) Simulated HRTEM image given the simulated

graphene sheet. (c) Output of out neural network given the image in (a).

ideal hexagonal lattice or a part of the grain boundary, see Fig. 6.16. The categorization is based on

the RMSD of the 9 nearest neighbours with respect to the ideal lattice. The following performance

evaluation is based on ∼ 105 ideal atomic positions and ∼ 104 grain boundary positions.

Fig. 6.17 shows precision-recall curves for different electron doses, obtained by changing the thresh-

old t in Eq. (6.16). At the lowest dose, 18 e−/Å
2
, the results are essentially as bad a random guess-

ing. This is already improved at 102 e−/Å
2
. At a dose of 5.6 e−/Å

2
, for the ideal atomic positions,

it is possible to obtain a recall of ∼ 0.95 while maintaining an almost perfect precision. This is not

the case for the grain boundary which requires at least 3.2 e−/Å
2

to be properly resolved. At a

dose 105 e−/Å
2

or above, it is possible to obtain perfect precision and recall for the ideal positions,

however even at infinite dose there are around 1 % of the grain boundary positions that cannot

be recalled. These positions generally correspond to very distorted hexagons, due to a large local

inclination of the graphene sheet. This shape is not well-represented in the training set, hence it

may be possible to find these positions by creating a training set with this in mind. However, it

may also be the case that the simulated imaging conditions are simply insufficient, and indeed it

is possible to obtain perfect recall and precision along the grain boundary by lowering focal spread

and deflection.

Fig. 6.18(a,b) shows the precision and recall as a function of the threshold, t, for interpreting a

peak as a positive identification. This shows that our method is fairly insensitive to the choice of

threshold, unless the structure is very difficult to resolve due to noise.

Fig. 6.19(a) shows the precision and recall as a function of dose. The hexagonal structure is

essentially perfectly resolved at a dose of 103 e−/Å, while it requires a dose more than ten times

larger to resolve the grain boundary.
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Figure 6.17: Precision-recall curves for simulated images of poly crystalline graphene for (a) ideal

positions and (b) positions along the grain boundary. We show curves for size different electron

doses as shown in the legend in e−/Å
2
.
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Figure 6.18: Precision and recall as a function of the threshold used for discriminating between

whether a peak in the probability map should be recognized as an atomic position.
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Figure 6.19: Precision and recall at a threshold of 0.5 as a function of (a) dose and (b) defocus.

The dose was 2× 103 e−/Å.
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(a)

(b)

Figure 6.20: The first panel in each row shows the full input image to the CNN, before applying

the sliding window. The output of the network for progressively smaller sliding windows is shown

in the next panels. The sizes of the sliding windows are indicated by the red square, the size is cut

in half, for every panel, from left to right. The rows show results for different electron doses: (a)

5× 104 e−/Å, (b) 5× 103/Å.

The CNN is in principle trained to perform equally well at all defocus between ∆f = −20 nm to

∆f = 20 nm. However, at a finite electron dose, the signal-to-noise ratio is very dependent on

the defocus. HRTEM images of graphene relies entirely on phase contrast, hence the performance

dips drastically at the defocus, where the contrast is inversed. This is shown in Fig. 6.19(b).

Interestingly, the neural network actually seems to perform slightly better in a limited region, when

the atomic positions are transferred as dark spots and the centers of the hexagonal rings are bright.

Occlusion analysis

To investigate how much non-local information the neural network is utilizing, we applied the neural

network to partially occluded images, i.e. images where some of the pixel values have been set to

zero. The results are shown in Fig. 6.20. Each pixel in the probability map is obtained from an

evaluation on the image, where everything outside a box-shaped sliding window is set to zero. The

final probability maps are then a compound of an evaluation of the neural network for each pixel.

The process is similar to a technique used for localization in networks for whole image classification

[189], however in this case the CNN is allowed to see what is inside the sliding window, while

everything outside the window is blacked out.

Given the full 15×15 Å image, the CNN is only slightly perturbed by increasing noise. However, as

size of the sliding window is decreased, the performance is impacted much more by noise. Hence, it

seems that the neural network relies more on non-local information, when the signal-to-noise ratio

is low. At low noise, the neural network performs reasonable until the sliding window is smaller

than individual hexagons in the graphene structure.
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6.4.2 Nanoparticles

Nanoparticle morphology, which decides the number of active sites and catalytic efficiency, is

strongly determined by the gases involved in synthesis, treatment, and reaction. Several inves-

tigations have been performed to understand the morphological response of gold to the gas envi-

ronment [190, 191, 192]. Using in situ environmental transmission electron microscopy (ETEM),

Uchiyama et al. observed that the overall shape of gold nanoparticles supported on ceria, behaves

systematically depending on the atmosphere [193]. They found that, in an oxygen environment the

nanoparticles became more rounded due to a fluctuation between {111}, {100}, and {110} facets

with time.

We also observed a Au/CeO2 catalyst in vacuum and oxygen atmospheres by means of ETEM,

and were able to resolve the individual atomic columns in the 〈110〉 zone axis. We saw that in the

oxygen atmosphere, the columns at the facets could be remarkably mobile. The statistical nature

of the surface migration of atoms, requires a significant amount of data to quantify, hence being

able to do this automatically is highly desirable. This is especially true, if we want to be able

to separate the influence on the dynamics of an individual parameter, such as gas species, partial

pressure, support, electron dose and temperature. In this section, we look at the application of our

technique to analysing time-resolved HRTEM video of individual nanoparticles.

Training

The neural network should perform well for nanoparticles with both faceted and rough surfaces.

To ensure this, we create a training set with both types of surfaces. We start by generating a

seed crystal by creating a random number of atomic planes in the low index directions (i.e. the

〈100〉-, 〈110〉- and 〈111〉-direction). To obtain reasonable particles with imperfect surfaces, we add

additional atoms to the seed crystal with a probability determined by the coordination number of

the candidate site. Let i denote a valid crystal position with respect to the seed crystal with the

coordination number Ni. We assume that Ni > 0, then the probability that the next atom will be

appended to this candidate position is given by

p(ni) =
exp(Ni/T )∑
Ni

exp(Ni/T )
, (6.18)

where the sum is over all positions for which Ni > 0. The constant T is a fictitious temperature

that can be used to tune the roughness of the generated nanoparticles. For T →∞ each candidate

position is equally likely, whereas for T → 0 only the highest coordinated positions are probable.

A random number of atoms, scaled by the size of the seed crystal, are appended for each training

structure. The particles are rotated either into the 〈100〉- or 〈111〉-axis, then they are rotated a

random amount with a rotation axis perpendicular to the zone axis. Lastly, each particle is tilted

0-3◦ away from the ideal low index zone axis. Every particle is placed in a 50 × 50 Åunit cell,
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and displaced by a random amount. The simulations of the exit waves are done at an acceleration

voltage of 300 kV.

Precision and recall

To quantify the performance of our method on nanoparticles, we simulate validation images from

a new set atomic models. The shapes of the nanoparticles are based on data from a theoretical on

study on nanoparticle morphology, and represents a realistic distribution of particle shapes at room

temperature [194]. The size of the nanoparticles used for validation were within the range of those

used for training and were rotated in the same manner. The nanoparticles at training were without

any relaxations, this may negatively influence the performance, when encountering experimental

images where this will not be the case. Hence, we have created validation images of nanoparticles

with the ideal crystal structure, and the same nanoparticles relaxed using the COMB potential for

gold.

An example application of the CNN for varying electron dose is shown in Fig. 6.22. For the

simulated image conditions, it is not possible to resolve atomic columns at the surface with a height

of ∼ 1−3 atoms. As the dose is increased these atomic columns are found. We find that the neural

network generally errs on the side of safety, in the sense that the number of false negatives are

greater than the number of false positives.

Fig. 6.23(a) shows the precision and recall of our method as a function of the electron dose, for

images of both the ideal and relaxed models. We see that including relaxations have little impact

on the performance of our method. It should be noted that the surface relaxations are fairly minor

structural changes. We expect that the performance of our method, will be impacted significantly

when encountering structures that deviates strongly from the training set.

There are two failure modes of our method for detecting a particular atomic column, the signal-to-

noise ratio of the column can be too low or the column can be too tilted. The number of failures due

to tilt are generally not lowered much by increasing the dose, hence the precision and recall does

not converge to one at very high dose. The number of errors due to tilt increases with the column

height, since the effective footprint, with respect to the viewing direction increases. Contrarily,

the number of errors due to noise decrease with the column height, since the image intensity of

the atomic column increases. This is illustrated in Fig. 6.23(b) where we show the recall for the

validation set with respect to the column height.

To better understand how the CNN interprets the images of nanoparticles, we have considered the

detection of an atomic column at two different placements; placed at a valid lattice position and

isolated from the nanoparticle. The results are shown in Fig. 6.24. We see that the CNN only

detects the atomic column, when it is placed at the valid lattice position. This can be seen as both

an advantage and a potential problem of our method. It is an advantage because, it is unlikely

that, the same performance could be obtained, at low dose, without taking the geometry of the
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Figure 6.21: (a) Examples of nanoparticles generated using the algorithm we have proposed. The

height of the atomic columns of the nanoparticles are indicated with a colorcoding. (b) Resulting

images given the atomic models in (a). (c) Output from the CNN given the images in (b).
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(a) (b) (c) (d)

Figure 6.22: From top to bottom. The first row shows simulated electron microscopy images, the

second row show the corresponding prediction of the CNN and the last row shows the interpreted

positions. A magenta triangle indicate a false negative and a cyan circle indicate a true positive.

There are no false positives in this example. The simulated electron doses were (a) 102 e−/Å
2
, (b)

2.2× 102 (c) 464 e−/Å
2

and (d) 103 e−/Å
2
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Figure 6.23: (a) The precision and recall as a function of dose, for both relaxed and ideal nanopar-

ticles from the validation set. The CNN is trained on models where the atoms are placed on ideal

crystal sites. We see that the performance is only decreased slightly when it is applied to models

that include realistic surface relaxations. (b) Recall at different doses as a function of the column

height for the nanoparticles in the validation set. The dose given in the legend is in units of e−/Å
2
.
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(a)

(b)

Figure 6.24: The top row shows a simulated image and the resulting output of our neural network

for a nanoparticle where all the atoms adhere to the ideal lattice. All the atomic columns are easily

found by the CNN. In the bottom row, one of the atomic columns have been displaced. At this

level of noise, the CNN does not find the displaced column.

placement into account. However, it can also be a potential issue, since it is difficult to understand

how the CNN makes decisions. Using this method, one should be very aware of the potential biases

build into the training set. It should be noted that at a higher dose, the CNN detects the atomic

column regardless of its placement relative to the nanoparticle.

Application to experimental images

Fig. 6.25 shows a time series of a gold nanoparticle in an oxygen environment. The series was

measured in an environmental TEM by Pei Liu. We also show the corresponding output of the CNN.

It can be observed that the 〈111〉 facet opposite to the interface changes dynamically. This is in

agreement with the output of the CNN. We find that the CNN generally makes identical predictions

to human experts, although there are some disagreements at this level of noise. However, we found

that the level of disagreement between the CNN and a human expert, were generally not larger

than the disagreement between two human experts. We should note that the results shown in Fig.

6.22, indicate that it is not possible to resolve single atoms at this low dose.

In Fig. 6.26 we compare the surface dynamics of the same nanoparticle in vacuum to a particle

exposed to oxygen. Clearly, according to our analysis, there is a significant effect on the surface

dynamics of the nanoparticle exposed to oxygen. In agreement with previous experimental findings

[193]. Interestingly, this only happens on the {111}-facet opposite the interface. To investigate

whether this is just a curious case, requires an investigation on a larger selection of nanoparticles,

however the method presented here could make such an investigation easier.

In Fig. 6.27, we look the strain in the nanoparticle in both vacuum and oxygen. The positions are
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t = 0 t = 2 s t = 4 s t = 6 s

Figure 6.25: Time series of a gold nanoparticle on a ceria subtrate. The dose rate was 1.56 × 103

e−/Å
2
/s with an exposure time of 0.2 s (dose per image 3.1 × 102 e−/Å

2
). The experimental

images were measured using a FEI Titan 80-300 Environmental TEM operated at 300 kV. The

oxygen pressure was 4.5 Pa. The second row shows corresponding output of the CNN and the

last row shows the interpreted positions. Since the neural network is not trained on CeO2, the

predictions for the substrate are unusable, hence these were removed manually.
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Figure 6.26: The surface dynamics of gold nanoparticles is influenced by the gaseous atmosphere.

The occurrence is the percentage of frames where the neural network identified an atomic column

at a possible site. The event percentage is the percentage of frames where a site was previously

occupied, but is unoccupied in the frame immediately after, or conversely unoccupied then occupied

immediately afterwards. The events along the interface are due to the difficulty of detecting the

atoms along the interface and due to tilt. The maps are based on 300 and 320 frames, for the

vacuum and oxygen respectively.
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Figure 6.27: The strain in the direction parallel and perpendicular to the interface and the planar

strain. The strain is calculated using structural template matching with the size nearest neighbours,

and partial matching for the surface atoms.

determined using the average of the output of the CNN for all the frames. The main thing to note

is the outward relaxation of the {111}-facet opposite the interface, i.e. the facet that was found to

rearrange. This strain could indicate adsorbtion of oxygen on the surface. Theoretical studies have

found that adsorbates, can induce changes to surface relaxations. A DFT study on the adsorbtion

of atomic oxygen at the (111)-facet of gold, found that the surface relaxation of the top layer was

8.7 % outward at a coverage of 0.5ML, while a coverage of 1ML an inward relaxation of 3.88 % was

predicted [130].

6.4.3 Atom-counting in nanoparticles

In the previous sections, we only applied our method to the detection of a single class of structure.

To investigate how far the method can be pushed, we have applied it to 3D reconstruction of

nanoparticles. The results are preliminary, since we have only investigated the performance on

simulated data.

Different techniques to recover 3D structure have been suggested in atomic resolution electron

microscopy. One of the most promising techniques is electron tomography [195, 196, 197], however

this have several limitations, electron tomography requires multiple exposures, which is not always

feasible in practice. For example, in situ experiments or the characterization of beam sensitive
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Figure 6.28: Example of the input images to our CNN-based atom-counting technique for a dose

103 e−/Å
2

per image.

materials.

Alternatives to electron tomography for a 3D reconstruction at the atomic scale have been proposed

where the 3D atomic structure is reconstructed from a single projection. LeBeau et al. [198]

and Jones et al. [199] compared simulated atom column scattering cross-sections with normalised

experimentally measured atom column intensities in order to count the number of atoms in an

atomic column from STEM images. Information about the column heights, combined with prior

knowledge of crystal structure and energy minimization, can be used to reconstruct the 3d structure.

Recently, this method was verified using tomography [200].

In TEM, it has been shown that peak intensities, can be used to count the number of atoms

in a projected atomic column using negative spherical aberration imaging [201]. However, peak

intensities are sensitive to a small tilts of the sample, and the peak intensity is not in general a

monotonic function of the peak height. This was discussed in a recent comparison of STEM and

TEM based atom counting by Gonnissen et al. [202]. This study also demonstrated, in theory,

that a model based on all pixel values of a TEM image, not just the peak intensity, under optimal

experimental conditions, obtain a better accuracy for atom counting than STEM based techniques.

However, no practical demonstration of such a model exists currently. The model would have to

accurately encode the dependence of all image pixel intensities on the sample thickness, and be

stable to small variations in parameters such as crystal tilt. Using a CNN could be a possible way

of creating such a model.

The number of atomic columns can also be counted using the reconstructed exit wave from a

TEM focal series [203] or from inline electron holography [204, 205]. This method uses the column

approximation for TEM images [70, 71].

In our approach, we recast the 3D reconstruction as a classification problem, where each atomic

column is classified according to height. Similarly to the methods based on focal series reconstruc-
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Figure 6.29: (a) Map of the true number atoms in each column of the nanoparticle used to generate

the images in Fig. 6.28 (b) Map of the deviation from the true height in the predictions of our

CNN-based atom counting technique.

tion we use three images at different defocus as input. We used a more limited range of simulation

parameters and only nanoparticles in the 〈110〉-zone axis was considered. The defocus value for

input images, each denoted by k, was chosen as

∆fk = [−170 + 130k + U(−20, 20)]Å , (6.19)

where U(−20, 20) is a uniform random distribution from -20 to 20. We used a range of spherical

aberrations between Cs = −10 µm to Cs = −20 µm. While the other simulation parameters were

chosen as described in Table 6.1. An example of a set of images is given in Fig. 6.28.

For validation, we used the same set of relaxed nanoparticles, as described in the previous section.

Fig. 6.29 shows the results of applying the trained CNN to the nanoparticle, given different electon

doses. For this example, there is no errors at a dose of 3 × 104 e−/Å
2
. At lower doses, the

prediction is generally only off by 1 atom. This example was almost exactly in the ideal 〈110〉,
hence the performance of the CNN, was somewhat better than the average of full ensemble used

for validation. The performance on nanoparticles tilted up to 3 ◦ was significantly worse. In Fig.

6.30, we show the mean fraction of errors over the entire ensemble.

At a dose of 104 e−/Å
2

the probability for making an error, that is off by one from the true height

is ∼ 10 %, which decreases to ∼ 5 % at a dose of 106 e−/Å
2
. Generally, when the CNN makes

a mistake, the predicted probability for the true height, is only slightly smaller than the false

prediction. The number of errors that are off by 2 or more is very low.

Feedback from experiment is required to understand whether the estimation of the errors presented

here are realistic. However, the results are interesting enough to warrant further investigation. In

any case, the results of this section indicate that our CNN-based method is capable of distinguishing

very similar structures.
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Figure 6.30: The mean fraction of errors over the validation set for predicting the height of an

atomic column in a nanoparticle. We show separate curves for errors that are off by 1, 2 or more

than 2 from the true height. The dose is total for all three images.

6.5 Summary

A deep learning-based algorithm for recognition of the local structure in TEM images was presented.

It was shown to be stable to microscope parameters and noise. The neural network was is trained

entirely from simulation, but is capable of making correct predictions on experimental images. The

method was applied successfully to exmperimental images of single sheets of defected graphene and

to a video sequence of a supported nanoparticle. The method also showed promising but, as of yet,

inconclusive results for reconstructing the 3d shape of nanoparticles using atom counting.

Generally the first introduction of an image recognition model is improved by consecutive by the

general community. Hence we believe that there is still much potential for improving the method.

For example, we have done very little hyperparameter optimization with respect to e.g. weight

decay and the depth of the CNN. In the machine learning community, improvement is often driven

by creating standardized training and validation sets, and competing to obtain the best performing

model [206].
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[30] A. Béché et al. “Dark field electron holography for strain measurement”. In: Ultramicroscopy

111.3 (Feb. 2011), pp. 227–238. issn: 03043991. doi: 10.1016/j.ultramic.2010.11.030.
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Abstract 

Strain analysis from high-resolution transmission electron microscopy (HRTEM) images offers a convenient tool for 
measuring strain in materials at the atomic scale. In this paper we present a theoretical study of the precision and 
accuracy of surface strain measurements directly from aberration-corrected HRTEM images. We examine the influence 
of defocus, crystal tilt and noise, and find that absolute errors of at least 1–2% strain should be expected. The model 
structures include surface relaxations determined using molecular dynamics, and we show that this is important for 
correctly evaluating the errors introduced by image aberrations.

Keywords:  High-resolution transmission electron microscopy, Strain mapping, Nanoparticles, Surface strain
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Background
The surface lattice strain in nanostructures as a topic of 
research has gained increased interest in recent years due 
to its significant impact on many material properties. As 
an example, surface strain is a possible tunable parameter 
that can be used to optimize the adsorption energies of 
surfaces for a particular catalytic reaction [1]. Platinum-
based oxygen reduction catalysis is improved by weaken-
ing the binding of adsorbed oxygen intermediates by 0.1 
eV, this can be achieved by a 2% compressive strain [2]. 
Strain in nanoparticles can be generated by a variety of 
sources: particle size, shape, twinning, by the lattice mis-
match between metals in multimetallic core–shell nano-
particles or it can be induced by the supporting substrate 
[3]. Characterizing the influence of these effects requires 
a technique capable of measuring structural information 
at atomic resolution.

High-resolution transmission electron microscopy 
(HRTEM) has become a routine tool for determining the 
structure of materials at an atomic scale [4]. TEM is par-
ticularly attractive due to the ability to map local strain. 

However, TEM images are the result of a complex dif-
fraction and aberration-limited imaging process, and 
hence considerable care needs to be shown when extract-
ing quantitative information.

An approach to overcome this is to iteratively compare 
experimental images with simulations [5, 6]; imaging 
parameters and model structure of the sample are refined 
until the simulated and experimental image match. This 
method has been successfully applied to determine vari-
ous structures including surfaces. Another solution is to 
reconstruct the exit wave from a focal series, to elimi-
nate the effect of aberrations [7]. However, the addi-
tional complexity added by such methods has limited 
their use. Instead an often used approach is to obtain 
the atomic positions directly from the experimental 
images. The positions of the intensity extrema within the 
image depend on imaging conditions, orientation and 
sample thickness, hence they do not necessarily coin-
cide with the atomic positions. However, in the periodic 
part of a solid, a constant spatial relationship can still be 
assumed between the image and the atomic positions. 
This assumption breaks in areas with thickness varia-
tions, defects and in particular in the vicinity of surfaces 
and interfaces [8] and thus a systematic assessment of the 
accuracy is needed for these cases.

Open Access

*Correspondence:  jamad@fysik.dtu.dk 
1 Department of Physics, Technical University of Denmark, Fysikvej, 
Building 311, 2800 Kongens Lyngby, Denmark
Full list of author information is available at the end of the article



Page 2 of 12Madsen et al. Adv Struct Chem Imag  (2017) 3:14 

A first investigation to determine the accuracy with 
which surface strain could be determined was under-
taken by Marks [9]. Image simulations were used to 
compare actual relaxations, in the input structural mod-
els, with apparent relaxations, measured from the cor-
responding simulated images. He found that there was a 
linear relationship between apparent and real strain, with 
a constant outward shift of about 5%. He also demon-
strated that the true positions of atomic columns at the 
surface could be determined within 0.2 Å, corresponding 
to 5% of the lattice parameter of gold. This investigation 
was done before the invention of the spherical aberration 
corrector, which today has made it feasible to measure 
surface relaxations on the order of a few percent.

Newer investigations on the accuracy of strain analysis 
directly from HRTEM images have focused on interfaces 
in heterostructures [8, 10–12]. The error in such cases 
was found to be as low as 0.5% [13, 14]. Using a new tech-
nique based on Fourier transforming several overlapping 
sliding windows, it has been demonstrated that pico-
metric precision and accuracy of interatomic distances 
can be achieved for measurements inside periodic solids 
[15]. However, these studies do not investigate surfaces 
and generally assume a uniform thickness. Moreover, in 
all these cases the strain distributions were fundamen-
tally 2D, i.e. the atomic columns were mainly displaced in 
the plane perpendicular to the zone axis. This is different 
from nanoparticles where the true 3D strain is projected 
as a 2D image.

The literature has several examples of studies using 
aberration-corrected microscopy that includes measure-
ments of strain in nanoparticles, and in the vicinity of 
surfaces, these measurements are often backed by com-
parison with a simulation that approximates the experi-
mental structure and microscope conditions [16–19]. The 
general conclusion is that the erroneous surface strain 
due to imaging aberrations is much smaller in aberration-
corrected images than the 5% found by Marks. However, 
these studies lack a systematic analysis of the sensitivity 
to experimental variables.

In the present work, we evaluate the accuracy of strain 
analysis directly from simulations of aberration-cor-
rected HRTEM images focusing on surfaces of nano-
particles. The simulated objects are gold nanoparticles, 
which in addition to being a topic of research in their 
own right, provides a model structure that has differ-
ent exposed surfaces and a linear thickness gradient. We 
examine the influence of four different effects: defocus, 
particle size, crystal tilt and noise, and we investigate 
what accuracy can be expected under which imaging and 
sample conditions.

Methods
Image simulation
Model and temperature effects
The overall shape of the model clusters was determined 
using Wulff constructions. The models were placed in a 
computational cell with 5 Å vacuum on all sides of the 
particle, see Fig. 1. Real metal surfaces are not simply ide-
ally truncated crystals; experimental studies have dem-
onstrated that the surface layer of many clean transition 
metals relaxes inward [20], while expansion of the top 
layer has been found for some surfaces of noble metals 
[21], including the {111} facets of gold. It has been pro-
posed that expansive surface strains in small decahedral 
gold nanoparticles are a contributor to their catalytic 
activity [22].

In this study the ideal crystals were relaxed using 
molecular dynamics (MD) with an empirical potential. 
The interactions between the atoms were calculated with 
the charge-optimized many body (COMB) potential [23]. 
The potential parameters were fitted with a high priority 
for surfaces and nanoparticles, and hence reproduce the 
experimental surface relaxations of gold quite well. For an 
infinitely extended {111} surface, the potential predicts a 
1.2% surface expansion of the top layer, which is close to 
the experimental value of 1.3% [24]. For {100} surfaces an 

Fig. 1  a, b Model gold nanoparticle containing 1925 atoms with 
a diameter of  4 nm. The electron beam travels in the negative 
z-direction. The full lines indicate the computational cell and the 
dashed lines indicate the rotation axes denoted �1 and �2. c The 
HRTEM images are simulated by propagating the incoming plane 
wave through the sample potential using the multislice algorithm. 
The resulting wave at the exit plane is transferred through the objec-
tive lens to the detector using the CTF. Defocus is given relative to 
the bottom of the nanoparticle, with a positive defocus referring to 
propagation toward the detector
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inward relaxation of 1.1% is predicted. There is no corre-
sponding experimental value; however, the prediction is 
close to 1.2% [25] and 1.51% [26] calculated with density 
functional theory.

The effect of finite temperature is included using the 
frozen phonon approximation [27]. This is a semi-clas-
sical model based on the assumption that a single high-
energy electron passing through the specimen at about 
half the speed of light can only probe a single frozen 
“snapshot” of the vibrating crystal. The image is produced 
by averaging incoherently over many snapshots where the 
atoms are slightly displaced from their equilibrium posi-
tions. The frozen phonon model has been shown to be 
numerically equivalent to the full quantum-mechanical 
treatment of the inelastic phonon scattering process [28]. 
The snapshots are typically determined using the Einstein 
approximation; however, we chose to use random steps 
from a constant temperature MD simulation using Lan-
gevin dynamics at 300 K [29]. We only used steps after 
the initial equilibration and the simulation was run for 
long enough to properly represent the thermal distribu-
tion of the atomic positions. We found that the simulated 
images are converged when ∼ 40 snapshots are included 
in the averaging.

During a MD simulation the projected atomic positions 
follow a 2D normal distribution. The standard deviation 
of this distribution is around 0.05 Å or approximately 2% 
of the distance between the columns. The standard devia-
tion of the distributions is not identical for all columns. 
It can be approximately 30–40% larger for some surface 
and corner atoms (see Additional file  1: Figure S3). We 
find that the difference between the mean relaxed posi-
tions and the mean positions obtained from a thermal 
average is just a constant thermal expansion of the entire 
crystal.

Diffraction and objective lens aberrations
The exit waves were simulated with the multislice algo-
rithm [30] using the QSTEM code [31]. This code has 
been interfaced with Python and utilizes the atomic sim-
ulation environment [32] for setting up model structures, 
providing a single environment for building models, sim-
ulating and analysing images. The code is publicly availa-
ble.1 We have also made code available for directly 
recalculating and analysing a selection of the results from 
this paper.

The electrostatic potential of the sample was generated 
using the independent atom model with the parametri-
zations of Rez et al. [33]. The potential was generated on 
a 3D grid before slicing, allowing for accurate simula-
tions of tilted samples. Aberrations due to the objective 

1  https://github.com/jacobjma/PyQSTEM.

lens were included by Fourier space multiplication with 
the contrast transfer function (CTF). The effect of a finite 
source size and energy spread (i.e. partial spatial and 
temporal coherence) was included in the Quasi-coher-
ent approximation where envelopes are applied to the 
wave function [34]. The imaging process is illustrated in 
Fig. 1c.

The microscope conditions were modelled after an 
image aberration-corrected FEI Titan microscope oper-
ated at 300 kV. Unless otherwise stated, the third-order 
spherical aberrations were set to Cs = −10 µm and all 
other aberrations except for defocus were set to zero. 
Other aberrations are generally not negligible in aberra-
tion-corrected microscopy; however, we chose to neglect 
them in order to keep the degrees of freedom limited. 
We tested the stability of our results to inclusion of addi-
tional aberrations, in particular twofold astigmatism on 
the order of 5–10 nm and 5th-order spherical aberra-
tions on the order of 2.5 mm. While some results change 
slightly, we found that inclusion of additional aberrations 
does not change our conclusions in significant ways.

The focal spread was � = 2.9 nm and the convergence 
angle was set to 15 mrad. The sampling used for the sim-
ulations was at least 0.05 Å/pixel, and when needed the 
large simulated images were downsampled using bilinear 
interpolation.

MTF and thermal magnetic noise
A single electron can cause a signal in more than one 
pixel of the CCD due to multiple scattering in the scintil-
lator material. This effect can be described by the mod-
ulation-transfer function (MTF). A typical MTF can be 
parametrized as the sum of a Gaussian and an exponen-
tial [35]

where q is the spatial frequency and the parameters are 
taken as a = 0.58, b = 2.5 Å and c = 5.9 Å.

An additional blurring can be caused by all kinds of 
noise that lead to a random deflection of the image rela-
tive to the detector. The origin of these aberrations are 
vibrations and drift of the stage, time-dependent fields 
resulting from instabilities of the lens currents and in 
particular thermal magnetic noise resulting from mag-
netic fields due to eddy currents in the material of the 
lenses [36]. The blurring is modelled by a Gaussian enve-
lope on the intensity distribution [37]

where σ denotes the standard deviation, and a value of 
σ = 0.25 Å has been assumed. It has been shown that 
including the MTF and a Gaussian blur can account for 
the so-called Stobbs factor [38], the ubiquitous contrast 

(1)MTF(q) = a exp(−bq)+ (1− a) exp(−c2q2),

(2)N (q) = exp(−(2πσ)2q2),
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mismatch between experimental and simulated images 
[39]. Since these effects can drastically reduce the con-
trast, they are important to include for accurately quanti-
fying the influence of noise.

Finite electron dose
We assume that the noise is dominated by shot noise, 
and hence the measured electron count in each pixel can 
be modelled by a Poisson distribution [40]. The average 
number of electrons N collected by the ith detector pixel 
is given by

where D is the dose in electrons per area, δ is the sam-
pling and  Ii is the probability for an electron hitting the 
i’th pixel. The signal-to-noise ratio of the whole image is 
given by [41]

where N̄  is the average number of electrons per pixel and 
σ(N ) is the standard deviation of the number of electrons 
collected by each pixel. In the limit of low dose this can 
be reduced to [42]

whereas in the limit of high dose other sources of noise 
are dominant (e.g. thermal noise) and the SNR becomes 
constant. We are only including shot noise in the 
simulations.

Strain analysis
There are several different approaches for obtaining 
strain directly from HRTEM images. The methods can 
broadly be classified into three different types: direct 
measurement of interatomic distances in real space [43, 
44], extraction of the lattice by comparison to a template 
[45] and analysis in Fourier space [46]. The results of the 
different approaches are similar inside periodic struc-
tures, but can differ in the presence of defects [44]. In 
this paper the real space method is used, since it has the 
most straight forward interpretation for surfaces, where 
the results of Fourier space analysis are very opaque. A 
comparison between real and Fourier space analysis, 
using geometric phase analysis (GPA), is provided as sup-
plementary information (see Additional file 1: Figure S4).

The most critical step in the real space approach is 
to determine the positions of the lattice points. There 
are several ways of defining these positions. However, 
the simplest way is to define them as the position of the 
intensity extrema, assumed to correspond with an atomic 
column. If the lattice points do not correspond to sin-
gle intensity peaks, they can instead be found using a 

(3)Ni = Dδ2Ii,

(4)SNR = N̄

σ(N )
,

(5)SNR =
√
N̄ =

√
DIδ,

cross-correlation of the image with a template motif [8]. 
The intensity extrema are found at sub-pixel accuracy by 
fitting a 2D function, usually a polynomial or a Gaussian, 
to the neighbourhood of each peak and setting the deriv-
atives to zero [44]. It is also possible to define the lattice 
positions from the centre of mass of the intensity distri-
butions [47]. The methods agree if the intensity distribu-
tions are symmetric. However, this is not necessarily the 
case close to asymmetries in the lattice, such as an inter-
face. A comparison of the two methods of measuring the 
atomic positions is included as supplementary informa-
tion. The conclusion is that the methods lead to slightly 
different errors; however, the magnitude of the errors is 
essentially the same.

The peak pairs algorithm [44] is the most popular 
method for finding strain from a set of 2D lattice points 
from HRTEM images. For the calculation of strain at 
every lattice point, the peak pairs algorithm uses only 
two lattice vectors. We have found that an approach 
using a larger number of lattice vectors is significantly 
more stable in the presence of noise. For an fcc crystal in 
the [48] zone axis, this method uses the four nearest and 
two second nearest neighbours to find the strain at any 
lattice point in the bulk. Another advantage of this 
method is that it allows us to determine the strain for 
lattice points at all surfaces and corners, which is not 
possible with the standard implementation of the peak 
pairs algorithm. The routines used for strain analysis, 
including a rudimentary implementation of GPA, are 
implemented in Python and made available as open 
source.2

The strain is computed at each lattice point, by com-
paring the positions of the neighbouring lattice points in 
an ideal template lattice to the corresponding measured 
lattice points. In practice, this is done by finding the opti-
mal affine transformation, A, between the two sets of 
vectors, see Fig. 2. In general finding A is an overdeter-
mined problem, hence it is found as the best fit to a least-
squares fit of the form:

where r is the residual term, vi and wi are vectors con-
taining the ideal and actual lattice vectors, A is the affine 
transformation and � · � denotes the Euclidean norm. The 
orientation and elastic strain matrices can be extracted 
from A via a left-sided polar decomposition of the defor-
mation gradient

2  https://github.com/jacobjma/structural-template-mapping.

(6)r = minA

N
∑

i

�Avi − wi�,

(7)PU = A,
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where U is an orthogonal right-handed matrix (the rota-
tion matrix), and P is a symmetric matrix (the elastic 
strain matrix). Finding the correspondence between v 
and w is done using a branch and bound search method. 
A  similar 3D equivalent of the method is described by 
Larsen et al. [48].

To limit the amount of results that have to be shown, 
we will usually just show the planar strain, ǫp, calcu-
lated as the average of the normal strains in the x- and 
y-direction

Surface relaxations are the strain at the outermost atoms 
in the direction perpendicular to the same surface. 
Hence, the surface relaxation associated with an atom on 
a surface perpendicular to the unit vector n̂ is found as

We are mainly interested in the strain measurement 
errors, but to define the errors, we first need to define the 
true strain. An image provides a single viewpoint of the 
structure, where each atomic column appears as a dot, 
hence we can only hope to measure an average column 
position for the atoms belonging to each column. Defin-
ing these averages to be the true column positions, the 
corresponding planar strain will be denoted as ǫp, true. The 
strain calculated from the positions of the maxima in the 
matching image will be denoted asǫp,measured. From these 
definitions, we define the error of a strain measurement as

Results
Influence of relaxations and temperature effects
When image simulations are used to estimate errors due 
to aberrations, it is a common practice to use a model 

(8)ǫp = 1

2
(ǫxx + ǫyy).

(9)ǫn̂ = n̂
T
ǫn̂.

(10)error (ǫp) = ǫp,measured − ǫp, true.

of an unrelaxed crystal, under the assumption that the 
errors caused by these aberrations are insensitive to the 
small difference between the unrelaxed and relaxed crys-
tal [16–19]. Our results demonstrate that this assump-
tion is invalid in general.

The comparison in Fig. 3 shows the difference between 
results based on an ideal crystal, a relaxed crystal and an 
average over thermal vibrations. There is a substantial 
difference between the exit wave intensities. This dif-
ference is less obvious in the final images; however, it is 
large enough to have an impact on the measured strain 
and more notably on the measurement errors. This 
means that using the ideal particle to calibrate a strain 
measurement would lead to wrong conclusions about the 
measurement errors.

The origin of the errors is deviations from the constant 
spatial relationship between the image and the underly-
ing projected potential. The peaks are generally more 
asymmetric for both the image resulting from a relaxed 
crystal and from a thermal average of crystals, and these 
small irregularities in the symmetry of adjacent intensity 
peaks can cause large measurement errors, as illustrated 
in Fig. 4. All results in the following sections will be based 
on simulations where temperature effects are included. 
We also note the ∼ 50% reduction of the image contrast 
due to thermal vibrations, making the influence of tem-
perature on the image contrast approximately as impor-
tant as the MTF and thermal magnetic noise.

The strain calculated from the true average projected 
column positions is shown in Fig.  5a for three different 
particle diameters. The strain calculated from the pro-
jected positions seems to show a significant compressive 
strain in the bulk of the particle; however, this is mislead-
ing. Figure  5b shows the strain calculated directly from 
the full 3D model for a slice through the centre of the 
nanoparticle; comparing the strain in the 3D model to 
the projected strain reveals that the apparent bulk com-
pressive strain is due to relaxations closer to the front 
and back surface. Hence, even disregarding image aber-
rations, comparing Fig.  5a, b shows that care has to be 
taken, when interpreting strain measurements from 
HRTEM images. The errors in the following sections 
are calculated with respect to the strain in the projected 
positions and are thus mainly due to image aberrations.

Influence of defocus
The top row of Fig.  6 shows simulated images at differ-
ent defocus and the bottom row shows the error in the 
planar strain measured from these images. The smallest 
defocus shown is 4.5 nm since contrast inversion begins 
to take effect for a smaller defocus. We present results for 
only a positive defocus, which leads to images with bright 
spots at the positions of the atomic columns. We have 

Fig. 2  The black points indicate the ideal lattice for an fcc crystal 
in the [48] zone axis. The grey points are the positions of slightly 
displaced lattice points for a strained crystal. The strain at the central 
lattice point is calculated by finding the optimal affine transformation 
between the black and grey points, denoted by v and w, respectively
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obtained results for negative defocus as well, where the 
atoms appear as black spots on a lighter background. The 
results are shown in Additional file 1: Figure S5.

A defocus of 8.5 nm results in planar strain errors 
smaller than 1% everywhere, while a defocus of 12.5 nm 

causes significant errors at the {100} facets. Due to the 
sign and location of these errors, they could easily be 
mistaken for real surface relaxations. The errors gener-
ally stay small for columns not at the surface; however, at 
larger defocus some errors start to appear, generally fol-
lowing the thickness gradient.

The error in the measured surface relaxations aver-
aged across the facets for the uppermost atomic layers is 
shown as a function of defocus in Fig. 7. Since this error 
can vary quite a bit across the {111} facets, we also show 
the corresponding standard deviation. Results for 3 dif-
ferent particle sizes are shown, from a diameter of ∼ 2 
nm to a diameter of ∼ 6 nm.

For the {100} facet the error is almost zero up to a defo-
cus of 8.5 nm, across all three particle sizes. Meanwhile 
the error for the {111} facet never becomes smaller than 
1% for the 4 nm particle, which is approximately the same 
magnitude as the actual relaxations. For both facets and 
all sizes, the errors stay below 2% up to a defocus of ∼ 11 
nm, where the mean error increases sharply at the {100} 
facets. The mean error does not increase as drastically for 
the {111} facets. On the other hand, the standard devia-
tion does increase. This is mainly due to the thickness 
variation along these facets.

Fig. 3  From top to bottom, the rows contain results relating to an ideal crystal, a relaxed crystal and a thermal average of crystals. Each of the 
panels show a small section of the corner between two {111} facets. Along the columns we show: a the projected positions of the atoms, all the 
positions used in the thermal average are included. b Intensities of the exit waves. c Simulated images for a defocus �f = 14.5 nm. d The true pla-
nar strain, ǫp, true, i.e. the strain calculated directly from the projected positions of the model crystal. The colour coding shared by all the columns is 
shown to the right of the figure. e The measured planar strain, ǫp,measured, i.e. strain calculated from the measured positions of the intensity maxima 
in simulated images. f The measurement error of the planar strain, error(ǫp), calculated as the difference between the strain shown in the two 
preceding columns

Fig. 4  Slices along the dashed lines in Fig. 3. The black vertical lines 
indicate the true atomic positions and the red vertical lines indicate 
the corresponding measured maxima positions. For the ideal model 
the measured distance between the outermost peaks is too large by 
0.006 nm or 2% of the interatomic distance in the slice direction. For 
the images that include temperature effects, the same measurement 
is too small by 0.025 nm or 10% of the interatomic distance
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Influence of tilt
It is unavoidable that the sample will be slightly tilted 
relative to the ideal zone axis. Figure 8 shows the distri-
bution of errors in the planar strain for increasing tilt, 
α , around the �1-axis. At tilt α = 1.0◦, the errors have 
changed very little compared to the untilted crystal, 
though the appearance of the image have changed in the 
central part of particle, this is due to an effective dimin-
ishing of the projected potential, as have been reported 
elsewhere [49]. The errors stay small up to a tilt α = 2.0◦ , 
but increase sharply in the centre of the nanoparticle 
between α = 2.0◦ and α = 3.0◦. The error introduced by 
tilt is very dependent on the height of the atomic col-
umns, since the length of the footprint of the projection 
of a tilted column increases linearly with its height. Only 
one direction of tilt is shown; however, the trends are 

similar for other tilt directions. One other tilt directions 
is included as Additional file 1: Figure S6.

Figure  9 shows the effects of tilt on the errors in the 
measured surface relaxations for a defocus �f = 8.5 
nm. The tilt has a relatively limited impact on the meas-
ured surface relaxations. The mean and standard devia-
tion of error changes by at most 1% over the entire tilt 
range. The effects of tilt on the strain measurements are 
very dependent on defocus. For example at a defocus 
�f = 14.5 nm, the mean surface relaxation error changes 
by more than 6% at the {100} facets, a plot showing this is 
shown in Additional file 1: Figure S7.

Influence of noise
The evolution of the object visibility with respect to the 
sampling and dose is shown in Fig. 10a. At a dose of 102 

Fig. 5  a The “true” planar strain, ǫp, true, calculated from the average projected column positions of the model, for three different nanoparticle diam-
eters. b The actual planar strain for a slice through the 3D model

Fig. 6  The top row shows simulated images for a nanoparticle with a diameter of 4 nm. The bottom row shows the corresponding distribution of 
errors in the planar strain. The defocus is different in each column, as indicated in the figure



Page 8 of 12Madsen et al. Adv Struct Chem Imag  (2017) 3:14 

e−/Å2 the object is barely visible, while the images are 
essentially unaffected by noise at 105 e−/Å2.

Noise removal is essential to obtain the stable poly-
nomial fits necessary for sub-pixel resolution; hence we 
show the same noisy images after application of a Wiener 
filter in Fig. 10b [50]. The regularization of the filter was 
chosen to be optimal for each of the different samplings, 
but was not changed with the amount of noise.

To determine the influence of dose on the errors in 
strain measurements, we simulate a statistically repre-
sentative ensemble of images, K = 300, with different 
distributions of noise. The error due to noise is quantified 
using the mean absolute error, MAE, over the ensemble 
of images for each lattice point

where ǫk ,i is the planar strain at the i’th lattice point meas-
ured from the kth noisy image and ǫ∞,i is the correspond-
ing measured strain without noise. Since the automatic 
polynomial fitting can fail at low doses, extreme outliers 
have been removed before taking the average. Figure 11 
shows the distribution of the MAE across a nanoparticle, 
there is a fairly large difference between the MAE for dif-
ferent lattice points, varying by a factor of three between 
the centre of the particle and a corner. The reason for 
this is mainly that the strain at surfaces is determined on 
the basis of fewer surrounding lattice points. The strain 
at corner atoms is determined on the basis of just three 
neighbours, while the measurements in the centre rely on 
twice that number of neighbours.

The MAE at three chosen lattice sites as a function of 
dose is shown in Fig. 12. We find a simple approximate 
empirical relationship, assuming constant sampling, 
between the MAE and the dose 

(11)MAEi =
1

K

K
∑

k=0

∣

∣ǫk ,i − ǫ∞,i
∣

∣,

(12)MAE ∝ 1√
D

∝ 1

SNR
,

Fig. 7  The error in the measured surface relaxations averaged across 
the facets as a function of defocus, for the three particle sizes given 
in the legend, for: a the {111} facets and b the {100} facets. The bars 
indicate the standard deviation of the errors in the surface relaxation 
error across the facets. The bars are shifted slightly from the points for 
visual clarity

Fig. 8  The top row shows simulated images at increasing tilt around the �1-axis for a defocus �f = 8.5 nm. The bottom row shows the error in the 
planar strain at each lattice point measured from these images
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where the constant of proportionality is determined by 
the number of neighbours, local image contrast and sam-
pling. The second approximate proportionality assumes 
low dose and is due to Eq. (5).

Given that the SNR depends linearly on the sampling 
[see Eq. (5)], the expression above might lead one to 
expect that coarser sampling would give smaller MAE. 
This is however not the case, as shown in Fig. 13 where 
the MAE is plotted as a function of sampling for different 

doses. The relationship is fairly constant though a sam-
pling of 0.2 Å/pixel is better than both a rougher or a 
finer sampling. The main reason that there is no decrease 
in the MAE as the sampling gets coarser is that the better 
SNR is compensated by a smaller number of pixels across 
each peak available for polynomial fitting.

In the previous sections, we saw that the defocus 
should be kept small to obtain strain measurements that 
are relatively unaffected by aberrations. The disadvantage 
of this is that phase contrast imaging relies on the addi-
tional phase added by the objective lens, and hence a too 
small defocus will negatively impact the image contrast. 
This effect is illustrated in Fig.  14 where the change in 
the visibility of the nanoparticle is shown with respect to 

Fig. 9  The error in the measured surface relaxations averaged across 
the facets as a function of tilt, around the axes (a) �1 and (b) �2. The 
defocus was �f = 8.5 nm. The curves are for the {100} and {111} 
facets, as indicated by the legend

Fig. 10  a Sections of the simulated images at a defocus of �f = 8.5 nm for different doses and samplings. All images are mapped onto the same 
range of grey levels. b The same images after applying a Wiener filter

Fig. 11  The MAE of the planar strain due to noise at each lattice 
point for a Wiener filtered noisy image at a sampling of 0.2 Å/pixel, a 
dose of 103 e−/Å2 and a defocus �f = 8.5 nm
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defocus and dose. The corresponding errors are quanti-
fied in Fig. 15. At a low dose, the errors grow very large 
when the defocus is small, but even at a higher dose, 
errors due to noise become present when the defocus 
is too small. When the defocus is increased the MAE 
becomes smaller, however saturation is reached relatively 
quickly, and additional defocus beyond �f = 8 nm does 
not further improve the MAE.

Conclusion
We looked at the accuracy of surface strain measure-
ments from HRTEM images of nanoparticles. We showed 
that the practice of using simulations based on ideal sam-
ple models to calibrate strain measurements is problem-
atic, since the predicted errors from such simulations do 

Fig. 12  The MAE as a function of the dose for the three lattice points, 
A, B and C, as indicated in Fig. 11. The dots show the MAE calculated 
from the simulated images and the full lines are curves of the form 
given by Eq. (12), where the constant of proportionality has been 
fitted to the dots. The bars indicate the standard deviations, which 
for visual clarity are shown only for lattice point B, proportionally the 
standard deviations are similar for the other lattice points

Fig. 13  The MAE as a function of the sampling for five different doses 
at the B lattice point (see Fig. 11). The defocus was �f = 8.5 nm and 
the sampling was 0.2 Å/pixel

Fig. 14  Sections of simulated HRTEM images for different doses and 
defocus at a sampling of 0.2 Å/pixel. All images are mapped onto the 
same range of greys

Fig. 15  The MAE as a function of defocus for four different doses at a 
sampling of 0.2 Å/pixel at the lattice point B
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not in general reflect the errors for an identical model 
that includes relaxations.

In general, the impact of the interaction between tilt, 
thickness and defocus on the final strain measurement 
is very complicated. However, we observe that if the 
defocus is small enough, the errors in the measured sur-
face relaxations due to image aberrations can be kept at 
less than 2%, even for visually obvious tilts. This is sig-
nificantly larger than the 0.5% that have been found for 
strain measurements inside periodic solids [13]. The 
main reason for the larger error is the asymmetry in the 
peaks close to surfaces.

In order to obtain measurements with small errors, the 
defocus should not be chosen solely to maximize con-
trast, since this will also cause large errors due to aberra-
tions. The choice of defocus has to balance delocalization 
and contrast; if the defocus is too small the contrast will 
suffer, while if defocus is too large the image aberrations 
will be the main source of error.

For a dose of 103 e−/Å2, the optimal defocus for the 
gold nanoparticles is somewhere around 8.5 nm; at this 
defocus the errors in the surface relaxations are below 
2% and the expected noise error is 1.2% with a standard 
deviation 0.8%.
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Abstract
Recording atomic-resolution transmission
electron microscopy (TEM) images is be-
coming increasingly routine. A new bot-
tleneck is then analyzing this information,
which often involves time-consuming man-
ual structural identification. We have de-
veloped a deep learning-based algorithm for
recognition of the local structure in TEM
images, which is stable to microscope pa-
rameters and noise. The neural network is
trained entirely from simulation, but is ca-
pable of making correct predictions on ex-
perimental images. We apply the method
to single sheets of defected graphene, and
to metallic nanoparticles on an oxide sup-
port.

Introduction
With the development in transmission elec-
tron microscopes that has occurred over
the last decade, it has become increasingly
common to record and store large amounts
of TEM data, often in the form of TEM
videos. This development has been acceler-
ated by the advent of faster and more sensi-
tive detectors such as the Direct Detection
Camera;1 but also by the development of
the Environmental TEM, where it becomes
possible to study how e.g. nanoparticles re-
spond to reaction gasses in real time.2
As large amounts of TEM data becomes

available, it becomes increasingly impor-
tant to have efficient and automated anal-
ysis tools. In many applications, accu-
rate identification and classification of local
structure is a crucial first step in deriving
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useful information from atomic-resolution
images and video. Examples include char-
acterizing the distribution of dopants3 and
defects,4 in situ imaging of phase transfor-
mations,5 structural reordering during ma-
terials growth6,7 and dynamic surface phe-
nomena.8
Analysis methods such as the Geometric

Phase Analysis (GPA)9 are based on the lo-
cal symmetry and periodicity, and has been
very successful at extracting structural
information in many regular structures,
including identifying defects, strain and
phase boundaries.10 However, GPA typi-
cally has difficulties analyzing e.g. surfaces,
where the periodicity changes rapidly.11

Real space approaches typically either
rely on direct identification of atomic po-
sitions by fitting local parts of the image
to e.g. Gaussian intensity profiles,12,13 or
on direct comparison with a template.14

However, these methods are in general not
able to compete with a trained human ex-
pert. The difficulties arise in part due to
the phase contrast nature of TEM, which
makes the image extremely sensitive to
small changes in the defocus, necessitating
human intervention in the image analysis.
When analyzing time sequences (video), it
may even be necessary to adjust the im-
age analysis tools to each frame, as small
rotations, vibrations and thermal drift can
modify the appearance from one frame to
another. These difficulties are compounded
by the low signal-to-noise ratio resulting
from using the smallest possible electron
dose to minimize beam damage to the sam-
ple.
Recently, convolutional neural networks

and related deep-learning methods have
demonstrated excellent performance in vi-
sual recognition tasks, including particle
detection15 and automatic segmentation of

brain images from cryo-electron microscopy
images.16 Kirschner and Hillebrand have
published a method for predicting defo-
cus and sample thickness,17 and Meyer and
Heindl have used neural networks to recon-
struct the exit wave function from off-axis
electron holograms.18

Deep learning methods have, however, to
our knowledge not yet been used to ana-
lyze the atomic structure in TEM images.
In this article, we describe a CNN based
method for classifying atomic structures in
TEM, and demonstrate that it can be ap-
plied to single layers of graphene, as well
as to supported metallic nanoparticles. Un-
der good circumstances, the method can be
generalized to identify chemical species and
to identify the height of atomic columns.

Methods
The task of identifying atoms in atomically
resolved TEM images is a special case of
a general problem in image analysis. The
task is to identify instances of a set of struc-
tures, and assigning class labels {cn} and
Cartesian coordinates {(xn, yn)} to each of
them. In the simplest case, there is only
one class (“atom”), but the analysis can be
extended to identify specific structures of
atoms; atom columns of various sizes; va-
cancies; etc. The neural network will be
looking for a predefined set of Nc labels,
C = {c0, c1, . . . , cNc} and will initially as-
sign a probability for each possible label.
The choice of how to categorize the struc-
tures is problem specific, and typically de-
pends on how the researcher derives mean-
ing from the image.
An example is shown in Fig. 1, where one

or more images of a structure is mapped
onto a set of probability maps, from which
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Figure 1: The classification method illustrated on images of single sheets of molybdenum
disulphide, MoS2. The convolutional neural net is fed one or more TEM images of the
same sample with varying microscope parameters. The task of the CNN is to classify each
pixel as belonging to one of five categories: {background, Mo atom, S atom, Mo vacancy, S
vacancy}; where a vacancy is defined as a missing atom where there would be an atom in a
perfect lattice. The output of the CNN is thus five probability maps, which are converted
into an interpretation of the structure

the interpreted structure can be depicted.
The input will typically be a single grey-
scale image of sizeNx×Ny, but it is possible
to use multiple images of the same spatial
region, for example a focal series where the
microscope focus is varied systematically.
Thus in general the neural network maps
image data Ix,y,k of shape Nx × Ny × Nf

(where Nf is often 1) to probability maps
Px,y,k of shape Nx × Ny × Nc, where Nc

is the number of classes including a back-
ground class. Including the background
class makes it easy to enforce normaliza-
tion of the probabilities,

∀x, y :
∑

k

Px,y,k = 1. (1)

With such a classification scheme, it is
important that structures do not overlap,
and overlapping structures should be han-
dled by defining new classes. An example is
columns of atoms, which can be handled by
making classes for a single atom, a column

of two atoms, etc.

Preprocessing

Contrast and illumination may vary sig-
nificantly across experimentally obtained
TEM images, in particular if images con-
tain local structures that are not relevant
for the problem being analyzed. This is
handled by a combination of subtractive
and divisive normalization. First, a local
average of the intensity is subtracted from
the image

Gijk = Iijk −
1

Nf

∑

pqk′

wpqIi+p,j+q,k′ (2)

where wpq is a Gaussian weighting window
normalized so

∑
pq wpq = 1. The decay

length of the Gaussian weighting window
must be chosen to be significantly longer
than the length scales of the features the
net should detect, to avoid washing them
out.
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Finally, the contrast is normalized with
a divisive normalization using the same
Gaussian weighting window

Hijk =
Gijk

1
Nf

√∑
pqk′ wpqG2

i+p,j+q,k′

(3)

Neural net architecture

The neural network needs to be able to
combine information on multiple length
scales. Locally, the atoms are identified as
local peaks or valleys, but estimating what
an atom should look like requires contex-
tual information since it depends on e.g.
the defocus of the microscope. In some
images the atoms may be bright spots, in
other they are dark spots, and the contrast
may even invert within different regions of
the same image.
The network architecture is based on

fully convolutional networks (FCN) for
pixel-wise segmentation.19 Following the
FusionNet structure proposed by Quan et
al.16 we use additive skips and residual
blocks to prevent vanishing gradients and
to allow for training of deeper neural nets.
Multi-level up-sampling and skip connec-
tions combine global abstract information
from deep coarse paths with local spatially
resolved information from shallow paths.
The network has a single pipeline with

additive skip connections to preserve spa-
tial information at each resolution. The
lowest resolution is one eighths of the full
resolution, this allows for spatial filters to
be applied that compare features across the
entire image. The shape of the network is
chosen to be symmetric, so for every layer
present in the part where resolution is re-
duced, there is a corresponding layer in the
part where resolution is increased again.
The chosen architecture is shown in Fig. 2

At each resolution on the down-sampling
and up-sampling paths, the network con-
sists of five convolutional layers, with a skip
connection bypassing the middle three lay-
ers using elementwise addition (shown as
a residual block in Fig. 2). Every con-
volutional layer except the last employ a
3 × 3 convolutional kernel, followed by
an element-wise rectified linear activation,
h(x) = max{0, x}, which are then batch
normalized following eq. (2–3).20

Feature compression is done in the down-
sampling path using a max pooling layer
down-sampling by a factor two in both spa-
tial direction, while doubling the number
of feature maps. Conversely, in the up-
sampling path the features are up-sampled
using a transpose convolutional block19

doubling the spatial resolution while halv-
ing the number of feature maps, followed by
an element-wise addition from same level of
the encoding path, forming a long skip con-
nection.
The final scoring consists of a convolu-

tional layer with a 1× 1 kernel followed by
a softmax non-linearity

σ(Pk) =
exp(Pk)∑mf

k=1 exp(Pk)
. (4)

The transpose convolutional layers are
initialized as bilinear interpolation and all
other layers use random weight initializa-
tion.
The network is implemented with Ten-

sorFlow using the Python API,21 chosen
due to the wide range of functions already
made available, as well as the community
support. All models are trained and tested
with TensorFlow on a single NVIDIA GTX
1080 Ti. Our models and code are publicly
available.22
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Figure 2: The architecture of the neural network. Information flows from left to right.
The features are down-sampled in an encoding path and up-sampled through a decoding
path, in addition several skip connections ensure that it is possible to retain fine spatial
information.

Generation of training data

A particular challenge is to generate the
training data for the neural net, since on
one hand these data should include the
kind of structures the net should be able
to recognize, but on the other hand should
not bias the network towards a specific in-
terpretation of the images. This makes it
particularly difficult to use real experimen-
tal data as training data, since the network
would be trained to reproduce any subcon-
scious bias of the scientists generating the
interpretations to which the net is trained.
Instead, we train the network to a large

set of simulated data. It is important to
be aware that this does not preclude bias-
ing the training set, since such a bias will
always be present in the selection criteria
generating the structures that form the ba-
sis for the image simulations, but at least
the true positions of all atoms are known
for the simulated images.
We try to minimize the bias of the mod-

els by generating a training set with a
rather large random component while still
maintaining realistic atomic positions, but
without resorting to e.g. thermodynamical
modelling of the systems; this will be dis-
cussed further in the sections describing ap-
plications of the method.
The training set consists of a collection of

computer generated systems (e.g. nanopar-
ticles, if the neural net is to be applied to
such), generated using the Atomic Simula-
tion Environment (ASE).23 Simulated im-
ages are generated using the Multislice Al-
gorithm,24 which has been shown to pro-
vide contrast matching with experiment.25

Simulation is done using the publicly avail-
able QSTEM code,26 through a Python in-
terface to ASE developed by the authors.11

The exit wave functions for each system in
the training set is precomputed, but dur-
ing training simple symmetry operations
(translation, rotation by 90◦ and mirroring)
can easily be applied in each training step.
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Table 1: Randomized parameters for generating training examples of graphene for a 80 kV
microscope.

parameters lower bound upper bound distribution
defocus (∆f) -200 Å 200 Å uniform

3rd order spherical (Cs) -20 µm 20 µm uniform
5th order spherical (C5) 0 5 mm uniform

1st order astigmatism magnitude 0 100 Å uniform
1st order astigmatism angle 0 2π uniform

deflection 0 25 Å uniform
focal spread 20 Å 40 Å uniform

dose 101 e−/Å2
104 e−/Å2 exponential

c1 (MTF) 0 0.1 uniform
c2 (MTF) 0.4 0.6 uniform
c3 (MTF) 2 3 uniform

For each training iteration, a Contrast
Transfer Function (CTF) is generated with
randomly chosen parameters for the elec-
tron microscope taken from a distribu-
tion; Table 1 shows an example of pa-
rameters used for graphene. The CTF
is then applied to the precomputed exit
wave function. The effect of energy spread
(i.e. temporal coherence) is included in the
quasi-coherent approximation,27 and tem-
perature effects are included by blurring
the atomic potentials. The images are
resampled to a random sampling rate, a
technique sometimes referred to as scale-
jittering. It is essential to include a reason-
able model of noise in the images, this is
done by modelling the finite electron dose
with a Poisson distribution, and including
the modulation transfer function (MTF) of
the detector in the image simulation. The
latter is essential as it has a strong influ-
ence on the spectral properties of the noise,
and prevents that the network incorrectly
is trained to detect atoms by the absence
of pure white noise. The MTF is modelled

a sum of a Gaussian and an exponential:28

M(q) = c1 exp (−c2q)+(1−c1) exp
(
−c23q2

)

(5)
The ground truth for the training data is

generated as a superposition of Gaussians
with an amplitude of one, centered at the
positions of the atoms (or the mean of the
positions for atomic columns). The back-
ground class is then assigning the remain-
ing probability, such that the sum of prob-
abilities is one; this is possible since the
overlap between any pair of Gaussians is
negligible. The width, σ, of the Gaussians
is an important parameter, since it strongly
influences the penalty of wrongly assigning
a region of the inferred confidence map to
the background. We found that a too small
value of σ would lead to a network with a
strong tendency to assign any region that
is difficult to analyze (e.g. due to noise)
to the background class. In a similar way,
we found that a common local minimum at
training would be to assign anything to the
background class, this is also exacerbated
by a low value of σ. We found that a width
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of σ = 1Å, corresponding to 8–10 pixels
at typical resolutions, worked well for the
cases we have considered.

Training

The CNN is trained using a mean squared
difference loss function, regularized with a
penalty on the size of the l2 norm of the
weights

L =
∑

ijk

‖P̃ijk − Pijk‖2 +
1

2
λ
∑

i

W 2
i (6)

where P̃ is the output and P is the ground
truth. The main way the network is reg-
ularized is through the large variability of
the training image data, since a new train-
ing image is simulated for every training
iteration. Nevertheless, we found that per-
formance on actual experimental data is
improved by adding moderate l2 regular-
ization (also known as weight decay), since
this causes any weight not being used by
the network to produce meaningful output
to become negligible rather than to persist
for no reason. Such weights may deteri-
orate performance on actual experimental
data although they do not negatively im-
pact the performance on the training data.

Post-processing and interpreta-
tion

While the interpretation of the confidence
maps is simplest if there is only a single
class, we here illustrate how it can be done
even in the case of multiple classes.
The first step is finding the regions where

a signal is found. This is done by finding
all minima in the confidence map for the
background class. Only minima that dip
below ε = 0.995 on a scale from 0 – 1 are

included, this prevents spending time on
analyzing regions that are obviously back-
ground. The local minima are then used
as seeds for basins created using the water-
shed principle for image segmentation us-
ing Meyer’s algorithm.29 We avoid includ-
ing long tails in segments by setting a hard
upper limit for each segment at ε.
Each segment is then assigned a probabil-

ity for belonging to each non-background
class as

pn(ck) ∝
∑

i,j∈Sn
Pijk k > 0 , (7)

where the sum is over all pixels belonging
to the n’th image segment. The coordinate
of the atomic structure is calculated as the
center-of-mass of the image segment. Fi-
nally, segments are discarded if

∑

k>0

pn(ck) < tpn(c0) (8)

The value chosen for t is normally uncrit-
ical, but values near 0.5 is recommended.
It should be noted that in most cases there
is only a single class (c1), “an atom”. The
process is illustrated in Fig. 3.

Application to graphene
High resolution TEM has been used exten-
sively to study graphene, and several au-
tomatic algorithms for extracting quanti-
tative information have been proposed. Of
particular interest is the ability to identify
defects, both localized (vacancies, disloca-
tions etc) and extended (grain boundaries).
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Figure 3: (a) The input to the network is three images of a small nanoparticle, recorded
(or simulated) with different defocus; here is shown a single simulated image with the
ground truth thickness of the individual columns marked with colors. (b) The background
confidence map; we se that the network correctly identifies that there is something at each
atomic column, but also thinks there may be something outside the nanoparticle. (c) A
segmentation of the background map into several distinct objects. (d) Confidence maps
for the classes corresponding to columns containing two to five atoms. (e) Each object is
assigned a probability of belonging to each of the five classes. (f) The final classification
of the atomic columns. The labels A–C mark the three columns examined in panel (e). In
this case, most atomic columns are correctly assigned to their classes. Column B which is
has five atoms is incorrectly identified as having only four atoms; however the network is
clearly in doubt as seen in the probability distribution. One other column is misassigned,
in both cases the network has probably learned that columns at edges and corners are
likely to contain fewer atoms, which is not the case for these two columns.
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Training

It is an easy task for a CNN to recognize
the regular hexagonal lattice of graphene.
However, we want the network to be able
to correctly localize the atomic positions
also in situations where they are not at
or near their ideal positions. Thus, the
atomic models used to generate the train-
ing images cannot simply be ideal sheets
of graphene, nor can they be sheets of
graphene with added defects.
The opposite extreme, that of generating

purely random atomic positions would re-
sult in inefficient networks, as the vast ma-
jority of the training data would be very
different from the experimentally interest-
ing situations. Instead, we generate atomic
positions that lie somewhere between these
two extremes.
The algorithm is based on the observa-

tion that a Voronoi tessellation of a 2D
set of points mainly consists of hexagons,
and is illustrated in Fig. 4. First, an area
is filled with randomly distributed points
under the constraint of a minimal distance
between the points, i.e. a Poisson disc dis-
tribution. These points form the generat-
ing centers of a Voronoi tessellation; the
vertices of the tessellation will become the
carbon atoms. The tessellation is opti-
mized by a few steps of Lloyd’s algorithm:30

the centers of the Voronoi tessellation are
moved to the center of mass of their respec-
tive Voronoi cell. This makes the Voronoi
polyhedra more regular, and in particular
it moves closely placed vertices apart, pre-
venting atoms from being placed unrealisti-
cally close. Finally, from zero to four holes
are cut randomly in the structure.
The resulting structures form a structure

which is very suitable for our purpose. The
distribution of bond lengths is quite nar-

row, and the mean can be controlled by
choosing the initial number of points. The
structure contains a large number of poly-
gons with five to eight sides, similar to what
is observed in graphene grain boundaries.
A typical training structure is shown in
Fig. 5.
We generated 500 random structures

with a size of 43.2 × 43.2 Å, or 360 × 360
pixels at a sampling rate of 0.12 Å/pixel.
All the simulations were done at an accel-
eration voltage of 80 kV. While the micro-
scope parameters are uniquely generated
at each training step, the same structure
is utilized multiple times. This have little
consequence since most of the variability is
in microscope parameters.

Analyzing experimental images

An example of how the network performs
on experimental data is given in Fig. 6.
When given an experimental TEM image
of the edge of a graphene sheet, the neu-
ral network has no problems identifying the
atoms inside the graphene sheet. At the
edge of the sheet, there are positions where
the network assigns a small but nonzero
probability for the presence of atoms, but
using a reasonable cutoff of t = 0.5 gives a
result in agreement with a manual analysis
of the image, and without any high-energy
atomic configurations at the edges.
We apply the trained neural net on a

number of graphene images that have
previously been published by some of
us.31,32 The experimental graphene im-
ages were measured using a FEI Titan
80-300 Environmental TEM equipped with
a monochromator at the electron gun and
spherical aberration (Cs) corrector at the
objective lens. The acceleration voltage
of the microscope were 80 kV which is

9



a b c d e

Figure 4: Procedure for generating training structures for graphene. (a) A square in 2D
space is filled with randomly distributed seed points under the constraint of a minimum
separation in terms of euclidean distance. (b) Next, the Voronoi tessellation is generated
from the seed points, the vertices of the diagram will become atomic positions while the
original positions are discarded. (c) To avoid overlapping atoms, the positions of the
Voronoi vertices are relaxed using Lloyd’s algorithm. (d) Lastly, zero to four holes of
varying size and shape are introduced in the structure.

(a) ”Graphene” model (b) Simulated image: I(x) (c) Ground truth: P(x) (d) Prediction: P(x)~

2 nm

Figure 5: The CNN is trained on simulated images of graphene-like structures, generated
by the algorithm in Fig. 4. (a) A quasi-random graphene-like structure. (b) Simulated
image based on the atomic positions. (c) The corresponding ground truth calculated from
the atomic positions. The network is trained on a series of matching images and ground
truth maps. (d) The output prediction of the trained neural network given the simulated
image in (b).
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(a) Experimental image (b) Confidence map (c) Positions (t = 0.01) (d) Positions (t = 0.5)

2 nm
0.0 0.5 1.0

Figure 6: A neural network trained exclusively on simulated data is capable of generalizing
to experimental images. (a) Single suspended graphene sheet with a hole formed under
the influence of the electron beam. (b) The regressed probability distribution predicted
by the neural network for the image in (a). (c) The local peak positions of the probability
map is overlayed on the image. The peaks are color-coded according to their maximum
value. Peaks with a maximum value less than 0.01 are excluded. (d) A higher tolerance
for exclusion is used to remove peaks with a maximum value less than 0.5.

below the knock-on threshold for carbon
atoms in pristine graphene.33 The elec-
tron beam energy spread was below 0.3 eV,
while the Cs-corrector was aligned to min-
imize the spherical aberration. The images
were recorded using a Gatan US1000 CCD
camera with an exposure time of 1 s.
Fig. 7 shows a TEM images of pris-

tine graphene, and of graphene with a hole.
The negative Cs imaging results in images
where the carbon atoms are bright spots,
with the centers of the hexagons appear-
ing dark. The output of the neural net-
work is shown in the central column. The
neural network detects all atomic positions
in the pristine sheet, this is accomplished
without having regular hexagonal lattices
in the training set. Additionally, the neural
network automatically recognizes that the
atoms appear bright, which is only the case
for half of the training images. Finally, we
show the strain calculated from the atomic
positions, using a structural template with
the two nearest neighbour shells (i.e. the
9 nearest neighbours), as described previ-

ously.11

Application to metallic
nanoparticles
Metallic nanoparticles on oxide support is
a very active research topic, mainly due
to the applications within heterogeneous
catalysis. Often, the detailed atomic struc-
ture is important for the catalytic process,
as the active size depending on the process
may be e.g. step sites,34 corner atoms35 or
strained facets.36,37

For example, although gold is normally
chemically inert, nanoparticles of gold have
been shown to catalyse the oxidation of
CO.38 It is also a system where significant
atomic rearrangement is observed in the
presence of gasses, both involving overall
shape changes of the nanoparticles39 and
changes in the local surface structure We
here use supported gold nanoparticles to
illustrate the application of neural nets to
the analysis of supported nanoparticles.
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Figure 7: Experimental images of graphene, and their interpretation by the neural net.
The first row shows a pristine sheet of graphene, the second a sheet with a hole. The left
column shows the original TEM images. The center column shows the output of the neural
net. The rightmost column shows the planar strain calculated from the atomic positions,
as identified by the neural net.

Training

We have trained the network on simulated
gold nanoparticles. As the network should
be able to recognize both atomically flat
and rough surfaces, the training set in-
cludes both kinds of nanoparticles. Ini-
tially, nanoparticles are cut from a regu-
lar crystal, keeping a random number of
layers in directions with low Miller indices
(the 〈100〉, 〈110〉 and 〈111〉 directions). To
roughen the particles, a random number of
additional atoms are added to the particle.
The atoms are added at allowed crystal po-
sitions at the surface of the nanoparticles,
in such a way that highly coordinated sur-
face sites are most likely to be picked. If the

coordination number (i.e. the number of
occupied neighbor sites) of site i is ni, then
the probability of placing the next atom at
site i is chosen as

p(ni) =
exp (ni/T )∑
j exp (nj/T )

(9)

where the sum is over all sites j where
nj ≥ 1 and T is a temperature-like param-
eter that can be chosen differently for each
nanoparticle to generate particles with dif-
ferent roughness.
Each particle is then rotated into the
〈110〉 or 〈111〉 zone axis, and is rotated a
random amount around the axis. It is fi-
nally tilted 0–5◦ away from the zone axis.

12



As was the case for the graphene sim-
ulations, 500 of nanoparticles were gener-
ated, but during the training new micro-
scope parameters were picked for each iter-
ation, and the nanoparticles were randomly
translated, mirrored and rotated by a mul-
tiple of 90◦ (operations that can cheaply
be performed on the precomputed wave-
functions). Figure 8 shows a sample of gen-
erated nanoparticles, and their correspond-
ing images.

Analyzing nanoparticle images
and videos

We applied the resulting network to gold
nanoparticles on a ceria substrate. Fig-
ure 9 shows a TEM image of such a parti-
cle, and the corresponding analysis by the
neural net. It is seen that the network con-
fidently identifies the atoms in the nanopar-
ticle, but does a much less impressive job
in the substrate; this is partly due to the
network not being trained on ceria’s crys-
tal structure, partly because the substrate
is not in a prominent zone-axis orientation.
In the microscope, a video sequence

of this nanoparticle was recorded, Fig. 9
shows four snapshots of this video, clearly
showing the atomic diffusion processes.
We used the neural network to analyze

TEM movies showing surface diffusion on
gold nanoparticle in various gasses. Fig-
ure 10 shows the same ceria-supported gold
nanoparticle in high vacuum and in an oxy-
gen atmosphere. The neural network is ap-
plied to each frame in the video sequence,
and used to identify the presence (and po-
sition) of the atomic columns. Since the
network was not trained on substrates, and
since atomic resolution is often not obtain-
able simultaneously in the substrate and

the nanoparticle, we only use the network
to analyze the metallic nanoparticle and
mask out the output of the network cor-
responding to the substrate.
During the video sequence, atoms at the

surfaces and in particular at the corners
of the nanoparticle are clearly seen to ap-
pear and disappear again, as the surface
atoms diffuse on the particle. We illustrate
this in the figure in two different ways. In
the middle column, atomic columns are col-
ored according to the fraction of time they
are present in the image. It is clearly seen
that in the presence of oxygen, many of the
surface and corner atoms are only present
part of the time, indicating surface diffu-
sion. In the rightmost columns, “events”
are counted. It is considered an “event” if
an atomic column is present in one frame,
but absent in the next, or vice versa; this
cause the diffusing atoms to light up on the
figure. Together, this analysis shows that
the presence of oxygen clearly enhances the
surface diffusion. This will be the topic of
a separate publication.

Other applications
We envision that the main application of
this technique will be to identify atoms
or columns of atoms, as demonstrated in
the two afore-mentioned examples. For
this kind of applications, it is relatively
straight-forward to train a neural net on
sets of simulated images, such that the net
becomes able to identify the positions of
the atoms or atomic columns also in exper-
imentally obtained images.
A far more demanding task is to identify

the chemical species of single atoms in 2D
materials, or to count the number of atoms
in atomic columns in nanoparticles. It does

13
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Figure 8: Top rows: Examples of nanoparticles generated using the algorithm we have
proposed. The height of the atomic columns of the nanoparticles are indicated with a
color-coding. Middle rows: Simulated images given the atomic models above. Bottom
rows: Output from our neural network method given the simulated images. As can be
seen, in one of the images the network is not able to identify the atomic columns in the
thickest part of the nanoparticle, this is due to a combination of low signal-to-noise ratio
in the image, and a significant off-axis tilt smearing out the highest atomic columns.
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t = 0 t = 2 s t = 4 s t = 6 s

Figure 9: top row: Experimental high resolution TEM image of gold on ceria in an oxygen
atmosphere. The pressure was 4.5 Pa and the electron dose per image was 3.1×102 e−/Å2

(dose rate 1.56 × 103 e−/Å2/s at an exposure time of 0.2 s). Middle row: Output from
the neural network given the images above. Bottom row: The atoms identified by the
neural net are marked as purple circles overlaid on the original image. The experimental
images were measured using a FEI Titan 80-300 Environmental TEM operated at 300 keV.

not appear to be possible to train a network
that solves this kind of tasks based on a sin-
gle image. However, if one is willing to use
a series of images taken with varying focus
settings, it appears to be possible to train
such networks to identify multiple mutually
exclusive atomic objects. The reliability
does, however, not seem to be on par with
the reliability of identifying a single atom
or column. Figures from our attempts to
build these more advanced networks have
been used to illustrate the general princi-
ples (Figures 1 and 3). Since we have not
yet been able to demonstrate the useful of
such networks on experimental images, we

will defer further discussions on the subject
to future publications.

Conclusion
We have demonstrated that deep convo-
lutional neural networks can be trained
to recognize the local atomic structure in
High Resolution Transmission Electron Mi-
croscopy images. The network can be
trained entirely on simulated data, but
is capable of giving interpretations of ex-
perimental images that match those of a
trained microscopist. We have demon-
strated the method both on single layers
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Figure 10: The surface dynamics of gold nanoparticles is influenced by the gaseous atmo-
sphere. The occurence is the percentage of frames where the neural network identified an
atomic column at a possible site. And the events are the percentage of frames where a site
was previously occupied, but is unoccupied in the frame immediately after.

of defected graphene, and on nanoparticles
of gold on a cerium oxide substrate.
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Electron beam effect on the morphology of supported Au nanoparticles was examined under a

range of dose rates from 2.7× 103 to 49× 103 e−/Å
2
/s. Fluctuations of the surface atom column

occupation were measured quantitatively using sequences of high-resolution transmission electron

microscopy images. Columns with higher coordination number start hopping under higher dose

rates indicating higher internal energy of the particle under the conditions used. The internal

energy, which most contributes to the kinetic energy of the diffusing atoms increases with both the

dose rates and the total time of exposure. For a given dose rate, hopping column number increase

as the exposure time accumulate. For columns with high coordination number, i.e. higher binding

energy, hopping is only observed under high dose rates.
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Electron microscopy is a powerful tool for studying the structure and properties of materials down

to the atomic level. However, in many cases, the quantitative interpretation of images requires

simulations based on atomistic structure models. These typically use the independent atom ap-

proximation that neglects bonding effects, which may, however, be measurable and of great physical

interest. Since all electrons and the nuclear cores affect the scattering potential, simulations that go

beyond this approximation have relied on computationally highly demanding all-electron calcula-

tions. Here, we describe a new method to generate ab initio electrostatic potentials when describing

the core electrons by projector functions. Combined with an interface to quantitative image simu-

lations written in the same programming language, this implementation enables an easy and fast

means to model electron microscopy images and diffraction patterns. In addition to describing the

implementation, we compare simulated electron diffraction patterns to high-quality experimental

data, showing accuracy equivalent to earlier all-electron calculations at a much lower computational

cost.


