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Monge surfaces and planar geodesic folia-
tions

David Brander and Jens Gravesen

Abstract. A Monge surface is a surface obtained by sweeping a generat-
ing plane curve along a trajectory that is orthogonal to the moving plane
containing the curve. Locally, they are characterized as being foliated by
a family of planar geodesic lines of curvature. We call surfaces with the
latter property PGF surfaces, and investigate the global properties of
these two naturally defined objects. The only compact orientable PGF
surfaces are tori; these are globally Monge surfaces, and they have a
simple characterization in terms of the directrix. We show how to pro-
duce many examples of Monge tori and Klein bottles, as well as tori
that do not have a closed directrix.

Mathematics Subject Classification (2010). Primary 53A05; Secondary
53C12, 53C22.

Keywords. Monge surface, planar geodesic, developable surface.

1. Introduction

A Monge surface is the surface swept out by the motion of a plane curve (the
profile curve or generatrix ) whilst the plane is moved through space in such a
way that the movement of the plane is always in the direction of the normal
to the plane. They are also characterized as surfaces swept out by parallels,
each of which is the orthogonal trajectory of a point on the initial plane curve,
and all of which are parallel to each other. These surfaces were defined by
Monge ([8], §XXV) and classically studied by, e.g. Darboux ([5], Section 85),
and L. Raffy [9]. Each meridian (i.e., the intersection of the surface with the
moving plane) is a normal section of the surface, and therefore a geodesic.
Moreover, the meridians are all congruent. Hence a Monge surface is foliated
by (congruent) planar geodesics.

Conversely, various practical applications, such as surfaces made from
strips of wood [3], are modeled by surfaces foliated by planar geodesic lines
of curvature. We call a surface with such a foliation a PGF surface. It was
known classically (see [6], Section 129) that these surfaces are locally the
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same objects as Monge surfaces. The purpose of this note is to consider the
difference between the global objects given by these two natural definitions,
and to investigate the problem of constructing compact examples.

To illustrate the difference at a global level between Monge surfaces and
PGF surfaces, it is not hard to construct examples of PGF surfaces that are
certainly not Monge surfaces (Figure 2). On the other hand, since a Monge
surface is naturally defined by the arbitrary orthogonal motion of a plane
through space, singularities naturally arise. For example, a sphere can be
represented as a Monge surface with singularities at the poles, but a sphere
does not have a global foliation by planar geodesics.

We investigate in a modern framework the basics of both the local and
global theory that follows directly from the two natural definitions, focusing
on PGF surfaces in Section 2 and Monge surfaces in Section 3.

In the last section we study the construction of Monge tori. We define
a Monge torus to be a Monge surface that has the property that the profile
curve and all of the parallels are closed curves. We show how to construct
many examples of Monge tori and Klein bottles. We also answer a natural
question that arises in the global theory of PGF surfaces: in Section 2 we
observe (Proposition 2.6) that if x : M → R3 is a PGF immersion, and M
is compact, then M is necessarily a torus. We also show (Theorem 2.4) that
any complete immersed PGF surface S ⊂ R3 has a natural covering R2 → S
consisting of lines of curvature, one family of which is the planar geodesic fo-
liation, the other family being parallels of a Monge surface parameterization.
If S ⊂ R3 is compact, one can ask whether or not the leaves of this double
foliation are closed. It is easy to see that the planar geodesics are necessarily
closed. However, one can show that the parallels need not be closed by con-
structing examples of Monge surfaces that are tori but not “Monge tori” –
i.e., the parallels are not closed curves.

2. Planar Geodesic Foliations

If a plane curve is not a straight line, then the plane that it lies in is unique,
and so a family of typical planar curves gives us a natural family of planes
in R3. For the case of a straight line, there are infinitely many planes that
contain it. In order that there be a canonical choice, consider this property of
the plane containing a non-rectilinear planar geodesic: the plane is orthogonal
to the surface. This plane, determined by the tangent to the curve and the
surface normal, is unique; and a straight line in a surface lies in such a plane
if and only if the normal to the surface is constant along the line.

Definition 2.1. A planar geodesic foliation of an immersed surface S ⊂ R3 is
a 1-dimensional foliation, the leaves of which are planar geodesic curves in
S, with the additional property that, along each of the leaves, the normal to
the surface is parallel to the plane containing the curve.

Note: it is not difficult to show that the conditions given on the leaves
of the foliation are equivalent to requiring that they be planar geodesic lines
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of curvature. The above definition includes all foliations by non-rectilinear
planar geodesics. If the geodesics are straight lines, then the surface is devel-
opable, because the normal is required to be constant along the rulings. We
will call a surface together with a planar geodesic foliation a planar geodesi-
cally foliated (PGF) surface.

2.1. Local planar geodesic foliations

Locally, a PGF surface is just a piece of a Monge surface: that is the statement
of Theorem 2.2 below. A key ingredient of the proof is the existence, along
any differentiable curve of a so-called rotation minimizing frame, or relatively
parallel adapted frame, [2]. Given a differentiable curve r, and any pair of
vectors Q1, Q2 orthogonal to r′(v0), there is a unique orthonormal frame
field (t(v),q1(v),q2(v)), where t = r′/|r′|, (q1,q2)(v0) = (Q1, Q2), and such
that the derivatives of qi are parallel to r′, i.e., there is no rotation in the
plane perpendicular to the curve. In Section 4 below, we use the fact that
the torsion of the curve is the rate of rotation of such a rotation minimizing
frame relative to the Frenet frame.

Theorem 2.2. A planar geodesically foliated surface can, on a neighbourhood
of any point, be locally parameterized in the form

x(u, v) = r(v) + x(u)q1(v) + y(u)q2(v) , (2.1)

with r a space curve with rotation minimizing frame (t = r′,q1,q2), and each
isocurve γv(u) = x(u, v) a unit speed geodesic.

Proof. Without loss of generality, we can assume the surface is (locally) pa-
rameterized as (u, v) 7→ x(u, v), where the isocurve γv0(u) := x(u, v0) is a
planar unit-speed geodesic for each fixed v0. Now, varying v gives us a one
parameter family Π(v) of planes in R3. Let N (v) be a family of normals to
these planes. By integrating r′(v) = N (v), with r(v0) = x(u0, v0), we obtain
a curve r(v), the spine curve (or directrix ), that intersects the planes orthog-
onally. Let (t,q1,q2) be the rotation minimizing frame along r, with some
choice of Q1, Q2. Since each curve γv lies in the plane through r(v) spanned
by qi(v), we can write

x(u, v) = r(v) + x(u, v)q1(v) + y(u, v)q2(v) . (2.2)

The tangent to each γv is

γ′v =
∂x

∂u
=
∂x

∂u
q1 +

∂y

∂u
q2 .

Set

nv = t× γ′v = −∂y
∂u

q1 +
∂x

∂u
q2 .

At non-inflectional points, nv is the principal normal of the planar geodesic
γv, but in any case it is perpendicular to both t and γ′v. By the assumption
of Definition 2.1, the plane containing the curve γv is spanned by γ′v and the
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surface normal. Since nv also lies in this plane, it follows that nv is parallel
to the surface normal or, equivalently,

nv ·
∂x

∂v
= 0. (2.3)

As t is a unit vector field, there exist smooth functions κ1 and κ2 such that

t′(v) = κ1(v)q1(v) + κ2(v)q2(v).

The rotation minimizing assumption means that

∂x

∂v
= (1− xκ1 − y κ2) t +

∂x

∂v
q1 +

∂y

∂v
q2 .

So the condition (2.3) is

∂x

∂u

∂y

∂v
− ∂y

∂u

∂x

∂v
= 0,

i.e., that the map φ(u, v) = (x(u, v), y(u, v)) has rank less than two. Since,
from (2.2), we must have ∂φ/∂u 6= 0, the image of φ is a curve. In other words,
each curve αv(u) = (x(u, v), y(u, v)) is a reparameterization of a single curve
αv0(u). From the assumption that γv(u) is a unit speed geodesic, it follows
easily that this reparameterization u 7→ ũ(u) is nothing but a translation
ũ(u) = u+ c(v), and from this the stated result follows. �

We will call a parameterization of the form (2.1) a Monge surface pa-
rameterization, as it follows from the definition of a Monge surface that a
(regular) Monge surface has this form. We mention here that, given a Monge
surface parameterization, where both the spine curve r(v) and the profile
curve (x(u), y(u)) are parameterized by arc-length, the metric takes the form:

ds2 = du2 + (1− α)2dv2, α(u, v) := x(u)κ1(v)− y(u)κ2(v). (2.4)

Furthermore, one computes that the second fundamental form is diagonal, so
(u, v) are principal coordinates, i.e., the parallels and meridians on a Monge
surface are lines of curvature.

Let us call a surface locally planar geodesically foliated if there exists a
neighbourhood around each point that admits a Monge surface parameteri-
zation. Using the fact that all geodesics on a sphere are planar, it is easy to
construct complete examples of such surfaces with arbitrary topology by glu-
ing in a C∞ manner surfaces of revolution to pieces of spheres, as in Figure
1 (left), and then assembling multiple units.

Any surface such as those shown in Figure 1, where different choices of
foliation are made for different regions of the surface, must, on the overlap
of these regions, have more than one possible planar geodesic foliation. Ob-
viously a piece of a plane, a sphere or a cylinder has this property. We now
prove that these are essentially the only possibilities:

Theorem 2.3. Let S be a connected surface that admits more than one distinct
planar geodesic foliation. Then, either S is an open subset of a sphere, or
every point of S has a neighbourhood U that is an open subset of a cylinder,
γ × R, where γ is a plane curve.
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Figure 1. C∞ immersed surfaces that are locally, but not
globally, PGF surfaces.

Proof. Suppose S has two distinct foliations by planar geodesics, say F1 and
F2. Let p be a point of S, and suppose first that p is not an umbilical point. By
Theorem 2.2, there is a neighbourhood U1 of p such that U1 is parameterized
as a Monge surface x(u, v), where the geodesics are given by v = constant,
and an analogous neighbourhood U2 for F2, parameterized by x̃(ũ, ṽ), where
the planar geodesics are ṽ = constant. Set U = U1 ∩U2. We can assume that
U is small enough so that it contains no umbilic points. Then both (u, v)
and (ũ, ṽ) are curvature line coordinates on U . Since the lines of curvature
through a non-umbilic point are unique, and the planar geodesic foliations
are assumed to be distinct, it follows that the u isocurves are the ṽ isocurves
and vice versa, and we have (ũ(u, v), ṽ(u, v)) = (ũ(v), ṽ(u)). Moreover, all the
u isocurves are congruent to each other, and all the v isocurves are congruent
to each other. We can assume that both sets of coordinates are chosen such
that both the profile curve and the spine curve are unit speed. From (2.4)
and the relation between the variables we have

ds2 = du2 + (1− α(u, v))2dv2 = (1− α̃)2
(
∂ṽ

∂u

)2

du2 +

(
∂ũ

∂v

)2

dv2,

where ∂ũ/∂v depends only on v. Hence (1 − α)2 depends only on v, and
is constant equal to 1, given that the spine curve r(v) is unit speed. Thus,
ds2 = du2+dv2, which implies that the surface is developable. A developable
surface is locally a ruled surface, and, at non-umbilical points, the rulings are
lines of curvature. Thus one of the families of planar geodesics consists of
straight line segments. Since these line segments are also parallel, due to the
second Monge surface representation, the surface U is a cylinder.

Now suppose that p is an umbilical point where the Gaussian curvature
K(p) at p is non-zero: then K must be non-zero on a neighbourhood W of p.
By the discussion above, all of the points in W must be umbilic, because non-
umbilic points have Gaussian curvature zero. Hence W is part of a sphere,
with constant curvature K0. Moreover, the set of points at which the Gauss
curvature is K0 is clearly both open and closed, hence the whole of S.

The remaining case is that p is an umbilic and K(p) = 0. Since S is not
part of a sphere, there can (by the above) be no umbilic points with positive
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Gaussian curvature, and hence the Gauss curvature must be zero everywhere.
Choose a neighbourhood U of p that has a Monge surface representation
x(u, v). Since K = 0, we can assume that U is a part of a ruled surface.
Then either U is a part of a plane and the proof is complete, or there exists
a point q in U which is not an umbilic point. In the latter case, as previously
discussed, the rulings, on a neighbourhood of q, are parallels of the Monge
representation. Since a parallel curve to a straight line segment is also a
straight line segment, it follows that all of the parallels on U are parallel
straight line segments, and U is a cylinder. �

2.2. Global planar geodesic foliations

We now consider global planar geodesically foliated surfaces. In general, a
PGF surface does not have a global representation as a Monge surface. Fig-
ure 2 shows that it is easy to construct counterexamples: the developable
surface to the left, although orientable, does not have a well-defined vector-
field orthogonal to the foliation, whereas a Monge surface does, given by the
direction of the parallels. The surface to the right has a different profile curve
on one end of the surface from the other.

Figure 2. PGF surfaces that are not globally Monge surfaces..

Neither of the PGF surfaces in Figure 2 is complete. If we add this
requirement, then such examples are ruled out:

Theorem 2.4. Let S be a complete, connected, orientable PGF surface. Then
S has a global parameterization in the form (2.1). In particular, this parame-
terization is a covering map R2 → S consisting of curvature line coordinates.

Proof. Let γ0 be a choice of one of the planar geodesics in the foliation,
with a given arc-length parameterization. Denote the surface normal by N
and let ν = N × γ′0 denote the unit conormal along γ0. Such a conormal
vector field is defined along any of the geodesics in the foliation, and we can
always assume that, on neighbouring geodesics, the parameterizations are
chosen so that ν varies continuously. Hence, given a point p0 = γ0(s0), we
can integrate the vector field ν to obtain a curve r in S, orthogonal to the
foliation. Since S is complete and ν has unit length, r is well-defined R→ S.
Let S̃ be the Monge surface constructed from r and γ0 by the equation (2.1).
This Monge surface is regular because a Monge surface is always regular on an
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open set containing the spine curve, and the completeness of S, together with
uniqueness of geodesics, means that S̃ is a subset of the regular surface S. Now
S̃ is open in S, because any point on S̃ has a neighbourhood parameterized
in the form (2.1) with (u, v) ∈ (u0− ε, u0 + ε)× (v0− δ, v0 + δ). To show that

S̃ is the whole of S, consider an arbitrary point q ∈ S. Choosing the planar
geodesic of the foliation that passes through q, we can similarly construct
another Monge surface Ŝ that contains q. If Ŝ intersects S̃, then there is a
planar geodesic that is contained in both Ŝ and S̃. In this case, it follows by
the construction of these sets that Ŝ = S̃. Thus Ŝ and S̃ are either equal or
disjoint. But both sets are open and S is connected, so they must be equal,
and q ∈ S. By construction, the representation S̃ is a regular immersion,
hence a covering map R2 → S. �

Since the (u, v) coordinates of the covering map in Theorem 2.4 are
canonically defined by the planar geodesic foliation, up to coordinate changes
of the form (u, v) 7→ (ũ(u), ṽ(v)), this can be regarded as a canonical covering
by the conformal Lorentz plane R1,1. Hence:

Corollary 2.5. Every complete, connected, orientable PGF surface carries a
Lorentzian conformal structure, the null lines of which are given by the planar
geodesics and the family of parallels of a Monge surface parameterization.

Note that not all planar geodesic foliations carry a global Lorentz struc-
ture (see Figure 2, left).

The Poincaré index theorem states that on a compact surface the Euler
characteristic is equal to the sum of the indices of the zeros of any vector
field. Since a surface satisfying the conditions of the above corollary carries a
natural non-vanishing vector field, namely the tangent field to the foliation,
this implies:

Proposition 2.6. If M is a connected, compact orientable surface and x :
M → R3 a PGF immersion, then M is a torus.

3. Generalized Monge surfaces

We have shown that a PGF surface is not necessarily a Monge surface, unless
it is complete. In this section we explore the converse direction, in order to
clarify the precise difference between Monge surfaces and PGF surfaces, and
find global conditions under which these objects coincide.

The idea of a Monge surface is defined kinematically by a plane Π(t)
moving through space such that the movement of any point on the surface
is always orthogonal to the plane. We can describe such a moving plane
by making an initial choice Q1, Q2 of orthonormal basis for the plane, and
setting qi(t) to be the corresponding vectors at time t. Similarly, making an
initial choice of point p0 on the plane, we let p(t) be the corresponding point
at time t. Finally, we set t(t) to be the normal to the plane at time t. By the
definition of Π(t), the derivatives of p, q1 and q2 have components only in
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the direction of t. Thus we have a map F : (a, b)→ SE(3), from some open
interval into the group of orientation preserving Euclidean motions, given by

F =

(
q1 q2 t p
0 0 0 1

)
,

and the conditions on the derivatives are represented by

ω = F−1
dF

dt
=


0 0 −κ1 0
0 0 −κ2 0
κ1 κ2 0 λ
0 0 0 0

 .

We call the family of planes Π(t), defined by F an orthogonal family of planes,
and say that the family is regular if (κ1(t), κ2(t), λ(t)) 6= (0, 0, 0), i.e., ω 6= 0,
for all t ∈ (a, b). This definition of regularity does not depend on the choice of
initial vectors Q1 and Q2 or the initial point p0. A different choice amounts
to post-multiplying the frame F by a constant invertible matrix , and thus
ω is conjugated by a constant invertible matrix, which does not change the
condition ω 6= 0.

Example 1. Given an arbitrary regular space curve r, a regular orthogonal
family of planes can be constructed by p(t) = r(t), t = r′/|r′| and q1, q2 a
rotation minimizing frame. In that case λ is non-vanishing. More generally,
there exist regular orthogonal families of planes where λ vanishes, regardless
of the choice of initial point p0. For example, take

q1(t) = (cos t, sin t, 0), q2(t) = (0, 0, 1),

t(t) = (− sin t, cos t, 0), p(t) = t(t)− tt′(t).

This is a regular orthogonal family of planes, with κ1(t) = −1, κ2 = 0 and
λ(t) = t. Here λ(t) vanishes at t = 0. If we choose a different initial point p̃0
on the plane, we have p̃(t) = p(t) + c1q1(t) + c2q2(t) for some constants c1
and c2. Then p̃′(t) = (t+ c1)t(t), so λ(t) vanishes at t = −c1.

Definition 3.1. Let γ : (a, b) → R2 be a curve parameterized by arc-length,
γ(s) = (x(s), y(s)), and let F : (c, d)→ SE(3) be a regular orthogonal family
of planes, with notation as above. Then the map x : (a, b)× (c, d)→ R3 given
by

x(u, v) = p(v) + x(u)q1(v) + y(u)q2(v),

is called a (generalized) Monge surface.

It should be noted that, if the initial point p0 and the initial frame
(Q1, Q2) are changed in the representation F for the family Π(t), then the
curve γ would need to be translated and rotated accordingly to get the same
surface.

Since

∂x

∂u
= x′(u)q1(v) + y′(u)q2(v),

∂x

∂v
= (λ(v)− κ1(v)x(u)− κ2(v)y(u))t,
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with (x′)2 + (y′)2 = 1, a Monge surface is regular at (u, v) if and only if

λ(v) 6= κ1(v)x(u) + κ2(v)y(u).

Geometrically, in each plane Π(v), there is a (possibly empty) line, the in-
stantaneous axis of rotation of the plane Π(v),

Lv = {(x, y) | κ1(v)x+ κ2(v)y − λ(v) = 0},

and the Monge surface is regular if and only if none of the lines Lv intersect
the initial curve γ. Note that the spine curve p is a curve on the surface x if
and only if (x(u), y(u)) = (0, 0) for some u. One can always arrange that p is
a curve on the surface by choosing p0 to be a point on the surface, and then
translating γ accordingly.

Figure 3. Monge surfaces with the same singular spine
curve, shown in red.

Example 2. Returning to the family of planes in Example 1, we have Lv

given by the equation x = v. That is, the instantaneous axes of rotation are
all vertical lines, and these lines sweep out the entire xy-plane as v runs over
R. Hence there is no choice of profile curve γ such that x is everywhere a
regular surface. Portions of the surfaces corresponding to three different lines
as profile curve (the line y = −x, the x-axis and the y-axis) are shown in
Figure 3. The first two have cuspidal edges, the last a fold singularity.

Note that the example of the sphere shows that the image of a gener-
alized Monge surface can be a regular surface even if the parameterization
x is not regular. In general, however, there will be singularities that are not
removable, as in Figure 3.

For a given generalized Monge surface, if the surface is regular then, by
construction, it is a PGF surface. Combined with Theorem 2.4, we conclude:

Theorem 3.2. Every regular Monge surface is a PGF surface, and every com-
plete PGF surface has a covering by a Monge surface. In particular, complete,
regular PGF surfaces are the same objects as complete regular Monge sur-
faces.
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4. Monge tori and Klein bottles

In this section we investigate the problem of constructing Monge tori. These
are complete, regular surfaces, so can be regarded as either Monge surfaces
or PGF surfaces. If the spine curve is a closed curve, i.e., a map r : R→ R3,
satisfying r(v + P ) = r(v) for some P , it does not follow that the surface
closes up to form a topological cylinder. Apart from very special cases such
as a tubular surface (Figure 4, right), it is necessary that the surface normal,
and hence the rotation minimizing frame, be periodic with the same period.
This is a property of the geometry of the spine curve, and it has a very simple
characterization for curves that have a well-defined Frenet frame.

4.1. Curves with closed rotation minimizing frames and Monge tori

Throughout this section, by a differentiable curve r : I → R3, we mean a
regular unit-speed curve that has a well-defined differential binormal field b
along the curve. The principal normal is then defined by the formula n = b×t,
where t = r′(s). The signed curvature is given by t′(s) = κ(s)n(s), and the
torsion by b′(s) = τ(s)n(s). Given a closed curve with period L, denote the

total torsion by T =
∫ L

0
τ(s)ds. Note that the assumed binormal field is not

automatically periodic: for example a closed curve could contain pieces of
line segments, along which the binormal field could be anything at all. We
therefore add the assumption of periodicity of the binormal field:

Lemma 4.1. Let r : R → R3 be a closed, differentiable curve with period L,
and suppose that the binormal field b is also periodic with the same period.
Let F = (t,q1,q2) be any choice of rotation minimizing frame along r. Then
F is periodic with period L if and only if the total torsion T is an integer
multiple of 2π.

Proof. Because t and b are periodic with the same period, the Frenet frame
(t,n,b) also has this property. The torsion τ of the curve, given by b′(s) =
τ(s)n(s), is the rate of rotation of the basis (n,b) for the plane Πs =
span(n,b) compared with the zero rotation of the rotation minimizing basis
(q1,q2). The latter basis (and hence F ) thus closes up if and only 2mπ =∫
τds, for some m ∈ Z. �

Let us define a Monge cylinder to be a regular Monge surface with closed
spine curve and closed rotation minimizing frame. Note that this definition
does not depend on the choice of spine curve: if r is the spine curve, then any
other spine curve is of the form r̃(s) = r(s) + aq1(s) + bq2(s), which has the
same properties. Given a Monge cylinder, it is a simple matter to construct a
Monge torus by choosing as profile curve a small closed curve γ0 in the plane
Π0 = span(q1(0),q2(0)), such that the origin lies on γ0. The Monge surface
so constructed is regular on an open set containing the spine curve, which
lies on the surface. Since the image of the spine curve is compact, it is always
possible to choose γ0 small enough so that the torus produced is regular.
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4.2. Constructing Monge tori

Given the characterization in Lemma 4.1, it is not difficult to find examples of
Monge cylinders, and hence tori. For example, a plane curve has zero torsion,
but more generally, one can show [11] that a surface in R3 is a part of a sphere
or a plane if and only if the total torsion of any closed curve in the surface is
zero. Hence any close curve in a sphere can also be used to produce Monge
cylinders.

The problem of constructing more general examples amounts to finding
more general curves that satisfy the closing condition of Lemma 4.1. We
are also interested in the case that the total torsion is an odd multiple of
π, because this allows us to construct Möbius strips and Klein bottles. More
generally still, since the total torsion is the total rotation angle of the rotation
minimizing frame as the curve is traversed, by taking a profile curve γ0 that
has a rotational symmetry of order n around the origin, and using a spine
curve with total torsion 2kπ/n (where k is an integer), the Monge surface will
close up after one period of the loop, although the Monge parameterization
will be a covering of degree d ≤ n, depending on the common divisors of n
and k. If the total torsion is an irrational multiple of π, then a circle centered
at the origin can be used as profile curve, to produce a tubular surface that
is not a parameterized Monge torus, but the image of which is a torus. Note
that the spine curve does not lie on the surface in this case, but at the center
of the tube. Examples constructed using the method described in the next
subsection are shown in Figure 4.

Figure 4. Monge coverings of embedded tori. Left: T =
LS = 2π/4, degree of covering is 4. The profile curve has
order 4 symmetry about the origin of the plane. Right: T =
LS = 2π/π, degree of covering is uncountably infinite. The
profile curve is a circle, the parallels do not close up.

It is thus interesting to know whether one can find closed curves with
arbitrary values for the total torsion, or at least with arbitrary values in
[0, 2π). The answer to this question can be found in a survey by Fenchel
[7], the relevant details of which we recall here: A convenient way to find
curves with a specified value for the total torsion is to look for a curve with
everywhere positive torsion, because if s is the arc-length on a curve r and
sB the arc-length of the binormal b then dsB = |τ(s)|ds. Hence, if τ > 0,
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and LS is the length of the trace of b on S2, then

T =

∫ L

0

τ(s)ds =

∫ LS

0

dSB = LS .

In other words, if τ is non-vanishing, then the total torsion is just the length
of the trace of the binormal curve on S2. Fenchel also shows that a closed
curve b in S2 is the binormal to a closed curve r in R3 if and only if the
great circles tangent to b sweep out the whole of the 2-sphere. Moreover, the
torsion of r is non-vanishing if b has no cusps. There are many examples
of such curves b (see Figure 5), and curves such as those shown can clearly
be scaled so that the length is anything between 0 and 2π, which solves the
problem under discussion.

Figure 5. Examples of binormal images of closed space curves.

Note that we only obtain curves r with non-vanishing torsion this way,
and this does not include all interesting cases. For example if r takes values
in a sphere then the total torsion is zero. Hence the torsion must change sign,
unless r is a plane curve. It is possible to modify our discussion to include
these by including curves b that have cusps, but we omit this for the sake of
simplicity.

4.3. Explicit constructions

Given a curve b in the 2-sphere with the properties discussed above, there
are infinitely many closed space-curves r to choose from that have b as the
binormal field, so we would like to consider some natural choices. For example
closed curves with non-vanishing curvature and constant torsion are found in
work by J. Weiner [12], and Bates and Melko [1], however to construct these
a special choice of b is needed. Here we take b to be arbitrary, subject to the
conditions mentioned above.

Let b(t) be some parameterization of a regular closed curve in S2, with
period P , and the length of one period LS . If b is the binormal field to a
space curve r with unit tangent and normal fields t and n respectively, then
b′ is proportional to n, so t = n × b = (b′/|b′|) × b. If s is the arc-length
parameter of r, then

t =
1

τ

dt

ds

db

dt
× b,
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and

r =

∫
t

ds

dt
dt =

∫
1

τ

db

dt
× bdt.

Given a choice of b, a curve r with binormal field b is determined by any
choice of function σ(t) := 1/τ(t). The closing condition for r is∫ P

0

σ
db

dt
× bdt = 0, (4.1)

and clearly many choices for σ will be available. To find a solution, we can
set

σ(t) =

n∑
i=1

ciBi(t),

where Bi are some periodic basis functions, such as trigonometric functions
or periodic B-splines. Then (4.1) is:

n∑
i=1

ciai = 0, ai =

∫ T

0

Bi(t)b(t)× b′(t)dt.

Thus, given a choice of basis functions, the solutions are found by linear
algebra. There can be many solutions for ci, depending on the choice of basis
functions. To choose a natural solution, we have used an optimization to

minimize the elastic energy,
∫ L

0
κ2(s)ds. To write this quantity in terms of b

and σ, let sT denote the arc-length parameter of the curve t and compute

κ = τ

∣∣∣∣b× d2b

ds2B

∣∣∣∣ = τ

∣∣∣∣det

(
b

db

dsB

d2b

ds2B

)∣∣∣∣ ,
and hence

E =

∫ L

0

κ2ds =

∫ T

0

1

σ

det(bb′b′′)2

|b′|5
dt.

4.4. Concluding remarks

We have used the method just described to produce the examples shown in
Figure 4. More examples can be found in the article [3]. If we scale b to
have length π, and use a profile curve that passes through the origin and is
symmetric about the origin, then a Möbius strip is obtained. If the profile
curve is a straight line the surface is developable. The problem of constructing
developable Möbius strips has been considered, for example, in [13] and [4].
The method of [4] is, in essence, similar to that presented here, only the
authors assume that the curvature of r is non-vanishing. In [10], developable
Möbius strips are characterized by a different method, using the so-called
center geodesic curve instead of the spine curve.

If we take the spine curve of a developable Möbius strip, and take the
profile curve to be a symmetric figure-8 curve, we obtain a Monge Klein
bottle (see [3]). MATLAB functions that allow one to compute a Monge
surface from a given spine curve and profile curve are currently available at
http://geometry.compute.dtu.dk/software.

http://geometry.compute.dtu.dk/software
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1850.
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