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Abstract: Compared with traditional point forecasts, combined forecast have been proposed as an effective method to provide more accurate
forecasts than individual model. However, the literature and research focus on wind-power combined forecasts are relatively limited. Here,
based on forecasting error distribution, a proper scoring approach is applied to combine plausible models to form an overall time-varying
model for the next day forecasts, rather than weights-based combination. To validate the effectiveness of the proposed method, real data
of 3 years were used for testing. Simulation results demonstrate that the proposed method improves the accuracy of overall forecasts, even
compared with a numerical weather prediction.

1 Introduction

Wind power forecasting is a critical technology to increase wind
power penetration in an economical manner. Therefore, there are
many researches focus on how to improve the accuracy of point
forecast models [1]. In traditional, forecasting techniques can be
totally classified into four categories [2–4]: the reference forecast
model, physical model, statistical model, and hybrid forecast
model. More details can be found in the reference of the state of
wind power forecasts [5–7]. However, it is considered as a low ac-
curacy forecast method. It also lacks of uncertainty information for
generation scheduling. As an alternative forecasting method, prob-
abilistic forecasts [8–10] are proposed to improve forecast accuracy,
which can provide more valuable uncertainty information of wind
generation. Probabilistic forecasts are indicated as a range of prob-
abilities, for example, probabilistic interval 10–20%. Furthermore,
about how to measure the accuracy of these forecast models,
Mitchell and Ferro proposed a scoring rule method [11] which
assigns scores to each possible outcome of the event and each prob-
abilistic forecast. The literature [12, 13] also applied scoring ap-
proach to measure historical forecast performances with all
information at hand.
Overall, the forecasting accuracy of wind power forecasts has

not been effectively improved for decades. Normally, the normal-
ised average absolute error (NMAE) of wind power forecast is
10–20% [3, 4]. On the other hand, forecasted wind power points
are regarded as essential basic data for unit commitments and elec-
tricity market. The low forecast accuracy strengthen the price
waving and the uncertainty of power generation, in a large wind
power injected power grid. It need purchase a huge volume of
power reserve to keep the energy balance of the system in a
day-ahead market.
In recent years, a novel combined method was proposed and

obtained widely focus already, which combined sister forecasts to-
gether to get more accurate short-term forecasts using weighting
algorithms [14–17]. Combined forecasting method [15] is regarded
as an effective method to provide more accurate forecast than

individual forecast models, due to its capability of integrating dif-
ferent types of advantage methods together.

According to Jakub [18], the sister forecasts are generated from a
family of models, which have a similar model structure but are built
by different parameters. Therefore, this paper proposed an
improved combined forecast, which uses a modified proper
scoring approach. It embraces two improved aspects: (i) do not
limit the component forecasts are generated from a similar model
structure. (ii) Assume that the time-varying probabilistic interval
range or probabilistic distribution represent forecast capability of
models, so the proper scores approach is applied to select the
most accurate component models on each time intervals to consist
a final one model for next 24 h forecasts.

The rest of the paper is organised as follows: the proper scores
approach is introduced in Section 2; in Section 3, based on the pro-
posed method, three widely used models are used to combining the
time-varying point forecasts for next 24 h; in Section 4, a compre-
hensive study on improvement of forecast accuracy is carried out.
Section 5 concludes this paper.

2 Scores approach

Wind is a physical phenomenon of a bulk air movement.
Continuous wind power curve has a persistent characteristics,
which can be forecasted. In traditional, forecast accuracy is
defined as the average degree of correspondence errors
between forecasts and measurements. So, there are many
scoring rules proposed and used to calculate a forecaster’s accur-
acy, such as mean absolute error (MAE) of (3), which was used
in this paper.

2.1 Variables and criteria definition

Variable y is forecast wind power, f (·) is the probability density
function (PDF), and h(·) is a forecast model. f (1) expresses uncer-
tainty around forecast error 1, which is analysed from historical data
and information in hand. Furthermore, yt denotes a point forecast
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issued at time t, its parameters wt , and the information set Vt gath-
ering the available information on the process up to time t

yt = h[xt|wt , Vt] (1)

Let forecast error 1 at time t + k is

1t = yt − xt (2)

The domain of 1t is [0, Pcap].
Three precision metrics [19–21] are used in this paper: MAE of

(3), NMAE of (4), and root mean square error (RMSE) (% of the
installed capacity) of (5).

MAE is defined as:

MAE =
∑p
j=1

|Pmeasure − Pforecast|
p

(3)

NMAE is given as follows:

NMAE = 100%
∑p
j=1

|Pmeasure − P forecast|
p · Pcap

(4)

where Pmeasure is the measured wind power data, Pforecast the fore-
cast result, Pcap the total installed capacity, and π the calculation
period.

2.2 Scores

A scoring approach assigns a numerical score S[ · ] to each pair
f (·), Qv
( )

, where f (·) is the probabilistic distribution of wind
power forecast error which belongs to forecast model h and
Qv [ R is the verification value. In this paper, Qv = {v1, . . . , v24}
is defined as the average error of last 2 weeks (t days) as shown
below

vt =
1

t

∑t
i=1

1i,t , t [ [1, 24], i [ [1, t], t = 14 (5)

S[f (1), Qv ] =
∫1+
1−

Qv − z( )2f (z) dz (6)

2.3 Proper scores

A proper scoring rule is designed such that truth telling and quoting
the true distribution as the forecast distribution [1]. Mathematically,
a score is proper if for any two probability densities f (·) and f ′(·), it
is written as:

∫
S[ f ′(·), z]f (z)dz ≥

∫
S[f (·), z]f (z) dz (7)

where z is a random variable. The scoring rule S[·] is said to be
strictly proper if (7) holds with equality if and only if
f ′ ·( ) = f ·( ). In other words, the minimum of the left-hand side
over all possible choices of f ′(·) obtained if f ′(·) = f (·) for all z.

Assume that the error Q1 = {11,h, . . . , 124,h} of combined fore-
cast is consisted by different forecast models ht,h(·) on each time
interval of the next 24 h. ht,h(·) is that a model which has a
lowest score on each time interval t [ [1, 24 h].

According to (6) and (7), the score of combined forecast fC(·) can
be written as:

S[fC(
Q1 ), Qv ] =

∫1+
1−

Qv − z( )2f (z) dz (8)

s.t.

∫
S[ f ′C(

Q1 ), z]fC(z) dz ≥
∫
S[fC(

Q1 ), z]fC(z) dz (9)

fC(·) is PDF of the most accurate combined forecast error Q1 , and
f ′C(·) is the error PDF of the other combinations. The scoring
rule S[·] of (8) is said to be strictly proper if (9) holds with equality
if and only if f ′C(·) = fC(·).

3 Combined forecasts

In the literature [22–24], based on continuous forecast error curves,
different forecast models are combined to one accurate time-varying
model, using look-ahead time. It was found that models always per-
formance accurate at one particular forecast time intervals, but bad
at other intervals. Even the simplest persistence model (PM) perfor-
mances better than numerical weather prediction (NWP) model, in
the first few hours [4, 12, 25]. Therefore, three basic forecasting
models are used as component models to combination, which
include PM, ARMA model, and NWP model, due to their wide ap-
plication and high accuracy.

3.1. Component forecast models

3.1.1 Persistence model: PM is a simple but widely used time-
series model. It can surpass many other models in very short-term
prediction. In this paper, the PM is not only used as a component
model, but also as a benchmark with which the proposed forecast
method is compared. The persistence forecast [4] can be written as:

y(t + k|t) = 1

T

∑l−1

j=0

x(t − j · Dt) (10)

where y(t + k|t) is the wind power forecast for time t + k made at
time origin t, k the prediction horizon, T the prediction interval
length (here T = k), x(t − j · Dt) the measured wind power for
time t and the previous i time steps within T, and Dt the time
step length of the measured time series ( T = l · Dt). The delay k
describes the time gap, when the forecast is done and the beginning
of T. Therefore, the PM model is utilised in the study as a compo-
nent forecast model h1 and a benchmark reference also.

3.1.2 ARMA model: As a powerful, well-known time-series tech-
nique, ARMA model has been widely used to forecasting or hybrid
with other models to forecasting for >50 years. More details about
the forecast performance description and application can be found
in the state-of-the-art [4]. Therefore, the ARMA model is utilised
in the study as a component forecasting model h2. The ARMA
(p, q) model [12] is written as:

yt = a+
∑p
i=1

wi · yt−i +
∑q
j=1

uj · 1t−j + 1t (11)

where yt denotes the hourly forecast wind power at hour t, a is the
parameter, p the order of the autoregressive part of the model, q the
order of the moving average part of the model, wi the ith autore-
gressive parameter, uj the jth moving average parameter, and 1t
the error term at time t.

Before ARMA models are used to forecast, a Box–Jenkins meth-
odology is used to establish the parameters of models which best fit
the wind power data. In the phase of parameters estimation, tools of
the sample autocorrelation function (ACF) and the sample partial
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ACF are used to identify the parameters (p and q) of the ARMA
model. The detailed process can be found in [2].

3.1.3 NWP model: The NWP uses mathematical models of the at-
mosphere to moulding weather condition using radiosondes,
weather satellites, and other observing systems. When use NWP
model to forecast wind power, it includes wind speed forecasted
from the local meteorological service and transformed to wind
power by wind turbine’s power curve. In practical application, the
NWP model is the most accurate forecast method. However, it is
based on complex calculation, which requires super computers to
get solutions. An NWP model WPFS Ver1.0, which belongs a com-
bination of physical and statistical approach, is used in this paper.
WPFS Ver1.0 is the first wind power forecasting model developed
by Chinese electric power science institute and has been used in
Jiangsu Provincial power grid. More details of this mature commer-
cial forecast model can be found in [26]. The NWP model is utilised
in the study as a component forecast model h3.

3.2 Standard modelling procedure

According to the above derivation, the procedures of constructing
the combined forecasting model and how to use it to forecast for
the next 24 h is summarised as follows:
Step 1: Calculating historical forecast error distribution ft,h(·) of

each hour t [ [1, 24]. ft,h(·) belongs to different forecast models
hh(·), h [ [1, 3], which corresponds to PM, ARMA, and NWP
models. It is a time-varying probabilistic distribution.
Step 2: Using forecast errors of recent days to consist verification

value Qv = {v1, . . . , v24} for each forecast. In this study, Qv is
defined as the average error of last 2 weeks as shown in (5).
Step 3: Using the time-varying historical error distribution ft,h(·)

and the rolling verification value Qv to build the score function S[ · ]
which is described in (8) and (9).
Step 4: Based on the function (12)–(14), the most accurate histor-

ical performance of model set can be found
fC(·) = {f1,h(·), . . . , f24,h(·)} for the next 24 h. Then the final com-
bined forecast is confirmed, HC = {h1,h, . . . , h24,h} h [ [1, 3]

Min
h

∑24
t=1

S[fC(
Q1 ), Qv ], h [ [1, 3]

{ }
(12)

S[ft,h(1t), vt] =
∫1+
1−

vt − z
( )2

ft,h(z) dz (13)

s.t.

∫
S[ f ′C(

Q1 ), z]fC(z) dz ≥
∫
S[fC(

Q1 ), z]fC(z) dz (14)

3.3 Model analysis

A single wind farm and two probabilistic forecast models, which have
a similar accuracy, are chosen to have a further mechanism analysis of
the proposed method. Nineteen months data (July 2013–January
2015) collected from a single Long Yuan wind farm is used to ana-
lysis, which has an installed capacity of 400.5 MW and located in
the Yan Cheng of Jiang Su province of China. Two kind of
ARMA forecast methods are used as component models, including
ARMA-based direct multi-step-ahead forecast (ARMA-DMS) and
ARMA-based indirect multi-step-ahead forecast (ARMA-IMS)
which can be found in [12]. The forecast error distributions are pre-
sented in Fig. 1. As shown in Fig. 1a, the ARMA-DMS has an
MAE of 72 MW, and Fig. 1b presents the ARMA-DMS which has
an MAE of 67 MW. The two forecast method has a similar accuracy
due to using the same ARMA as a basis model. It will be convenient
for a description of the proposed model.
Fig. 2 illustrates the generation process of the proposed combined

method. According to the function of (12), the 24 h forecast length
is divided into four intervals: (i) interval1 is from 0:00 to 9:00, in

which ARMA-IMS method has a best prediction accuracy; (ii)
interval2 is from 9:00 to 13:00, in which ARMA-DMS method
has a good prediction; (iii) interval3 is from 13:00 to 15:00, in
which ARMA-IMS method does better; (iv) interval4 is from
15:00 to 24:00, in which ARMA-DMS method has a good predic-
tion, as shown in Figs. 1 and 2. Therefore, the final combined fore-
cast model is written as

HC(·) = h0,IMS(·), . . . , h8,IMS(·), h9,DMS(·), . . . ,
{

h12,DMS(·), h13,IMS(·), . . . , h14,IMS, h15,DMS, · · · , h23,DMS

}
(15)

Fig. 2 Combining process of the proposed method

Fig. 1 Forecast-error distribution comparison based on a single wind farm
(Long Yuan)
a 2013–2015, ARMA-DMS
b 2013–2015, ARMA-IMS
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Based on the analysis of the behaviours (probabilistic distribu-
tion) of the two methods shown in Fig. 1, ARMA-IMS is used to
forecast on interval1 and interval3, due to more a accurate forecast
on the two time intervals, as shown in Fig. 2. ARMA-DMS is
used to forecast on interval2 and interval4 covered by slash lines.
Finally, the combination of these forecasts is used as the overall
forecast (grey arrow) for the next day, as shown in Fig. 2.

4 Case study

A 3-year case is used to test, which is carried out in Nantong which
is located in the east coast of China. Nantong is an interesting
region, given that it already has a substantial amount of installed
capacity of wind power at 1.33 GW by 2015, the wind capacity
penetration (WCP) is 24.19% when considering the annual
maximum load of 5.58 GW at 6 August 2015

WCP = Installed wind power capacity

Peak load
(16)

The data is collected from seven operating wind farms. Table 1
summarises the details of these. The total installed power capacity
of these seven wind farms is 1.33 GW and the geographical condi-
tions of the studied wind farms (marked in blue) are shown in
Fig. 3. Their power outputs and forecasts from June 2012 to
January 2015 with 1 h resolution are chosen for the analysis.
Data are continuously acquired over this period with the only un-
availability occurred for few days due to continuous faults of data
acquisition system. The availability of wind power output data is
83.2%. The benefit gained by using the proposed model is mea-
sured as the accuracy improvement, when compared with the refer-
ence model. It is written as:

WCP = Installed wind power capacity

Peak load
. (17)

where errorr is the evaluation criterion (i.e. MAE or RMSE) of the
reference model and errorp is of the proposed model.

Table 2 summarises the forecast error by the proposed model, the
NWP model, the ARMA model, and the PM. It shows that the pro-
posed forecast method has a better performance. The NMAE of the
proposed method is 9.30%, and the NWP model is 9.75%. The ac-
curacy improvement of the proposed method is 4.58% when com-
pared with the NWP model, 37.42% compared with the ARMA
model, and 51.49% compared with the PM for 24 h in advance.
It also shows that the average RMSE of the proposed method is
43.79 MW, and the NWP model is 45.11 MW. Then it has an im-
provement of 2.93%, when compared with the NWP.

5 Conclusion

Combining individual forecast models to build a more accurate
model is an effective method to improve point forecast accuracy
and it is easily to be understand and calculate. Therefore, there is
a lot of research focus on the combination method in recent
decade. This paper proposes a time-varying combined forecasts
method, which provides a more accurate forecast including two
aspects: (i) the proper scoring approach is applied to measure the
model’s performance, which is presented by probabilistic distribu-
tion, rather than using single or simple assessment metrics. (ii) A
time-varying combining frame is proposed to build the overall fore-
cast rather than weights-based combination in traditional. To valid-
ate the advantageous performance of the proposed method, a long
term of 3-year period study is carried out. Results show that the pro-
posed method is accurate and effective even compared with the
commercial NWP model.
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