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Abstract. Climate change is leading to an increasing in the frequency and intensity of 

extreme weather events, which significantly affect ecosystems stability. In this study, 

ecological stability metrics in response to wet/dry events and warm/cold events on 

vegetation greenness were assessed using an auto-regressive model of NDVI in the 

Mekong River basin (around 759,000 km2
) where large ecological and climatic 

gradients exist. Gridded temperature, and the Global Standard Precipitation 

Evaporation Index (SPEI) and antecedent NDVI were used as model predictors. The 

forest in north Laos was more resilient to the temperate and wet/dry anomalies events 

than other regions in the basin. Drought reduced green biomass in north Laos, 

northeast Thailand and Myanmar, but in these tropical climate regions’ the vegetation 

biomass was also more responsive by higher temperatures. Vegetation in northeast 

Thailand, Cambodia and the Mekong delta were less sensitive to the temperature 

anomalies effect compared to other part of Mekong River basin. The map of resistance 

and resilience metrics can help to determine the most vulnerable regions to extreme 

events for policy makers. 

1. Introduction  
Climate change is considered as one of the major factors putting pressure on ecosystems worldwide. 

Climate models have found a connection between global warming and the occurrence of climatic 

extreme events, such as wet and dry anomalies (floods and droughts), in frequency, intensity and 

duration, which expected to significantly affect ecosystem [1]-[3], e.g. vegetation shift [4] and tree 

mortality [5]. Within this content, assessment of ecosystem stability to extreme events is crucial to 

qualify the sensitivity of ecosystems to environmental disturbance, but also to improve the 

understanding of the mechanism that govern vegetation response. The effect of extreme events on 

ecosystems after an event has been vanished has been referred to as “memory effect” [6]. Memory 

effects can be evaluated assessing the ecosystem response to climate-induced disturbance [7]. For this 

purpose, resilience and resistance metrics of ecosystem stability have been developed by analyzing 

http://creativecommons.org/licenses/by/3.0
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anomalies of an ecosystem property relative to their annual cycle. In this study we refer to ecosystem 

resilience as its the ability to recover after a disturbance, while its resistance expresses the response or 

sensitivity of ecosystem to an extreme events [8], [9].  

To assess ecosystem resilience and resistance, it is possible to use different methods, such as lagged 

cross correlation analysis, canonical correspondence analysis or the persistence of NDVI trend [10]-

[12]. Several studies have focused on the assessment of ecosystem stability, but there are not studies 

yet on the impacts of climatic anomalies on ecosystem in the Mekong River Basin (MRB). However, 

understanding the potential impacts of rainfall and temperature anomalies on vegetation is crucial in 

this region, home of approximately 70 million people and a highly biodiverse region.  

The research aims to: (1) investigate both ecological resilience and resistance of ecosystems in the 

MRB to wet/dry anomalies and temperature anomalies using an ecological model based on remote 

sensing and climate data [7], [13] and (2) improve the understanding of ecosystem stability in the 

MRB. Analysis of vegetation responses to extreme events is important for ecological and 

environmental management programs, early warning and forecasting future climate-induced 

vegetation change in the MRB. Moreover, this research will help to identifying those regions in the 

MRB that are more sensitive to climate anomalies providing vulnerability maps, which can provide a 

guide for ecological and environmental management decisions in the MRB.  

2. Study area 
The MRB, which is shown in Figure 1, is originated in the Tibetan plateau in China. The basin covers 

six countries, is equivalent to 795,000 km
2
, where the outlet run into the South China Sea (Figure 1a). 

The MRB climatic system is governed by the northeast and southwest monsoon [13]. The temperature 

and precipitation in the MRB are topographically uncertain place to place. The entire basin average 

temperature is around 24 ᴼC and the range of precipitation ranges to 600 mm/year in the Tibetan 

plateau to more than 3,000 mm/year in Laos. The vegetation in the basin (Figure 1b) is unevenly 

distributed and associated with elevation, especially in the upper MRB, temperature, and precipitation 

system, especially in the lower MRB [14,15].  

 
Figure 1. (a) The location, and (b) land cover, which retrieved from MODIS land cover type product 

(MCD12Q1) [16]. 

3. Materials and methods 
The Normalized Difference Vegetation Index (NDVI) time series from January 1982 to December 

2013 were downloaded from the Global Inventory Modeling and Mapping Studies (GIMMS) [17] for 

qualifying the response of ecosystem. The raw bimonthly NDVI image were filtered using Savitzky-

Golay method and were resampled to monthly scale using the average of bimonthly NDVI image, then 

all images were reprojected as GCS-WGS1984. Monthly temperature data were downloaded from the 
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Climate Research Unit Time Series Version 3.23 (CRU-TS 3.23) [18] in the same time frame as NDVI 

dataset. Monthly standardize NDVI anomalies and monthly standardized temperature anomalies were 

derived by removing the seasonal variation of the NDVI and temperature time series. The drought 

effect was evaluated using the Standardized Precipitation – Evapotranspiration index (SPEI), is 

calculated from the average water balance, [19], [20] with the same temporal frame as NDVI time 

series data. In this study, 3-month SEPI was used to quantify extreme events effect to the ecosystem. 

Positive value represents wetter condition than average, while negative value shows dryer condition 

than average. The monthly temperature anomalies and 3-month SPEI data were resampling to 

GIMMS’s resolution using a bilinear interpolation and were reprojected as GCS-WGS1984. 

4. Model to assess ecosystem resilience and resistance 
In this study, an auto-regressive model based on De Keersmaecker et al. [7] was applied to predict 

NDVI anomalies in each pixel based on climatic variables and antecedent NDVI to account for 

memory effects at every time step. The model parameters reflect the different sensitivity of vegetation 

to climatic and vegetation and thus allow to estimate ecosystem resilience and resistance to drought 

and temperature anomalies for each pixel. The model, shown as Equation 1, was applied every month 

in every pixel [7]. 

                                                NANOt  = β NANOt-1 + α SPEIt + φ TANOt + εt                      (1)                           

Where NANOt and NANOt-1 are standardized NDVI anomalies at time t and t-1, respectively. SPEIt and 

TANOt are 3- month SPEI and standardized temperature anomalies at time t. εt  represents the residual 

term of time t.β, α and φ are model parameters, which are related to ecosystem resilience and 

resistance metrics. Each model parameter can be related to a different ecosystem stability metric. φ 

represents vegetation response to instantaneous temperature change, e.g. a temperature resistance 

metric. Similarly, α is indicated a drought resistance metric. β is an indicator for the dependence of 

anomalies on the previous values, hence, it represents the ecosystem resilience metric. Where β is 

large (small), the vegetation has a strong (less) influence from the previous time step and the 

ecosystem recovers slowly (quickly) from perturbations. Based on De Keersmaecker et al. [7], this 

optimal model was selected based on the root mean square error (RMSE) of observed and modeled 

standardized NDVI anomalies. Only those pixels with RMSE < 0.9 were considered as a good fit and 

the model retained. 

5. Results and discussion 
The ecosystem resilience and resistance metrics from the model parameters are shown as Figure 2. 

Regarding the errors, the model showed good performance in the forest ecosystems, especially in the 

south China, Laos, and Cambodia; it was only poor fitted in the grassland ecosystem in the Tibetan 

plateau in China, and cropland in the northeast of Thailand and the Mekong delta in Vietnam. This 

was probably due to (1) low range of climate and vegetation variables variability, (2) poor quality of 

time series input data, or (3) vegetation response from the other disturbances, such as ecological 

management and irrigation [7].          (4) vegetation memory effects not accounted for. 
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Figure 2. Model parameters which reflect (a) β, vegetation resilience, (b) α, indicated a drought 

resistance metric and (c) φ, temperature resistance metric. Pixels with RMSE > 0.9 are excluded. The 

colored bar represents the standardized coefficient scale. (d) Land cover in the Mekong River basin. 

The vegetation resilience metric β (Figure 2a) is positive and large in the North Yunnan Province, 

China, in the south of Laos and Cambodia. It indicate that the ecosystem in those regions has low 

resilience or low recovery rates after climatic disturbances, needing more time to return to the 

equilibrium state. On the contrary, the evergreen forest in northern Laos showed high resilience, is 

indicated by values close to zero, with low recovery rates after disturbance more quickly return to the 

equilibrium state compared to the evergreen forest ecosystem in the south of Laos (Figure 2d).  

From the vegetation drought resistance metric (α) (Figure 2b) it can be seen that vegetation in the 

upper part of basin has a negative response to drought events. Wetter (dryer) climate conditions 

decrease (increase) vegetation greenness, especially mixed forest biome, which widely spread in 

Yunnan province, evergreen forest biome in south Laos and Savanna in south Vietnam; however, the 

evergreen forest in north Laos, Myanmar and north Thailand shows positive value of vegetation 

drought resistance metric, e.g. low resistance to extreme climatic events, e.g., drought, and leading to 

decreasing biomass and vegetation greenness. The metric of vegetation resistance of temperature 

anomalies (Figure 2c) shows that vegetation in the north basin (cold climate) mostly shows a positive 

response with higher temperature anomalies, which increase vegetation greenness. Yet south Laos and 

northeastern Thailand and Cambodia shown a very large negative φ value that means the vegetation in 

these regions has low resistance (in the negative response) to temperature anomalies.  

This modeling analysis is recommended to use when the ecosystem resilience and resistance will be 

monitored because the input data are used based on lag 1-month (or lag several month) of vegetation 

greenness data and several climate variables are represented updated climatic events, and could be 

taken into account which is useful to monitoring for preventing the ecosystem changing to un-

equilibrium state. Other indicators, e.g. resistance and resilience metrics from cross-correlation 

analysis [10], can capture the time that when the vegetation will show the highest response to the 

climatic extreme event and this information could be incorporated to improve the modeling scheme. 

6. Conclusion 
This study applied a predictive model of NDVI anomalies based on multiple linear regression and 

auto-regression to assess the ecological stability due to wet/dry anomalies and temperature anomalies 

over the Mekong River Basin. The results showed good model fit for most of the pixels in all the basin 

(66 % of the basin) except the colder grasslands ecosystem in China and irrigated croplands in the 

northeast of Thailand and the Mekong delta in Vietnam. The ecosystem resilience and resistance 

metrics showed a clear pattern associated with the different land cover types in the MRB. The forest 

vegetation in the north Laos showed higher resilience to drought and temperature anomalies than other 

(a) (b) (c) 

   

(d) 
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regions. Areas with low resilience and resistance, where drought affects the vegetation greenness 

included north Laos, the northeast Thailand and Myanmar. In this regions vegetation growth was 

linked to higher temperatures. Yet the vegetation in the northeast Thailand, Cambodia and the Delta 

showed less sensitive to the temperature anomalies effect. The provided maps showing more 

vulnerable regions to climatic extremes can guide management decisions in the MRB. 
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