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Abstract 
 

Objective: To evaluate rapid eye movement (REM) muscular activity in narcolepsy by applying 

five algorithms to electromyogram (EMG) recordings, and to investigate its value for narcolepsy 

diagnosis.  

Patients/methods: A modified version of phasic EMG metric (mPEM), muscle activity index 

(MAI), REM atonia index (RAI), supra-threshold REM EMG activity metric (STREAM), and 

Frandsen method (FR) were calculated from polysomnography recordings of 20 healthy controls, 18 

clinic controls (subjects suspected with narcolepsy but finally diagnosed without any sleep 

abnormality), 16 narcolepsy type 1 without REM sleep behavior disorder (RBD), 9 narcolepsy type 1 

with RBD, and 18 narcolepsy type 2. Diagnostic value of metrics in differentiating between groups 

was quantified by area under the receiver operating characteristic curve (AUC). Correlations among 

the metrics and cerebrospinal fluid hypocretin-1 (CSF-hcrt-1) values were calculated using linear 

models. 

Results: All metrics excluding STREAM found significantly higher muscular activity in 

narcolepsy 1 cases versus controls (p<0.05). Moreover, RAI showed high sensitivity in the detection 

of RBD. The mPEM achieved the highest AUC in differentiating healthy controls from narcoleptic 

subjects. The RAI best differentiated between narcolepsy 1 and 2. Lower CSF-hcrt-1 values 

correlated with high muscular activity quantified by mPEM, sMAI, lMAI, PEM and FR (p<0.05). 

Conclusions: This automatic analysis showed higher number of muscle activations in narcolepsy 

1 compared to controls. This finding might play a supportive role in diagnosing narcolepsy and in 

discriminating narcolepsy subtypes. Moreover, the negative correlation between CSF-hcrt-1 level 

and REM muscular activity supported a role for hypocretin in the control of motor tone during REM 

sleep. 
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Introduction 
 

Narcolepsy is a neurological sleep disorder characterized by excessive daytime sleepiness (EDS), 

sudden onsets of rapid eye movement (REM) sleep periods during wakefulness, and a general 

disturbed pattern of nocturnal sleep. The disorder is currently recognized as either narcolepsy type 1 

(NT1) or narcolepsy type 2 (NT2) [1]. NT1 patients are associated with cataplexy, which for the 

majority of patients is caused by a loss of hypothalamic hypocretinergic cells leading to lower 

cerebrospinal fluid (CSF) hypocretin-1 (hcrt-1) levels than in the general population. The loss of 

cells is likely due to an autoimmune-mediated destruction of hypocretinergic brain cells [2–5]. The 

mechanism for NT2 is unknown but is most likely heterogeneous [6]. 

The current diagnosis of NT1 is based on medical history of patients exhibiting EDS for at least 3 

months and the presence of one or both of the following: 1) cataplexy combined with a positive 

multiple sleep latency test (MSLT) with a mean sleep latency <8 minutes and the presence of at least 

two sleep onset REM periods (REM sleep latency ≤15 minutes) during the polysomnogram (PSG) 

and 4-5 daytime nap opportunities; and 2) CSF-hcrt-1 levels ≤110 pg/mL, or less than one third of 

the mean values obtained in normal subjects with the same standardized assay. The NT2 present 

normal CSF-hcrt-1 levels [1]. 

Recent studies have also shown that a positive MSLT in NT2 is often not a repeatable clinical 

feature, raising questions regarding the diagnostic entity [7]. Indeed, false positive MSLTs are 

associated with shift work and sleep deprivation [8]. Due to variation in interpretation and day-to-

day variations in PSG/MSLT [9,10], other diagnostic procedures have been proposed for diagnosing 

narcolepsy, including reports of sleep stages [11-16], and autonomic disturbance findings during the 

PSG [17].  

A promising supportive diagnostic procedure for narcolepsy might be the analysis of abnormal 

muscular activity during REM sleep. In fact, in NT1, REM sleep without atonia (RSWA) and 

clinical signs indicative of REM sleep behavior disorder (RBD) have been frequently reported [18-

20]. Current hypotheses claim that an association between RBD and NT1 might be caused by a 

common dysregulation of the dopamine system [21]. Therefore, abnormal REM muscular activity 

could also be considered a diagnostic feature. Unfortunately, there is a lack of standardization in the 

identification of abnormal motor activity during sleep, which has to be overcome in order to make 

this feature useful for diagnostic purposes. Recently, there has been an increased focus on 

automatizing the quantification of muscle activity using either the original definitions of phasic and 

tonic activations [22] or novel computer detection approaches derived thereof [23,24].  
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The current study attempted to objectively quantify EMG activity in narcolepsy patients, focusing 

on five different automatic detection approaches using quantitative measures derived from the chin 

EMG: 1) a modified version of the phasic electromyographic metric (mPEM) [25]; 2) the muscle 

activity index (MAI) [26]; 3) the REM atonia index (RAI) [27]; 4) the suprathreshold REM EMG 

activity metric (STREAM) [28]; and 5) the automated method proposed by Frandsen et al. (FR) [29]. 

The current study aimed to: 1) investigate the previously mentioned computer detection approaches 

with respect to detection of EMG changes in narcoleptic sleep; 2) investigate whether the automated 

analysis of EMG might be used as a supportive diagnostic tool for narcolepsy using a single 

overnight PSG; and 3) investigate the relationship between CSF-hcrt-1 values and abnormal 

muscular activity in REM sleep. 
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Methods 
 

Subjects and recordings 

A total of 81 subjects were included in this study, which consisted of one healthy control group 

and four patient groups. The healthy control (C) group comprised 20 healthy subjects with no 

previously diagnosed sleep disorders and no suspicion of narcolepsy. Patients were admitted to the 

sleep clinic under suspicion of narcolepsy and underwent standard PSG-MSLT procedures [30], 

including CSF-hcrt-1 measurements [31]. After clinical tests, patients were divided into four groups: 

1) 18 patients with normal CSF-hcrt-1 levels and no diagnosis of narcolepsy or other primary sleep 

disorders (sleep clinic controls, SCC); 2) 16 patients diagnosed with NT1 (NT1-RBD); 3) 9 patients 

diagnosed with NT1 and RBD (NT1+RBD); and 4) 18 subjects diagnosed with NT2. The RBD 

diagnosis was based on anamnesis, questionnaires and video-PSGs, which were scored by 

technicians according to American Academy of Sleep Medicine (AASM) rules. Subject 

demographics are shown in Table 1, including gender, age, CSF-hcrt-1 level, BMI, sleep stage 

distributions, and known medication. All patients were advised to discontinue medications known to 

affect normal sleep behavior, such as centrally acting stimulants and medications for cataplexy, at 

least 2 weeks prior to the PSG recording.  

All PSGs were recorded at the Danish Center for Sleep Medicine in accordance with AASM 

standards [30], with a sampling frequency of 256 Hz. Only the chin EMG channel was used in the 

current study. Ten PSGs (two C, three SCC, two NT1-RBD, and three NT2 patients) were dismissed 

from further analysis due to unacceptable noise. The EMG signals were recorded with different 

amplifier systems, in which the lowest cut-off frequency for the built-in anti-aliasing filter was 

70 Hz. For the sake of uniformity, all EMG signals were low-pass filtered with a fourth-order 

Butterworth zero-phase low-pass filter with a cut-off at 70 Hz. Moreover, recordings were digitally 

filtered with a 10 Hz Butterworth high-pass filter and notch filtered at 50 Hz using a zero-phase 

filtering procedure. All algorithms were implemented in MATLAB (R2016a, The MathWorks, 

Natick, MA, USA).  

The study was accepted by the Danish Health Authority and the Data Protection Agency. All data 

were anonymized. The work was carried out in accordance with the Declaration of Helsinki. 
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Table 1. Demographic data for the five studied groups.  

Parameter C SCC NT1-RBD NT1+RBD NT2 p 

Total count 20 18 16 9 18 - 

Fraction of men 0.45 0.39 0.63 0.67 0.44 0.509 

Age, years, µ±σ 34.1±7.8 37.7±11.4 34.7±18.7 26.7±21.1 29.2±11.7 0.241 

BMI, kg/m2, µ±σ 25.6±6.7 23.9±4.2 27.5±3.8 22.8±4.6 23.1±3.5 0.036 

CSF hypocretin 1 

level 
- 401.9±62.2 33.8±29.8 27..3±21.5 332.9±98.7 - 

Sleep efficiency, %, 

µ±σ 
91.1±6.8 86.4±15.1 85.4±10.9 87.7±9.3 93.4±3.1 0.133 

Time in bed, 

minutes, µ±σ 
471.9±40.9 478.9±33.8 472.5±54.4 455.1±68.0 511.5±142.2 0.863 

REML, minutes, µ±σ 100.4±52.5 97.1±33.2 88.31±98.4 34.1±44.0 109.3±114.6 0.011 

W, %, µ±σ 8.9±6.8 13.6±15.1 14.5±11.0 12.3±9.3 6.6±3.1 0.149 

REM, %, µ±σ 20.4±4.9 18.2±7.4 17.4±7.2 22.7±5.2 20.2±6.9 0.163 

N1, %, µ±σ 4.8±2.2 5.7±3.3 11.8±7.8 10.4±7.6 5.3±3.1 0.008 

N2, %, µ±σ 45.0±8.3 43.1±10.7 42.4±12.1 35.7±9.7 48.1±11.6 0.135 

N3, %, µ±σ 20.8±8.1 19.3±7.8 13.9±6.9 18.8±13.8 19.8±8.5 0.071 

Fraction of subjects 

taking stimulant 

medication 

0 0.06 0.25 0.33 0.17 0.059 

Fraction of subjects 

taking anti-cataplexy 

medication 

0 0 0 0.33 0.22 0.003 

Fraction of subjects 

taking both stimulant 

and anti-cataplexy 

medication 

0 0 0 0.33 0 <0.001 

C, healthy controls; SCC, sleep clinic controls; NT1±RBD, type 1 narcolepsy with/without RBD; 

NT2, type 2 narcolepsy; BMI, body mass index; CSF, cerebrospinal fluid; REML, REM sleep 

latency; REM, rapid eye movement;  

 p-values were obtained with Kruskal-Wallis tests and Chi-squared tests for fractions.  
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Modified phasic electromyographic metric (mPEM) 

An automatic way of calculating the PEM was developed in accordance with the original visual 

scoring method [25]. However, because of the absence of a well-defined pre-sleep period, the 

definition of the baseline level was changed as described in the following. A phasic activation must 

fulfill three criteria: 1) activation above four times the baseline; 2) activation between 0.1-2.5 

seconds in duration; and 3) clear return to baseline after each activation. In order to meet these 

criteria, 1) the baseline was defined in 30-second epochs as the median of the absolute value of the 

EMG in these epochs. Then, 2) 2.5-second mini-epochs were considered and for each of them 

activations were found when the EMG was above four times the baseline previously defined, and the 

activations lasting <0.1 second were removed. Finally, 3) activations within the last 10 samples of 

the 2.5-second mini-epochs were removed from further analysis, as these would have no clear return 

to baseline. The fraction of mini-epochs in REM sleep meeting the requirements was reported as the 

PEM. It is worth noticing that the method proposed in [25] was applied to EMG signals filtered 

between 10-100 Hz.  

 

Muscle activity index (MAI) 

To detect abnormal muscular activity, the amplitude EMG signal was calculated from the original 

EMG signal as the difference between an upper and lower envelope calculated by linear interpolation 

between the upper and lower waveform peaks, respectively. The amplitude signal was then smoothed 

over 0.025 seconds using a moving average filter. A baseline was extracted by smoothing the 

amplitude signal over 200 seconds and the threshold was defined as four times the baseline. In the 

original paper, the threshold was defined as twice the baseline level [26]; however, in the current 

study it was found that this threshold level was too susceptible to noise and it was decided to set the 

threshold at four times the baseline instead (an example supporting this choice is shown in Appendix 

Fig. A1). This is in accordance with the original specifications used by Lapierre and Montplaisir 

[22], and has been extensively used in other studies [18,25,29,32]. The EMG activity was detected 

when the amplitude signal exceeded the threshold curve, and clusters of activity <1-second distance 

were defined as one unique event. The long-lasting and short-lasting muscle activity indexes (lMAI 

and sMAI) were defined as the number of activity events/hour of REM sleep above and below 0.5 

seconds in length, respectively. It should be noticed that the method proposed in [26] was applied to 

EMG filtered in the range 10-100 Hz. 
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REM atonia index (RAI) 

The EMG signal was rectified and the amplitude in each 1-second mini-epoch was calculated as 

the average amplitude in that mini-epoch minus the minimum amplitude in a surrounding moving 

window of 30 seconds, in order to reduce the noise influence. The obtained amplitudes (amp) of each 

1-second mini-epoch were then divided into 20 stage-specific categories according to their values 

(ie, amp ≤1 µV, 1 µV≤ amp ≤2 µV, …, 18 µV≤ amp ≤19 µV and amp ≥20 µV). By considering only 

the 1-second mini-epochs in REM stage, the RAI was calculated as the percentage of amp ≤1 µV 

divided by the sum of the number of mini-epochs with amp ≤1 µV and those with amplitudes >2 µV 

(ie, excluding those with 1 µV< amp ≤2 µV) [27,33]. It has to be noted that the method proposed in 

[27,33] was applied to EMG signals filtered between 10-100 Hz.  

 

Supra-threshold REM activity metric (STREAM) 

Each recording was divided into 3-second mini-epochs and the sample variance for each mini-

epoch calculated. The STREAM was computed as the percentage of REM mini-epochs with sample 

variance larger than a threshold defined as four times the fifth percentile of the observed sample 

variance during all NREM mini-epochs [28]. 

 

Frandsen method (FR) 

Frandsen et al. proposed an optimized method for quantifying submental motor activity during 

REM sleep. After the filtering, an amplitude curve (AC) was generated by calculating the difference 

between the highest and lowest EMG values within an ~200 ms moving window. Then, the AC was 

divided in 30-second segments and the median amplitude (MA) calculated for each of them. For 

each of these segments, the baseline was identified as the lowest MA in the period 30 minutes before 

and 30 minutes after the current segment. Muscular activity was then identified when the AC was 

above four times the baseline and with a minimum duration of 0.3 seconds. Moreover, clusters of 

muscular activity at a distance <0.5 seconds were considered as a unique muscular activation. 

Finally, the REM sleep mini-epoch index (FR) was calculated as the percentage of 3-second mini 

epochs in REM sleep with muscle activity events in >50% of the time. The implementation of the 

different algorithms was validated on a visual basis. 

 

Statistical analysis 

Between-group comparisons were performed using a Kruskal-Wallis test. Post-hoc comparisons 

were performed with a Mann-Whitney U-test with Tukey-Kramer correction at a significance level 

of p=0.05, and the effect size for each comparison was calculated according to [34]. Diagnostic value 
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and performance were quantified by sensitivity, specificity and the area under the receiver operating 

characteristic (ROC) curve (AUC). In particular, performance was measured using AUC values and 

the largest sensitivity at which there was a minimum of 97% specificity. Linear regression models 

were used to assess relationships between metrics and CSF-hcrt-1 levels, with correlation being 

evaluated using Pearson’s correlation coefficient and Student’s t-test for significance. For all the 

metrics (RAI excluded) and CSF-hcrt-1 values, log-transformation was used, while for the RAI 

metric the log(100-RAI) was applied to obtain positive correlations. All model residuals were 

checked for normality. 

 

Results 
Fig. 1 a)-f) show mPEM, STREAM, sMAI, lMAI, RAI and FR metrics, respectively, visualized 

by boxplots with group means designated by crosses, medians designated by horizontal lines, and the 

25th and 75th percentiles designated by the bottom and top end of the blue box. Average and standard 

error of the mean values of the different metrics are shown in Table 2 together with the p-value of 

the between-groups comparison. Table 3 shows the p-values of the post-hoc comparison tests and the 

effect size of each comparison.  

A comparison of the diagnostic value and performance of these different metrics is shown Table 

4. The choice of the different combinations shown for AUC analysis is explained in the discussion 

section. Finally, the results of correlation analysis are shown in Fig. 2.  
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Table 2. Electromyogram analyses results across subject groups.  

 C SCC NT1-RBD NT1+RBD NT2 p 

sMAI, hours 

REM 

87.1 (3.0) 91.5 (3.4) 161.8 (5.0) 127.4 (5.3) 137.8 (5.4) 0.0056 

lMAI, hours 

REM 

46.8 (2.0) 35.0 (0.9) 104.9 (4.3) 72.2 (5.2) 54.8 (2.3) 0.0015 

mPEM, % 10.8 (0.3) 13.6 (0.4) 25.7 (0.6) 19.2 (1.0) 15.8 (0.7) 0.0004 

RAI, % 96.9 (0.2) 96.1 (0.3) 93.0 (0.3) 89.8 (1.4) 96.4 (0.2) 0.0008 

STREAM, % 7.9 (0.2) 14.1 (0.9) 15.2 (0.9) 16.6 (1.7) 19.4 (1.2) 0.0529 

FR, % 11.2 (0.5) 13.3 (0.8) 20.8 (0.8) 19.5 (1.2) 12.9 (0.6) 0.0050 

 

Results are displayed as mean (standard error of the mean), as well as the p-values for the Kruskal-

Wallis test for each feature.  

C, healthy controls; SCC, sleep clinic controls; NT1±RBD, type 1 narcolepsy with/without RBD; 

NT2, narcolepsy type 2; sMAI, short muscle activity index; lMAI, long muscle activity index; 

mPEM, modified phasic electromyographic metric; RAI, REM atonia index; STREAM, supra-

threshold REM EMG activity metric; FR, Frandsen method; REM, rapid eye movement 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 11

Table 3. P-values obtained for the post-hoc comparisons by using a Mann-Whitney U-test with 

Tukey-Kramer correction highlighted by significance (p<0.05) and relative effect size in parentheses.  

 sMAI lMAI mPEM RAI FR 

C vs SCC 
0.9948 

(–0.03) 

0.9757 

(0.07) 

0.8822 

(–0.17) 

0.9944 

(0.06) 

0.9940 

(–0.11) 

C vs NT1-RBD 
0.0153 

(–0.50) 

0.0121 

(–0.49) 

0.0002 

(–0.66) 

0.0167 

(0.48) 

0.0154 

(–0.46) 

C vs NT1+RBD 
0.1668 

(–0.46) 

0.2735 

(–0.42) 

0.1100 

(–0.50) 

0.0079 

(0.61) 

0.0584 

(–0.45) 

C vs NT2 
0.1392 

(–0.38) 

0.9101 

(–0.11) 

0.4083 

(–0.25) 

0.9481 

(0.14) 

0.7535 

(–0.21) 

SCC vs NT1-RBD 
0.0660 

(–0.45) 

0.0026 

(–0.60) 

0.0122 

(–0.54) 

0.0721 

(0.44) 

0.0687 

(–0.43) 

SCC vs NT1+RBD 
0.3527 

(–0.37) 

0.1111 

(–0.53) 

0.5198 

(–0.31) 

0.0322 

(0.53) 

0.1634 

(–0.47) 

SCC vs NT2 
0.3505 

(–0.24) 

0.6292 

(–0.22) 

0.9394 

(–0.14) 

0.9978 

(0.06) 

0.9441 

(–0.15) 

NT1-RBD vs 

NT1+RBD 

0.9901 

(0.13) 

0.9389 

(0.23) 

0.7320 

(0.32) 

0.9763 

(0.06) 

1 

(0.06) 

NT1-RBD vs NT2 
0.9257 

(0.11) 

0.1600 

(0.39) 

0.1055 

(0.40) 

0.1522 

(–0.38) 

0.3336 

(0.36) 

NT1+RBD vs NT2 
0.9992 

(0.00) 

0.7484 

(0.16) 

0.8974 

(0.15) 

0.0690 

(–0.55) 

0.5016 

(0.33) 

 

C, healthy controls; SCC, sleep clinic controls; NT1±RBD, type 1 narcolepsy with/without RBD; 

NT2, narcolepsy type 2; sMAI, short muscle activity index; lMAI, long muscle activity index; 

mPEM, modified phasic electromyographic metric; RAI, REM atonia index; FR, Frandsen method 
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Table 4. Comparison of the diagnostic value and performance of the five different metrics, given as 

area under the curve (AUC) (sensitivity/specificity). Sensitivity was calculated at the point of a 

minimum of 97% specificity.  

 sMAI lMAI mPEM RAI STREAM FR 

C vs 

NT1+NT2 

0.784 

(0.158/1) 

0.708 

(0.132/1) 

0.794 

(0.395/1) 

0.741 

(0.222/0.974) 

0.737 

(0.290/1) 

0.731 

(0.132/1) 

SCC vs 

NT1+NT2 

0.725 

(0.079/1) 

0.779 

(0.368/1) 

0.712 

(0.132/1) 

0.700 

(0.133/0.974) 

0.597 

(0.026/1) 

0.714 (0/1) 

NT1 vs 

NT2 

0.542 

(0.044/1) 

0.693 

(0.261/1) 

0.696 (0/1) 0.788 

(0.267/1) 

0.533 (0/1) 0.725 

(0.044/1) 

NT1-RBD 

vs 

NT1+RBD 

0.587 

(0.214/1) 

0.651 

(0.071/1) 

0.706 

(0.071/1) 

0.540 

(0.286/1) 

0.587 (0/1) 0.540 

(0.143/1) 

C, healthy controls; SCC, sleep clinic controls; NT1±RBD, type 1 narcolepsy with/without RBD; 

NT2, narcolepsy type 2; sMAI, short muscle activity index; lMAI, long muscle activity index; 

mPEM, modified phasic electromyographic metric; RAI, RAI atonia index; STREAM, supra-

threshold REM EMG activity metric; FR, Frandsen method 
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Fig. 1. a) Modified phasic electromyogram metric (mPEM); b) supra-threshold rapid eye movement 

electromyogram activity metric (STREAM); c) short muscle activity index (sMAI); d) long muscle 

activity index (lMAI); e) rapid eye movement atonia index (RAI); and e) Frandsen metric (FR) 

across subject groups shown as box plots with crosses denoting group means. 

 C, healthy controls; SCC, sleep clinic controls; NT1±RBD, type 1 narcolepsy with/without RBD; 

NT2, narcolepsy type 2 

*p<0.05 

**p<0.01 
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*** p<0.001 
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Fig. 2. Correlation plots and analysis between metrics. All the metrics (RAI excluded) and CSF-1-

hcrt levels are log-transformed, and log(100-RAI) was used. Colors in the left boxes represent the 

correlation values, and significant p-values for the correlation are highlighted. In the diagonal, the 

distributions of the metrics are shown.  

sMAI, short muscle activity index; lMAI, long muscle activity index; mPEM, modified phasic 

electromyographic metric; RAI, REM atonia index; REM, rapid eye movement; STREAM, supra-

threshold REM electromyography activity metric; FR, Frandsen method; hcrt, hypocretin 
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Discussion 
 

The results in Fig. 1a)-f) and Tables 2 and 3 show that all the metrics (STREAM excluded) found 

elevated REM EMG activity in NT1-RBD compared to C, which is in agreement with the muscular 

abnormalities in NT1 observed in previous studies [18-20]. Increase in REM EMG activity was also 

observed when SCC were compared to NT1-RBD, but statistical difference was obtained only by 

lMAI and mPEM, while sMAI, RAI and FR were close to significance level. All the metrics 

presented a medium effect size when C/SCC were compared to NT1-RBD, with mPEM showing the 

highest value. These results further confirm that NT1 subjects are characterized by abnormal REM 

muscular activity. Compared to the other metrics, RAI was more sensitive to detect RBD as a 

comorbidity of NT1, since it was the only one showing statistical difference between NT1+RBD and 

C/SCC with a medium effect size. It is interesting to observe that RAI presented significant or close-

to-significance p-values when NT1±RBD patients were compared to other groups. This means that 

this metric has the potential to quantify the abnormal muscular movements during REM that have 

previously been observed [18–20]. However, it must be noticed that the authors of RAI proposed that 

healthy subjects are characterized by values >90% [27]. If this threshold was applied in this study, 

the majority of subjects would have been considered healthy. Low sample size in the current study 

and inter-clinic variability due to differences in recording equipment may have influenced these 

results. It may be that introducing subject-specific amplitude criteria based on NREM value features, 

such as in the STREAM calculations, would improve applicability to other datasets. 

The AUC analysis performed in Table 4 was performed in order to understand whether 

automatically detected REM EMG activity could be used as a tool to diagnose and differentiate 

narcolepsy with high specificity, according to the scheme shown in Fig. 3. When a subject is referred 

to the clinic, it is first desirable to understand whether he/she has narcolepsy, then which type it is, 

and in case of NT1, whether RBD is present or not. Fig. 3 illustrates the decision hierarchy on the 

role of RSWA in the diagnosis of narcolepsy in the top tier, and RBD as a comorbidity of NT1 in the 

lowest tier.  
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Fig. 3. Schematic representation of the diagnostic decisions made with the proposed automatic 

analysis of REM-EMG activity. The presence of narcolepsy is first analyzed, then which type of 

narcolepsy, and finally in case of NT1 the presence of comorbid RBD is noted. 

 

 

The results in Table 4 show that the applied metrics showed promising diagnostic performances in 

discriminating healthy subjects (C/SCC) from the narcoleptic ones, with mPEM having the highest 

AUC (0.79) when C were considered, and lMAI having the highest one (0.78) when SCC were taken 

into account. Testing NT1 against NT2 yielded an AUC of 0.79 using the RAI metric, thus showing 

that it has potential in distinguishing between narcolepsy types. Finally, mPEM had the highest AUC 

value (0.71) in distinguishing NT1+RBD and NT1-RBD, while the other metrics did not show 

satisfactory results. These results are generally promising because they show that automated EMG 

analysis during single-night PSG has the potential of discriminating between healthy controls and 

narcolepsy and between narcolepsy subtypes. The current study chose to focus on highly specific 

features for narcolepsy detection (at least 97% specificity) instead of seeking optimal diagnostic 

points balancing specificity and sensitivity in the ROC curve. Previous studies have likewise 

described highly specific features obtained from other sources, such as power spectral information in 

the EEG [11] and sleep stage transitions [12], and found sensitivities that were comparable to those 

found in the current study. However, since the obtained sensitivities were relatively low, this type of 

analysis might be considered as a supportive tool in the diagnosis of narcolepsy in combination with 

other tools, although extension to a larger sample will be needed to confirm this. In order to provide 

a more complete overview of the AUC analysis, the sensitivity and specificity obtained in 

correspondence of the optimal point of the ROC curve are presented in appendix Table A. 1. 
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Fig. 2 shows the correlation analysis between metrics and CSF-hcrt-1 levels. The linear 

relationships between variables were evaluated using Pearson’s correlation coefficient. However, 

since this is a parametric method sensitive to outliers in data, the correlation analysis was also 

conducted using Spearman’s correlation coefficient included in Appendix Fig. A. 2. These results 

were similar to the ones reported in Fig. 2. The analysis in Fig. 2 shows that the different metrics 

were generally characterized by significant correlations among them. These results show that the 

metrics investigated in this study generally agreed on the quantification of abnormal muscular 

activity. It is particularly interesting to observe a significant negative correlation between log-

transformed CSF-hcrt-1 values and metrics. This means that more muscular activity was observed in 

patients having lower CSF-hcrt-1 levels, thus supporting the hypothesis that CSF-hcrt-1 plays an 

important role in regulating muscle tone in narcolepsy during REM sleep.  

This is the first study to compare multiple EMG quantification methods on a single dataset 

containing NT1 and NT2 patients with the aim of investigating the role of automatically detected 

RSWA as a supportive tool in the diagnosis and differentiation of narcolepsy. Previous studies on 

automatic EMG quantification have focused primarily on RBD, iRBD in connection with 

neurodegenerative diseases such as Parkinson’s, or NT1 alone [25-29,35-37]. However, the currently 

implemented automatic methods present important limitations with regard to artifact removals. 

Specifically, none of the algorithms embed automatic detection of events that might affect the results 

in the calculation of abnormal muscular activity, such as sleep apneas, arousals, and noise. It is 

believed that adding the detection of such features should be taken into account when developing 

future automatic/data-driven EMG analysis methods. 

This study was limited by the following factors: 1) although a total of 81 subjects (71 after artifact 

rejection) were enrolled, the number of subjects in each group was very low. This limited the extent 

of the conclusions drawn based on the statistical analyses, and further studies with more data 

including idiopathic RBD and/or Parkinson groups should confirm the findings of this study. The 

small sample size might also explain the fact that NT1+RBD subjects presented a very similar 

muscular activity level as NT1-RBD, which was a relatively unexpected result. 2) The EMG analysis 

was performed on submental recordings only, and could be extended to include traces of legs and 

arms, since this has been shown to better differentiate RBD patients from controls in some studies 

[38]. However, the submental was not affected by periodic leg movements to the same degree as 

lower limb recordings [25]. 3) Many other detection approaches have been proposed in the literature, 

which could also have been investigated in this study. However, it chose to focus on methods which 

could be adapted to an automatic setting using chin EMG only, excluding those using multiple 

traces, such as the SINBAR method [38,39]. 4) Because of different hardware systems were used for 
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PSG recording, all EMG signals at 70 Hz had to be digitally low-pass filtered post hoc. This was a 

critical point, since some of the proposed algorithms (ie, mPEM, RAI and MAI) have originally been 

applied to EMG signals low-pass filtered at 100 Hz. It is unclear at this point whether the lack of 

frequency components in the 70-100 Hz range in the analyzed signals would have a significant effect 

on the final results, since at least one study used the same low-pass cut-off point at 70 Hz for 

analyzing RWSA in patients with RBD and comorbid OSA [40]. Further studies are needed to 

understand whether the different filtering might affect the results in a significant way. 
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Conclusions 
In summary, five automated methods evaluating nocturnal EMG activity were implemented in 

order to evaluate whether automatically detected RSWA could be used as a supportive tool in the 

diagnosis of narcolepsy and differentiation of narcolepsy subtypes. The results show that abnormal 

muscular activity is detected by most methods in NT1 subjects and that RAI is more sensitive than 

the other methods in identifying RBD as a comorbidity of NT1. The analysis of the diagnostic 

performances of the automatic methods show that mPEM yields promising results in the diagnosis of 

narcolepsy and identification of RBD in NT1, while RAI has the highest AUC in differentiating 

between NT1 and NT2. Moreover, it was found that CSF-hcrt-1 are associated with RSWA, 

underlying that hypocretin plays a role in the regulation of muscle activity during sleep. 
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APPENDIX A 

Table A.1. Comparison of the diagnostic value and performance of the five different metrics, given 

as optimal values of sensitivity/specificity.  

 sMAI lMAI mPEM RAI STREAM FR 

C vs 

NT1+NT2 

0.868/0.722 0.868/0.444 0.763/0.778 0.444/0.895 0.842/0.556 0.921/0.556 

SCC vs 

NT1+NT2 

0.947/0.467 0.868/0.533 0.790/0.600 0.533/0.842 0.974/0.133 0.921/0.467 

NT1 vs 

NT2 

1.000/0.133 0.870/0.467 0.957/0.333 0.800/0.739 0.913/0.267 0.783/0.733 

NT1-RBD 

vs 

NT1+RBD 

0.643/0.778 0.786/0.667 0.857/0.667 1.000/0.111 0.889/0.571 0.643/0.556 

 

C, healthy controls; SCC, sleep clinic controls; NT1RBD, type 1 narcolepsy with/without RBD; 

NT2, narcolepsy type 2; sMAI, short muscle activity index; lMAI, long muscle activity index; 

mPEM, modified phasic electromyographic metric; RAI, RAI atonia index; STREAM, supra-

threshold REM EMG activity metric; FR, Frandsen method  
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Fig. A. 1. Example of threshold chosen for identifying abnormal muscular activity with the muscle 

activity index method. It can be seen that if the threshold is set to twice the background level, the 

ECG artifacts in the EMG signal are wrongly considered as movements, while if the threshold is set 

to four times the baseline level, ECG artifacts are not seen as movements, while increased EMG 

activity is still accurately classified as movement. 

ECG, electrocardiogram; EMG, electromyogram 
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Fig. A. 2. Spearman correlation plots and analysis between metrics. All the metrics (RAI excluded) 

and CSF-hcrt-1 levels are log-transformed, and log(100-RAI) was used. Colors in the left boxes 

represent the correlation values, and significant p-values for the correlation are highlighted. In the 

diagonal, the distributions of the metrics are shown.  

sMAI, short muscle activity index; lMAI, long muscle activity index; mPEM, modified phasic 

electromyographic metric; RAI, REM atonia index; STREAM, supra-threshold REM EMG activity 

metric; FR, Frandsen method 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

HIGHLIGHTS 

• Comparison of five methods for automatic analysis of electromyogram (EMG) activity in 

narcolepsy. 

• Narcolepsy type 1 is characterized by increased rapid eye movement (REM) EMG activity. 

• Automatic EMG analysis in REM was a possible supportive tool in narcolepsy diagnosis. 

• Lower CSF hypocretin 1 level correlated with increased REM EMG activity. 


