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Abstract 

Interspecies interactions between bacterial pathogens and the commensal microbiota can influence 

disease outcome. In the nasal cavities, Staphylococcus epidermidis has been shown to be a determining 

factor for Staphylococcus aureus colonization and biofilm formation. However, the interaction between S. 

epidermidis and S. aureus has mainly been described by phenotypic analysis, and little is known about how 

this interaction modulates gene expression. 

This study aimed to determine the interactome of nasal S. aureus and S. epidermidis isolates to understand 

the molecular effect of interaction. After whole-genome sequencing of two nasal staphylococcal isolates, 

an agar-based RNA sequencing setup was utilized to identify interaction-induced transcriptional alterations 

in surface-associated populations. Our results revealed differential expression of several virulence genes in 

both species. We also identified putative non-coding RNAs (ncRNAs) and, interestingly, detected a putative 

ncRNA transcribed antisense to esp, the serine protease of S. epidermidis, that has previously been shown 

to inhibit nasal colonization of S. aureus. In our study, the gene encoding Esp and the antisense ncRNA are 
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both downregulated during interaction with S. aureus. Our findings contribute to a better understanding of 

pathogen physiology in the context of interactions with the commensal microbiota, and may provide 

targets for future therapeutics. 

Keywords 

pathogen-commensal interaction; Staphylococcus aureus; Staphylococcus epidermidis; transcriptome; 

RNAseq; non-coding RNA 

 

Introduction 

Interactions between pathogenic bacteria and the commensal microbiota can influence disease phenotype 

or the clinical outcome of the infection (Wigneswaran et al. 2016). One example is the gut microbiota 

providing resistance to pathogen colonization by direct competition for nutrients, though also by activating 

the host immune system and inducing killing of the invading pathogens (Sassone-Corsi and Raffatellu 2015). 

Moreover, interactions with commensal bacteria have been shown to directly modulate virulence potential 

of bacterial pathogens. For example, Enterococcus faecalis has been shown to increase the virulence of 

Escherichia coli in urinary tract infections (Lavigne et al. 2008), while Staphylococcus aureus virulence can 

be reduced during co-infection with commensal bacterial species (Ngba Essebe et al. 2017). In the gut, 

Bifidobacteria limit infection by enteropathogenic Escherichia coli (Fukuda et al. 2011). These and other 

related examples of interactions between the commensal microbiota and potential pathogens underline 

the importance of understanding the molecular basis of interactions. 

 

Identification and characterization of the bacterial gene products and metabolites that mediate microbe-

microbe interactions have revealed an astonishing diversity of signals and molecules being exchanged 

among microbial species. The molecular basis of microbial interactive processes range from direct cell-cell 

signalling such as quorum sensing cross-talk and small molecule transfer (Eberl and Tümmler 2004; Fugère 

et al. 2014), effects induced by release of organic volatile compounds (Briard, Heddergott and Latgé 2016), 

interspecies transfer of mobile small RNAs (Liu et al. 2012; Zhou, Zhou and Chen 2017), to electrical 

communication among different microbial species (Prindle et al. 2015; Humphries et al. 2017).  It is equally 

important to determine in which way pathogen-commensal interactions modify the behaviour of the 

pathogen. For example, application of RNA sequencing to analyse these interactive systems may reveal 

transcriptomic changes induced by microbe-microbe interactions. 
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The focus of this study is the clinically relevant interaction between pathogenic S. aureus and the 

commensal S. epidermidis, with the primary reservoirs of both being the nasal cavities. Individuals 

colonized by S. aureus are at a greater risk of disease development, as these sites can function as infection 

reservoirs (Moss, Squire and Topley 1948; Wertheim et al. 2005). S. aureus is the causative agent of many 

serious infections whereas S. epidermidis is the dominant commensal bacterium in the nasal cavities. S. 

epidermidis appears to be a determining factor for carriage of S. aureus and its production of a serine 

protease Esp has been reported to inhibit biofilm formation and limit nasal colonization by S. aureus (Iwase 

et al. 2010; Sugimoto et al. 2013; Vandecandelaere et al. 2014). However, more recent studies have 

suggested that the inhibitory effect of S. epidermidis might be more complex than initially assessed 

(Fredheim et al. 2015). 

 

The insight into the interaction between nasal staphylococci strains has so far been based on phenotypic 

analyses, with limited knowledge about interactions at the molecular level. The clinical importance of the 

staphylococcal interaction as well as the unknown molecular basis of this interaction highlights the 

importance of using molecular methods to characterize the interactome of commensal and pathogen in the 

nasal cavities. In this study, we use RNA sequencing technology (RNAseq) to obtain molecular level insight 

into the functional consequences of microbe-microbe interactions in terms of effects on the transcriptome. 

 

Non-coding RNAs (ncRNAs) can alter the transcriptional and translational profiles of a range of bacterial 

species (Gottesman and Storz 2011). Several ncRNAs have been identified in S. aureus with the most well-

studied being RNAIII, controlling the agr system that plays a central role in bacterial pathogenesis (Boisset 

et al. 2007; Felden et al. 2011; Carroll et al. 2016). Even though it has previously been shown that ncRNAs 

play a role in host-pathogen interaction by modulating the human signaling response (Koeppen et al. 2016; 

Westermann et al. 2016), very few studies have focused on the ncRNA pool in response to bacterial 

interspecies interactions (Miller et al. 2017). 

 

In this study, we aim to characterize the molecular basis of interactions between S. aureus and S. 

epidermidis isolated from the nasal cavities of a healthy human. We use an agar plate-based assay to 

control the interaction and determine changes in gene expression during co-culture by RNAseq. Our 

analysis of this pathogen-commensal interactive system revealed that expression of several virulence genes 
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is responsive to microbe-microbe interactions. Furthermore, we detect putative ncRNAs implicated in the 

interaction and identify those that are differentially expressed. 

Materials and methods 

Bacterial strains and growth conditions 

A collection of frozen nasal swabs from Danes sampled in a previous study (Andersen et al. 2012) was 

obtained. All swabs were spread onto S. aureus chromID selective plates and blood agar plates and 

incubated at 37 °C to identify staphylococci strains. S. epidermidis 8/9A and S. aureus 9B were cultivated in 

tryptic soy broth (TSB) with shaking (200 rpm) at 37 °C overnight (ON). 

 

Characterization of staphylococci strains 

The identification of S. aureus and S. epidermidis was initially done by colony morphology investigation 

after plating on blood agar. Subsequent confirmation of S. aureus strains and identification of clonal 

complexes were established by spa typing using Sanger sequencing as previously described (Fode, Stegger 

and Andersen 2011). Moreover, a PCR strategy targeting the tuf gene was performed to distinguish S. 

epidermidis from S. aureus strains (Delgado et al. 2009). The PCR-based results were confirmed with Gram 

staining as well as coagulase and catalase tests as previously described (Andersen et al. 2012). S. 

epidermidis strains were subjected to a PCR strategy to identify the presence of the serine protease gene 

esp as previously described (Ikeda et al. 2004). The strains were typed using the web-based Multi Locus 

Sequence Typing (Larsen et al. 2012) on the basis of their genome sequence. 

 

Biofilm formation assay 

Semi-quantitative determination of biofilm formation was performed in 96-well tissue culture plates 

(O’Toole 2011). Single colonies were inoculated in TSB and grown ON at 37 °C, 200 rpm. Cell-free 

supernatants were prepared by passing the ON cultures through 0.2 µM pore size syringe filters. 

Supernatants and ON cultures were adjusted to an optical density (600 nm) of 1.0 and 0.1, respectively. The 

ON cultures were added to individual wells of the 96-well plate to a starting density of OD600 = 0.05 and cell-

free supernatants were added onto the cells. The plates were incubated statically at 37 °C ON, allowing the 

cells to form biofilms. Subsequently, OD600 was measured using a microplate reader before the plates were 

washed with 0.9 % sodium chloride solution three times, dried for 60 minutes at 60 °C and stained with 0.1 
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% crystal violet solution. After staining and three washes, the density of adherent stained cells was 

measured at OD590. The assay was repeated twice and representative results are presented. 

 

RNAseq setup 

Samples for transcriptome sequencing were prepared as follows. ON cultures in TSB were adjusted to OD600 

= 1.0, followed by spotting 10 µl of the cultures on top of autoclaved 0.45 µm (HA) filters placed on Tryptic 

Soy Agar (TSA) plates. The plates were incubated at 37 °C ON. After incubation, the filters were removed 

from the plates, transferred to individual microfuge tubes and frozen at -80 °C prior to RNA isolation. 

 

RNA extraction and cDNA library preparation 

The samples were homogenized in two rounds by FastPrep using 300 mg acid-washed glass beads at speed 

6 for 40 seconds followed by incubation on ice. Total RNA was isolated using the RNeasy Mini Kit (Qiagen) 

according to the supplier’s instructions. To remove genomic DNA, Ambion®TURBO DNA-free™ kit 

(Invitrogen) was used according to the manual. 

RNA integrity was determined using the Bioanalyzer 2100 (Agilent Technologies) and samples with RNA 

Integrity Number above eight were selected for cDNA library preparation. Four independent biological 

experiments were performed. Library preparation was performed using the ScriptseqTM v2 RNAseq Library 

Preparation Kit (Epicentre) and rRNA removal was performed using Ribo-Zero rRNA Removal Kit (Illumina). 

Library preparation comprises RNA fragmentation, synthesis of cDNA, terminal tagging of cDNA, 

amplification and library quality control. cDNA was sequenced as 150 bp paired-end reads on a HiSeq 

Sequencer (Illumina). Generated reads have been deposited to NCBI Sequence Read Archive (SRA) 

(BioProject PRJNA421413). 

 

Purification of gDNA for sequencing of nasal isolates 

Single colonies of the nasal S. aureus and S. epidermidis strains were inoculated in TSB and allowed to grow 

ON at 37 °C, 200 rpm. The purification of genomic DNA was performed using the Promega Wizard® 

Genomic DNA Purification kit according to the manufacturer’s instructions. The genomic libraries were 

generated using modified (half-volumes of the reagents from the original protocol) Kapa Hyper Plus Library 
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Prep Kit (Roche Molecular Systems). Genomic libraries were sequenced using the MiSeq V2 300 Cycles 

Reagent kit (Illumina) as 150 bp paired-end reads. Generated reads have been deposited to NCBI SRA 

(BioProject PRJNA421413). 

 

Genome assembly and annotation 

Sequencing reads of nasal isolates were trimmed with the seqtk tool v1.2-r94 and assembled into contigs 

with SPAdes v3.11.0 (“careful” mode) (Bankevich et al. 2012). Contigs (>200 bp, >7x coverage) were 

rearranged with Mauve Contig Mover tool v2.4.0, based on the published reference genome sequence: S. 

aureus USA300 (NC_007795) and S. epidermidis RP62A (NC_004461) (Rissman et al. 2009). Contigs were 

concatenated using the “union” command from the EMBOSS package v6.6.0 (Rice, Longden and Bleasby 

2000) and subsequently annotated with Prokka v1.12 (Seemann 2014). 

 

RNAseq differential expression analysis 

RNAseq reads were trimmed with seqtk and mapped with Bowtie2 v2.3.2 to genomes of respective nasal 

isolates (“very-sensitive-local” mode) (Langmead and Salzberg 2012). Mapped data were further processed 

with SAMtools v0.1.18 to generate sorted BAM file format (Li et al. 2009). BEDtools v2.26.0 was used to 

calculate read coverage of each annotate feature in the genome (Quinlan and Hall 2010). This was used as 

input for DESeq2 v1.16.1 to normalize the data and identify differentially expressed features at false 

discovery rate of 5 % (fold change 1.5; p-adjusted value 0.05) (Love, Huber and Anders 2014). RNAseq 

reads were visualized in a strand-specific manner in the Artemis genome browser (Rutherford et al. 2000). 

 

Identification of ncRNAs 

RNAseq read coverage for each nucleotide was calculated using BEDtools (Quinlan and Hall 2010). A Python 

script, named toRNAdo, was written in-house to identify putative ncRNAs based on the nucleotide 

coverage (https://github.com/pavsaz/toRNAdo). Both putative intergenic ncRNAs and those antisense to 

coding sequences were detected. The main criteria for ncRNA selection were: 1) normalized nucleotide 

expression value was above a defined expression threshold; 2) ncRNA contained a defined expression 

“peak”, with at least a 5-to-1 expression ratio between the highest and lowest points of the “peak”; 3) 

ncRNA was over 50 bp in size, in order to reduce the number of false positive hits and also due to most 

Downloaded from https://academic.oup.com/femsle/advance-article-abstract/doi/10.1093/femsle/fny004/4794939
by DTU Library user
on 31 January 2018



ncRNAs being reported above 50 bp in size (Gottesman and Storz 2011). As another measure for improving 

detection accuracy, only those putative ncRNAs that appeared in all replicates for each RNAseq condition 

were included. When combining ncRNAs present in multiple samples, a minimum start position and a 

maximum end position were used to define the new putative ncRNA length. 

Results 

Nasal staphylococci strains isolated from healthy Danes 

To be able to investigate the microbial interactions occurring in the nasal cavities of healthy individuals, we 

isolated staphylococci strains from nasal swabs of Danish adults (Andersen et al. 2012). We investigated a 

total of 108 nasal swabs, which were chosen because prior microbiome sequencing indicated the presence 

of staphylococcal strains (Liu et al. 2015). We were able to isolate staphylococci strains from 43 % of these 

samples (46/108), giving us a collection of 56 S. aureus and 27 S. epidermidis strains. The bacterial isolation 

was done by plating, while initial species identification was based on colony morphology and confirmed by 

Gram staining, PCR, catalase and coagulase testing as previously described (Andersen et al. 2012). 

S. aureus and S. epidermidis were co-isolated from 7 % of the nasal swabs (3/46) (Table 1). 

The S. aureus strains were spa typed and 18 different spa types were identified, with t021 (11 % of typed 

isolates) and t081 (11 %) being the most prevalent. The spa-typed isolates were classified into 10 different 

clonal complexes, with most isolates belonging to the CC30 (21.4 % of all isolates) and CC45 (17.9 %). 

As the serine protease Esp has previously been implicated in the interaction between S. aureus and S. 

epidermidis, we used PCR to identify the esp gene in the S. epidermidis isolates. We detected the esp gene 

in 92.6 % (25/27) of the nasal S. epidermidis strains. 

Sample B was chosen for detailed study as it included an esp-positive S. epidermidis (strain 8/9A), which is 

DT-218, and a S. aureus strain (strain 9B), which is ST-59 (Table 1). The strains were whole-genome 

sequenced and serotyping was based on these sequences. 

 

S. aureus biofilm formation is not affected by S. epidermidis and vice versa 

To investigate the interaction phenotype of the nasal S. aureus and S. epidermidis strains, we assayed 

biofilm formation of the two strains in a microplate setup according to previous protocols (O’Toole 2011). 

Cells were allowed to form biofilms with addition of cell-free supernatants and we found that the addition 
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of cell-free supernatant from S. epidermidis did not alter biofilm formation of S. aureus in our setup (Figure 

1). The addition of cell-free S. aureus supernatant to S. epidermidis cells also did not affect biofilm 

formation properties. The same was true for the TSB medium supplemented with 1 % glucose, except that 

the S. aureus growth was inhibited by addition of its own cell-free supernatant (Supplemental figure S1). 

 

A simple agar-based RNAseq setup reveals the interactome of S. aureus and S. epidermidis 

To map the interactome of S. aureus and S. epidermidis nasal isolates, we developed a simple agar-based 

setup where the strains were incubated either separately (mono-culture) or in close proximity to each 

other (co-culture) on the same agar plate, with cultures applied on filter paper (Figure 2). Following the 

incubation, bacterial colonies were easily removed and prepared for downstream processing by 

transferring the filters to microfuge tubes. This enables separate processing and data analysis of the 

different strains and culture conditions. We used the agar-based RNAseq assay to determine the 

interactome of the nasal S. aureus and S. epidermidis pair when grown in co-culture compared to mono-

cultures. Total RNA was isolated from four biological replicates for each condition: mono- vs. co-culture. 

We obtained from 26.5 to 61.8 million total reads per sample and the average percentage of reads mapped 

to genomes of respective nasal isolates was 83 %. 

S. aureus showed 10 significantly differentially expressed (DE) genes, which were all upregulated in co-

culture with S. epidermidis (Table S1, Figure 2). S. epidermidis showed 50 genes significantly DE in response 

to co-culture with S. aureus. Of these, 12 genes were upregulated and 38 downregulated (Table S1, Figure 

2) 

70 % (7 of 10 DE genes) of the S. aureus genes upregulated during co-culture with S. epidermidis are related 

to the cell membrane and transmembrane transport according to the functional category analysis tool on 

the DAVID database (Huang, Sherman and Lempicki 2008). The remaining three genes fall into the 

categories: Biosynthesis of Antibiotics (SAOUHSC_00579), Pyruvate Metabolism (SAOUHSC_00533) and 

Unknown (SAOUHSC_02726). Two genes of the mnhABCDEFG operon, mnhA and mnhD, which encode 

subunits of a putative multi-subunit Na+ /H+ antiporter (Hiramatsu et al. 1998), are significantly upregulated 

in response to S. epidermidis. 

Analysis of the S. epidermidis DE genes using the DAVID database revealed that the genes fall into four 

main functional categories: Metabolic Pathways (20 of 50 DE genes), Infection Related (5/50), Membrane-

associated (10/50) and Nucleotide/ATP-binding (15/50) (Figure 2). 59 % of the genes of the Metabolic 
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Pathway category are part of the Biosynthesis of Amino Acids sub-category. Some of the genes of the 

“Infection Related” category have previously been described as S. epidermidis virulence factors (Otto 2009). 

For example, it is evident that all genes of a putative operon SE0405-SE0407 of S. epidermidis are highly 

upregulated in co-culture with S. aureus, with fold-change values ranging from 7.8 to 9.0. This putative 

operon contains the previously described virulence factors sitA, sitB and sitC (Otto 2009), which encode an 

iron-regulated ABC-transporter (Cockayne et al. 1998). Intriguingly, the Esp serine protease that has been 

shown to inhibit S. aureus colonization (Iwase et al. 2010) is significantly downregulated in co-culture 

conditions (fold change = -2.3). 

 

Repertoire of non-coding RNAs in interacting staphylococci 

It has been previously shown that staphylococci strains possess a range of ncRNAs involved in gene 

regulation (Boisset et al. 2007). We therefore attempted to identify the expression of ncRNAs in the nasal 

staphylococcal isolates during mono- and co-culture based on RNAseq data. 

Using a computational approach we identified 40 putative ncRNAs in the S. aureus nasal isolate and 150 

putative ncRNAs in the S. epidermidis nasal isolate (Figure 3, materials and methods). Both intergenic and 

antisense ncRNAs were identified. 67 % (100/150) and 63 % (25/40) of the S. epidermidis and S. aureus 

ncRNAs, respectively, were identified in both mono- and co-culture conditions. Average size of ncRNAs is 

598 bp for S. aureus and 1164 bp for S. epidermidis (Table S2). 

By cross-referencing to the Staphylococcal Regulatory RNA Database (Sassi et al. 2015), we noted that 13 of 

the ncRNAs identified in S. aureus in our setup overlap with those previously described in other studies. In 

fact, two of the ncRNAs identified here have been found to play a role when S. aureus is interacting with P. 

aeruginosa (Miller et al. 2017). However, as only a single study has reported on putative ncRNAs in S. 

epidermidis (Broach, Weiss and Shaw 2016), the overlap between previously described ncRNAs and those 

identified here is limited. 

In this study, we are specifically interested in the ncRNAs that show altered expression in response to co-

culturing and we therefore performed DE analysis on the ncRNAs. We identified one DE ncRNA in S. aureus 

and seven DE ncRNAs in S. epidermidis (Table 2), with ncRNA lengths ranging from 365 bp to 4669 bp. As 

we saw in the gene expression analysis, there is also a tendency for upregulation of ncRNAs in S. aureus 

and downregulation in S. epidermidis. 75 % (6/8) of the DE ncRNAs are encoded antisense to annotated 

genes and in three cases we see a correlation between the differential expression of the gene and its 
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antisense ncRNA in the RNAseq data. All these examples display downregulation of both protein-coding 

gene and ncRNA (Figure 4). One of these cases, ncRNA epi80, is transcribed antisense to the esp gene, 

which, as mentioned above, has been implicated in the interaction between S. aureus and S. epidermidis 

(Iwase et al. 2010). The two remaining examples are ncRNA epi34, antisense to dltABCD, a previously 

described virulence factor (Otto 2009) responsible for D-alanylation of teichoic acids (Peschel et al. 1999) 

and implicated in resistance to phage attacks (Fallico et al. 2011), and epi116, which is antisense to a Co-

enzyme A disulphide reductase gene. 

Discussion 

Previous studies have shown that virulence phenotypes such as biofilm formation and colonization 

of the nasal cavities by S. aureus are inhibited by the nasal commensal S. epidermidis (Iwase et al. 

2010). In this study, we applied RNAseq to obtain molecular insight into the functional 

consequences regarding effects on the transcriptome of this pathogen-commensal interaction. 

Our experimental setup involved co-cultivation of S. aureus and S. epidermidis isolates on agar surfaces. 

Although agar-based models do not accurately mimic the natural habitat, such models nevertheless enable 

systematic in-depth analysis of the mechanisms and genes that underlie microbe-microbe interactions as 

well as the associated molecular effects (Frydenlund Michelsen et al. 2016). We also note that our in vitro 

study of the interaction between surface-associated staphylococci populations has some parallels to the 

bacterial organization found in the nasal cavities where colonizing bacteria are indeed surface-associated 

and growing in microcolonies (Morawska-Kochman et al. 2017). Moreover, our experimental setup gives 

technical advantages as the downstream processing can be performed separately for each culture, aiding 

the data analysis. We recognize that bacterial colonies on agar surfaces are composed of clonal cells that 

can exist in many different physiological states depending on their spatial position. This population 

heterogeneity will most likely mean that we will not be able to identify subtle changes in gene expression, 

as these will be masked by noise. Despite these constraints, we were nevertheless able to capture new 

elements of the interaction response between nasal S. aureus and S. epidermidis isolates. We identified 10 

differentially expressed genes in S. aureus and 50 in S. epidermidis, when these organisms were co-

cultured. It is likely that these interaction-responsive genes represent a subset of a larger transcriptional 

response that may be detected with the advent of more sensitive transcriptomic techniques, which enable 

analysis of spatially resolved transcriptomes from surface-associated microbial populations (Heacock-Kang 

et al. 2017). 
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It has previously been shown that exposure to S. epidermidis culture supernatant leads to 

downregulation of virulence in S. aureus (Otto et al. 1999; Iwase et al. 2010). In our experimental 

system, we show that the general response of S. aureus to S. epidermidis co-culturing is 

upregulation of gene expression, whereas the opposite trend is seen in S. epidermidis, where most 

altered genes are downregulated. Interestingly, the three-gene operon sitABC, which encodes an 

iron-regulated ABC-transporter involved in virulence in S. epidermidis (Cockayne et al. 1998), is 

highly upregulated in co-culture with S. aureus. Yet, other S. epidermidis virulence factors are 

downregulated in co-culture conditions. The dltABCD operon (SE0624-SE0627) and mprF 

(SE1041), which are responsible for D-alanylation of teichoic acids (Peschel et al. 1999) and 

lysylation of phospholipids, respectively (Peschel et al. 2001), are all downregulated in co-culture. 

Overall, these results indicate that interactions between the nasal staphylococcal strains result in 

more complex responses than previously described and have the potential to modulate virulence in 

multiple ways. 

Adding to the complexity of the interaction-induced transcriptional changes, our analysis of putative 

ncRNAs in the nasal staphylococcal isolates revealed that ncRNAs also play a part in this pathogen-

commensal interaction. ncRNAs have been identified in many different organisms to play a range of 

regulatory roles during transcription as well as translation (Gottesman and Storz 2011). A common 

staphylococcal ncRNA pool has been described, but different staphylococcal species also encode unique 

ncRNAs (Broach, Weiss and Shaw 2016). In our analysis, we find a substantial overlap with previously 

identified ncRNAs of S. aureus, though a more modest overlap with S. epidermidis ncRNAs. This probably 

reflects the fact that ncRNAs in S. epidermidis are generally understudied, and our setup is very different 

from the single previous study on the subject (Broach, Weiss and Shaw 2016). Analysis of more strains and 

conditions is required to capture a more complete spectrum of ncRNAs in S. epidermidis. However, in the 

current setup we identify two ncRNAs in S. aureus that have previously been shown to play a part during 

interspecies interactions (Miller et al. 2017). 

Despite general interest in ncRNAs and their regulatory roles, not much is known about the role of ncRNAs 

in connection to microbe-microbe interactions (Miller et al. 2017). In our study, we focused on ncRNAs 

differentially expressed in co-culture conditions and identified eight staphylococcal ncRNAs that play 

potentially important roles during interaction. Most of these ncRNAs are antisense to protein-encoding 

genes and in three cases the differentially expressed (antisense) ncRNAs followed the differential 

expression of their corresponding (sense) protein-encoding genes. For example, we identify a previously 

undescribed ncRNA (epi80), which is antisense to the esp gene in S. epidermidis. Expression of both the esp 
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gene and the corresponding epi80 antisense ncRNA is downregulated in response to interaction. Previous 

studies have shown that the Esp serine protease plays a central role in prevention of nasal S. aureus 

colonization and that the purified protease inhibits biofilm formation and disassembles previously formed 

biofilms (Iwase et al. 2010). Our finding that both esp and the epi80 antisense ncRNA are downregulated 

when S. epidermidis is co-cultured with S. aureus points towards an ncRNA-based positive regulatory 

mechanism for esp expression, which could explain why we do not observe an inhibitory effect on S. aureus 

biofilm grown with supernatant of the nasal S. epidermidis strain. Other studies have found that ncRNAs 

can have positive effects on gene regulation (Fröhlich and Vogel 2009). For example, antisense RNAs can 

protect mRNA from degradation by RNase E by masking endonuclease recognition sites (Stazic, Lindell and 

Steglich 2011). Future experiments will address if the epi80 antisense ncRNA functions in a similar way to 

regulate expression of esp. 

Our results, together with the notion that esp is not expressed in all S. epidermidis strains (Fredheim et al. 

2015), indicate that the observed inhibitory effect on S. aureus biofilm formation might be more complex 

than previously assumed. We recognize the possibility that our biofilm formation setup would not reveal 

effects that are exclusively induced during co-culture of the staphylococcal strains. It is possible that clonal 

variation of the staphylococcal strains and differences in experimental setups are all contributing factors, 

and further studies are needed to fully determine the factors that control esp expression. Moreover, our 

data show a self-inflicting inhibition of S. aureus when glucose is added to the medium, indicating 

difficulties in this experimental setup. The self-inflicting inhibition could be due to external alterations such 

as changes in pH of the medium. 

With this study, we provide the first attempt to identify changes in gene expression as a result of 

interaction between S. aureus and S. epidermidis isolated from the nasal cavities of healthy 

individuals. We identified clear effects on the transcriptomic profile of both interacting partners and 

discovered ncRNAs potentially involved in interspecies interactions. Further studies are needed to 

determine the role of the differentially expressed genes and ncRNAs and to map the interactome in 

more detail. A comprehensive understanding of how microbe–microbe interactions change the 

physiology and gene expression of pathogenic bacteria may contribute to the identification of novel 

targets of interference. 
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Figure 1: S. aureus biofilm formation is not affected by S. epidermidis supernatant and vice versa. Biofilm 

formation when grown with (+) and without (-) cell-free supernatants after 22 hours of incubation at 37 °C. 
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Figure 2: Co-culturing of staphylococci strains leads to altered gene expression. A) Agar-based RNAseq 

setup used to map staphylococci interactome. S. aureus and S. epidermidis are grown in mono- and co-

culture and the setup allows for separate downstream processing of samples. B) The DAVID database 

(Huang, Sherman and Lempicki 2008) was used to divide the DE genes into functional categories. Pie charts 

showing the distribution of functional categories of S. aureus and S. epidermidis DE genes. C) Overview of 

DE genes. Cut-off: log2foldchange≥1.5 and adjusted p-value>0.05. 

 

Figure 3: ncRNA repertoire of nasal staphylococci strains. Venn diagram showing the putative ncRNAs 

identified in the nasal S. aureus and S. epidermidis strains during mono- and co-culture. 
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Figure 4: The expression of antisense ncRNA epi80 in mono- and co-culture conditions in the nasal S. 

epidermidis strain. Paired-end RNAseq reads (blue and green) are shown mapped antisense to the esp gene 

(grey arrow). Genomic coordinates shown on the x-axis refer to the position in the genome of the nasal S. 

epidermidis strain. The number of reads mapping antisense to the esp gene is shown on the y-axis. 
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Table 1: Nasal swab samples where S. aureus and S. epidermidis are co-isolated. Overview of the three 

samples, from which both S. aureus and S. epidermidis strains were isolated. G+: Gram-positive; G-: Gram-

negative; C+: catalase-positive; C-: catalase-negative; Co+: coagulase-positive; Co-: coagulase-negative; CC: 

Clonal Complex; NA: not applicable. Negative for Esp means that we were unable to detect the esp gene. 

Sample Strain 

name 

Species (PCR tuf 

gene) 

Gram 

test 

Catalase 

test 

Coagulase 

test 

Esp gene (S. 

epidermidis) 

A 5A S. aureus G+ C+ Co+ NA 

6A S. epidermidis G+ C+ Co- negative 

       
B 9B S. aureus G+ C+ Co+ NA 

8/9A S. epidermidis G+ C+ Co- esp 

       

C 39A S. aureus G+ C+ Co+ NA 

39/40AB S. epidermidis G+ C+ Co- esp 

 

Table 2: Co-culturing of staphylococci strains alters ncRNA transcription. Overview of DE ncRNAs in the 

staphylococci strains. Cut-off: log2foldchange≥1.5 and adjusted p-value>0.05. Adj p-value = adjusted p-

value, Ns = not significantly altered in RNAseq data, NA = not applicable. * Annotations referring to genes 

of reference genomes S. aureus USA300 and S. epidermidis RP62a. ⁿ no homolog found in reference 

genome. Where ncRNAs are antisense to more than one gene, all genes are listed. 

 
Differentially expressed S. aureus ncRNAs 

 ncRN

A 

Size (bp) Fold 

change 

Adj p-

value 

Type Flanking/antisense gene(s)* Fold 
changeGene 

 au15 457 2.3 1.05E-02 Antisense SAOUHSC_00846 NA 

Differentially expressed S. epidermidis ncRNAs 

 ncRN

A 

Size (bp) Fold 

change 

Adj p-

value 

Type Flanking/antisense gene(s)* Fold 

changeGene 

 epi17 1057 -3.2 1.76E-02 Antisense SE0302, rplJ, rplL Ns, Ns, Ns 
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epi34 

4669 -3.0 3.83E-02 Antisense SE0623, dltA, dltB, dltC, 

dltD 

Ns, -2.1, -2.1, 

-2.0, -2.4 

 epi52 638 -2.7 4.57E-02 Intergenic NAⁿ Ns 

 epi80 576 -2.7 1.30E-02 Antisense esp -2.3 

 epi10

5 

680 -3.9 1.76E-02 Antisense SarZ Ns 

 epi11

6 

2629 -2.8 3.78E-02 Antisense SE2154, SE2155, fda -2.1, Ns, Ns 

 epi13

5 

365 -2.0 4.91E-02 Intergenic SE2336, SE2337 Ns 
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