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 24 

Abstract 25 

Due to the irregular nature of solar resource, solar photovoltaic (PV) system alone cannot satisfy load on 26 

a 24/7 demand basis, especially with increasing regional population in developing countries such as 27 

Thailand. A hybrid solar PV/biomass based along with battery storage system has been drawing more 28 

attention to option since it promises great deal of challenges and opportunities for different rural areas. 29 

Thailand rich with higher level of agricultural crops and biomass materials, is a prospective candidate for 30 

deployment of bio-power to complement such hybrid systems. To this end, in this study a customized 31 

hybrid power system integrating solar, biomass (syngas) power and battery storage system is evaluated a 32 

pilot scale for micro off-grid application. This paper shows that for a reliability of a hybrid syngas/solar 33 

PV system along with rechargeable batteries, the syngas generator can guarantee a continuous 24 hours 34 

electricity supply in case of shortage of energy (during on cloudy day and at the nighttime). Two 35 

consecutive days of commissioning phase are necessary for the entire system to operate, which is a solid 36 

basis for including the syngas generator in the hybrid system. Furthermore, the generator has to be 37 

always synchronized during the commissioning time. Battery state of charge (SOC) in percent (%) 38 

connecting with syngas is greater than solar PV and the charging time appears significantly shorter than 39 

that one. All possible combinations between an innovation and existing systems can serve as a guideline 40 

for making similar studies in the context of different off-grid sites and more. Next, optimal scale up and 41 

design of hybrid power system for different off grid applications will be performed including 42 

comprehensive uncertainty analysis to facilitate robust and renewable electricity generation. 43 

Keywords: Torrefied rubber wood, Modified downdraft gasifier, Syngas, Internal combustion (IC) 44 

engine, Hybrid solar PV/syngas/battery system, Thailand45 
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 46 

Nomenclature 47 

LHV   low heating value    [MJ/kg or MJ/m3]  48 

HHV   high heating value    [MJ/kg or MJ/m3] 49 

m  mass flowrate     [kg/h or m3/h] 50 

n   revolutions per minute   [r.p.m] 51 

CCE  carbon conversion efficiency  [%] 52 

CGE  cold gas efficiency   [%] 53 

gV   total volume of syngas  [Nm3/h] 54 

Ygas   dry gas yield    [Nm3/kg] 55 

moisW t   weight fraction of biomass moisture [%wt] 56 

BTDC  before top dead center   [degree] 57 

kWp  kilowatt peak  58 

SOC  state of charge    [%] 59 

IC   Internal Combustion 60 

ASTM  American Society for Testing and Materials 61 

ASME  American Society of Mechanical Engineers 62 

Subscript  63 

moist  moisture 64 

ref  reference 65 

Greek symbols  66 
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η    efficiency 67 

λ   air to fuel mixture 68 

φ   equivalence ratio 69 
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 70 

1. Introduction 71 

About 60% of the Thailand population lives in the rural areas, and around 12% of the rural households 72 

i.e., most living in small remote villages and isolated islands still lack access to grid electricity (Network 73 

2015). Obviously, higher electricity line expenses, transmission and distribution losses (T&D losses) and 74 

the large infrastructure required for regular O&M make the rural electrification through conventional 75 

grid extension an economically unattractive option for the remote areas (Rajbongshi, Borgohain et al. 76 

2017). Also, a utility grid extension for grid connected main system is infeasible administratively due to 77 

such conditions as dispersed people and obstacle operation (IEA 2011; Mainali and Silveira 2013). 78 

Recently, the Thai’s government has set the target of raising the access rate to the reliable, grid-quality 79 

and affordable prices electricity services to 80% of the rural households by the year 2025 (IEA 2016). 80 

The Government aims to provide electricity to un-electrified villages through renewable energy 81 

applications. This has drawn extensive public attention to the need of off-grid system on a stand-alone 82 

power system (SAPS) from renewable energy systems (RESs) such as solar photovoltaics (PV) power in 83 

many regions. In fact, solar energy is regarded as a clean, climate-friendly, abundant energy resource, 84 

and with cost-effective characteristics (decreasing cost of PVs). This makes PVs among the likely viable 85 

energy supply solutions to such rural areas (Salas, Suponthana et al. 2015).  86 

However, the techniques and smart methods for more efficient solar performance are still evolving. A 87 

major disadvantage of solar power is its discontinuous and irregular (dependency on weather conditions) 88 

nature – the sun doesn’t shine 24 hours a day. When the sun goes down or is heavily shaded until night 89 

falls, solar PV panels stop producing electricity. Likewise the energy yield of solar panels decreases on 90 

cloudy or foggy days since less sunlight can pass through the clouds to reach solar panels; however, 91 
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these weather conditions do not mean that no electric power is  produced – just a lot less (Yamegueu, 92 

Azoumah et al. 2011). The risk factor of energy supply is mainly due to dependence on sunshine hours 93 

which are changeable. As a matter of fact, the solar irradiance levels and the electricity demand time 94 

distributions do not match. It is therefore necessary to consider other renewable energy sources in order 95 

to enhance the energy availability and security situation in Thailand. 96 

The concept of a hybrid power system depends on many factors. One of the alternative solutions for 97 

addressing these above challenges would be a hybrid solar PV system which combines two energy 98 

sources with a variable output. An appropriate choice of innovative technology for the additional energy 99 

sources should consider the following criteria: ability to utilize diverse fuel sources, emissions 100 

reductions (climate friendliness), and efficiencies. Furthermore, combining the two sources of solar and 101 

another thing can provide better reliability and their hybrid system becomes more economical to operate 102 

since the weakness of one system can be complemented by the strength of the other one. 103 

In rural areas of the Southeast Asian countries like Thailand, around 80% of people still use agricultural 104 

biomass wastes into solid charcoal and residual woody for their energy need (Pode, Diouf et al. 2015; 105 

Samiran, Jaafar et al. 2016). Advancement in the biomass-to-energy conversion technologies has revived 106 

interest in the use of these feedstock because of its renewable and carbon–neutral nature. Among these 107 

conversion technologies, biomass-derived syngas gasification is the most reliable and can be converted 108 

into many forms such as heat, electricity and bio-fuels (Hagos, Aziz et al. 2014; Hunpinyo, Cheali et al. 109 

2014). Due to the electricity production in biomass gasification technology, producer gas can be used 110 

directly as fuel in a spark ignition internal combustion (IC) engine coupled with a generator set (or called 111 

genset) (Reed, Das et al. 1988; Lv, Xiong et al. 2004; Hsi, Wang et al. 2008; Basu 2010).  112 
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A modified engine-generator set plays a major role in the distributed power generation for an electric 113 

output requirement (Fanelli, Viggiano et al. 2014). It has very durable, versatile and flexible applications 114 

in moving and stationary machineries. Compared to different fuel types of combustion technologies, 115 

syngas genset is believed to have benefits like low capital cost (Singh and Baredar 2016; Singh, Singh et 116 

al. 2016), reliability, easy access to their required spare parts, easier operating system and control, and 117 

modularity (Lieuwen, Yang et al. 2009). A combustion engine system is convenient to use devices 118 

without technical supervision, especially in remote villages and rural communities, located in 119 

mountainous areas isolated from the main electric grid. In addition, the introduction of syngas utilization 120 

decreases the dependency on fossil fuels. This is where syngas engine-generator set is expected to be 121 

complementary to the intermittent nature of solar electric energy. Electricity generated by genset can 122 

also be connected independently on the primary function of storage batteries to guarantee a continuous 123 

24 hours supply for small off-grid systems. Therefore, the key challenges of design and operation for 124 

hybrid power stations includes the following: a suitable replacement of fossil fuels by syngas fuels and 125 

improvement of efficiency for solar energy during at night and on cloudy days and optimal combination 126 

with respect to economics and robustness of different components of hybrid system.  127 

To the best of authors knowledge, none of the researchers have worked on the innovation design and 128 

operational system of a hybrid syngas/solar PV along with the battery storage in actual off-grid situation, 129 

to fulfill the electrical demand of a typical village. Almost all researchers focused on cost of energy 130 

(COE) production and optimum size with the support of the HOMER software simulator hybrid 131 

optimization model for electric renewable. In the existing literature, several hybrid systems are simulated 132 

through solar PV/ biomass without storage (Bhattacharjee and Dey 2014), solar PV/ biomass with battery 133 
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energy storage (Harish Kumar 2013; Pradhan 2013; N. 2014; Singh and Baredar 2016; Singh, Singh et 134 

al. 2016), solar PV/ biomass/diesel with battery energy storage (Rajbongshi, Borgohain et al. 2017). 135 

For instance, (Bhattacharjee and Dey 2014) proposed a PV-biomass hybrid system for isolated areas of 136 

India. The authors carried out economic analysis and component selection with the help of the standard 137 

software tool hybrid optimization model for rural electrification. (Harish Kumar 2013; N. 2014) 138 

proposed a PV-biomass based hybrid system for a location in New Zealand. The system sizing was 139 

obtained with the help of HOMER. (Pradhan, Bhuyan et al. 2013) evaluated a PV-biomass hybrid 140 

system for rural electrification on the basis of levelized cost of electricity (LCOE). To design hybrid 141 

system a mixed integer linear programming based model has been developed, (Singh and Baredar 2016; 142 

Singh, Singh et al. 2016) integrated solar and biomass resources to develop a mathematical model of an 143 

autonomous PV-biomass energy system with battery bank to provide electricity for an off-grid location. 144 

The main contribution is to compare the performance of the applied simulation technique on a large 145 

scale, the results achieved by the artificial bee colony (ABC) algorithm have been compared with 146 

particle swarm optimization (PSO) and HOMER programs. It has been verified from the results that the 147 

proposed hybrid system is able to manage a smooth power flow with the same optimal configuration. 148 

(Rajbongshi, Borgohain et al. 2017) presented electrical cost analysis of hybrid PV-biomass-diesel 149 

energy system for comparing between grid extension and off-grid hybrid energy system in 100 150 

households located on the north zone of India using tool HOMER. It is inferred from the simulation 151 

results that biomass gasification system could play an important role and the best option in energy 152 

generation, particularly in rural areas. 153 

The main objective of this paper is to test and demonstrate on a pilot scale reliability and stability of the 154 

proposed hybrid solar PV/biomass system with battery energy storage to supply electricity under 155 



Page 9 of 64

Acc
ep

te
d 

M
an

us
cr

ip
t

Manuscript submission for consideration for possible publication in Chemical Engineering Research and Design 
(SI: Energy System Engineering) 
 
 

Full manuscript (S. Kohsri et al., 2017) (Clean version) R1    Page 9 of 9 

different electrical load demand during the day. The outcome of this demonstration is indeed important 156 

to provide the local decision-makers (who have enough agricultural biomass resources) with the existing 157 

solar PV facilities to consider replacement of fossil fuels for continuous electricity supply for off grid 158 

applications. The manuscript is structured as follows: First the hybrid power is system presented and 159 

then the principle governing the design, configurations and operational strategies of different 160 

components of are explained in detail. A special focus is given on the section of biomass gasification via 161 

generator set to guarantee a continuous 24 hours electricity supply.  Next the results are presented, 162 

critically analyzed and discussed. Conclusion section outlines main findings and future perspectives 163 

from this study.  164 

2. Proposed hybrid solar PV/syngas system in Thailand 165 

2.1 Hybrid solar PV/diesel generator system by utilizing syngas as fuel 166 

Currently, many remote areas of Thailand are found to be used both generators and solar PV panels for 167 

producing electricity. Namely, diesel generators help power applications many aspects of both prime and 168 

standby. Most people live in almost total darkness depend on diesel/gasoline fuels to provide electricity 169 

in their rural villages where connecting to the main grid is not possible and generators also help to 170 

overcome issues associated with unreliable, outdated and non-existent electricity grids.  171 

The majority of commercially-available generators are designed to run on fossil fuels and they have 172 

some major disadvantages and limitations. First, the fuel consumptions are non-linear related to load 173 

ratio, namely, it has low efficiency at low load demand in order to increase more levelized costs of 174 

electricity and high price fuel, including the logistical problem of transporting the diesel fuel to remote 175 

areas. Second, Emission levels of diesel fuel after burning IC engine such as NOx, carbon monoxide 176 
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(CO), hydrocarbons, and particulate matter are produced as a substantial contributor to poor air quality in 177 

the surrounding environment (Kumar, Khare et al. 2015).  178 

Alternatively in this hybrid system, a new equipment is used to allow the genset to be fed with biomass-179 

based syngas. The operation of fuel injection system on syngas has been adopted in many provincial 180 

regions in Thailand and this change has similar performance as diesel engine at 1500 rpm of speed.  181 

2.2 Dispatch strategy of proposed hybrid system 182 

The schematic operation of hybrid syngas/solar/battery system is illustrated in Fig. 1. The issue of 183 

dispatch strategy is planned and designed as following on two scenarios: in normal operating situation 184 

(see Fig. 1a), solar PV provides the load demand during the daytime (around 07.00 a.m. to 19.00 p.m.) 185 

during the winter and summer months. The excess energy (the energy above the average hourly demand; 186 

if any) from the PV panels is charged in the lithium battery until 70% (an initial set-point) or more of full 187 

capacity of the battery status. As shown in Fig. 1b, a standby syngas genset system is brought-on-line on 188 

cloudy days and during at the nighttime (around 19.00 p.m. to 07.00 a.m.) when solar PV fails to satisfy 189 

the load designed and once the level of battery storage (see Fig. 1c) has been depleted. This means is that 190 

the syngas genset is used for a backup power system. A self-regulation control system is started at full 191 

capacity when the battery’s SOC is lower than 40% minimum required and it still runs continuously until 192 

the battery reaches a specified charge level of 80% and then it shuts down automatically.  193 

*************************************************** ******************************** 194 

Fig. 1 Dispatch strategy of hybrid syngas/solar/battery system through off-grid bi-directional inverter: on 195 

two scenarios (a) the excess energy, (b) and (c) the shortage energy. 196 

*************************************************** ******************************** 197 
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 198 

3. Materials and methods 199 

The components of the proposed hybrid system are detailed below including collection and recording of 200 

the main data for performance analysis. The hybrid power station consists of biomass resource and 201 

gasification, syngas genset, solar system components, batteries and electric loads. 202 

3.1 Biomass feedstock and properties 203 

The typical biomass uses for the proposed system came from the furniture factories in Rayong province. 204 

Some amounts of waste rubber-wood-sawdust were torrefied pellets which is an efficient form to store 205 

and transport biomass based fuel source Thus, samples of torrefied wood pellet (see Fig. 2) have been 206 

selected as the feed material for this study. Notice, the calorific value of the biomass fuel feeding the 207 

gasifier should not be less than 9 MJ/kg (Elsner, Wysocki et al. 2017). The length size of pellets should 208 

be between 40 mm and 100 mm in order to ensure enough the void (i.e. "empty") spaces in a bed for the 209 

gasification process as well as to give the heat transfer from the throat zone upwards. The lower limit 210 

constraint on pellet size (40 mm) is increased the pressure drop within the fixed bed at a reasonable 211 

level. It has been confirmed experimentally (Mayerhofer, Govaerts et al. 2011) and numerically (Marek 212 

2017) that the particle diameter directly effects the pressure drop in fixed beds. The biomass gasification 213 

system is tested with torrefied rubber wood pellets with a moisture content of approximately 6% wt. (dry 214 

basis). The biomass ash and moisture levels should not exceed 5% wt. and 20% wt. (Elsner, Wysocki et 215 

al. 2017). The chemical characterization of the local torrefied rubber wood used in this study is presented 216 

in Table 1. In particular, torrefied rubber wood pellets are characterized as ASTM standard test method 217 
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through proximate analysis (Thermogravimetric method), ultimate analysis (providing the elemental 218 

composition of the sample) and calorimetric analysis (for the heating value), respectively.  219 

*************************************************** ******************************** 220 

Fig. 2 Torrefied rubber wood pellet used for gasification. Pellets are 10 mm diameter cylinders of 221 

average 50–150 mm length. 222 

*************************************************** ********************************  223 

*************************************************** ******************************** 224 

Table 1 Chemical characterization of local torrefied rubber wood tested in gasifier. 225 

*************************************************** ******************************** 226 

3.2 Modified air-downdraft gasifier and syngas compositions 227 

The modified gasifier used in this research is a compact scale that was designed and built in the King’s 228 

Mongkut University of Technology North Bangkok (Rayong campus) cooperated with Alternative 229 

Energy System Co,.Ltd  (Co-founder), all parts are fabricated as following on ASME pressure vessel 230 

code (Boiler and Committee 1997; Rao 2009). The internal volume is capable of at least approximately 231 

40 kg/h up to 50 kg/h for feeding an opening top. Schematic diagrams with a typical temperature profile 232 

and the whole zones are shown in Fig. 3. In general, hardware of the experimental system essentially 233 

consists of a downdraft gasifier, tar condenser and trap, bag filter drum, electric vacuum blower (axial 234 

fan) and a flare pipe. This gasifier has four distinct reaction zones, which are drying feedstock (or called 235 

condensing zone), pyrolysis (or called drying zone), oxidation and reduction zones from top to bottom 236 

(height of the total bed (H) = 1350 mm, internal diameter (ID) of the oxidation zone (D) = 300 mm, ID 237 

of the drying hopper zone (L) = 300 mm, ID of the throat (d) = 280 mm). Principle of operation is a 238 

semi-batch modified downdraft reactor using atmospheric air as oxidizing agent. Inner chamber of both 239 

reduction and combustion zones made of stainless steel grade 253MA to secure the oxidation at higher 240 
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reaction temperature. In parts of the fabrication, the entries configurations are consist of a fuel hopper, a 241 

gasifier reaction zone, air feeding devices (filter and rota-meter) integrated a recuperator box, and an ash 242 

removal chamber. For the process control unit (PCU), five K-type thermocouples are installed to display 243 

temperature profiles in the middle of each significant zone. The vacuum blower installed after the filter 244 

tank is varied speed by an inverter and an oxygen sensor is introduced to regulate automatically the 245 

blower frequency. During burning biomass, the grate shaker lies below the reduction zone is controlled 246 

relatively with the pressure ratio across the reactor to shake the grate for a given shake time and interval. 247 

All electric and signal devices are monitored and controlled by a commercial software, realized in 248 

LabView environment.  249 

*************************************************** ******************************** 250 

Fig. 3 Schematic diagram of modified downdraft reactor (approximately 40-50 kg/h) and its typical 251 

temperature profile through gasifier during operation 252 

*************************************************** ********************************  253 

The first zone, or uppermost, this zone receives pellet fuel from the top that is dried and evaporated 254 

moisture in the air circulated through the first zone. In the case of vaporization of moisture until liquid 255 

droplet through the top cover is removed by sloping trough. The second drying zone gets heat delivery 256 

from the third zone principally by thermal conduction. The heat builds up into the pellet woody (see 257 

zone III in Fig 3). Around 400 ºC, it starts to undergo pyrolysis condition which the woody fuel is forced 258 

to decompose into a variety of substances - one of them being charcoal, non-condensable gases as a 259 

producer gas (CO, H2, CH4, CO2, N2 and H2O), and tar vapors (condensable gases). One of the main 260 

advantages of this design, most of the tar is cracked and the char is gasified in this zone, where hot air is 261 

injected through surround 6 nozzles along with the feed. Excess oxygen in front of the 6 nozzles 262 

facilitates combustion (or called oxidation) of part of the char and creating a very high temperature at 263 
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1,000ºC. The volatiles consist mainly of carbon monoxide and hydrogen, and may include a variety of 264 

other hydrocarbons and some fly ash exits from the bottom side of the reduction zone. Heat release from 265 

the combustion zone is conducted turnaround the gasifying zone, so the air stream pass through the hot 266 

syngas exiting the reactor to heat up the incoming air while cooling the syngas. The syngas consists 267 

mainly of carbon monoxide and hydrogen exiting the reduction zone first passes through a hot trap, 268 

where some of the soot and most of the fly ash is collected, cooled down in tube condenser, and bag 269 

filter, respectively.  270 

Due to performance testing, both fresh air inlet and syngas effluent streams are regulated using variable 271 

speed drive (VSD) on air vacuum blower to allow a narrow range of air/fuel ratio (lambda, λ) values for 272 

acceptable syngas quality. Stable gasifier operation of the gas quality produced is in the range of 106 ± 2 273 

Nm3/h at standard pressure and standard temperature. Gas composition data is collected to analyze using 274 

a chromatograph type GC-MS system Agilent Technologies 7890. The sampling of tars is determined by 275 

using standardized methodology as followed in regulations for the Tar protocol (Lee, Speight et al. 276 

2014).  277 

To achieve the gasification performance, there are a number of factors at least five parameters can be 278 

defined to assess the fabrication and installation including its reliability, stability of operating process, 279 

and more importantly the energy conversion efficiency. To solve for substituting, the given information 280 

in all equations are displayed separately in Supplementary Data Appendix A. 281 

a) The equivalence ratio, ER (φ) of gasified biomass for each run is calculated by Eq. (1) (Reed, Das et 282 

al. 1988).  283 
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 (φ)  /  

    
Actual Stoichiometric

Air flowrate Air flowrate
ER

Biomass consumptionrate Biomass consumptionrate

 
=  

 
 Eq. (1) 284 

where air/biomass fuel ratio for stoichiometry equals 1 is 5.22 m3 of air/kg of torrefied wood pellets. The 285 

ER obtained by using Eq. (1) was found to be in the range of 0.25–0.4 (Ashok Jayawant Rao KECHE 286 

2013). 287 

b) Carbon conversion efficiency (CCE), cceη  (%) can be applied by Eq. (2) (Lv, Xiong et al. 2004; 288 

Sattar, Leeke et al. 2014; Materazzi, Lettieri et al. 2016),  289 

4 2

ash

1,000 [ CO% CH % CO %] (12 / 22.4)
100%

W  (1 X )  C%
syngas

CCE

v
η

× × + + ×
= ×

× − ×
ɺ

    Eq. (2) 290 

where CO%, CH4%, and CO2% are the gas concentrations as a volume fraction and syngasvɺ  (Nm3/h) is the 291 

total volumetric flowrate of dry gas produced at STP condition, W is the dry biomass feeding rate (g/h), 292 

ashX  is the ash content in the feed, and C% is the carbon content in the ultimate analysis of biomass.  293 

c) For direct syngas combustion after the gasifier, hot syngas sensible heat has to be considered to the 294 

chemical power in the gas efficiency calculations. The cold gas efficiency (CGE) of gasifier can be 295 

determined as follows: 296 

( ) ( )
( ) ( )

3

3    
100%

    

syngas syngas

CGE

biomass biomass

Nm MJv LHVhr Nm
kg MJm LHVhr kg

η
×

= ×
×

ɺ

ɺ

    Eq. (3) 297 
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In above relation biomassmɺ  represents the biomass loading (kg/hr), biomassLHV  stands for the calorific value 298 

of a biomass (MJ/kg), and 3 (Nm / h)syngasvɺ  and 3(MJ / Nm )syngasLHV  are the generated syngas 299 

volumetric flowrate at STP condition and its calorific value, respectively. 300 

d) Dry gas yield (Nm3/kg), The applied relation is: (Sattar, Leeke et al. 2014) 301 

( )
( )

3

 

˙

mois

Y
(1 W )   

syngas

gas

biomasst

Nmv h
kgm h

=
− ×

ɺ

       Eq. (4) 302 

where syngasvɺ  is the total volumetric flowrate (Nm3/h) of gas produced during gasification calculated from 303 

the nitrogen balance, considering that nitrogen in biomass is negligible, moisW t  is the biomass percent 304 

moisture by weight fraction w/w %). 305 

e) The dry product gas low heating value, LHV (MJ/Nm3) for the biomass producer gas has been 306 

calculated as follows (Klein and Nellis 2011): 307 

( ) ( ) ( )
2 4

0.126 0.10794 0.3505  CO H CHLHV C C C = × + × + ×     Eq. (5) 308 

where three typical compositions of CO, H2, and CH4 are the gas concentrations of the producer gas.  309 

3.3 Modified gas engine/generator set 310 
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Schematic of biomass gasification coupled to an IC engine for electricity generation employed in this 311 

work is depicted in Supplementary Data Appendix B. A pickup truck engine specifications, Made in 312 

Japan (ISUZU model 4BC2), are also listed in Table 2. The engine capacity is chosen coincident with 313 

the minimal syngas flowrate requirement and should be related with the swept volume of all the pistons 314 

inside the cylinders of a reciprocating engine. Without increasing the knocking tendency, the in-line 315 

four-cylinder engine plays an overall displacement volume of 3.3 L by installing both turbocharger air 316 

intake and intercooler systems. The fuel injection system is designed on a direct injection diesel engine 317 

that it is modified and coupled with a 50 Hz electric generator. The internal combustion system has been 318 

equipped originally with a carburetor, which is removed and replaced with a new intake manifold and 319 

lean burn syngas fuelled spark ignition.  320 

*************************************************** ******************************** 321 

Table 2 Overall performances of a modified genset fuelled with torrefied rubber wood syngas 322 

*************************************************** ******************************** 323 

3.3.1 Description of gas engine configurations  324 

In order to avoid increasing the knocking tendency (Lapuerta, Hernández et al. 2001), an ignition system 325 

is achieved at a compression ratio of 11.5:1 using a spark plug installed at both directionality and angle 326 

degree (28º BTDC) for injecting a gaseous fuel (Przybyla, Szlek et al. 2016). It is noted that the ignition 327 

timing for conventional spark ignition engines fueled with gasoline vary between 10º and 40º degree 328 

before top dead center (Heywood 1988). The pressure of the air/fuel mixture is boosted by a 329 

turbocharger installed in the intake system, which had a maximum boost pressure of 1.5 bar. The 330 

maximum power output of a generator linked to the engine is 45 kVA. Once a lower rotation speed 331 

engine is a condition required for syngas application, a digital governor is programmed to limit engine 332 
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speed and to control the throttle valve for regulating the syngas flow according to the operating load, and 333 

hence maintaining the desired engine speed.  334 

3.3.2 Description of gas engine/generator control system 335 

Through all the trials, the syngas engine/generator (genset) system is rotated at fixed speed of 1500 rpm 336 

in order to comply with the required electric power frequency of 50 Hz. The modified engine is fed with 337 

a stoichiometric air/fuel mixture ratio (through lambda sensor), with fuel being a substitute syngas 338 

supplied from a pressurized cylindrical tank. With this signal, the process control unit and control logic 339 

adjust from the lean or rich mixture to the proper air to syngas fuel ratio through PID control. A P&ID of 340 

the proposed biomass-to-electricity system is shown in Fig. 4. The overall process efficiency of biomass 341 

air gasification-generator set can be defined as following below. The solution of efficiency equations are 342 

substituted and arranged in Supplementary Data Appendix A.  343 

The overall process efficiency of biomass air gasification-generator set can be defined as follows: 344 

( )      ( )
100%

1 1,000
             

3,600 1

electrical output useful heat output
overall

biomass biomass

P kW H kW

kg MJ h kJ
m LHV

hr kg sec MJ

η
+

= ×
      × × ×      

     
ɺ

   Eq. (6) 345 

The efficiency of gas engine can be determined as follows: 346 

 

3

3

( )
100%

1 1,000
         

3,600 1

electrical output
engine

syngas syngas

P kW

Nm MJ h kJ
v LHV

h Nm sec MJ

η = ×
      × × ×      

     
ɺ

   Eq. (7) 347 

The electrical efficiency can be determined as follows: 348 
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  ( )
100%

1 1,000
              

3,600 1

electrical output
electricity

biomass biomass

P kW

kg MJ h kJ
m LHV

hr kg sec MJ

η = ×
      × × ×      

     
ɺ

   Eq. (8) 349 

The power station efficiency can be determined as follows: 350 

      ( )
100%

1 1,000
              

3,600 1

net electrical output serves the load
power

biomass biomass

P kW

kg MJ h kJ
m LHV

h kg sec MJ

η = ×
      × × ×      

     
ɺ

    Eq. (9) 351 

which the net electrical output serves the load refers to the whole electrical power minus the self-352 

consumption power of the system  353 

The thermal efficiency of system can be calculated as follows: 354 

  ( )
100%

1 1,000
              

3,600 1

useful heat output
thermal

biomass biomass

H kW

kg MJ hr kJ
m LHV

h kg sec MJ

η = ×
      × × ×      

     
ɺ

    Eq. 355 

(10) 356 

*************************************************** ******************************** 357 

Fig. 4 Process and Instrument Diagram (P&ID) layout of the proposed biomass-fueled genset system 358 

connecting with the mass and energy balances 359 

*************************************************** ******************************** 360 

In a controlled manner, the Deep Sea Electronics (DSE) is installed to synchronize for the useful features 361 

of the switchgear application. Otherwise, the model DSE7420 module can be compatible with two 362 

magnetic speed pickup units (MPUs) and alternator sensing through the configuration suite personal 363 

computer (PC) tool program. Within this program, the settings and control dynamics can be changed 364 
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(target RPM, over speed threshold, PID controls, droop, automatic start/shutdown states, LED/LCD 365 

alarm indication and power monitoring (kWh and kVA). A heuristic method of tuning a PID controller 366 

in both engine and generator can watch directly in Supplementary Data Appendix E. 367 

3.4 Solar PV system configurations  368 

3.4.1. Solar panel module  369 

The solar radiation information has a great effect on the continuous increase of the performance of solar 370 

PV system. This value can be related taking into consideration the tilting angle of solar arrays. Monthly 371 

averaged incident solar power in this area is quite high especially during in winter and summer from 372 

November 2016 to May, 2017, where it not exceeds 7.5 kWh/m2/day on horizontal plane. Optimum tilt 373 

angle is set to be 15º (±2.5º). The sunlight can be directly converted into electric production by PV 374 

panels and arrays. The current output of a solar module relies a function of voltage and depends on solar 375 

radiation and temperature. The panel’s power output can be found by multiplying the current (A) and the 376 

voltage (V). The panels are all re-deployed to power a total of 315 W x 39 modules, 97% efficient solar 377 

converters (each converter has its own 99.5% efficient maximum power point tracking, MPPT). As 378 

specified in Table C2 of Supplementary Data Appendix C, the method is involved with arranging on 379 

both 1st string of 6 panels and 2nd string of 7 panels in series. The power supplied by the solar PV panel 380 

is calculated by Eq. (11) and it can be given below (Daud and Ismail 2012), 381 

( ) ,  1PV DC out N PV T c c ref
ref

GP P K T TG− −
   = × × + −    

  Eq. (11) 382 

where  PV DC outP −  is output power (DC) from the PV arrays (kW) 383 
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 N PVP −  is rated power (DC) at reference conditions (kW) 384 

 G  is solar radiation (kW/m2) 385 

 refG  is solar radiation at reference conditions (  refG = 1 kW/m2) (Sukamongkol, 386 

Chungpaibulpatana et al. 2002) 387 

 TK  is temperature coefficient of the maximum power ( )1
℃ , where 33.7 10TK −= − ×  for typical 388 

Silicon material coating on solar panels 389 

 cT  is array (cell) temperature (ºC), which can be determined by 390 

( )( ) 20800c amb
GT T NOCT = + × −

 
 where ambT  is the ambient temperature (ºC) and the NOCT  refers 391 

to a nominal operating cell temperature (ºC) that is given in all PV specification sheets from the 392 

manufacturer, respectively. 393 

 , c refT  is array (cell) temperature at reference conditions ,( 25 )c refT = ℃  394 

3.4.2 Solar PV arrays and inverters  395 

An electric circuit diagram of a hybrid power system is depicted in Fig. 5. Initially, solar PV captures the 396 

solar energy using PV arrays. When sunlight hits the panel DC current is generated. This DC current is 397 

then fed into inverters to convert it to AC current for the primary load. Three solar PV inverters are 398 

usually sized a little larger rating to the solar panels to an allowable size of 1.05 times the solar array 399 

power rating and then it installed to act as interface between each of solar PV arrays and the bidirectional 400 

inverters (BDIs). The excess PV electricity generated is sufficient to partially charge the battery through 401 

the BDIs, it can be charged only during the daytime. The battery can reach 70% SOC before the twilight 402 

period starts. The amount of this stored energy will be prepared to use later for supplying the next whole 403 
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nighttime. A standby syngas genset is only needed if the batteries need recharging in times of 404 

unfavourable weather or if loads exceed inverters capacity. Whilst the genset fueled by syngas is running 405 

it powers the loads and the BDIs operates as a powerful battery charger to replenish the batteries. 406 

*************************************************** ******************************** 407 

Fig. 5 Proposed electrical diagram of a hybrid syngas/solar PV /battery power system for off-grid 408 

applications 409 

*************************************************** ********************************  410 

3.5 Bidirectional inverter  411 

A BDI has two ports: AC and DC ports. Its function is essential to the hybrid off-grid system where both 412 

a battery storage system and a backup syngas genset are involved in the proposed system. BDI can 413 

transfer power simultaneously in both directions between the DC and AC segments. Namely, the BDI 414 

can supply DC side and charge the Lithium batteries therefore it can provide a path from the AC bus to 415 

the DC bus, in this case it acts as a full wave rectifier circuit which changes AC syngas genset voltage to 416 

DC voltage. In the other side, BDI can provide path from DC bus to the AC load therefore it acts as a 417 

functional inverter which changes from DC voltage to AC voltage needed by the designed load. The BDI 418 

has to be capable of controlling the maximum expected power of AC loads. Thus, it can be chosen 20% 419 

higher than the rated power of the summation of AC loads.  420 

For the three phase connection (see Fig. 5), each phase is connected directly to the corresponding BDIs, 421 

where phase 1 is connected to the master unit, phase 2 is connected to slave 1 and phase 3 is connected 422 

to slave 2. The genset connections can be paralleled to three BDIs in order to deliver electrical power 423 

from the prime generator. The master BDI can synchronize with the standby genset to be compatible 424 
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with a built-in relay port through the function of switchgear. To use this common function, the backup 425 

genset can support the automatic startup functions. The standard signal wires of each connection point 426 

on a Deep Sea DSE7420 device from the standby genset are shown in Supplementary Data Appendix 427 

D. The available back solar PV power output after BDI (AC side) is dependent on the BDI efficiency 428 

(Ajan, Ahmed et al. 2003). 429 

 ( )  ( )out Bi inv in Bi inv Bi invP P η− − −= ×       Eq. (12) 430 

where  ( )out Bi invP −  is the available solar PV power AC output (kW)  431 

invn  is the BDI efficiency, which is considered as 95%. 432 

3.6 Lithium batteries charging/discharging station 433 

As previously mentioned, solar PV system may not be able to meet the load demands at all times and is 434 

supposed to be running in a hybrid manner, cycling the batteries system (charging and discharge modes). 435 

Lithium batteries are designed to capture surplus electricity generated by solar PV system during 436 

daytime peak demand and allow itself to be stored solar electricity for use later. For low or no solar 437 

radiation, potentially batteries are planned systematically to use as a back-up power system and they are 438 

charged both independently and coincidentally with syngas genset when the battery SOC status is less 439 

than 40%. Its performance likewise keeps up consistent voltage over the electrical load. The total 440 

capacity required ( )kWC  for the assembly of batteries in a solar PV system can be computed by adopted 441 

from (Ajan, Ahmed et al. 2003; Singh and Baredar 2016).  442 

 443 

( ) ( )kW day day night night inv battC ED HD ED HD DODη η = × + × × × ×    Eq. (13) 444 
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 445 

where  dayED  is total energy demand available for storage for a day at daytime (kW) 446 

 nightED  is total energy demand available for storage for a day at nighttime (kW) 447 

 dayHD  is hourly autonomy at daytime or the period of storage required (in hours) 448 

 nightHD  is hourly autonomy at nighttime or the period of storage required (in hours) 449 

 invn  is BDI efficiency (%),which is thought to be 95% 450 

 battn  is Lithium battery efficiency (%),which is thought to be 95% 451 

DOD  is the maximum allowable depth of charging and discharging cycles (%), which is thought 452 

to be 60%-80%, depending on the manufacturer 453 

However, the capacity of battery should be sized relatively with minimal hour allowable of a genset 454 

charging during the SOC reduction, especially voltage and current relationship.   455 

4. Results and discussion 456 

4.1 Mass balance of biomass gasification 457 

The detailed mass input, mass output and the mass closure on the gasifier process are tabulated in Table 458 

3, leads to examine the reliability of the results reported. Total mass input includes wood, fresh air with 459 

small moisture input and total mass outputs comprise of char, ash and syngas outputs. The char and ash 460 

are found in all units for the experiment, depending on their sizes. First place, some small particles of 461 

char and ash are vibrated by grate motor and falls into the bottom tray. Second, a wet dust is collected 462 

through condenser and finally some fine solid particles are filtered from bag filter in tank. All of them 463 
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are weighted and hence taken into consideration for data analysis. The mass balance closure is found to 464 

be 95.07% for this experimental run (see in Fig. 4). For small-scale comparison, other studies report 465 

material balances anywhere from 93% (Coronado, Yoshioka et al. 2011; Kotowicz, Sobolewski et al. 466 

2013) to 98% (Pérez, Machin et al. 2015).  467 

*************************************************** ******************************** 468 

Table 3 The balance of mass streams on the combined thermal and power system (a) biomass air 469 

gasification and (b) engine/generator 470 

*************************************************** ********************************  471 

Table 3 reports the main air-downdraft gasifier performance indicating five significant parameters. The 472 

operation of the dry gas yield is evaluated to be 2.82 Nm3/kg at the ER value of 0.34. The gasifier 473 

achieved operation efficiency with ER ranges of about 0.32-0.38, which is in a good agreement with the 474 

optimum value for downdraft gasifier found by other researchers (Zainal, Rifau et al. 2002). The cold 475 

gas efficiency (CGE) is calculated to be 59.85% and the carbon conversion efficiency (CCE) is found to 476 

be 90.88% with specific biomass fuel consumption of 40.9 kg/h. The values appear to be quite consistent 477 

with literature (Pérez, Machin et al. 2015; Patuzzi, Prando et al. 2016) at the same reactor size. A CGE 478 

value between 60% and 65% indicates a moderate agreement level, while range of CCE value (90% − 479 

95%) indicate substantial agreement level respectively. 480 

As shown in Table 4, the results of the analysis of the gas sampled while running 3 hours of operating 481 

timeframe has comparable to experimental results from (Jayah, Aye et al. 2003) that produced gas 482 

compositions leaves from a proposed gasifier are not significantly different. Especially, a typical syngas 483 

composition from biomass gasification in a downdraft reactor with air used as an oxidizing agent is 484 

similar in the range of 15-20% of H2, 15-20% of CO, 0.5-2% of CH4, 10-15% of CO2 and the other gas 485 
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is balanced by replacing N2, O2 and CxHy as previously reported by (Martínez, Mahkamov et al. 2012). 486 

For the present work, heating value of the syngas is characterized about calculating the LHV of 4.027 487 

MJ/Nm3 which is considered appropriate for combustion (Basu 2006). Its application as a suitable fuel in 488 

a modified IC engine has been confirmed also in a number of research set-ups in Denmark (Viking) 489 

(Ahrenfeldt, Thomsen et al. 2013), Finland (Volter) (Kaaresto, Ylikoski et al. 2013) and America (All 490 

power labs) (Przybyla, Szlek et al. 2016). 491 

*************************************************** ******************************** 492 

Table 4 Main gasifier performance parameters 493 

*************************************************** ******************************** 494 

4.2 Syngas and IC engine performance 495 

The gasification efficiency is determined by Eq. (3) resulted in 59.85% for nitrogen-enrichment. 496 

Efficiency rate of a proposed air-blown gasifier is relatively good in value when compared with other 497 

values reported in the literature (Ahrenfeldt, Egsgaard et al. 2013; Ahrenfeldt, Thomsen et al. 2013; 498 

Gadsbøll, Thomsen et al. 2017; Thomsen, Sárossy et al. 2017). This reason could be interpreted by the 499 

proposed modification, that the increased temperature of the air influent stream in the recuperative 500 

preheater has directly affect key process variables like productivity and the calorific value of the 501 

producer gas. Moreover the successive reactions that comprise the decomposition, the Bounduard and 502 

the water shift reaction rates are taking place rapidly with the desired extent. It is worth noting that the 503 

LHV of producer gas reached 4.027 MJ/Nm3 is still enough to ensure stable working conditions of the 504 

IC engine.  505 
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After finishing the load testing, the amount of tar formation has not been found prospectively in IC 506 

engine. This is also observed in (Elsner, Wysocki et al. 2017) study that increase in flow leads to higher 507 

temperature thereby avoid low level of tar formation. Principally, when the gasifier temperatures reach 508 

the target minimum temperature of 900 ºC, (> 1000 ºC ideally), tar content in the syngas may be low 509 

enough caused by thermal cracking before feeding into IC engine. Consequences of syngas operating in 510 

an IC engine, the revolution is kept constant at 1500 rpm and the compression ratio is to be 11.5:1 for a 511 

full load. The actual operation of the IC engine running on producer gas obtains a maximum electric 512 

power output of 33.7 kW. On average, biomass consumption is recorded at 40.9 kg/h. Summarizing, the 513 

observed performance (equivalencies) metrics are as follows: 1 kg of wood pellets 7.92% moisture 514 

content produces 2.82 Nm3 of syngas and generates 0.82 kW electrical output, which this value is 515 

relatively fallen in the range of 0.75-1.86 kW/kg reported in the literature for modified diesel engines 516 

working with producer gas (Warren, Poulter et al. 1995; McKendry 2002; Products 2012; Röder, 517 

Whittaker et al. 2015). 518 

4.3 Energetic analysis and electric power performance 519 

In this section, the efficiencies related to electricity and heat production, internal losses, as well as the 520 

overall system efficiency for the biomass-to-electricity process are determined through the Equations (6) 521 

- (10). The energy efficiencies of different components are tabulated in Table 5. To make a better 522 

understanding of the energy flows of the proposed hybrid system, the proportion of the flow quality 523 

between the use of energy and losses in the entire process is balanced through Sankey diagram. Also, the 524 

relevancy and relative importance of the efficiency parameters involved in the entire system are 525 

estimated. A Sankey diagram of the energy flows in the integrated biomass gasification and 526 

engine/generator system is presented in Fig. 6 and energy balance data is tabulated in Supplementary 527 
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Data Appendix C. Based on its lower heating value, the biomass energy flows are initially evaluated to 528 

be 198.8 kW. The chemical energy in biomass is transferred through the gasifier processor (i.e., air 529 

preheater, reactor, cooling and purification) and the IC engine to produce electricity and heat, with some 530 

losses. A small amount of energy is delivered at a low level with the assistance of warmed process air. 531 

The detailed percentage values with respect to the input energy of the biomass feedstock have been 532 

reported in Table 6 for the proportion of losses, and thermal outputs and electrical production. On the 533 

exit side of the whole process, the largest energy proportion is contained in the thermal generation to be 534 

43% (85.7 kW). It is apparent that heat loss during gasification is the second largest proportion, and this 535 

loss reaches approximately 40% (79.4 kW). For the proportion of electricity production, only 17% (33.7 536 

kW) of the biomass feedstock is converted to net electricity, and 9.3 kW (4.7%) of the entire electricity 537 

production are shared for the self-consumption for the auxiliary equipment such as controller devices, 538 

compressors, motors in pumps and blowers etc. At second glance, 24.4 kW (12.3%) of the electricity left 539 

is sent to the load. The overall energy efficiency of the proposed system is approximately 44.21% as 540 

calculated in Eq. (6).   541 

*************************************************** ******************************** 542 

Table 5 Electricity, thermal and overall efficiencies for the proposed system 543 

*************************************************** ******************************** 544 

*************************************************** ******************************** 545 

Fig. 6 A Sankey diagram of energy flows for the integrated biomass gasification and syngas genset 546 

systems 547 

*************************************************** ********************************  548 

*************************************************** ******************************** 549 

Table 6 Energy balance for the proportion of losses and thermal outputs and electrical production 550 

*************************************************** ******************************** 551 



Page 29 of 64

Acc
ep

te
d 

M
an

us
cr

ip
t

Manuscript submission for consideration for possible publication in Chemical Engineering Research and Design 
(SI: Energy System Engineering) 
 
 

Full manuscript (S. Kohsri et al., 2017) (Clean version) R1    Page 29 of 29 

4.4 A case study of Thailand  552 

The selected proposed rural area of an educational institute, this location of the study area on the map 553 

located off 12° 49' 40.6" N latitude and 101° 13' 06.1"E longitude. In Fig. 7, the best top view photo 554 

taken with a drone, a stand-alone solar power system of 145 kWp was installed and being started up 555 

since 2015. Only 12.3 kilowatt (kWp) of all energy is shared portion to join for the proposed hybrid 556 

system. In this strategy solar energy is to serve the daily load which has required to use electrical 557 

appliances like computers, televisions, tube and incandescent lights, ceiling fans, groundwater filtration 558 

system and other machineries. The average daily load starts from 10:00 a.m. to 16:00 p.m. is 559 

approximately 10 kWh which can be equivalent an electric source of illumination in 60 households. 560 

Surplus electrical energy goes toward charging the battery bank. The data obtained from the 561 

meteorological station displays a mean annual solar irradiation of 5.56 kWhr/m2 per day for summer 562 

period.  563 

*************************************************** ******************************** 564 

Fig. 7 The top view photo taken with a drone on the map located 12° 49' 40.6" N latitude and 101° 13' 565 

06.1"E longitude (KMUTNB Rayong Campus) - a) 12.3 kWp of solar power separated to study for the 566 

proposed hybrid system, b) Circuit breakers, c) PV inverters and d) Batteries storage 567 

*************************************************** ********************************  568 

The specification of different configurations of the proposed hybrid system such as solar PV array and 569 

PV inverters, genset, BDIs and batteries have been presented on the conceptual design system used for 570 

the selection criteria of all components as shown in Supplementary Data Appendix C. The sizing of 571 

power system is relatively designed for 12.285 kW of solar panels, 12.6 kW of three converters, 33.7 kW 572 

of a syngas genset, 13.8 kW of three BDIs and 60.9 kWh of battery capacity, respectively. The operating 573 
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schedule is tested to cover a period of two days. According to a comparative analysis of solar PV/battery 574 

system, the graphical profiles without marking scale as depicted in Fig. 8 have occurred predictably on 575 

the real-time pattern. Solar PV current initially represents an orange line can generate so much electric 576 

power during a first sunny day between 09:00-16.00 hours that it is significantly higher than AC 577 

electricity demand (pink line). The excess solar PV generation unused immediately is conserved into the 578 

energy storage. During the same period, the SOC of the battery bank (green line) witnesses a slowly 579 

increase near its maximum allowable value from 43% to 68% in the usual time (approximately in 7-8 580 

hours). A purple line confirms the battery current level with positive value (absorbing power) for 581 

charging status. Consequently, only storage 68% of its remaining capacity aspects to be served the 582 

electrical use during the next 1st nighttime for illumination requirements. The predicable circuit current 583 

of a battery during discharge (releasing power) has been a downward trend to be negative between 584 

19:00-07:00 hours. The trend lines of 2nd day remain the same situation.  585 

One of the main concerns when implementing a solar PV/battery system without a standby genset is the 586 

uncertainty of sunshine in the next 2nd daytime. When there are a lot of clouds in the sky or rainy, solar 587 

panel efficiency drops as well as SOC may reduce ramp-down with increasing the daily load demand. In 588 

order to deficit power spending, outage and blackout events may last from a few hours to a few days 589 

depending on the irradiation of the sunshine hours, however the reliability of this system is difficult to 590 

recover from quickly. Perhaps to solve for the above problem by offering a suggestion, the addition of 591 

battery storage may extend its power outage compared to the existing one, however the main cause of 592 

unstable system on consideration still depends on sunshine duration. Thus, the addition of a battery may 593 

not prevent exactly a power failure problem and made many costly investments.   594 
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*************************************************** ******************************** 595 

Fig. 8 Power profiles of a hybrid solar PV/battery system without a standby syngas genset 596 

*************************************************** ******************************** 597 

In the case of the integrated syngas system, gaseous fuelled in a modified IC engine coupling generator 598 

is synchronized to be running in a hybrid manner. Because of the fluctuating available of solar 599 

irradiation, a wondering issue about insufficient power supply on cloudy days or at nighttime of 600 

solar/battery system is solved to secure and reliable operation at all times. The syngas-to-power can be 601 

synchronized seamlessly to hybrid solar PV/battery system for backup electric generation. The deficient 602 

power generated by solar PV arrays can then be complemented at sudden time when the battery level 603 

drops while discharging. One day before switching to syngas genset, the cleaned syngas effluent was 604 

prepared in a gas storage tank (as shown in Supplementary Data Appendix B) which was typically 605 

located separately to the main gasifier unit. The gas storage tank acts as a buffer in order to balance 606 

fluctuations in the production of gas in the gasification process. Afterward the syngas was let to flow 607 

into the receiver of gas holder, which from here was ready to be compressed into the syngas container 608 

until reach approximately 10 bar gauge. The storage capacity of the syngas network is more than 140 609 

kWh (24.4 kW x 6 h) which is large enough to supply for one week at a standby status. When syngas 610 

production levels are highly variable, dual fuel mixing can be used to supplement the syngas with 611 

liquefied petroleum gas (LPG). 612 

When SOC dropped below 40%, the syngas genset was automatically started to be warming up at about 613 

5 min of continuous idle operation (900 rpm). The air-fuel mixture under lean-burn conditions was 614 

adjusted by a control box until the genset run stably. According to Fig. B4 in Supplementary Data 615 

Appendix B, the solenoid operated butterfly valve (CV-01) that will open by programming mechanism 616 
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was installed to arrange the flow of the syngas. Together with syngas, the fresh air was flowed through 617 

CV-02 into the mixer, and directed in to the electronic hydraulic actuator of the combustion chamber. It 618 

should be noted here that during starting the genset, the flow rate of the syngas was let maximum and 619 

reduce the rate until the genset start running. After that, the genset was accelerated at the synchronous 620 

speed of 1500 rpm (frequency 50 Hz and voltage range 380-415 V). Once the SOC was reached its target 621 

point, the genset automatically shuts. 622 

At the beginning of the first night time between 03:00 - 06:00 hours (see in Fig. 9), the genset could be 623 

proven to operate seamlessly with smoothing in a charge scheduling. The time setting of the standby 624 

operation based triggering of the central controller is started automatically when the SOC level is lower 625 

than 40% and its application is capable of fixing complement in all seasons, with twenty-four hours of 626 

electricity supply, the different aspects of sunlight, quantity, quality and duration are not necessary to 627 

worry. In addition the percent of SOC level connecting with genset is greater than solar PV and the 628 

charge time appears approximately shorter than that one. This behavior may cause using higher voltage 629 

to transmit power and lower of amps rating between the batteries and the genset. Summary, the 630 

implementing results are capable to deliver an eminently suitable system and an appropriate strategy for 631 

the biopower development of this renewable sector, lead to give a novel idea of the performance on 632 

hybrid system available and identifying a possible way for improvement in the future. 633 

*************************************************** ******************************** 634 

Fig. 9 Power profiles of a hybrid solar PV/battery system with a standby syngas genset 635 

*************************************************** ******************************** 636 

Another major benefit is the replacement of average diesel use of 275 liters per month in supplying 637 

electricity at the same load and the corresponding reduction of CO2 emissions gained (see calculation in 638 
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Supplementary Data Appendix F). One liter of diesel fuel can produce about 2.65 kg of carbon dioxide 639 

(Hazrat, Rasul et al. 2015). On a rough calculation   at the same total displacement volume and the same 640 

total power produced within the cylinders, 8.748 tCO2 emissions is prevented for a year thanks the use of 641 

renewable biomass source. However the assessment of economic feasibility of the entire syngas/solar 642 

PV/battery hybrid system based on financial indicators such as cost of energy (COE), net present value 643 

(NPV), internal rate of return (IRR) and time of return on investment (TRI) (payback period) as well as 644 

comprehensive sensitivity and uncertainty analysis will be further studied to further improve the 645 

technology readiness of the proposed hybrid renewable power system.  646 

5. Conclusions 647 

This study performs a pilot scale evaluation of the potential of a hybrid solar PV/biomass system with 648 

battery energy storage to serve with the electrical load demand at night or on cloudy days. In the propose 649 

hybrid power system two sources of renewable energy is combined: solar PV and biomass-derived 650 

syngas gasification via modified engine/generator set is synchronized to guarantee a continuous 24 hours 651 

supply for small off-grid systems. From the experimental results, the low heating value of the syngas 652 

resulted in 4.027 MJ/Nm3. The engine's electrical output efficiency using a 100% of syngas resulted in 653 

17% at maximum load. Considering a mechanical-to-electric power conversion efficiency of 95%, the 654 

maximum efficiency of the modified gas engine works out to be 28.2%. The thermal efficiency of the 655 

proposed biopower system was 16.9%, reaching an overall efficiency of 34.3%. The gasifier efficiency 656 

was 61.2%. Finally, the specific fuel consumption (torrefied rubber wood at 7.92% moisture content) for 657 

power generation using the ICE fueled with syngas equaled 1.21 kg/kWh and the specific fuel 658 

consumption (syngas) was 3.14 Nm3/kWh.  659 
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The sizing of the proposed hybrid system is based on the following design basis 12.285 kW of solar 660 

panels, 12 kW of three converters, 33.7 kW of a syngas genset, 13.8 kW of three BDIs and 60.9 kWh of 661 

battery capacity, respectively. For each curve, at the first day of commissioning, the solar harvest has a 662 

sufficient possibility in responding to daily load fluctuations and being shared with power surplus on 663 

average charging for over 6-7 hours per day, while the syngas genset is capable of complementing the 664 

discontinuous nature of solar energy for standby power and back-up source under shorter charge time. 665 

The pilot scale testing results showed promising potential, which will be further studied for optimization 666 

and effective scale up for robust and economic off grid applications. 667 
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Highlights 816 

 817 

• A hybrid syngas/solar PV/battery system is proposed at a prototype scale study. 818 

• Syngas genset plays a key role on complementing the intermittence of solar energy. 819 

• The preliminary commissioning shows promising potential in continuous supplying. 820 

• Working efficiency of solar PV system at shortage energy are important variable. 821 

• Optimization and effective scale-up of the proposed system will further be studied.  822 
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(c) 

Fig. 1 Dispatch strategy of hybrid syngas/solar/battery system through off-grid bi-directional 

inverter: on two scenarios (a) the excess energy, (b) and (c) the shortage energy. 
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Fig. 2 Torrefied rubber wood pellet used for gasification. Pellets are 10 mm diameter 

cylinders of average 50–150 mm length. 
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Fig. 3 Schematic diagram of modified downdraft reactor (approximately 40-50 kg/h) and its 

typical temperature profile through gasifier during operation 
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Fig. 4  Process and Instrument Diagram (P&ID) layout of the proposed biomass-fueled genset system connecting with the mass and energy 

balances 
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Fig. 5 Proposed electrical diagram of a hybrid syngas/solar PV /battery power system for off-grid applications 
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Fig. 6 A Sankey diagram of energy flows for the integrated biomass gasification and engine/generator systems 
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Fig. 7 The top view photo taken with a drone on the map located 12° 49' 40.6" N latitude and 101° 13' 06.1"E longitude (KMUTNB Rayong 
Campus) - a) 12.3 kWp of solar power separated to study for the proposed hybrid system, b) Circuit breakers, c) PV inverters and d) Batteries 
storage 
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Fig. 8 Power profiles of a hybrid solar PV/battery system without a standby syngas genset  

 

 



Page 55 of 64

Acc
ep

te
d 

M
an

us
cr

ip
t

Design and preliminary operation of a hybrid syngas/solar PV /battery power system for off-grid applications: A case study in Thailand 

Figures (S. Kohsri et al., 2017) (Clean version) R1    Page 13 of 13 

 

Fig. 9 Power profiles of a hybrid solar PV/battery system with a standby syngas genset 
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Table 1 Chemical characterization of local torrefied rubber wood tested in gasifier. 

Characterization Proposed this study 
Moisture content (wt. %) (ASTM D 3302) 7.82 
  
Proximate analysis (wt.% dry) Torrefied rubber wood 

• Ash (ASTM D 73174) 1.9 
• Volatile matter (ASTM D 3175) 81.8 
• Fixed carbon (ASTM D 3172) 16.3 

  
  
Ultimate analysis (wt. % dry)  

• C  49.1 
• H  6.0 
• N  - 
• S (ASTM D 5865)  - 
• O  43.0 
• Cl  - 
• Ash (ASTM D 73174)  1.9 
• HHVd.b (MJ/kg) (ASTM D 5865)  19.0 
• LHVd.b (MJ/kg) (ASTM D 5865)  17.5 

Bulk density (kg/m3) 576 
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Table 2 Overall performances of a modified genset fuelled with torrefied rubber wood syngas 

Engine main data before modification Description 

- Engine model Isuzu Diesel 4BC2 (Made in Japan)  

- Year production 1982-1987 

- Type car Isuzu ELF and NPR trucks 

- Horse power 65 kw (105 hp) at 3500 rpm 

- Torque 200 N·m at 2200 rpm 

- Bore diameter 102 mm 

- Stroke 80 mm 

- Displacement (D) 3.3 Liter 

- Number of Cylinder 4 cylinders 

- Injection system Direct injection 

  

Setting configuration parameters for syngas engine Description 

- Modified in the diesel engine Ignition system 

- Air metering VGT, intercooler 

- Revolution per minute (RPM) 1500 

- Compression ratio (CR) 11.5:1 

- Syngas fuelled (%) 100 

- Spark timing (º BTDC) 28 

- Power de-ratinga (%) 20b 

- Combustion A/F ratio 1.32c 

  

Setting configuration parameters for generator Description 

- Alternator  STAMFORD  

- Maximum continuous capacity  45 kVA 

- Phase  3 Phase - P.F 0.8 

- Speed  1500 rpm - 4 Pole 

- Frequency  50 Hz 

- Construction   Single bearing 

  
     a Calculated as a fraction of a nominal engine power. 
     b Assuming the alternator and transmission efficiency of 80% and 95% respectively. 
     c Air/Fuel (syngas) mass ratio = 163 kg/h / 123 kg/h = 1.32. 
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         Table 3 The balance of mass streams on the combined thermal and power system (a) biomass air gasification and (b) 
engine/generator  

(a) Descriptive parameters of biomass air gasification unit  

Run 
Equivalent 

ratio (φ)a 
Air flowrate 

(Nm3/h) Total input (kg/h) Total output (kg/h) Mass balance 
closure (%) b 

   
Air flowrate 

(kg/h) @ 1.76 
wt% moist. 

Wood consumption 
rate (kg/h) @ 7.82 

wt% moist. 

Syngas 
flow 

rate (kg/h) 

Syngas flow 
rate (Nm3/h) 

Char + ash 
at gasifier 

Wood vinegar 
+ dust 

at condenser 

Fine solid 
particles 

at filter tank 
 

1 0.34 72.5 84.5 40.9 123 106.4 0.85 1.12 0.23 99.8 

                  a A detail of calculation is listed in Supplementary Data Appendix A (see more in Equation (1)) 
                       b A detail of mass balance closure is calculated to be (125.2/125.4) x 100 = 99.8% (please find the information requested in Table 3b) 

(b) Mass balance of biomass air gasification unit  

Input material streams kg/h  Output material streams kg/h 

1. Torrefied biomass pellets 40.9  I. Char + ash 0.85 

2. Fresh air intake 84.5  II. Wood vinegar + dust 1.12 

   III. Fine solid particles 0.23 

   IV. Syngas production 123 

Total (1) + (2) 125.4  Total (I) +… (IV) 125.2 

 

(c) Mass balance of engine/generator unit  

Input material streams kg/h  Output material streams kg/h 

1. Syngas  123  I. Exhaust gas 286 

2. Fresh air intake 163    

     

     

Total (1) + (2) 286  Total (I) +… (IV) 286 
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Table 4 Main gasifier performance parametersa 

Description Unit Value 

Carbon conversion efficiencya  (%),  90.88 

Cold gas efficiencya  (%),  59.85 

Dry syngas yielda  (Nm3/kg),  2.82 

Dry syngas low heating valuea  (MJ/Nm3) 4.027 

Syngas flowrate  (Nm3/h) 106.43 

Produced syngas content (volumetric) H2 (%) 13.5 

 CO (%) 16.5 

 CO2 (%) 12.0 

 CH4 (%) 1.4 

 N2 (%) 55.7 

Tar mg/Nm3 48.5 

Char and ashes kg/Nm3 0.008 
                     a Details of calculation are listed in Supplementary Data Appendix A (see more in Equation (2) to (5))  
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Table 5 Electricity, thermal and overall efficiencies for the proposed system 

Characteristics of output parameters Experimental results Units 

- Exhaust gas temperature  447 (ºC) 

- Net Electric power output  33.7 (kW) 

- Useful heat output   32.9 (kW) 

   

Characteristics of output efficiencies Experimental results Units 

- Overall process efficiency ( ) a 44.21 % 

- Gas engine efficiency ( ) b 28.32 % 

- Electrical efficiency ( ) c 16.95 % 

- Power station efficiency ( ) d 12.27 % 

- Thermal efficiency ( ) e 27.26 % 

   
 

a Usable heat and net electric power output are produced from engine/generator system  (see more in Equation (6) of Supplementary Data Appendix A) 
b Syngas is produced from gasification process     (see more in Equation (7) of Supplementary Data Appendix A) 
c Net electric power output is produced from engine/generator system   (see more in Equation (8) of Supplementary Data Appendix A) 
d Electric power output is supplied to the load     (see more in Equation (9) of Supplementary Data Appendix A) 
e Net usable heat is produced from engine/generator system   (see more in Equation (10) of Supplementary Data Appendix A) 
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Table 6 Energy balance for the proportion of losses and thermal outputs and electrical 
production 

Proportion of Electricity production Value Unit Percentage 
(1) Electrical self-consumption (auxiliary as blower, 
compressor etc.) 

9.3 kWe 4.7% 

(2) Electrical supply to the load 24.4 kWe 12.3% 
• Net electricity generation (1) + (2) 33.7 kWe 17% 
    
Proportion of thermal production Value Unit Percentage 
(3) Exhausting gas for useful the biomass drying process 32.9 kWth 16.5% 
(4) Dissipated heat as turbocharger, intercooler etc. 31.5 kWth 15.8% 
(5) Air pre-heating unit 21.3 kWth 10.7% 
• Net thermal output (3) + (4) + (5) 85.7 kWth 43% 
    
Loss fractions Value Unit Percentage 
(6) Heat losses - wall and ash 5.7 kWth 2.9% 
(7) Heat losses - cooling and purification 52.8 kWth 26.6% 
(8) Heat losses - engine 20.9 kWth 10.5% 
• Total losses in the whole process (6) + (7) + (8) 79.4 kWth 40% 
    

Total (1) + (2) + … + (7) + (8) 198.8 kWth 100% 
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Due to the discontinuous nature of solar energy, a hybrid power system could be designed by 

incorporating biomass gasification and electricity generation to PV array and battery storage 

system. It can be used as backup power generation to improve the stability and reliability of 

system when occurred in case of shortage of energy e.g. (b) on cloudy day and (c) at the 

nighttime. 


