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Abstract 14 

This study applies an optimized phytoscreening method to locate a chlorinated ethene plume 15 

discharging into a stream. To evaluate the conditions most suitable for successful phytoscreening, trees 16 

along the stream bank were monitored through different seasons with different environmental 17 

conditions and hence different uptake/loss scenarios. Vinyl chloride (VC) as well as cis-18 

dichloroethylene (cis-DCE), trichloroethylene (TCE) and tetrachloroethylene (PCE) were detected in 19 

the trees, documenting that phytoscreening is a viable method to locate chlorinated ethene plumes, 20 

including VC, discharging to streams. The results reveal, that phytoscreening for VC is more sensitive 21 

to environmental conditions affecting transpiration than for the other chlorinated ethenes detected. 22 

Conditions leading to higher groundwater uptake by transpiration than contaminant loss by diffusion 23 

from the tree trunks are optimal (e.g. low relative humidity, plentiful hours of sunshine and an 24 

intermediate air temperature). Additionally, low precipitation prior to the sampling event is beneficial, 25 

as uptake of infiltrating precipitation dilutes the concentration in the trees. All chlorinated ethenes were 26 

sensitive to dilution by clean precipitation and in some months, this resulted in no detection of 27 

contaminants in the trees at all. Under optimal environmental conditions the tree cores allowed 28 

detection of chlorinated solvents and their metabolites in the underlying groundwater. Whereas, for less 29 

ideal conditions there was a risk of no detection of the more volatile VC. This study is promising for 30 

the future applicability of phytoscreening to locate groundwater contamination with the degradation 31 

products of chlorinated solvents. 32 

Keywords: chlorinated solvents; groundwater; surface water; tree coring  33 
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1. Introduction 34 

Phytoscreening is a method where samples from trees are used as indicators to characterize subsurface 35 

contamination. This method exploits the fact that trees take up contaminated porewater when they 36 

transpire, and thereby reflect the underlying pore water chemistry (Burken et al. 2011). The earliest 37 

phytoscreening study was conducted in the late 1990’s, where headspace analysis of sapwood tree 38 

cores was used to delineate groundwater contamination with the chlorinated ethenes TCE and cis-DCE 39 

(Vroblesky et al. 1999).  40 

Groundwater contamination with chlorinated ethenes has, in recent studies, shown to be a matter of 41 

concern for stream water quality (Rasmussen et al. 2016; McKnight et al. 2012; Weatherill et al. 2014). 42 

When groundwater discharges into streams, contaminant plumes appear close to the surface. This is 43 

promising for the use of phytoscreening as a rapid and inexpensive method to locate plumes 44 

discharging into streams. On the other hand, uptake of the less contaminated water from the stream 45 

could dilute the contaminants in the trees to such an extent, that contaminant concentrations are 46 

undetectable. Limited studies exist that apply phytoscreening to reflect contaminated groundwater with 47 

chlorinated ethenes in the vicinity of a surface water (e.g. Vroblesky et al. 2004). 48 

Phytoscreening has been shown to successfully locate groundwater contamination with chlorinated 49 

ethenes (Sorek et al. 2008; Larsen et al., 2008; Limmer et al., 2011); however, these studies have 50 

mainly focused on the parent compounds (PCE and TCE) and the degradation products (cis-DCE and 51 

VC) have rarely been detected in trees. A need to include VC, the most hazardous of the chlorinated 52 

ethenes (Jennings 2011; European Council 1998) remains to be demonstrated.  53 
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Phytoscreening studies have shown that concentrations of chlorinated ethenes in trees vary in all three 54 

dimensions (Limmer et al. 2013; Vroblesky et al. 2004; Holm and Rotard 2011). Further, seasonal 55 

variation in contaminant concentrations has been observed, where concentrations increased with 56 

increasing transpiration (Limmer et al. 2014) and increasing groundwater level (Wittlingerova et al. 57 

2013). Transpiration is positively correlated with environmental conditions such as temperature and 58 

hours of sunshine, and negatively correlated with the relative air humidity (Stern 2006). Additionally, 59 

an important factor influencing the concentrations in the trees is precipitation, as an uptake of the clean 60 

infiltrating precipitation will dilute the concentrations of contaminants in the trees (Vroblesky et al. 61 

2004; Holm and Rotard 2011).  62 

Once taken up in a tree, the chlorinated ethenes behave differently due to their different physical-63 

chemical properties. Diffusional loss of volatile organic compounds from trees is inversely related to 64 

their molecular weight (Baduru et al. 2008), and the partitioning coefficient between wood and water is 65 

positively correlated to Kow (Trapp et al. 2001). The lighter and less hydrophobic degradation products 66 

(Cwiertny and Scherer 2010) thus have a shorter residence time within the trees than the parent 67 

compounds. The best sampling time for detection of PCE and TCE in trees is after a period with high 68 

uptake of contaminated water and low diffusional loss from the tree due to decreased temperatures, 69 

resulting in high concentrations in the trees (Wittlingerova et al. 2013). Since cis-DCE and VC have 70 

considerable lower residence time in the tree trunk (the half-times of loss from the stem are: PCE = 71 

5.6d, TCE = 6.65d, cis-DCE = 3.72d and VC = 0.25d - calculated by the model of Trapp (2007) using 72 

the original parameters), their presence in wood is more likely to be dependent on uptake at the time of 73 

tree core sampling. 74 
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To investigate this hypothesis and add to the knowledge related to phytoscreening for degradation 75 

products, the aims of this study were:  76 

I. To assess the ability of phytoscreening to detect VC in trees.  77 

II. To evaluate phytoscreening as a method to screen for subsurface groundwater 78 

contamination discharging into a stream. 79 

III. To determine the optimal environmental conditions when screening for cis-DCE and, in 80 

particular, VC in trees. 81 

These aims are addressed by applying an optimized tree core sampling method, compared to the 82 

common sampling method, on black alder trees along the bank of a stream influenced by groundwater 83 

contaminated with chlorinated ethenes, at different times of the year representing different 84 

environmental conditions. 85 

2. Study site  86 

The study site is a 250 m section along the bank of Grindsted stream running through Grindsted town 87 

in southern Jutland, Denmark (Figure 1). The stream has a width of 8-12 m and a depth of 1-2.5 m. The 88 

catchment is dominated by sand and sandy clay and is approximately 200 km2. The stream flow ranges 89 

from 1151 to 2249 L/s, and the stream is gaining along this specific section (Rasmussen et al. 2016). A 90 

plume of chlorinated ethenes and other contaminants migrates from the former Grindsted factory site, 91 

located 1.5 km north of the stream, towards the stream. PCE, TCE and their degradation products cis-92 

DCE and VC have been detected in the surface water (Rasmussen et al. 2016; Sonne et al. 2017; Rønde 93 

et al. 2017). The diverse composition of contaminants in the plume enables natural degradation of the 94 

chlorinated solvents by reductive dechlorination on its way to the stream. The main components in a 95 
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transect of the groundwater plume near the stream are cis-DCE and VC in concentrations > 5000 μg/L 96 

at some locations, while in comparison the PCE and TCE groundwater concentrations were < 200 97 

μg/L. The contaminant mass discharge to the stream has been shown to be relatively constant with time 98 

along this stretch of the stream (Rønde et al. 2017).  99 

For this investigation, six black alder trees (Alnus glutinosa), diameter 0.32-0.48 m, were selected 100 

along or nearby the transect of the groundwater plume (Figure 1). Trees of the same species were 101 

selected to eliminate variation associated with tree species. Black alder commonly inhabits wet areas 102 

(Claessens et al. 2010) and is for that reason believed to be optimal as test tree for screening along 103 

streams and rivers. The root system of Alnus glutinosa is unique as it can grow deep into wet and even 104 

anaerobic soils (Claessens et al. 2010). However, the main part of tree roots (90%) can typically be 105 

found in the upper 0.6 m of the soil (Dobson and Moffat 1995).  Black alder trees have little control 106 

over their stomata mechanism and therefore cannot control transpiration, hence the transpiration is 107 

controlled by the weather conditions only (Claessens et al. 2010; Eschenbach and Kappen 1999). 108 
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  109 

Figure 1: Map of the study site at Grindsted stream with the location of the sampling trees ( ) 110 

(denoted A-G), the groundwater sampling points ( ), the multilevel sampler (MLS) ( ), the 111 

groundwater level monitoring points ( ) (114.2508 and 114.1448) and the stream flow direction (black 112 

arrow). A sketch of the contaminant plume of total chlorinated ethenes is illustrated (using 113 

measurements from groundwater samplings from the water table to 3 m below). The approximate flow 114 

direction of the plume (shown as blue arrows) is derived from isopotential curves and groundwater 115 

flow modeling carried out at the site (Balbarini et al. 2017; Rønde et al. 2017). The dashed lines at the 116 

bottom map indicate the location of the cross sections described in the Methods section and Figure 6. 117 

The trees, MLS and groundwater monitoring points have been inserted for placement indication. 118 

3. Methods 119 



8 
Ottosen 

3.1 Tree coring 120 

Tree cores were collected during six campaigns: late February and early May 2015 and in mid-July, 121 

mid-August, mid-September and mid-October 2016. The tree cores were collected with an increment 122 

borer (Haglöf) approximately one meter above ground level, as explained by Algreen et al. (2015). In 123 

subsequent sampling campaigns the samples were collected below the previous sample locations to 124 

minimize the impact from the formerly drilled holes. In the last sampling campaign, an additional tree 125 

(Tree G), where phytoscreening had not previously been applied, was additionally sampled and 126 

compared with Tree E, to confirm or reject whether the holes had a substantial impact on detection of 127 

chlorinated ethenes. Four samples were collected around the tree trunk for each tree in every campaign, 128 

except in February where only the two sides parallel to the flow direction were sampled. Tree F, which 129 

has the largest diameter (48 cm), was sampled at six points around the stem in May, to investigate the 130 

horizontal variation more accurately. In September, it was not possible to collect a tree core at the 131 

western side of Tree A, as the cores were stuck in the drilling tool. A total of 24 samples (containing 132 

two tree cores each) were collected during most sampling campaigns. Average concentrations for the 133 

compounds were calculated for a simpler comparison, and concentrations below the quantification limit 134 

were treated as values of zero. Tree cores were collected at two heights in May, to examine if 135 

extracting tree cores just above terrain was beneficial for the more volatile degradation products. To 136 

optimize the method, with regards to detection of cis-DCE and VC, minor changes were made to the 137 

method presented by Algreen et al. (2015): 138 

I. Two tree cores (drilled ~ 3 cm from each other) were added to each vial, instead of one.  139 

II. 12 ml of demineralized water was added, instead of 4 ml, reducing the headspace volume to up-140 

concentrate compounds in the headspace. Additionally, this decreased the potential diffusion 141 
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loss from the cores during the sampling of the second core, as the tree cores were completely 142 

covered by water. 143 

III. The samples were incubated for two hours at 80°C before analysis to ensure compound transfer 144 

from the wood to the headspace. This step compensates for the lower diffusion rate caused by 145 

step II. 146 

Additionally, each vial was weighed before and after sampling to obtain the concentration per mass of 147 

wood. Thereby taking into account the variations in the size of the cores. The information about 148 

environmental conditions was collected from the Danish Meteorological Institute. 149 

3.2 Groundwater measuring points and sampling  150 

The stream and groundwater levels were measured during each sampling campaign to assess: the 151 

stability of the groundwater discharge to the stream, and the availability of the groundwater for the tree 152 

roots. A thorough investigation of the groundwater contamination by non-permanent drive point 153 

piezometers in a transect parallel to the stream was performed by Rønde et al. (2017). The western 154 

cross-section in Figure 1 represents the shallow part of this transect. To evaluate the comparison with 155 

previous investigations, and to support comparison of phytoscreening results from 2015 and 2016 156 

repeated sampling was performed. A multilevel sampler (MLS) was installed as described by Rügge et 157 

al. (1999), next to a previous sampling point. Samples were taken in intervals of 0.25 m at depths from 158 

1.25 to 3.0 mbgs (meters below ground surface) and in intervals of 1.0 m at depths from 4.0 to 6.0 159 

mbgs. Shallow non-permanent drive point piezometers were further installed close to each tree, except 160 

Tree G, at depths between 1.20 – 2.20 mbgs. Two cross-sections were constructed to present data from 161 

these locations, as Tree A and B are further upstream than the remaining trees (Figure 1). A peristaltic 162 

pump was used for purging and sampling, and samples were filled in 40 ml glass vials with 163 
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polypropylene screw cap and silicone/PTFE septum. The samples were preserved with 3 drops of 4M 164 

sulfuric acid and stored in a cooler until analysis. Groundwater samples from the piezometers close to 165 

the trees were collected in May 2015, and from the MLS in September 2016. Data from selected 166 

piezometers installed by Rønde et al. (2017), the piezometers close to the trees and the MLS (the 167 

groundwater sampling points) were used to construct an image of total chlorinated ethenes present in 168 

the shallow groundwater system (Figure 1). The concentrations in the specific sampling points were 169 

depth-averaged over the total depth (from the groundwater table to 3 m below). Data from the 170 

groundwater sampling points were additionally utilized to illustrate the mole fractions in the shallow 171 

groundwater (Figure 6). 172 

3.3 Chemical analysis 173 

The tree cores and groundwater samples were analyzed using a HS-GC-MS (Headspace Gas 174 

Chromatography with Mass Spectrometry) as detailed by Algreen et al. (2015). An Agilent 5975C 175 

electron impact (70eV) triple-axis mass-selective detector was used for detection and a HP-PLOT/Q 176 

capillary column was used for separation. Before analysis, the tree core samples were incubated at 177 

80°C for two hours. Detection limits were 0.25-5.99 ng/g for PCE, 0.18-1.20 ng/g for TCE, 0.20-1.30 178 

ng/g for DCE and 0.23-1.51 ng/g for VC. The detection limit for the separate compounds for each 179 

analysis are listed in Table S1. 180 

4. Environmental conditions  181 

The environmental conditions, that are expected to influence the uptake of contaminants by trees are 182 

presented in Table 1. Given the residence time of the compounds in the trees, it is assumed that the 183 

conditions two weeks prior to the sampling event will influence the measured concentrations. However, 184 
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for precipitation it is expected that the influence time is longer, because precipitation is delayed by 185 

infiltration before it is taken up by the trees, a period of one month is therefore used for precipitation. 186 

The temperature and hours of sunshine were lowest in February and highest in September. The relative 187 

humidity was relatively uniform but highest in February and lowest in May. The hours of sunshine and 188 

the temperature is assumed to have the biggest influence on the uptake, and the relative humidity is 189 

expected less relevant due to the small variation. The months with the highest expected uptake of 190 

groundwater, are thus May and September, and the months with lowest expected uptake are February 191 

and October.  192 

Table 1: Environmental conditions, from DMI (2016). Conditions determined for a period of two weeks 193 

prior to each sampling campaign, however for precipitation data a period of one month was used. 194 

Additionally, the measured surface and groundwater level at each campaign is stated as meters above 195 

sea level (masl).  196 

Campaign Feb. 
2015 

May 
2015 

Jul. 
2016 

Aug. 
2016 

Sep. 
2016 

Oct. 
2016 

* Average temperature (°C)  
(2 weeks) 

3.1 8.1 15 15 18 8.5 

Average relative humidity (%) 
(2 weeks) 

91 79 84 82 83 83 

Sum of sunlight hours  
(2 weeks) 

16 93 63 68 101 46 

Sum of precipitation (mm) 
(4 weeks) 

53 41 138 53 58 28 

Stream water level  
(masl) 

34.1 33.6 33.8 33.9 33.9 33.9 

Groundwater level  
(114.1448) (masl) 

34.3 34.2 - 34.8 34.8 34.7 

** Groundwater level 
(114.2508) (masl) 

34.0 34.1 - 34.2 34.2 34.1 

* The average temperature and total precipitation (no snow events) data are measurements 197 

from Billund Airport weather station, 15 km from the site. The total hours of sunlight and the 198 

average relative humidity are data from the entire region of southern Jutland. ** Well 114.2508 199 
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did not exist in 2015 and groundwater levels from nearby points in the transect are given 200 

instead. Terrain level is 35.9 masl for 114.1448 and 35.2 masl for 114.2508. Terrain for trees is 201 

between 34.0 and 34.8 masl. 202 

The groundwater levels were monitored continuously in two wells (114.1448 and 114.2508, Table 1). 203 

The measurements showed that the groundwater table was generally shallow, with a maximum depth 204 

below terrain of approximately 0.6 m near Tree B in May. It is thus assumed that groundwater was 205 

always available for some of the tree roots. Generally, the flow direction was towards the stream as 206 

also shown in previous investigations (Rønde et al. 2017; Sonne et al. 2017). Thus, the concentration in 207 

the trees is not expected to have been significantly diluted by the uptake of the less contaminated 208 

surface water in the stream, and only uptake of infiltrating precipitation is expected to dilute the 209 

concentrations.  210 

5. Results 211 

5.1 Chlorinated ethenes concentrations in the groundwater  212 

Analysis for all chlorinated ethenes were conducted for the groundwater samples from the MLS points. 213 

As anticipated the main constituents in the groundwater were cis-DCE and VC. The concentrations of 214 

PCE and TCE were < 1µg/L for all measured depths, which was also observed by Rønde et al. (2017) 215 

at comparable locations. The concentration profiles and magnitudes for cis-DCE and VC from the MLS 216 

compares well with the results obtained by Rønde et al. (2017) at the corresponding point within the 217 

transect, considering the change in the groundwater level (Figure 2). Based on the results from Rønde 218 

et al. (2017), the groundwater contaminant mass discharge is approximately constant during the entire 219 

period when phytoscreening was conducted. This supports the comparison of phytoscreening results 220 
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over the relatively long sampling period. The concentration gradients in the plume transect are very 221 

steep vertically (Figure 2) and horizontally (Figure 1) and a slight alteration in the water level and the 222 

flow direction of the plume could thereby result in a significant difference in the exposure of the tree 223 

roots. Here the results reveal that an increase in groundwater level will increase the exposure of 224 

contamination for the roots, as the intensity of roots decrease with increasing depth below ground 225 

surface. 226 

 227 

Figure 2: Comparison between the concentrations of cis-DCE (left) and VC (right) in the MLS 228 

(sampled in fall 2016) and a corresponding point in the transect (depth 1.68-5 m sampled in fall 2014 229 

and depth 5.9-8.2 m sampled in spring 2015). Note the different x-axis for the two compounds. The 230 

groundwater table data are derived from well 114.1448. 231 

5.2 Contaminants in the tree cores 232 
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The horizontal variation of contaminant concentration in the trees is assessed by comparing the 233 

measurements around the tree trunk. No correlation was found between the inflow direction and the 234 

horizontal variation in the stem. The concentrations of cis-DCE and VC measured in trees are 235 

illustrated in Figure 3. PCE and TCE were detected to a lesser extent both temporally and spatially 236 

(Figure S1). The quantity of drilled holes in the tree stem does not appear to have had a significant 237 

influence on detection of chlorinated ethenes in the trees, as Tree G (only sampled in October) and Tree 238 

E (sampled in all campaigns), which are located a few meters from each other, had similar 239 

concentration levels (see Figure S1 for concentration variation in Tree G). Additionally, the increase of 240 

concentrations in the last sampling events indicates that the previously drilled holes had not 241 

significantly affected the flow at the location of the new hole. Hence, the results are considered valid 242 

for comparison.  243 

244 

 245 
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Figure 3: cis-DCE (a) and VC (b) concentrations (ng/g) around the stem from each sampling event 246 

illustrating the horizontal variation at each tree. Note different scales. For months or trees not 247 

included the concentrations were below the quantification limit or not detected (except Tree G, see 248 

Figure S1). No contaminants were found in the trees in July and August. The stream is located south 249 

(S) of Tree A and B, and southwest (SW) of Tree C-F, see Figure 1.  250 

The highest concentration of VC was found to be 11.9 ng/g in Tree E in September. VC was detected 251 

in all trees in May, where the highest concentration, out of all sampling months, was also found for 252 

most trees (0.91-1.93 ng/g for Tree B, C, D and F). cis-DCE was detected in most sampling trees (Tree 253 

B, C, D, E, G) with the highest concentration of 71.8 ng/g in Tree E in February and the second highest 254 

of 56.6 ng/g in Tree B in September. TCE was found only in October in Tree B with a highest 255 

concentration of 6.50 ng/g. PCE was detected in two of the trees, B and F, with the highest 256 

concentration of 31.0 ng/g in October and 1.29 ng/g in May, respectively. No chlorinated ethenes were 257 

detected in the trees in July and August 2016. The results demonstrate that the horizontal concentration 258 

in the trees varies for VC and cis-DCE, as have been observed for the other chlorinated ethenes in 259 

previous studies (Limmer et al. 2013; Holm and Rotard 2011). The variation, expressed as standard 260 

deviation, around the stem for an individual compound is high, clarifying the importance of sampling 261 

several points around the stem in each sampling event. 262 

No clear trends were observed in VC concentrations over height (Figure 4), contrary to what have 263 

previously been observed for the parent compound TCE (Vroblesky et al. 2004; Vroblesky et al. 1999). 264 

The average concentration of VC decreased 18 % with height in Tree B and increased 19 % in Tree C, 265 

demonstrating that diffusional loss out of the stem is not the only important factor for concentrations of 266 

VC at different heights. The average concentrations increased with height in both trees for cis-DCE, 267 
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but based on fewer points of detection (Figure S2). As no clear advantage of sampling for VC near 268 

terrain was observed, the tree cores were only sampled at the usual and more convenient height of one 269 

meter above terrain in the subsequent sampling events. Nevertheless, sampling near terrain could be 270 

beneficial in areas with higher ambient temperatures than Denmark and thus with more dominating 271 

diffusional losses.  272 

 273 

Figure 4: The concentration of VC (ng/g) in tree B and C around the stem at two heights (terrain and 274 

one meter above terrain), measured in May 2015.  275 

6. Discussion 276 

6.1 Influence of environmental factors on uptake of chlorinated ethenes into trees 277 
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To investigate trends in detection of chlorinated ethenes in the trees over time, average concentrations 278 

were calculated for each individual contaminant, see Table S1. The temporal average concentrations 279 

are illustrated in Figure 5.  280 
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Figure 5: Average concentrations of the chlorinated ethenes in trees and environmental conditions for 282 

each sampling month. The weather data is from Table 1. Unit for sunlight is hours, for precipitation is 283 

mm, and for temperature is °C. Tree G is not included as it was only sampled in October. Note the 284 

different y-axis for cis-DCE. 285 

The results indicate, as expected, that the presence of VC in the trees is more sensitive to the 286 

transpiration than cis-DCE and PCE. This is illustrated by the absence of VC in the trees in February 287 

where the transpiration was low, in contrary VC was detected in all trees in May, while cis-DCE and 288 

PCE were detected in trees in both months. When the transpiration is minimal only contaminants 289 

retarded in the trees by sorption are likely to be seen, and less retarded and lighter compounds have 290 

been lost by diffusion out of the stem (Banduru et al. 2008). The indication that detection of VC is only 291 

possible when the uptake is high, is consistent with the fact that VC has a lower sorption to wood than 292 

the other chlorinated ethenes (Trapp et al. 2001). Despite the significantly lower groundwater 293 

concentrations for PCE and TCE, the magnitudes in the trees were the same as for cis-DCE and VC in 294 

low transpiration periods, consistent with their higher adsorption to wood. 295 

The inter-annual trends can be explained by two scenarios: A) where the uptake (dependent on 296 

temperature, relative humidity, sunshine hours and precipitation) by the tree is larger than the loss 297 

(dependent on temperature and physical-chemical properties of the compounds), and B) where the 298 

uptake by the tree is smaller than the loss. Since VC has a short lifetime (due to volatile loss) in trees, it 299 

is only found in Scenario A. Therefore, Scenario B must have been present in February, July and 300 

August. In February, it was simply a matter of minimal uptake due to limited transpiration. In July and 301 

August, the loss out of the stem must have been significantly higher than the uptake, in contrast to in 302 

May and September. Which could primarily be explained by the smaller amount of sunshine hours, the 303 
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availability of water in the unsaturated zone originating from infiltrating precipitation, and an increased 304 

diffusion out of the stem due to the relatively high temperatures. Scenario A was present in May, 305 

September and October. The small amount of precipitation in October was beneficial for uptake of 306 

groundwater into trees, and the lower temperature resulted in decreased diffusion out of the stem. VC 307 

was found in all trees in May and likely is a result of the requirement of large amounts of water due to 308 

long sunshine hours, which is also the case for September. In areas or at times where porewater is 309 

limited, trees take up water from below the groundwater table and translocate it to the unsaturated zone 310 

by night (Lubczynski 2009) and thereby they may relocate the groundwater contamination. The 311 

groundwater table was lowest in May, and translocation of the groundwater could thus explain the 312 

lower but more evenly distributed VC concentrations observed (VC being the most volatile and mobile 313 

of the chlorinated ethenes). Additionally, in May the low relative air humidity and the lower 314 

temperature were beneficial for transpiration and decreased the diffusional loss, respectively. The 315 

detection of PCE and cis-DCE in the trees in February, where transpiration is negligible, must have 316 

been due to uptake in preceding months and their longer lifetime in the trees than VC. 317 

The inter-annual variation in the detection of chlorinated ethenes in trees illustrates some important 318 

patterns that the influence the environmental conditions have on the uptake. First, Limmer et al. (2014) 319 

found a correlation between the transpiration and tree concentrations, however in this study we 320 

illustrate that the uptake of groundwater contamination is not the only parameter influencing the 321 

detection in the trees. We found that also the loss out of the stem and the precipitation is of high 322 

importance, explaining the lack of contaminant detection in the summer months with a relatively high 323 

temperature and wet weather. When the loss out of the stem was larger than the uptake, VC was not 324 

detected in the trees, and the best time to screen for VC is therefore while the uptake is high. Whereas 325 
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detection of cis-DCE was not as sensitive documented by the detection in February. Second, rainfall 326 

will decrease concentrations in trees, which has previously been documented for some of the 327 

chlorinated ethenes (Vroblesky et al. 2004; Holm and Rotard 2011), and here we also show the same 328 

for VC by the lack of detection (especially July). Even the lack of detection in August could be due to 329 

remaining water in the top soil from July’s weather events. It is therefore recommended that screening 330 

for all chlorinated ethenes be conducted during dry periods with many sunshine hours and not after 331 

intense and/or prolonged rainfall. Third, that VC appears most sensitive to spreading in the unsaturated 332 

zone by diffusion in pore air when trees relocate groundwater during dry periods, causing a more 333 

evenly distributed contaminant concentration. This spreading is important to consider when using 334 

phytoscreening to delineate VC groundwater plumes. If the uptake by the trees is high enough the 335 

plume will appear broader than it is, in contrast there is a risk of no contaminant detection as the 336 

spreading will result in lower water concentrations. 337 

6.2 Comparison of contamination in groundwater and trees 338 

The uptake of water by trees is gradient driven. The water-potential gradient between the groundwater 339 

table and the dry air above the ground surface is very steep (Larcher 1995), therefore, trees take up the 340 

water available closest to the surface (i.e. in the vadose zone or shallow groundwater zone). 341 

Consequently, shallow groundwater is most relevant for comparison with trees. The shallow 342 

groundwater composition in mole fractions is compared to the composition in the trees in May in 343 

Figure 6, and the compositions in the trees in the remaining months are presented in Table 2. May was 344 

selected for comparison to represent a month with favorable environmental conditions for uptake. 345 

These results demonstrate that when the uptake was low (February and October) the lower lifetime in 346 

the trees for VC was reflected in lower or no detection compared to months with higher uptake (i.e. 347 
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Tree A and F). This confirms the greater sensitivity of VC tree coring to factors affecting transpiration. 348 

Generally, it can be concluded that the groundwater measurement points were not shallow enough to 349 

allow a correlation between groundwater and tree core data. However, the results reveal that under 350 

favorable conditions the tree coring method is usefil as a screening tool to provide a depiction of the 351 

underlying groundwater contaminants, including the degradation products. Phytoscreening can thus be 352 

used to locate, but not quantify, shallow groundwater contaminated with cis-DCE and VC discharging 353 

into a stream. However, this is only the case when the uptake by the trees is higher than the loss and 354 

given that no intense and/or prolonged rainfall events occur prior to the sampling. Dilution by the 355 

cleaner stream water did not appear to influence the detection of the chlorinated ethenes in the trees, 356 

even for those trees standing close to the bank (within few meters). Detection of underlying 357 

groundwater contaminants in trees has been documented before for the parent compounds and cis-DCE 358 

(Sorek et al. 2008; Larsen et al. 2008; Limmer et al. 2011); however, our results emphasize that 359 

detection can also be obtained for the degradation product VC under favorable uptake conditions. 360 
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 361 

Figure 6: Mole fractions in the groundwater and in the trees (in May where the transpiration was 362 

high). The trees are projected into the cross sections shown in Figure 1. Points in white areas indicate 363 

that the contaminant was not detected or that the concentration was below detection limit. 364 

Table 2: Mole fractions of chlorinated ethenes in the trees. July and August measurements are not 365 

included as no contaminants were detected in the trees. The color coding is the same as in Figure 6. 366 
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  Tree A Tree B Tree C Tree D Tree E Tree F Tree G 
Feb. PCE  

cis-DCE 
VC 

 
N.D. 

0.65 
0.35 
N.D. 

 
N.D. 

 
N.D. 

N.D. 
1 

N.D. 

 
N.D. 

 
N.M. 

May PCE  
cis-DCE 
VC 

0 
0 
1 

0.61 
0.10 
0.29 

0 
0.08 
0.92 

0 
0.07 
0.93 

0 
0.96 
0.04 

0.09 
0 

0.91 

 
N.M. 

Sep. PCE  
cis-DCE 
VC 

0 
0 
1 

0 
1 
0 

0 
1 
0 

 
<QL 

0 
0.17 
0.83 

0 
0 
1 

 
N.M. 

Oct. PCE  
cis-DCE 
VC 

 
<QL 

0.35* 
0.64 
0.01 

0 
1 
0 

0 
0 
1 

0 
0.44 
0.56 

 
<QL 

0 
0.55 
0.45 

* includes both PCE and TCE as it was the only point where TCE was also detected. 367 

7. Conclusion 368 

Phytoscreening for chlorinated ethenes along the bank of Grindsted stream (Denmark) strongly 369 

impacted by groundwater contamination revealed maximum concentrations in black alder trees of 31.0 370 

ng/g for PCE, 6.50 ng/g for TCE, 71.8 ng/g for cis-DCE and 11.9 ng/g for VC. Composition of 371 

environmental factors influencing transpiration (temperature, relative humidity and hours of sunshine) 372 

proved to be crucial for detection of vinyl chloride in the trees. VC, having the shortest lifetime in the 373 

trees (due to diffusional loss), was only detected in periods with low precipitation and many sunshine 374 

hours. Hence, to detect VC in trees it is required that the trees transpire VC contaminated groundwater 375 

at the time sampled. High precipitation resulted in dilution of in-tree concentrations. Therefore, it is 376 

recommended to avoid screening for any of the compounds after the occurrence of intense and/or 377 

prolonged rainfall events. The favorable environmental conditions prior to and during sampling, to 378 

reflect all of the chlorinated ethenes, are thus: low relative air humidity, low amount of 379 

precipitation/dry vadose zone soils, moderate temperatures and plentiful hours of sunshine. Under these 380 

conditions the trees uptake of contaminants is assessed higher relative to the diffusive loss. This study 381 
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demonstrates that phytoscreening can be used to detect shallow groundwater contamination with 382 

chlorinated ethenes, including cis-DCE and VC, in the vicinity of a stream under optimal 383 

environmental conditions.  384 

  385 
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