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Computational speech segregation aims to automatically segregate speech from interfering noise, often

by employing ideal binary mask estimation. Several studies have tried to exploit contextual informa-

tion in speech to improve mask estimation accuracy by using two frequently-used strategies that (1)

incorporate delta features and (2) employ support vector machine (SVM) based integration. In this

study, two experiments were conducted. In Experiment I, the impact of exploiting spectro-temporal

context using these strategies was investigated in stationary and six-talker noise. In Experiment II, the

delta features were explored in detail and tested in a setup that considered novel noise segments of the

six-talker noise. Computing delta features led to higher intelligibility than employing SVM based inte-

gration and intelligibility increased with the amount of spectral information exploited via the delta fea-

tures. The system did not, however, generalize well to novel segments of this noise type. Measured

intelligibility was subsequently compared to extended short-term objective intelligibility, hit–false

alarm rate, and the amount of mask clustering. None of these objective measures alone could account

for measured intelligibility. The findings may have implications for the design of speech segregation

systems, and for the selection of a cost function that correlates with intelligibility.
VC 2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1121/1.5020273
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I. INTRODUCTION

The overall goal of computational speech segregation

systems is to automatically segregate a target speech signal

from interfering noise. These systems are relevant for many

practical applications, e.g., as pre-processors in communica-

tion devices such as hearing aids or cochlear implants

(Brungart et al., 2006; Li and Loizou, 2008; Wang et al.,
2008) or front-ends in speech and speaker recognition sys-

tems for human-computer interfaces (Cooke et al., 2001;

May et al., 2012a,b). One frequently-used single-channel

approach, termed the ideal binary mask (IBM) technique

(Wang, 2005), separates a time–frequency (T–F) representa-

tion of noisy speech into target-dominated and interference-

dominated T–F units. Given a priori knowledge about the

target and the interfering signal, the IBM is constructed by

comparing the signal-to-noise ratio (SNR) in individual T–F

units to a local criterion (LC). The resulting IBM is a binary

matrix where T–F units with SNRs exceeding the LC are

considered target-dominated and labeled one, and zero other-

wise. Many studies have used IBMs to segregate a target

speech signal from a noisy mixture and demonstrated large

intelligibility improvements (Brungart et al., 2006; Wang

et al., 2008; Kjems et al., 2009). However, a priori knowl-

edge about the target and the interfering noise is rarely avail-

able in realistic conditions, and therefore, the goal of

segregation systems is to estimate the IBM based on the

noisy speech signal. This challenge of obtaining an estimated

IBM is typically approached by employing supervised learn-

ing strategies (Wang, 2005), which generally consist of a

feature extraction front-end and a classification back-end.

The front-end extracts a set of acoustic features which

attempt to capture speech- and interference-specific proper-

ties. The distributions of speech and interference-dominated

T–F units are then learned by a classification back-end,

through an initial training stage (Kim et al., 2009; Han and

Wang, 2012; Healy et al., 2013; May and Dau, 2014a).

When analyzing binary mask patterns, speech-

dominated T–F units tend to cluster in spectro-temporal

regions, forming so-called glimpses, and the size of these

glimpses, denoted the glimpse proportion in the model by

Cooke (2006), has been shown to correlate with speech intel-

ligibility scores from normal-hearing (NH) listeners (Cooke,

2006; Barker and Cooke, 2007). Consequently, several stud-

ies have tried to exploit spectro-temporal contextual infor-

mation in speech to improve the performance of

computational speech segregation systems by predominantly

using two strategies. One strategy is to exploit the context in

the front-end by calculating so-called delta features (Kim

et al., 2009; Hu and Loizou, 2010; May and Dau, 2014b),

which capture feature variations across time and frequency.

Alternatively, the context can be exploited in the back-end,

where the posterior probability of speech presence obtained

from a first classifier can be learned by a second classifier

across a spectro-temporal window of T–F units, where the

amount of spectro-temporal context can be controlled by thea)Electronic mail: thobe@elektro.dtu.dk
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size of the window function (Han and Wang, 2012; Healy

et al., 2013; May and Dau, 2014a). Some studies have com-

bined both strategies in the front-end and in the back-end

(Healy et al., 2013; May and Dau, 2013).

The performance of computational speech segregation

systems and the effectiveness of different system configura-

tions have primarily been evaluated based on the hit–false

alarm (H–FA) rate, which calculates the difference between

the percentage of correctly classified speech-dominated T–F

units [hit rate (H)] and the percentage of incorrectly classi-

fied noise-dominated T–F units [false alarm rate (FA)] (Kim

et al., 2009; Han and Wang, 2012; Healy et al., 2013; May

and Dau, 2013, 2014a,b). However, it has recently been

shown that speech intelligibility scores strongly depend on

both the distribution of mask errors and the H–FA rate

(Kressner and Rozell, 2015, 2016; Kressner et al., 2016).

Specifically, Kressner and Rozell (2015) developed a graphi-

cal model to systematically measure the influence of cluster-

ing of T–F units on the intelligibility of binary-masked

speech and showed that the intelligibility was reduced when

masks contained an increased amount of clustering among

T–F units, but the same mask error rates. Thus, the applica-

bility of the H–FA rate as the sole objective measure to opti-

mize or evaluate computational segregation systems has

come into question. However, the impact of the different

spectro-temporal context-exploring strategies on the amount

of clustering of T–F units, or on speech intelligibility, has

not yet been analyzed.

Kim et al. (2009) were the first to report speech intelligi-

bility improvements for a computational speech segregation

system based on Gaussian mixture models (GMMs). They

considered a high complexity GMM classifier with 256 com-

ponents in the back-end for modeling the distribution of the

feature vectors in a restricted setup in which the same short

noise recording was used during training and testing. By

using such a setup, it was possible to achieve high H–FA

rates and improve speech intelligibility scores by up to 60%

compared to unprocessed noisy speech for NH subjects

(Kim et al., 2009). A high complexity classifier is able to

learn all spectro-temporal characteristics of the noise, if the

same short noise recording is used during training and test-

ing, resulting in high H–FA rates (May and Dau, 2014b)

and, most likely, also the high intelligibility scores observed

in Kim et al. (2009). The restricted setup therefore has a

high potential to improve speech intelligibility and can be

used to investigate the behavior of the segregation system by

comparing different system configurations. The ability of

segregation systems to generalize to unseen acoustic condi-

tions, such as novel segments of the same noise and novel

noise types, is, however, an important and active research

field (Healy et al., 2015; Chen et al., 2016b) and needs to be

addressed at the same time.

In the present study, two experiments were conducted

by measuring word recognition scores (WRSs) in NH listen-

ers. In Experiment I, the impact of exploiting spectro-

temporal context in the front-end and the back-end of a

segregation system, based on GMMs, was systematically

investigated to identify the best performing strategy for the

system. Specifically, the extraction of the delta features

(Kim et al., 2009) was considered in the front-end, and the

two-layer classification stage from May and Dau (2014a)

was employed in the back-end. Different system configura-

tions were compared here, which either incorporated

spectro-temporal context only in the front-end, only in the

back-end or in both. These configurations were compared to

a baseline configuration that did not include any of the strat-

egies in the front-end and the back-end. This experiment was

conducted in a restricted setup, similar to Kim et al. (2009),

with high potential to improve speech intelligibility.

Furthermore, the effect of the GMM classifier complexity in

a segregation system was also investigated by comparing the

results obtained with 16 GMM components and 64 GMM

components. In Experiment II, the best performing strategy

from Experiment I was explored in detail, and the generali-

zation ability was subsequently evaluated in a less restricted

setup that considered a mismatch in noise segments during

training and testing. Finally, the intelligibility scores from

both experiments were related to predictions from objective

measures1 from the extended short-term objective intelligi-

bility (ESTOI) (Jensen and Taal, 2016), the H–FA rate (Kim

et al., 2009), and the amount of clustering among T–F units

in binary masks (Kressner and Rozell, 2015). The primary

focus of the later analysis was to guide the selection of a

cost-function that correlates with speech intelligibility for

future applications in computational speech segregation

systems.

II. THE SEGREGATION SYSTEM

The segregation system consisted of a feature extraction

front-end and a classification back-end (May et al., 2015).

Figure 1 illustrates the processing stages of the system. Each

of these stages is described in more detail below.

A. Front-end

The noisy speech was sampled at a rate of 16 kHz and

decomposed into K¼ 31 frequency channels by employing

an all-pole version of the gammatone filterbank (Lyon,

1996), whose center frequencies were equally spaced on the

equivalent rectangular bandwidth (ERB) scale between 80

and 7642 Hz. Previous studies (Kim et al., 2009; May and

Dau, 2014a; May et al., 2015) have successfully exploited

modulations in the speech and the interferer by extracting

amplitude modulation spectrogram (AMS) features

(Kollmeier and Koch, 1994; Tchorz and Kollmeier, 2003).

To derive the AMS features in each subband, the envelope

was extracted by half-wave rectification and low-pass filter-

ing with a cutoff frequency of 1 kHz. Then, each envelope

was normalized by its median computed over the entire

envelope signal. The normalized envelopes were then proc-

essed by a modulation filterbank that consisted of one first-

order low-pass and five band-pass filters with logarithmically

spaced center frequencies and a constant Q-factor of 1. The

cutoff frequency of the modulation low-pass filter was calcu-

lated as the inverse of the window duration to ensure that at

least one full period of the modulation frequency was

included in the window, and subsequently adjusted to the

nearest power of 2 integer (May et al., 2015). Using a time
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frame duration of 32 ms then resulted in a cutoff frequency

of 32 Hz. The root-mean-square value of each modulation

filter was then calculated across each time frame with a 75%

overlap. The extraction of the AMS features resulted in a

six-dimensional feature vector for each T–F unit

Aðt; f Þ ¼ fM1ðt; f Þ;…;M6ðt; f ÞgT
. The delta features across

time ðDTÞ and frequency ðDFÞ can be appended to the feature

vector Aðt; f Þ according to previous studies (Kim et al.,
2009; Han and Wang, 2012; May and Dau, 2013), resulting

in a feature vector Xðt; f Þ for each individual T–F unit at

time frame t and subband f that consists of

Xðt; f Þ ¼ Aðt; f Þ;DTAðt; f Þ;DFAðt; f Þ½ �

DTAðt; f Þ ¼
Að2; f Þ � Að1; f Þ if t ¼ 1

Aðt; f Þ � Aðt� 1; f Þ otherwise

(

DFAðt; f Þ ¼
Aðt; 2Þ � Aðt; 1Þ if f ¼ 1

Aðt; f Þ � Aðt; f � 1Þ otherwise:

(
(1)

Instead of the calculation in Eq. (1), delta features that only

operate across frequency can be considered and appended

symmetrically to the AMS features for a resulting feature

vector Xðt; f Þ,

Xðt; f Þ ¼ Aðt; f Þ;Df�kAðt; f Þ;DfþkAðt; f Þ
� �

Df�kAðt; f Þ ¼ Aðt; f Þ � Aðt; f � kÞ;
8k 2 fn 2 1; K½ �jf � n � 1g

DfþkAðt; f Þ ¼ Aðt; f Þ � Aðt; f þ kÞ;
8k 2 fn 2 1; K½ �jf þ n � Kg: (2)

In Eq. (2), k indicates the considered number of subbands in

the calculation, and K the number of gammatone filters.

Appending the delta features to the feature vector in Eqs. (1)

and (2) increased the amount of exploited spectro-temporal

context, but also the size of the feature vector; e.g., append-

ing DTAðt; f Þ and DFAðt; f Þ from Eq. (1) to Aðt; f Þ would

increase the feature vector from 6 to 18 dimensions.

B. Back-end

Similar to previous studies, the classification back-end

consisted of a two-layer segregation stage (Healy et al.,

2013; May and Dau, 2014a; May et al., 2015). In the first

layer, a GMM classifier was trained to represent the speech-

and noise-dominated AMS feature distributions (k1; f and

k0; f ) for each subband f. To separate the feature vector into

speech- and noise-dominated T–F units, the LC was applied

to the a priori SNR, and the a priori probabilities Pðk1; f Þ
and Pðk0; f Þ were computed by counting the number of fea-

ture vectors for each of the classes k1; f and k0; f during train-

ing. The GMM classifier output was given as the posterior

probability of speech and noise presence Pðk1; f jXðt; f ÞÞ and

Pðk0; f jXðt; f ÞÞ, respectively,

P k1; f jX t; fð Þ
� �

¼
P k1; f

� �
P X t; fð Þjk1; f

� �
P X t; fð Þð Þ ; (3)

P k0; f jX t; fð Þ
� �

¼
P k0; f

� �
P X t; fð Þjk0; f

� �
P X t; fð Þð Þ : (4)

For each subband, the computed posterior probabilities of

speech Pðk1; f jXðt; f ÞÞ were processed by a linear support

vector machine (SVM) classifier (Chang and Lin, 2011)

across a spectro-temporal window W (May and Dau,

2014a),

�Xðt; f Þ ¼ fPðk1;ujXðu; vÞÞ : ðu; vÞ 2 Wðt; f Þg: (5)

The size of the window W determined the amount of

spectro-temporal context exploited around the considered

T–F unit. A causal and plus-shaped window functionW was

used here, where the window size with respect to time and

frequency was controlled by Dt and Df , respectively. Further

details regarding the choice of the second-layer classifier and

the size and shape of the window function W can be found

in May and Dau (2014a).

III. METHODS

A. Configurations

To systemically analyze the impact of spectro-temporal

context strategies in the front-end and the back-end, four sys-

tem configurations were tested in Experiment I (see Table I).

The “No context” configuration denotes the baseline config-

uration with no delta features in the front-end and no

spectro-temporal integration in the back-end, corresponding

to setting the window sizeW to unity (Dt ¼ 1;Df ¼ 1). The

FIG. 1. (Color online) Block diagram of the speech segregation system. The system consists of a feature extraction front-end and a classification back-end. In

the front-end, the noisy speech is first decomposed by a gammatone filterbank. Then, AMS features are extracted and delta features are computed. The back-

end consists of two layers with a GMM classifier in the first layer and a SVM classifier in the second layer. Finally, the estimated ideal binary mask is applied

to the subband signals of the noisy speech, as illustrated by the dashed line, in order to reconstruct the target signal.

250 J. Acoust. Soc. Am. 143 (1), January 2018 Bentsen et al.



“Front-end” configuration includes the delta features, while

the “Back-end” configuration includes the second-layer clas-

sification stage in the back-end (Dt ¼ 3;Df ¼ 9). The

“Front- & back-end” configuration employs both the front-

end and the back-end spectro-temporal context strategies.

In Experiment II, the delta features were explored in

details in order to investigate the potential of this strategy in

the segregation system. Four configurations were selected

(see Table II). The system configuration “Front-end” is the

baseline configuration for the analysis across frequency and

appends only DFAðt; f Þ to Aðt; f Þ. The configurations “3 sub-

bands,” “7 subbands,” and “11 subbands” include k¼ 1,

k¼ 3, and k¼ 5 lower and upper subbands to Aðt; f Þ.

B. Stimuli

The speech material came from the Danish Conversational

Language Understanding Evaluation (CLUE) database

(Nielsen and Dau, 2009). It consists of 70 sentences in seven

lists for training and 180 sentences in 18 balanced lists for test-

ing, and is spoken by a male Danish talker. Noisy speech mix-

tures were created by mixing individual sentences with a

stationary (ICRA1) and a fluctuating six-talker (ICRA7) noise

(Dreschler et al., 2001). A Long Term Average Spectrum

(LTAS) template was computed based on the CLUE corpus

and the LTAS of each noise masker was adjusted to the tem-

plate LTAS. A randomly-selected noise segment was used for

each sentence. In order to avoid onset effects in the intelligibil-

ity test (Nielsen and Dau, 2009), the noise segment started

1000 ms before the speech onset and ended 600 ms after the

speech offset. However, the objective measures were computed

only for the regions between speech onset and offset.

C. System training and evaluation

In Experiment I, the segregation system was trained sep-

arately for the two noise types limited to 10 s in duration.

Originally, the ICRA1 consists of a 60 s noise recording and

ICRA7 of a 600 s recording (Dreschler et al., 2001). The first

layer of the classification back-end consisted of a subband

GMM classifier with either 16 or 64 components and full

covariance matrices. The classifiers were first initialized by

15 iterations of the K-means clustering algorithm, followed

by five (for 16 GMMs) or 50 (for 64 GMMs) iterations of

the expectation-maximization algorithm. The classifiers

were trained with the 70 training sentences that were each

mixed three times with a randomly-selected noise segment

from 10 s noise recordings at �5, 0, and 5 dB SNR. The sub-

sequent linear SVM classifier was trained for each subband

with only ten sentences mixed at �5, 0, and 5 dB SNR.

Afterwards, a re-thresholding procedure was applied (Han

and Wang, 2012; May and Dau, 2014a) using a validation

set of ten sentences, where new SVM decision thresholds

were obtained which maximized the H–FA rates. Both the

first and second-layer classifiers employed an LC of �5 dB

in a similar manner as previous findings (Han and Wang,

2012; May and Dau, 2014b). The segregation system was

evaluated with the 180 CLUE sentences. Each sentence was

mixed with the noises at �5 dB SNR using the same limited

noise recordings from the training session.

Experiment II only tested the highly non-stationary

ICRA7 noise type in a less restricted setup. This noise type is

more likely to challenge a speech segregation system than the

stationary ICRA1. The full noise recording of 600 s was

divided into one half recording for training and one half

recording for testing. The training and evaluation was similar

to Experiment I. The first layer of the classification back-end

had a complexity of 16 GMMs with full covariance matrix.

The complexity choice is discussed in Sec. V B.

D. Test procedure and subjects

In Experiment I, the following 24 conditions were tested:

(Noisy speech, No integration, Front-end, Back-end, Front- &

back-end, IBM) � (ICRA1, ICRA7) � (16 GMMs, 64

GMMs). The total number of conditions (24) exceeded the

number of available CLUE test lists (18). Therefore, to be

able to randomly assign one condition to one test list, the

experiment was conducted with two subject groups, each with

n¼ 15 NH listeners. The first subject group was tested with

the 12 conditions corresponding to the classifier complexity

of 16 GMMs, and the second group was tested with the 12

conditions with only 64 GMMs. The following five conditions

were tested in Experiment II: Noisy speech, Front-end, 3 sub-

bands, 7 subbands, and 11 subbands. The experiment was

conducted with one subject group with n¼ 20 NH listeners

that differed from the subject groups used in Experiment I. In

this experiment, 13 other conditions were also tested that

were not relevant to this study.

The listener age was between 20 and 32 yr with a mean

of 24.5 yr in Experiment I and a mean of 26.7 yr in

Experiment II. Requirements for participation were: (1) age

between 18 and 40 years, (2) audiometric thresholds of less

than or equal to 20 dB hearing level (HL) in both ears (0.125

to 8 kHz), (3) Danish as native language, and (4) no previous

experience with the Hearing In Noise Test (HINT) (Nielsen

TABLE I. Configurations in Experiment I.

Configurations Front-end Back-end

Feature vector Feature
W size

Xðt; f Þ ¼ dimension Dt Df

No context ½Aðt; f Þ� 6 1 1

Front-end ½Aðt; f Þ;DTAðt; f Þ;DFAðt; f Þ� 18 1 1

Back-end ½Aðt; f Þ� 6 3 9

Front- & back-end ½Aðt; f Þ;DTAðt; f Þ;DFAðt; f Þ� 18 3 9

TABLE II. Configurations in Experiment II.

Configurations Front-end

Feature vector Feature

dimensionXðt; f Þ ¼

Front-end ½Aðt; f Þ;DFAðt; f Þ� 12

3 subbands ½Aðt; f Þ;DF�1Aðt; f Þ;DFþ1Aðt; f Þ� 18

7 subbands ½Aðt; f Þ;DF�1Aðt; f Þ;DFþ1Aðt; f Þ; :::;DFþ3Aðt; f Þ� 42

11 subbands ½Aðt; f Þ;DF�1Aðt; f Þ;DFþ1Aðt; f Þ; :::;DFþ5Aðt; f Þ� 66
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and Dau, 2011) or CLUE (Nielsen and Dau, 2009). The total

experimental time was about 2 h in Experiment I and about

1.5 h in Experiment II, including the screening process. The

subjects were paid for their participation.

The experiments consisted of a training and testing ses-

sion. During the training session, five randomly selected sen-

tences from the training set were presented for each of the

12 conditions to familiarize the subject to the task.

Subsequently, each subject heard one list per condition, and

conditions and lists were randomized across subjects. The

sentences were presented diotically to the listener via head-

phones (Sennheiser HD650) in an acoustically and electri-

cally shielded booth. Prior to the actual experiments, the

headphones were calibrated by first adjusting to a reference

sound pressure level (SPL) value and then performing a

headphone frequency response equalization. During the

experiment, the sentences were adjusted to the desired pre-

sentation level, and the equalization filters were applied. The

SPL was set to a comfortable level of 65 dB. The presenta-

tion level was only increased after the training session if the

subject reported back that the level was too low. The level

never exceeded 70 dB SPL for any subject. For each sen-

tence, the subjects were instructed to repeat the words they

heard, and an operator scored the correctly understood words

via a MATLAB interface. The subjects were told that guessing

was allowed. They could listen to each sentence only once,

and breaks were allowed according to the subject’s

preference.

E. Statistical analysis

Intelligibility scores were reported as a percentage of

correctly scored words, i.e., the WRS, at �5 dB SNR. The

WRSs were computed per sentence and averaged across sen-

tences per list. The averaged WRSs were used to construct a

linear mixed effect model for each experiment. In

Experiment I, the three fixed factors of the mixed model

were the system configuration (four levels), the noise type

(two levels), and the classifier complexity (two levels). The

subjects were treated as a random factor, as is standard in a

repeated measure design. The intelligibility scores in

Experiment I followed a normal distribution. All fixed

effects, all interactions between fixed effects, and the ran-

dom effect were initially included in the model. The model

was then reduced by performing a backward elimination of

all random and fixed interactions that were non-significant.

This included all of the interaction terms between the ran-

dom effect (subjects) and the fixed factors (configuration,

noise type, and classifier complexity) and the interaction

term between all three fixed factors. In Experiment II, the

only fixed factor was system configuration (four levels) and

subjects were treated as a random factor. The intelligibility

scores in Experiment II also followed a normal distribution.

All levels were tested at a 5% significance level. To

visualize the data, the least-squares means and 95% confi-

dence intervals were extracted from the model. To assess

any difference between conditions, the differences of the

least-squares means were computed and the p values were

adjusted following the Tukey multiple comparison testing.

To evaluate potential speech intelligibility improvements,

Paired Students t-tests between the noisy speech and each of

the system configurations were constructed and tested at a

5% significance level.

F. Objective measures

Three different objective measures were compared to

the intelligibility scores in each experiment: ESTOI (Jensen

and Taal, 2016), H–FA rate (Kim et al., 2009), and the clus-

tering parameter c (Kressner and Rozell, 2015). The ESTOI

(Jensen and Taal, 2016) is a modified version of the short-

term objective intelligibility (STOI) index (Taal et al., 2011)

to better account for modulated noise maskers. The STOI

metric is based on a short-term correlation analysis between

the clean and the degraded speech (Taal et al., 2011),

mapped to a value between 0 and 1. The ESTOI improve-

ments (D ESTOI) were reported here as the relative differ-

ence between the predicted ESTOI values for the processed

and the unprocessed noisy speech baselines. To compute the

H–FA rate, the correctly classified speech-dominated T–F

units and incorrectly classified noise-dominated T–F units

were derived by comparing the estimated IBM with the

IBM. The H–FA rates and the ESTOI improvements were

averaged across all 180 test sentences. The clustering param-

eter c was learned across all 180 test sentences by the graphi-

cal model described in Kressner and Rozell (2015). Given a

set of binary masks, the graphical model estimates the

amount of clustering c between T–F units within the masks

as a single number. c quantifies how much more likely

neighboring T–F units are to have the same label (speech-

dominated or noise-dominated) as opposed to different

labels. Therefore, binary masks with T–F units that are twice

as likely to have the same label than a different label as their

neighboring units would be described by c ¼ 2:0. Binary

masks with T–F units that are equally likely to be in the

same state as their neighbors would have a c ¼ 1:0, indicat-

ing that the labels of the T–F units would be uniformly and

randomly distributed. Therefore, a mask with c ¼ 2:0 will

contain more clustering among the T–F units than a mask

with c ¼ 1:0 (Kressner and Rozell, 2015). To illustrate the c
parameter, Fig. 2 shows binary masks for one particular

CLUE sentence mixed with ICRA7 noise at �5 dB SNR

with the respective c values, shown in parenthesis. Figure

2(a) shows the IBM and Figs. 2(b)–2(e) present the esti-

mated IBMs for the four tested system configurations listed

in Table I. The two mask error types, misses and false

alarms, are shown on top of the binary masks for a visualiza-

tion of the error distributions. Comparing the masks for the

four tested system configurations, the masks from Fig. 2(d)

and Fig. 2(e) contain a larger amount of clustering than the

masks in Fig. 2(b) and Fig. 2(c).

IV. RESULTS

A. Experiment I: Impact of exploiting spectro-temporal
context

Figure 3 shows intelligibility scores obtained with the

four system configurations (“No Context,” “Front-end,”
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“Back-end,” and “Front- & back-end”) in the two noise types

(ICRA1 and ICRA7) considered in Experiment I. Results are

shown for the two classifier complexities, namely 16 GMMs

in Fig. 3(a) and 64 GMMs in Fig. 3(b). The condition with

the unprocessed noisy speech (diamonds) represented the

baseline, and the IBM condition (stars) was considered as

the ideal reference. For the baseline and the ideal reference,

sample means across subjects and 95% Students t-based con-

fidence intervals of the mean were computed. For the system

configurations, the least square means and 95% confidence

intervals from the fitted linear mixed effect model were

considered.

The baseline in Fig. 3 differed across noise types, with

WRS of about 50%–55% for the stationary ICRA1 and 65%

for the fluctuating ICRA7, presumably because the partici-

pants were able to listen in the dips in the six-talker noise.

For the IBM conditions, WRS of close to 100% was

achieved for both noise types. This was expected as the IBM

exploited the a priori information about the speech and the

noise signals.

There was an effect of system configuration depending

on the classifier complexity and on the noise type. Most

importantly, the “Front-end” configuration led to signifi-

cantly higher intelligibility scores than the “Back-end” con-

figuration for both noise types and both classifier

complexities (p< 0.0001). Specifically, the WRS increased

by 18.0% in ICRA1 and 23.1% in ICRA7 with 16 GMMs

[Fig. 3(a)], and 28.8% in ICRA1 and 34.0% in ICRA7 with

64 GMMs [Fig. 3(b)]. This particular finding suggests that

extracting and appending the delta features to the AMS fea-

tures in the front-end is a more effective way of exploiting

spectro-temporal contextual information than using the

SVM-based integration strategy in the back-end. In all four

combinations, except with 16 GMMs in the case of the

ICRA1 noise, the “Front-end” configuration led to signifi-

cantly larger scores than the “No context” configuration,

which emphasizes that it is more effective to exploit contex-

tual information in the front-end of the system than not con-

sidering any strategy at all. Finally, the “Front- & back-end”

configuration also led to significantly higher scores than the

“Back-end” configuration in all four combinations of noise

type and classifier complexity. However, the mean scores for

the “Front- & back-end” were generally lower than for the

“Front-end.” This suggests that employing both strategies is

more effective to exploit spectro-temporal context than just

employing the SVM-based integration strategy in the back-

end alone, but the combination of the two strategies does not

lead to better results than the front-end strategy alone.

There was also an effect of the classifier complexity that

depended on the system configuration and the noise type. By

comparing the results in Figs. 3(a) and 3(b), significantly

higher scores were obtained for the “Front-end” configura-

tion with 64 GMMs than with 16 GMMs for both noise

types. Specifically, the WRS increased by 12.6% in ICRA1

(p< 0.05) and 19.5% in ICRA7 (p< 0.0001). However, the

scores for the “Back-end” configuration did not change sig-

nificantly across classifier complexity for either noise type.

Most importantly, the ranking of the system configurations

remained unchanged across classifier complexity.

The measured intelligibility scores from Fig. 3 were con-

verted into WRS improvements relative to the unprocessed

noisy speech, DWRS. Figures 4(a) and 4(b) show DWRS as a

function of the system configuration, noise type, and classifier

complexity. Significant improvements, based on the Paired

Students t-tests, are indicated by an asterisk (*). Significant

improvements of about 50% for ICRA1 and 35% for ICRA7

over noisy speech were obtained with the IBM. For 64 GMMs

in Fig. 4(b), the configurations “No Context” (t½14� ¼ �2:16;
p ¼ 0:02), “Front-end” (t½14� ¼ �4:29; p ¼< 0:001), and

“Front- & back-end” (t½14� ¼ �2:82; p ¼ 0:007) for ICRA1

led to significant improvements and for the ICRA7, only the

“Front-end” (t½14� ¼ �7:44; p ¼< 0:001) led to a significant

improvement. To evaluate the potential of the objective mea-

sures, the measured intelligibility scores were related to pre-

dictions from each of the objective measures described in

Sec. III F. Figure 4 also shows the objective measures

DESTOI [Figs. 4(c) and 4(d)], H–FA rates [Figs. 4(e) and

FIG. 2. (Color online) Binary masks for a CLUE sentence mixed with

ICRA7 noise at �5 dB SNR. Misses (target-dominated T–F units errone-

ously labeled as masker-dominated) and false alarms (masker-dominated

T–F units erroneously labeled as target-dominated) are shown on top of the

masks.
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4(f)] and c [Figs. 4(g) and 4(h)] in Experiment I. DESTOI

indicates the increase in ESTOI relative to the unprocessed

noisy speech. The largest predicted improvement was

observed for the configuration “Front- & back-end,” and the

lowest predicted improvement was found for the “No con-

text” configuration in all combinations of noise type and

classifier complexity level. This is in conflict with the mea-

sured DWRS in Figs. 4(a) and 4(b) where the “Front-end”

configurations led to the largest improvements. By compar-

ing Figs. 4(c) and 4(d), it can be seen that larger ESTOI

improvements were generally observed with 64 GMMs com-

pared to 16 GMMs. This is consistent with the measured

WRS improvements in Figs. 4(a) and 4(b).

Figures 4(e) and 4(f) show the H–FA rates. The segrega-

tion system generally produced higher H–FA rates in the

presence of the stationary noise than in the presence of the

non-stationary six-talker noise. The six-talker noise contains

spectro-temporal modulations, similar to modulations in the

target speech signal, and it will be more difficult for the clas-

sifier to separate the speech modulations from the six-talker

noise modulations. In all combinations of noise type and

classifier complexity, the lowest H–FA rates were observed

for the “No context” configuration and the highest H–FA

rates were found for the “Front- & back-end” configuration.

Also, larger H–FA rates were obtained for the “Back-end”

than for the “Front-end” configuration, which is not consis-

tent with Figs. 4(a) and 4(b). Furthermore, higher H–FA

rates were obtained with 64 GMMs in Fig. 4(f) than with 16

GMMs in Fig. 4(e). A comparison with the measured WRS

improvements in Figs. 4(a) and 4(b) indicated a conflict with

this prediction, since the “Front-end” configuration led to the

highest intelligibility scores, but not the highest H–FA rates.

Finally, it is observed that a small increase of H–FA [from

Fig. 4(e) to Fig. 4(f)] corresponds to a large increase of WRS

[from Fig. 4(a) to Fig. 4(b)] from 16 GMMs classifier to the

64 GMMs classifier. This was found for both noise types.

Figures 4(g) and 4(h) show the c values learned by the

graphical model. The IBM itself contains a certain level of

clustering, due to the compact representation of speech-

dominated T–F units forming glimpses of the target signal.

The c values from system configurations that exploited

spectro-temporal context through the SVM based integration

strategy in the back-end (“Back-end” and “Front- & back-

end”) were consistently larger than the c values learned over

masks from the “Front-end” and the “No context” configura-

tions. Furthermore, the “Front-end” did not lead to larger c
values than the “No context.” This suggests that computing

delta features in the front-end does not increase the amount

of clustering in contrast to employing a spectro-temporal

SVM based integration strategy in the back-end. The effect

of exploiting spectro-temporal context in binary masks was

visualized in Fig. 2 in Sec. III. Figures 2(d) and 2(e) showed

masks with a larger amount of T–F clustering than the masks

in Figs. 2(b) and 2(c), and a visual inspection of the example

utterance indicated that the erroneous T–F units became

more clustered in Figs. 2(d)–2(e). Finally, a comparison of

Figs. 4(g) and 4(h) suggests that the amount of clustering in

the mask is not affected by the classifier complexity in the

segregation system, as c remains unchanged.

B. Experiment II: Exploring delta features and the
system generalization ability

Figure 5 shows intelligibility scores obtained in

Experiment II with the four system configurations (“Front-

end,” “3 subbands,” “7 subbands,” and “11 subbands”)

tested in the less restricted setup in ICRA7 noise. For all

four configurations, the DTAðt; f Þ from Eq. (1) was not

FIG. 3. (Color online) Experiment I’s WRSs at �5 dB SNR of the four different system configurations (“No Context,” “Front-end,” “Back-end,” and “Front-

& back-end”) for the two noise types (ICRA1 and ICRA7) and for the two classifier complexities plotted in panel (a) (16 GMMs) and panel (b) (64 GMMs).

The condition with the unprocessed noisy speech represented the baseline and the IBM condition was considered as the ideal reference. For the baseline and

the ideal reference, sample means across subjects and 95% Students t-based confidence intervals of the mean were computed. For all system configurations in

all combinations of noise type and classifier complexity, the least square means and 95% confidence intervals from the fitted linear mixed effect model were

plotted.
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appended to the feature vector in Eq. (2). This decision was

based on an analysis of the objective measures prior to

Experiment II, which showed no change in the objective

measures when DTAðt; f Þ was left out. In Fig. 5, the level of

the noisy speech was consistent with the level in Experiment

I for ICRA7 (see Fig. 3). In this experiment, there was an

effect of system configuration. The intelligibility scores were

significantly higher in the “3 subbands” configuration than

the “Front-end” configuration by 10.7% (p< 0.01) and from

the “3 subbands” to the “7 subbands” configuration by 8.2%

(p< 0.05). The “7 subbands” and the “11 subbands” configu-

rations did not differ significantly. This finding indicated

that appending more subbands, as proposed in Eq. (2), can

lead to significantly higher intelligibility until a plateau at

k¼ 5 with “11 subbands.” Figure 6 presents the intelligibility

improvements and objective measure predictions for

Experiment II. In Fig. 6(a), the Paired Students t-tests showed

that all system configurations led to significantly smaller intel-

ligibility scores than the noisy speech, despite an increase in

intelligibility over appended subbands. Therefore, none of the

system configurations were able to improve speech intelligi-

bility in the less restricted setup. Since this setup included

novel noise segments in testing not seen during training, this

suggested that the segregation system did not generalize well

to unseen noise segments of the six-talker noise.

In Fig. 6(b), all predicted DESTOI values were positive,

and the largest predicted improvements were observed for

the configurations “7 subbands” and “11 subbands.” This

was not consistent with results from the listener study in Fig.

6(a), where no WRS improvements were observed, which

highlights the discrepancy between predicted and measured

intelligibility improvements in this study. The H–FA rate in

FIG. 4. (Color online) Experiment I’s DWRS relative to noisy speech (first row of panels), DESTOI relative to noisy speech (second row of panels), H–FA

rates (third row of panels), and c values (fourth row of panels) for the four different system configurations with the two noise types (ICRA1 and ICRA7)

and with the two classifier complexities in (a) and in (b). The IBM has been included as the ideal reference. WRS improvements are derived from the

Paired Students t-tests and significant improvements (on a 5% significance level) are marked with an asterisk (*). All objective measures are evaluated at

�5 dB SNR.
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Fig. 6(c) increased with the number of appended subbands,

whereas the rates were comparable for “7 subbands” and “11

subbands.” As observed in Experiment I, a small change in

H–FA had a large impact on the measured intelligibility

scores. This was illustrated by comparing Fig. 4(e) for the

ICRA7 noise and Fig. 6(c). A H–FA rate of 35.3% in Fig.

4(e) corresponded to a 4.5% decrease in WRS for the

“Front-end” configuration, whereas a H–FA of 33.6% in Fig.

6(c) corresponded to a 31.1% decrease in WRS over noisy

speech. With respect to clustering [Fig. 6(d)], c did not

change with the system configuration, suggesting that the

amount of clustering in the mask is not affected by append-

ing more subbands to the AMS features. This is in contrast

to the Experiment I where the SVM integration stage in the

back-end increased both H–FA and c.

V. DISCUSSION

A. The impact of exploiting spectro-temporal context

The measured intelligibility scores in Experiment I

(Sec. IV A) showed that the front-end strategy, where the

system was given access to both the AMS features and the

delta features, led to significantly higher intelligibility scores

than employing the back-end strategy, which incorporated

the SVM-based spectro-temporal integration. The scores

were consistently higher for the front-end strategy than the

back-end strategy, regardless of the noise type and classifier

complexity. Moreover, compared to the unprocessed noisy

speech, the back-end strategy actually had a detrimental

effect on the intelligibility scores. The comparison of the

objective measures in Fig. 4 (Sec. IV A) indicated that

the back-end strategy increased the H–FA rates over the

front-end strategy but, at the same time, increased the

amount of clustering of individual T–F units. The visual

inspection of the illustrated mask examples in Fig. 2 (Sec.

III F) furthermore suggested that the increased amount of

clustering implied an increased clustering of the misses and

false alarms. Previously, it was shown that clustering of the

two error types results in reduced intelligibility scores

despite having the same classification accuracy (Kressner

and Rozell, 2015), which may explain the detrimental effect

of the back-end strategy on the present intelligibility scores.

Furthermore, computing delta features in the front-end had a

positive effect on speech intelligibility. The intelligibility

scores were significantly higher than the scores with the

FIG. 5. (Color online) Experiment II’s WRSs at �5 dB SNR with the four

different system configurations (“Front-end,” “3 subbands,” “7 subbands,”

and “11 subbands”) in ICRA7. The condition with the unprocessed noisy

speech represented the baseline. For the baseline, sample means across sub-

jects and 95% Students t-based confidence intervals of the mean were com-

puted. For all system configurations, the least square means and 95%

confidence intervals from the fitted linear mixed effect model were plotted.

FIG. 6. (Color online) Experiment II’s DWRS relative to noisy speech (first

row of panels), DESTOI relative to noisy speech (second row of panels),

H–FA rates (third row of panels), and c values (fourth row of panels) with

the four different system configurations in ICRA7. WRS improvements are

derived from the Paired Students t-tests and significant improvements (on a

5% significance level) are marked with an asterisk (*). All objective mea-

sures are evaluated at �5 dB SNR.
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configuration that did not employ any of the strategies, and

improvements over noisy speech were significant for the

higher complexity classifier of 64 GMMs. Because of the det-

rimental effect of the back-end strategy on intelligibility, com-

bining both strategies simultaneously in the front-end and in

the back-end did not lead to the largest measured intelligibility

scores in Sec. IV A. This contradicted the findings in Fig. 4(e)

and Fig. 4(f) (Sec. IV A) where a higher H–FA rate was found

when combining the strategies than employing only one of the

strategies, consistent with the literature (Healy et al., 2013;

May and Dau, 2013). The results from Experiment I therefore

suggest that, in the considered segregation system, a better

spectro-temporal strategy is to compute delta features of the

AMS features in the front-end rather than employing the

selected SVM-based integration strategy in the back-end. This

study, however, did not consider the effects of changing the

shape and the size of the window in the back-end on measured

intelligibility. Also, the effect of employing a different second-

layer classifier is currently unknown. Healy et al. (2013) con-

sidered a similar two-layer classification stage, but they

employed deep neural networks (DNNs) in a DNN–DNN layer

with an integration window of size five time frames and 17

subbands of the 64 channels. They reported significant

improvements in intelligibility scores with this system, but did

not quantify the impact of the back-end strategy alone.

In Experiment II, the front-end strategy was explored in

detail by appending delta features computed from symmetri-

cal subbands. Results in Sec. IV B showed that the intelligibil-

ity scores increased with the number of appended subbands

up to k¼ 5 bands where the improvement reached a plateau.

This indicated that intelligibility increased with the amount of

spectral information in the speech that was exploited up to

k¼ 5 subbands. The same trend was observed for the H–FA

rate in Fig. 6. Appending the delta features across frequency

increased the size of the feature vector, and the larger amount

of training data led to improvements in H–FA rate for the

higher complexity classifier of 64 GMMs compared to the 16

GMMs classifier. Moreover, the amount of clustering among

the T–F units in Experiment II was equal to the amount of

clustering for the front-end strategy in Experiment I and

remained constant with the number of appended subbands.

This is in line with the notion from Experiment I that

increased accuracy without increased clustering among the

T–F units can lead to higher intelligibility scores.

Other strategies exists that exploit the contextual infor-

mation in speech. In contrast to the delta features, which work

on a subband level, temporal context can also be exploited by

stacking feature frames as input to broadband DNNs for clas-

sification (Wang et al., 2014; Chen et al., 2016b). However,

the impact of this particular strategy on intelligibility scores,

or any of the objective measures, has not been quantified,

which makes a comparison to the strategies in the present

study challenging.

B. The generalization ability of the segregation system

In Experiment I, a restricted setup from Kim et al.
(2009), with matched noises during training and testing, was

used in order to facilitate a comparison of the system

configurations, and for a comparison across GMM classifier

complexity. May and Dau (2014b) compared H–FA rates for

matched and mismatched noise segments of the same noise

type in training and testing as a function of the number of

GMMs in the classification stage. A high complexity classi-

fier of 256 GMMs employed in Kim et al. (2009) was able to

learn all spectro-temporal characteristics of the noise, when

the same short noise segment was used in training and test-

ing. This was due to an over-fitting of the segregation system

which resulted in high H–FA rates (May and Dau, 2014b)

and potentially explains the high intelligibility scores

obtained in the study. In Experiment I, these observations

from May and Dau (2014b) were verified. The measured

intelligibility scores of the front-end strategy were higher

with 64 GMMs in Fig. 3(b) compared to the lower complex-

ity classifier of 16 GMMs in Fig. 3(a). Employing the same

amount of components as in Kim et al. (2009) would likely

result in intelligibility scores at ceiling and close to the IBM.

The ability of segregation systems to generalize to

acoustic conditions not seen during training is a very impor-

tant aspect. In Experiment II, novel noise segments in testing

not seen during training were considered. Despite the fact

that intelligibility increased with appended subbands in Fig.

6(a), none of the configurations were able to improve speech

intelligibility over noisy speech, suggesting that the system

did not generalize well to unseen noise segments of the six-

talker noise. This noise type contains spectro-temporal mod-

ulations very similar to modulations in the target speech sig-

nal. Therefore, the task of improving intelligibility in a

realistic setup is non-trivial. According to May and Dau

(2014b), the H–FA rates were generally lower when the con-

sidered segregation system was tested with unseen noise seg-

ments of the same noise recording, and the rates decrease

with increasing GMM classifier complexity. Therefore, in a

more realistic setup like in Experiment II, choosing a lower

complexity classifier will reduce the risk of over-fitting the

system (May and Dau, 2014b), however at the expense of

lower H–FA rates and lower intelligibility outcomes.

Other studies have successfully demonstrated a generali-

zation ability to acoustical mismatches by employing DNNs

because of their predictive power and the ability to benefit

from large-scale training for feature learning (Healy et al.,
2015; Chen et al., 2016a, 2016b). In Healy et al. (2015), a

four-hidden layer DNN was applied and tested on novel seg-

ments of the same noise type, which led to a 25% improve-

ment in WRS in 20-talker babble at �5 dB SNR in NH

listeners, but no improvement in cafeteria noise. In Chen

et al. (2016b), a multi-conditional training set was intro-

duced, and a classifier was trained using a five-hidden layer

DNN and tested for a range of novel noise types. For the

same 20-talker noise at �5 dB SNR, they were able to

improve the WRS by approximately 10% in NH listeners.

The amount of training employed in these two studies, how-

ever, differs from the current study. In Healy et al. (2015)

560� 50 ¼ 28 000 utterances were used for each noise type

and SNR, and in Chen et al. (2016b) 640 000 utterances

were used in the multi-conditional training set. In the current

study, only 210 utterances were used for training of the

GMM classification stage. The capability of the DNNs to
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handle large-scale training data is most likely key to an

increased ability to generalize to the unseen acoustical

conditions.

C. Implications for cost function design

Kressner et al. (2016) highlighted potential limitations

of STOI in predicting the intelligibility of binary-masked

speech. In the present study, ESTOI was employed instead

of STOI, but several observations indicated that ESTOI has

similar limitations as STOI. First of all, in Experiment I, the

ranking of the system configurations for the ESTOI improve-

ments conflicted with the ranking of the configurations for

the measured intelligibility improvements, as was observed

in Fig. 4. Second, in Experiments I and II, ESTOI predicted

improvements of the system configurations when no intelli-

gibility improvements were actually present. In Experiment

I, the listener study only revealed improvements for configu-

rations with the 64 GMMs classifier, and in Experiment II,

no improvements were observed at all. Therefore, ESTOI

alone is not able to account for the observations in this study.

Furthermore, the H–FA metric was also not able to correctly

predict the ranking of the system configurations in

Experiment I. Specifically, the H–FA rate was consistently

higher for the back-end strategy than the front-end strategy,

despite the fact that the intelligibility study revealed an

opposite effect. Therefore, it is possible to construct a segre-

gation system that is able to improve H–FA and ESTOI, but

at the same time fails to improve speech intelligibility scores

in noisy conditions. This reveals the limitations of the two

measures and emphasizes the need of a single objective mea-

sure that comprehensively predicts segregation performance

and correlates well with intelligibility for speech segregation

systems.

The findings from Experiment I and II have important

implications for the design of cost functions in computa-

tional speech segregation systems. Monitoring the amount of

mask clustering c in the estimated IBMs seems critical as the

clustering among erroneously-labeled T–F units should be

minimized. The IBM itself inherently contains clustering,

and the obtained c value can be regarded as the accepted

amount of clustering among the correctly-labeled T–F units.

Therefore, an appropriate cost function should maximize the

H–FA rate and approximate c as close as possible to c of the

IBM.

VI. CONCLUSION

In this study, two experiments were conducted with NH

listeners. In Experiment I, the impact of spectro-temporal

context in a computational speech segregation system was

investigated by considering two strategies in the system

front-end and back-end, respectively. The experiment

showed that computing delta features in the front-end led to

higher speech intelligibility than employing an SVM-based

integration strategy in the back-end. The results were consis-

tent across different noise types and for different classifier

complexities. In Experiment II, the delta features were

explored in detail and tested in a setup that considered novel

noise segments of the same six-talker noise. Intelligibility

scores increased with the amount of spectral information

exploited, but the segregation system did not generalize well

to novel noise segments of this particular noise type. The

intelligibility scores were subsequently compared to predic-

tions from several objective measures. The comparison

showed that no single measure could account for all intelligi-

bility scores, and therefore emphasizes the need of a single

objective measure that comprehensively predicts segregation

performance and correlates well with intelligibility. The

findings from the present study may have implications for

the design of computational speech segregation systems, in

which spectro-temporal context should be incorporated with-

out increasing the amount of clustering among erroneous

labeled T–F units. Furthermore, the findings can help select

a cost function that correlates with intelligibility. According

to the results in the present study, the cost function should

maximize the H–FA rate and approximate the c value as

close as possible to the c of the IBM.
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